WO2020080063A1 - Hybrid system, hybrid system control device, and hybrid system control method - Google Patents

Hybrid system, hybrid system control device, and hybrid system control method Download PDF

Info

Publication number
WO2020080063A1
WO2020080063A1 PCT/JP2019/038162 JP2019038162W WO2020080063A1 WO 2020080063 A1 WO2020080063 A1 WO 2020080063A1 JP 2019038162 W JP2019038162 W JP 2019038162W WO 2020080063 A1 WO2020080063 A1 WO 2020080063A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
catalyst
reducing agent
exhaust gas
Prior art date
Application number
PCT/JP2019/038162
Other languages
French (fr)
Japanese (ja)
Inventor
文紀 本城
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020080063A1 publication Critical patent/WO2020080063A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to a hybrid system, a hybrid system control device, and a hybrid system control method, and more particularly, to a hybrid system and a hybrid system including a catalyst that purifies nitrogen oxides contained in exhaust gas by using a reducing agent.
  • the present invention relates to a control device and a hybrid system control method.
  • Patent Document 1 JP-A-2017-115640 (hereinafter referred to as "Patent Document 1")
  • the SCR catalyst purifies NOx (nitrogen oxide) contained in the exhaust gas from the internal combustion engine by using ammonia as a reducing agent generated from urea water.
  • the NOx trap catalyst purifies NOx contained in the exhaust gas without using the reducing agent.
  • the exhaust emission control device of Patent Document 1 includes a switching unit that switches between a reduction mode that suppresses the supply amount of urea water from a supply unit that supplies urea water to the SCR catalyst and a normal mode that does not suppress it. As a result, even when the mode is switched to the reduction mode, NOx can be purified by the NOx trap catalyst, so that the consumption of urea water can be suppressed while maintaining the efficiency of NOx purification.
  • This disclosure has been made to solve the above-mentioned problems, and its purpose is to reduce the amount of reducing agent remaining when it is configured to purify exhaust gas of an internal combustion engine with a catalyst that utilizes a reducing agent.
  • EN Provided are a hybrid system, a hybrid system control device, and a hybrid system control method capable of operating an internal combustion engine so as not to violate legal regulations.
  • a hybrid system includes an internal combustion engine, an exhaust passage of the internal combustion engine, a generator that uses the power output from the internal combustion engine to generate power, a power storage device that charges the power generated by the power generator, and a power storage device.
  • the electric motor for driving the vehicle which is driven by using at least one of the electric power generated by the generator and the electric power generated by the generator, and the nitrogen oxide contained in the exhaust gas, which is arranged in the exhaust passage and uses the reducing agent.
  • a reducing agent supply device that is arranged on the upstream side of the first catalyst in the exhaust passage and supplies the reducing agent to the exhaust passage, and a temperature that is arranged in the exhaust passage and is higher than the activation temperature of the first catalyst.
  • a control device for controlling the operating state of the internal combustion engine.
  • the second catalyst is warmed by the exhaust gas flowing through the exhaust passage.
  • the control device operates the internal combustion engine with a control target that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated when the internal combustion engine is operating. .
  • the control device intermittently operates by switching between operating the internal combustion engine and stopping it according to the SOC of the power storage device.
  • control device operates the internal combustion engine when the SOC of the power storage device is less than the first predetermined value, and stops the internal combustion engine when the SOC of the power storage device reaches the second predetermined value. Operates the internal combustion engine intermittently.
  • the internal combustion engine is a diesel engine.
  • the second catalyst is a three-way catalyst.
  • the control device controls the internal combustion engine to have an air-fuel ratio lower than the theoretical air-fuel ratio. .
  • the control device reduces the exhaust gas temperature of the internal combustion engine when the internal combustion engine is operated with the exhaust gas temperature at which the first catalyst is activated as a control target.
  • the reducing agent supply device is controlled to permit the supply of the reducing agent, and when the internal combustion engine is operated with the exhaust gas temperature of the internal combustion engine at the exhaust temperature at which the second catalyst is activated, the reducing agent is supplied.
  • the reducing agent supply device is controlled to prohibit.
  • the control device when operating the internal combustion engine with a control target that the exhaust gas temperature of the internal combustion engine becomes the exhaust gas temperature at which the second catalyst is activated, the control device sets the rotation speed to a predetermined speed and increases or decreases the output torque.
  • the output torque is set to a predetermined value and the rotational speed is increased or decreased.
  • control device when the remaining amount of the reducing agent is less than the predetermined amount, the control device reduces the supply of the reducing agent to the exhaust passage as compared with the case where the remaining amount of the reducing agent exceeds the predetermined amount. Control the agent supply device.
  • the first catalyst is an SCR catalyst and the reducing agent is urea water. Even when the remaining amount of the reducing agent is less than a predetermined amount, the control device allows the reducing agent to be supplied when the vehicle speed of the vehicle equipped with the hybrid system becomes 0. To control.
  • a control device for a hybrid system includes an internal combustion engine, an exhaust passage of the internal combustion engine, a generator that generates electric power using power output from the internal combustion engine, and a generated electric power generated by the generator.
  • a power storage device a motor for driving the vehicle that is driven by at least one of the power discharged by the power storage device and the power generated by the generator, and included in the exhaust gas that is arranged in the exhaust passage and uses the reducing agent.
  • a second catalyst which is activated at a temperature higher than that of the second catalyst for purifying nitrogen oxides contained in exhaust gas, and is a control device for controlling an operating state of an internal combustion engine of a hybrid system.
  • the control device operates the internal combustion engine with a control target that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated when the internal combustion engine is operating. .
  • a hybrid system control method provides an internal combustion engine, an exhaust passage of the internal combustion engine, a generator that generates power using power output from the internal combustion engine, and power generated by the generator.
  • a power storage device to be charged a vehicle driving electric motor that is driven by using at least one of the discharge power of the power storage device and the power generated by the generator, and a reducing agent that is placed in the exhaust passage to generate exhaust gas.
  • the control device sets the internal combustion engine as a control target such that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated. Including the step of operating the engine.
  • the internal combustion engine when the remaining amount of the reducing agent is less than the predetermined amount, the internal combustion engine is operated with the exhaust gas temperature at which the second catalyst not using the reducing agent is activated as a control target.
  • a hybrid system capable of operating the internal combustion engine regardless of the remaining amount of the reducing agent when the exhaust gas of the internal combustion engine is configured to be purified by the catalyst using the reducing agent, and a control device for the hybrid system , And a method of controlling the hybrid system can be provided.
  • FIG. 6 is a flowchart showing a flow of engine control processing in this embodiment. It is a graph which shows the performance curve of the engine in this embodiment. It is a figure for demonstrating that the decrease in urea water can be suppressed by the control in this embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle 100 in this embodiment.
  • a vehicle 100 includes a battery 10, a power control unit (hereinafter, referred to as “PCU (Power Control Unit)”) 11, an engine 20, and a motor generator (hereinafter, “MG (Motor Generator)”). 31), MG 32, and drive wheel 40.
  • the vehicle 100 further includes various electronic control units (ECU: Electronic Control Unit) such as an HV-ECU 51 and an EG-ECU 52 described later.
  • ECU Electronic Control Unit
  • the battery 10 according to the present embodiment corresponds to an example of the “power storage device” according to the present disclosure.
  • the engine 20 is an internal combustion engine that outputs power by converting combustion energy generated when fuel (gasoline, light oil, etc.) is burned into kinetic energy of a moving element such as a piston or a crankshaft.
  • MG31 and MG32 are electric power devices that convert electric energy into mechanical energy or convert mechanical energy into electric energy.
  • a diesel engine is adopted as engine 20
  • a three-phase AC synchronous motor generator in which permanent magnets are embedded in rotors is adopted as MG31 and MG32.
  • the engine 20 may include a turbocharger (for example, a variable nozzle turbo) in the intake / exhaust system.
  • Vehicle 100 is a series hybrid vehicle.
  • MG 31 traveling motor
  • MG 32 is driven by engine 20 to generate electric power.
  • Power sources for driving MG 31 are electric power generated by MG 32 and electric power stored in battery 10. More specifically, the rotary shaft 21 of the engine 20 and the rotary shaft 22 of the MG 32 are mechanically connected to each other via a gear 23, and the rotary shaft 22 of the MG 32 also rotates with the rotation of the rotary shaft 21 of the engine 20. It rotates and the MG 32 generates electricity.
  • rotary shaft 41 of MG 31 is not mechanically connected to rotary shafts 21 and 22, but mechanically connected to drive shaft 42 via power transmission gear 43.
  • the torque (driving force) output to the rotating shaft 41 of the MG 31 is transmitted to the driving shaft 42 via the power transmission gear 43, and the driving force of the MG 31 causes the driving shaft 42 to rotate. Then, as the drive shaft 42 rotates, the drive wheels 40 provided at both ends of the drive shaft 42 rotate.
  • the MG 31 operates as an electric motor during acceleration of the vehicle 100, and drives the drive wheels 40 of the vehicle 100. On the other hand, when the vehicle 100 is being braked or the acceleration on the down slope is being reduced, the MG 31 operates as a generator to perform regenerative power generation. The electric power generated by MG 31 is supplied to battery 10 via PCU 11.
  • MG 32 is configured to generate power (engine power generation) by using power output from engine 20.
  • the engine-generated electric power generated in MG 32 is supplied from MG 32 to MG 31, or is supplied from MG 32 to battery 10 via PCU 11.
  • PCU 11 is configured to include two inverters provided corresponding to MG31 and MG32, and a boost converter that boosts the DC voltage supplied to each inverter to the voltage of battery 10 or higher (for example, 600V). PCU 11 executes electric power conversion between battery 10 and MG31 and MG32 in accordance with a control signal from HV-ECU 51. The PCU 11 is configured to be able to control the states of the MG 31 and the MG 32 separately.
  • the battery 10 is a rechargeable DC power supply.
  • the rated voltage of the battery 10 is, for example, 300V to 450V.
  • the battery 10 is configured to include, for example, a secondary battery (rechargeable battery).
  • a lithium ion battery can be adopted.
  • Battery 10 may include an assembled battery including a plurality of secondary batteries (for example, lithium ion batteries) connected in series and / or in parallel.
  • the secondary battery forming the battery 10 is not limited to the lithium ion battery, and another secondary battery (for example, a nickel hydrogen battery) may be adopted.
  • An electrolytic solution type secondary battery or an all solid state type secondary battery may be adopted. Further, as the battery 10, a large-capacity capacitor or the like can be adopted.
  • a monitoring unit 61 for monitoring the state of the battery 10 is provided for the battery 10.
  • the monitoring unit 61 includes various sensors that detect the state of the battery 10 (temperature, current, voltage, etc.).
  • the HV-ECU 51 is configured to detect the state (SOC or the like) of the battery 10 based on the output of the monitoring unit 61.
  • SOC State Of Charge
  • SOC indicates the remaining charge amount, for example, the ratio of the current charge amount to the charge amount in the fully charged state is expressed as 0 to 100%.
  • various known methods such as a method using current value integration (Coulomb count) or a method using open circuit voltage (OCV: Open Circuit Voltage) estimation can be adopted.
  • a monitoring unit 62 that monitors the state of the engine 20 is provided for the engine 20.
  • the monitoring unit 62 includes various sensors that detect the state of the engine 20 (cooling water temperature, intake air amount, rotational speed, etc.).
  • the HV-ECU 51 and the EG-ECU 52 are configured to detect the state of the engine 20 based on the output of the monitoring unit 62.
  • monitoring units 63 and 64 for monitoring the states of the MG 31 and MG 32 are provided for the MG 31 and MG 32, respectively.
  • Monitoring units 63 and 64 include various sensors that detect the states (temperature, rotation speed, etc.) of MG31 and MG32.
  • HV-ECU 51 is configured to detect the states of MG31 and MG32 based on the outputs of monitoring units 63 and 64.
  • Each of the ECUs (HV-ECU 51, EG-ECU 52) included in the vehicle 100 has a CPU (Central Processing Unit) as a computing device, a storage device, and an input / output port for inputting / outputting various signals (both are shown in FIG. (Not shown).
  • the storage device includes a RAM (Random Access Memory) as a working memory and a storage for storage (ROM (Read Only Memory), rewritable nonvolatile memory, etc.).
  • Each ECU receives signals from various devices (sensors and the like) connected to the input port and controls various devices connected to the output port based on the received signals.
  • Various controls are executed by the CPU executing the programs stored in the storage device.
  • each ECU is not limited to the processing by software, and may be performed by dedicated hardware (electronic circuit).
  • the HV-ECU 51 and the EG-ECU 52 according to the present embodiment function as the “control device” according to the present disclosure.
  • the HV-ECU 51 calculates an output request value for the engine 20 and an output request value for the MG 31 and MG 32 (for example, a torque request value). Then, HV-ECU 51 transmits the output request value for engine 20 to EG-ECU 52, and supplies power to MG 31 and MG 32 based on the output request value for MG 31 and MG 32 (and thus the output torque of MG 31 and MG 32). To control.
  • the HV-ECU 51 can control the magnitude (amplitude) and frequency of the electric power supplied to the MG 31 and the MG 32 by controlling the PCU 11 and the like. Further, the HV-ECU 51 controls charge / discharge of the battery 10 by controlling the PCU 11 and the like.
  • the various devices connected to the input port of the HV-ECU 51 further include an accelerator opening sensor 65 and a vehicle speed sensor 66 in addition to the various sensors included in the monitoring units 61, 63 and 64.
  • the accelerator opening sensor 65 detects the amount of depression of an accelerator pedal (not shown) of the vehicle 100 as the accelerator opening, and outputs the detection result (a signal indicating the accelerator opening) to the HV-ECU 51.
  • the HV-ECU 51 increases the driving force of the MG 31 as the depression amount of the accelerator pedal increases.
  • the vehicle speed sensor 66 detects the speed of the vehicle 100 and outputs the detection result (a signal indicating the vehicle speed) to the HV-ECU 51.
  • the EG-ECU 52 receives the output request value for the engine 20 from the HV-ECU 51, and controls the operation of the engine 20 (fuel injection control, ignition control, so that kinetic energy corresponding to the output request value is generated in the engine 20). Intake air amount control etc.). Engine power generation is performed by driving the engine 20, and the engine 20 is stopped when the engine power generation is not performed. By driving engine 20, MG 32 generates engine-generated electric power. Further, the EG-ECU 52 receives the detection values of various sensors included in the monitoring unit 62 and transmits the detection values to the HV-ECU 51.
  • the vehicle 100 travels when the MG 31 drives the drive wheels 40.
  • the HV-ECU 51 starts charging the battery 10 with the engine-generated power when the SOC of the battery 10 becomes equal to or lower than the charge start SOC while the vehicle 100 is traveling, and the SOC of the battery 10 becomes equal to or higher than the charge completion SOC. If so, the charging is stopped.
  • the HV-ECU 51 requests the EG-ECU 52 to drive the engine 20 under a predetermined condition suitable for power generation.
  • MG 32 generates engine generated electric power larger than the electric power consumed when the vehicle 100 travels.
  • the HV-ECU 51 controls the PCU 11 and the like to supply the generated engine-generated electric power to the battery 10. As a result, the battery 10 is charged by the engine-generated power, and the SOC of the battery 10 increases.
  • the HV-ECU 51 instructs the EG-ECU 52 to stop the engine 20, and also controls the PCU 11 etc. to stop the supply of electric power to the battery 10.
  • the engine 20 is started every time the SOC of the battery 10 becomes equal to or lower than the charge start SOC, and the battery 10 is charged with the engine generated power.
  • the SOC of the battery 10 is generally maintained within the range from the charging start SOC to the charging completion SOC.
  • vehicle 100 includes a three-way catalyst 71, a DPF (Diesel Particulate Filter) 72, and an SCR catalyst 73 as a device that processes the exhaust gas of engine 20. Exhaust pipes are connected between the engine 20, the three-way catalyst 71, the DPF 72, and the SCR catalyst 73.
  • DPF Diesel Particulate Filter
  • the three-way catalyst 71 is a catalyst that purifies nitrogen oxides (NOx), carbon monoxide (CO), and unburned hydrocarbons (HC) contained in the exhaust flowing through the exhaust passage of the engine 20.
  • the three-way catalyst 71 reduces NOx to nitrogen and oxygen in the presence of a reducing gas (H2, CO or hydrocarbon), oxidizes carbon monoxide to carbon dioxide in the presence of an oxidizing gas, and oxidizes the oxidizing gas. Oxidize unburned hydrocarbons (HC) to carbon dioxide and water in the presence of.
  • NOx nitrogen oxides
  • CO carbon monoxide
  • HC unburned hydrocarbons
  • the three-way catalyst 71 In order for the three-way catalyst 71 to be efficiently oxidized or reduced, it is necessary for the engine 20 to completely burn fuel and to burn (stoichiometric combustion) at a stoichiometric stoichiometry with no oxygen remaining. If the oxygen is in a lean state, the three-way catalyst 71 is not preferable for NOx reduction. When the temperature of the catalyst is low, the efficiency of the three-way catalyst 71 decreases. The three-way catalyst 71 is activated in a temperature range higher than that of the SCR catalyst 73 and the processing efficiency is improved.
  • An exhaust temperature sensor 81 and an A / F sensor 82 are provided in the exhaust pipe between the engine 20 and the three-way catalyst 71.
  • the exhaust temperature sensor 81 detects the temperature of the exhaust gas from the engine 20, and outputs the detection result (a signal indicating the exhaust temperature) to the EG-ECU 52.
  • the A / F sensor 82 analyzes the exhaust gas from the engine 20 to detect the air-fuel ratio, and outputs the detection result (a signal indicating the air-fuel ratio) to the EG-ECU 52.
  • the DPF 72 is a filter that collects particulate matter (PM: Particulate Matter) contained in the exhaust flowing through the exhaust passage of the engine 20.
  • PM particulate Matter
  • the collected PM accumulates inside the DPF 72. Therefore, the DPF 72 is regenerated by periodically heating the inside of the DPF 72 to burn and remove PM.
  • the SCR catalyst 73 is a catalyst that selectively purifies NOx contained in the exhaust gas flowing through the exhaust passage of the engine 20 by using a reducing agent.
  • a reducing agent urea water is used in the present embodiment.
  • the urea water injection nozzle 74 is provided in the exhaust pipe between the DPF 72 and the SCR catalyst 73, and injects the urea water supplied from the urea water tank 75 into the exhaust pipe.
  • a residual amount sensor 84 is provided in the urea water tank 75. The remaining amount sensor 84 detects the remaining amount of urea water in the urea water tank 75, and outputs the detection result (a signal indicating the remaining amount of urea water) to the EG-ECU 52.
  • the urea water injected from the urea water injection nozzle 74 is hydrolyzed by exhaust heat to generate ammonia as a reducing agent.
  • the produced ammonia is adsorbed on the surface of the SCR catalyst 73 and selectively reacts with NOx in the exhaust gas to purify NOx into nitrogen and water.
  • the SCR catalyst 73 is activated in a temperature range lower than that of the three-way catalyst 71, and the processing efficiency is improved.
  • an oxidation catalyst such as ASC (Ammonia Slip Catalyst) that oxidizes the ammonia that has passed through the SCR catalyst 73 to prevent it from being discharged into the atmosphere may be provided downstream of the SCR catalyst 73.
  • ASC Ammonia Slip Catalyst
  • a NOx sensor 83 is provided in the exhaust pipe downstream of the SCR catalyst 73.
  • the NOx sensor 83 detects the amount of NOx contained in the exhaust gas emitted from the SCR catalyst 73, and outputs the detection result (a signal indicating the amount of NOx) to the EG-ECU 52.
  • the HV-ECU 51 and the EG-ECU 52 operate the engine 20 so that the exhaust temperature is such that the three-way catalyst 71 is activated when the residual amount of urea water is less than a predetermined amount. To do so. As a result, when the remaining amount of urea water is less than the predetermined amount, the engine 20 is operated so as to reach the exhaust temperature at which the three-way catalyst 71 that does not use urea water is activated. As a result, when the SCR catalyst 73 that uses urea water is configured to purify the exhaust gas of the engine 20, it is possible to operate the engine 20 regardless of the remaining amount of urea water without violating legal regulations. it can.
  • FIG. 2 is a flow chart showing the flow of engine control processing in this embodiment.
  • the engine control process is called by the main process at predetermined control cycles and executed by the EG-ECU 52.
  • EG-ECU 52 calculates the remaining amount of urea water using the detection result from remaining amount sensor 84 of urea water tank 75 (step (hereinafter referred to as “S”) 101).
  • the EG-ECU 52 determines whether or not the remaining amount of urea water is equal to or less than a predetermined amount (S102).
  • the predetermined amount is a predetermined amount recommended to replenish the urea water tank 75 with urea water, and is, for example, a fraction of the full amount of the urea water tank 75. If it is determined that the remaining amount is equal to or less than the predetermined amount (YES in S102), the EG-ECU 52 shifts the exhaust gas processing mode to the urea suppression mode (S103). When it is determined that the remaining amount is not less than or equal to the predetermined amount (NO in S102), the EG-ECU 52 shifts the exhaust gas processing mode to the urea non-suppression mode (S104).
  • the EG-ECU 52 determines whether the mode for processing the exhaust gas is currently the urea suppression mode (S105). When it is determined that the mode is not the urea suppression mode (NO in S105), that is, the mode is the urea non- suppression mode, the EG-ECU 52 determines whether or not a power generation request is issued from the HV-ECU 51 (S111). The power generation request is issued by the HV-ECU 51 to the EG-ECU 52 when the SOC of the battery 10 becomes equal to or lower than the charge start SOC.
  • the EG-ECU 52 controls to stop the engine 20 (S112). After that, the EG-ECU 52 returns the processing to be executed to the calling processing.
  • the EG-ECU 52 controls the engine 20 so that the load and rotation speed are in accordance with the power generation request (S113).
  • FIG. 3 is a graph showing a performance curve of the engine 20 in this embodiment.
  • the maximum torque that can be output by engine 20 changes as the rotation speed changes, as indicated by torque curve L in FIG. 3 (A).
  • the EG-ECU 52 determines whether the load on the engine 20 is equal to or higher than a predetermined load (S114).
  • a predetermined load S114. The higher the load on the engine 20, the higher the exhaust temperature.
  • the predetermined load is determined as a load corresponding to the exhaust temperature at which the NOx purification efficiencies of the three-way catalyst 71 and the SCR catalyst 73 are about the same.
  • the EG-ECU 52 prohibits the injection of urea water and causes the three-way catalyst 71 to function properly.
  • the engine 20 is controlled so that stoichiometric combustion is performed using the detection result (S115). It is preferable to be stoichiometric combustion with a stoichiometric air-fuel ratio, but it is sufficient if it is not combustion in a lean state with an air-fuel ratio higher than the theoretical air-fuel ratio, even if combustion is in a rich state with an air-fuel ratio lower than the theoretical air-fuel ratio Good.
  • the NOx purification efficiency of the three-way catalyst 71 is higher than the NOx purification efficiency of the SCR catalyst 73.
  • urea water is not injected.
  • the EG-ECU 52 permits the injection of the urea water, and the urea is discharged according to the exhaust state (for example, the amount of NOx contained in the exhaust).
  • the urea water injection nozzle 74 is controlled to inject water (S116).
  • the injection amount of urea water is controlled using the detection result of the NOx sensor 83 provided downstream of the SCR catalyst 73.
  • the amount of NOx contained in the exhaust gas flowing into the SCR catalyst 73 is calculated from the detection result of the NOx sensor 83 provided downstream of the SCR catalyst 73 and the injection amount of urea water from the urea water injection nozzle 74.
  • a NOx sensor is also provided upstream of the SCR catalyst 73, and the amount of NOx contained in the exhaust gas flowing into the SCR catalyst 73, and the detection result of the NOx sensor 83 on the downstream side are used, and The injection amount of urea water may be calculated.
  • the load of the engine 20 is less than the predetermined load, the engine 20 is controlled so that the combustion is not the stoichiometric combustion but the lean combustion which is the combustion of the normal diesel engine.
  • the EG-ECU 52 After S115 and S116, the EG-ECU 52 returns the process to be executed to the calling source of this process.
  • the engine 20 in the urea non-suppression mode, when the load of engine 20 is equal to or higher than a predetermined load, that is, when engine 20 is operated so that the exhaust temperature activates three-way catalyst 71, As shown in FIG. 3 (A), the engine 20 is controlled in the three-way catalytic enable area.
  • the target of the rotation speed is set to a constant speed, and the output torque is increased or decreased to adjust the output.
  • the engine 20 In the urea non-suppression mode, when the engine 20 is operated so that the load of the engine 20 is less than the predetermined load, that is, the exhaust temperature activates the SCR catalyst 73, as shown in FIG.
  • the engine 20 is controlled in the feasible region.
  • the output is adjusted by setting the target of the output torque to a constant value and increasing or decreasing the rotation speed.
  • the EG-ECU 52 determines whether the power generation request is issued from the HV-ECU 51. It is determined (S121). When it is determined that there is a power generation request (YES in S121), the EG-ECU 52 prohibits the injection of urea water and controls the engine 20 by stoichiometric combustion so that the load is higher than the predetermined load (S122). .
  • the engine 20 in the urea suppression mode, as shown in FIG. 3 (B), the engine 20 is controlled in the three-way catalyst available range.
  • the output is adjusted by increasing and decreasing the output torque by setting the target of the rotation speed to a constant speed.
  • the EG-ECU 52 controls to stop the engine 20 (S123). After S122 and S123, the EG-ECU 52 returns the processing to be executed to the calling processing.
  • FIG. 4 is a diagram for explaining that the decrease in urea water can be suppressed by the control according to this embodiment.
  • FIG. 4 (A) a case where vehicle 100 is in steady operation at a constant vehicle speed will be described. In this case, it is assumed that the remaining amount of urea water has become equal to or less than the predetermined amount at time t1.
  • the electric power of the battery 10 is used for driving the MG 31, etc., and at time t3, the SOC of the battery 10 becomes equal to or lower than the charge start SOC, and the engine 20 is controlled in the three-way catalyst available range.
  • the engine 20 is intermittently operated according to the SOC of the battery 10.
  • vehicle 100 is operating under a high load
  • engine 20 may be continuously operated according to the SOC of the battery.
  • the engine 20 is not controlled in the SCR usable area, but the engine 20 is controlled in the three-way catalyst enabled area. Therefore, NOx is treated by the three-way catalyst 71, and it is not necessary to use urea water.
  • both MG31 and MG32 are motor generators.
  • the MG 31 is not limited to this, and may be a generator.
  • MG 32 may be an electric motor.
  • the catalyst that purifies NOx contained in the exhaust using the reducing agent is the SCR catalyst 73 that uses urea water as the reducing agent.
  • the catalyst is not limited to this as long as it is a catalyst that purifies NOx contained in exhaust gas by using a reducing agent, and may be, for example, an SCR catalyst that uses HC as a reducing agent.
  • urea water is not used at all in the urea suppression mode.
  • the urea suppression mode is not limited to this as long as the supply of the urea water to the SCR catalyst is suppressed as compared with the urea non-suppression mode.
  • the processing efficiency of the three-way catalyst 71 is not good, so in this case, in order to suppress the emission of NOx, when the vehicle speed becomes 0, the EG-ECU 52 Alternatively, the supply of urea water may be permitted, the engine 20 may be temporarily operated, and the urea water may be injected to cause the SCR catalyst 73 to adsorb ammonia.
  • the above-described embodiment can be regarded as a disclosure of a hybrid system including the engine 20, the MG 31, the MG 32, the battery 10, the SCR catalyst 73, and the three-way catalyst 71. Further, it can be regarded as disclosure of such a hybrid system control device (HV-ECU 51, EG-ECU 52) or disclosure of a hybrid system control method. Further, it can be regarded as a disclosure of a vehicle 100 provided with such a hybrid system.
  • the hybrid system charges the engine 20, the exhaust pipe of the engine 20, the MG 32 that generates electric power using the power output from the engine 20, and the electric power generated by the MG 32.
  • Battery 10 MG 31 for driving a vehicle that is driven using at least one of the electric power discharged from battery 10 and the electric power generated by MG 32, and nitrogen contained in the exhaust gas that is arranged in the exhaust pipe and uses a reducing agent.
  • a three-way catalyst 71 that is activated at a temperature higher than the activation temperature to purify nitrogen oxides contained in the exhaust gas and an operating state of the engine 20 are controlled.
  • An EG-ECU 52 and an HV-ECU 51 are provided. As shown in S122 of FIG.
  • the EG-ECU 52 and the HV-ECU 51 are configured such that, when the remaining amount of the reducing agent is less than the predetermined amount, the exhaust temperature of the engine 20 always activates the three-way catalyst 71 when the engine 20 is operating.
  • the engine 20 is operated with the control target being that the exhaust gas temperature is reduced.
  • the engine 20 when the remaining amount of the reducing agent is less than the predetermined amount, the engine 20 is operated with a control target that the exhaust temperature is such that the three-way catalyst 71 that does not use the reducing agent is activated.
  • the SCR catalyst 73 using the reducing agent is configured to purify the exhaust gas of the engine 20, the engine 20 can be operated without violating the legal regulation regardless of the remaining amount of the reducing agent. it can.
  • the EG-ECU 52 and the HV-ECU 51 operate the engine 20 according to the SOC of the battery 10 when the remaining amount of the reducing agent is less than the predetermined amount.
  • the operation is intermittently switched by switching between the case and the case of stopping.
  • the engine 20 can be operated under a high load that activates the three-way catalyst 71.
  • the EG-ECU 52 and the HV-ECU 51 operate the engine 20 when the SOC of the battery 10 is less than the charge start SOC, and When the SOC reaches the charge completion SOC, the engine 20 is stopped to intermittently operate the engine 20. As a result, the engine 20 can be operated under a high load that activates the three-way catalyst 71.
  • the engine 20 is a diesel engine.
  • the EG-ECU 52 and the HV-ECU 51 operate the engine 20 with a control target that the exhaust temperature of the engine 20 becomes the exhaust temperature at which the three-way catalyst 71 is activated.
  • the engine 20 is controlled so that the air-fuel ratio is lower than the stoichiometric air-fuel ratio. This allows the three-way catalyst 71 to function efficiently.
  • the EG-ECU 52 and the HV-ECU 51 cause the exhaust gas temperature of the engine 20 to activate the SCR catalyst 73 when the remaining amount of the reducing agent exceeds a predetermined amount.
  • the urea water injection nozzle 74 is controlled so as to permit the supply of the reducing agent, and the exhaust temperature of the engine 20 becomes the exhaust temperature at which the three-way catalyst 71 is activated.
  • the control target set to "0" as the control target the supply of the reducing agent is prohibited. Thereby, even when the remaining amount of the reducing agent exceeds the predetermined amount, the consumption of the reducing agent can be suppressed.
  • the EG-ECU 52 and the HV-ECU 51 exhaust the exhaust gas when the remaining amount of the reducing agent is less than the predetermined amount, compared to when the remaining amount of the reducing agent exceeds the predetermined amount. Control is performed so as to suppress the supply of the reducing agent to the tube. This makes it possible to suppress the consumption of the reducing agent when the amount of the reducing agent is small.
  • the reducing agent is urea water.
  • the EG-ECU 52 and the HV-ECU 51 detect that the vehicle speed of the vehicle 100 equipped with the hybrid system becomes 0 even when the remaining amount of the reducing agent is less than the predetermined amount. To permit the supply of the reducing agent.
  • the NOx emission can be suppressed by the ammonia adsorbed on the SCR catalyst 73.

Abstract

A hybrid system provided with: an internal combustion engine; an exhaust passageway; an electrical generator which performs power generation using the power of the internal combustion engine; an electricity storage device for charging power generated by the electrical generator; a vehicle-driving electric motor which is driven with power discharged by the electricity storage device and the power generated by the electrical generator; a first catalyst which is disposed in the exhaust passageway to remove nitrogen oxides in exhaust using a reducing agent; a supply device which is disposed upstream of the first catalyst in the exhaust passageway and supplies the reducing agent; a second catalyst which is disposed in the exhaust passageway and activates at a temperature higher than an activation temperature of the first catalyst to remove nitrogen oxides in exhaust; and a control device which controls the operation state of the internal combustion engine. The second catalyst is heated by exhaust. The control device, if the remaining amount of the reducing agent is less than a predetermined amount, operates the internal combustion engine (S122) with a control target for achieving an exhaust temperature such that the second catalyst activates at all times during operation of the internal combustion engine. Thus, it is possible to operate the internal combustion engine regardless of the remaining amount of the reducing agent when purifying exhaust using a catalyst that utilizes a reducing agent.

Description

ハイブリッドシステム、ハイブリッドシステムの制御装置、および、ハイブリッドシステムの制御方法HYBRID SYSTEM, HYBRID SYSTEM CONTROL DEVICE, AND HYBRID SYSTEM CONTROL METHOD
 この開示は、ハイブリッドシステム、ハイブリッドシステムの制御装置、および、ハイブリッドシステムの制御方法に関し、特に、還元剤を利用して排気に含まれる窒素酸化物を浄化する触媒を備えたハイブリッドシステム、ハイブリッドシステムの制御装置、および、ハイブリッドシステムの制御方法に関する。 The present disclosure relates to a hybrid system, a hybrid system control device, and a hybrid system control method, and more particularly, to a hybrid system and a hybrid system including a catalyst that purifies nitrogen oxides contained in exhaust gas by using a reducing agent. The present invention relates to a control device and a hybrid system control method.
 従来、NOxトラップ触媒とSCR(Selective Catalytic Reduction)触媒とを備える内燃機関の排気浄化装置があった(たとえば、特開2017-115640号公報(以下「特許文献1」という。)参照)。SCR触媒は、尿素水から発生する還元剤としてのアンモニアを利用して内燃機関からの排気に含まれるNOx(窒素酸化物)を浄化する。NOxトラップ触媒は、還元剤を利用せず、排気に含まれるNOxを浄化する。特許文献1の排気浄化装置は、SCR触媒に尿素水を供給する供給部からの尿素水の供給量を抑制する低減モードと、抑制しない通常モードとを切替える切替部を備える。これにより、低減モードに切替えられた場合でも、NOxトラップ触媒によりNOxの浄化を行えるため、NOxの浄化の効率を維持しつつ、尿素水の消費量を抑制することができる。 In the past, there was an exhaust gas purification device for an internal combustion engine equipped with a NOx trap catalyst and an SCR (Selective Catalytic Reduction) catalyst (for example, refer to JP-A-2017-115640 (hereinafter referred to as "Patent Document 1")). The SCR catalyst purifies NOx (nitrogen oxide) contained in the exhaust gas from the internal combustion engine by using ammonia as a reducing agent generated from urea water. The NOx trap catalyst purifies NOx contained in the exhaust gas without using the reducing agent. The exhaust emission control device of Patent Document 1 includes a switching unit that switches between a reduction mode that suppresses the supply amount of urea water from a supply unit that supplies urea water to the SCR catalyst and a normal mode that does not suppress it. As a result, even when the mode is switched to the reduction mode, NOx can be purified by the NOx trap catalyst, so that the consumption of urea water can be suppressed while maintaining the efficiency of NOx purification.
特開2017-115640号公報JP, 2017-115640, A
 しかし、高負荷走行時には触媒温度が高温となるため、NOxトラップ触媒に頼ることでSCR触媒での尿素水の消費量を低減できるが、さらなる高負荷走行時や低負荷走行時には、NOxトラップ触媒の浄化率が低下するため、SCR触媒での尿素水の消費量を低減できない。このため、尿素水が無くなってしまうと排気を浄化できなくなり、NOxの排出量の法的基準を満たすことができなくなる。その結果、法律の規制により内燃機関を運転することができなくなってしまうといった問題があった。 However, since the catalyst temperature becomes high during high load running, it is possible to reduce the amount of urea water consumption in the SCR catalyst by relying on the NOx trap catalyst, but during further high load running or low load running, the NOx trap catalyst Since the purification rate decreases, the consumption of urea water in the SCR catalyst cannot be reduced. Therefore, if the urea water is exhausted, the exhaust gas cannot be purified, and the legal standard for the NOx emission amount cannot be satisfied. As a result, there is a problem that the internal combustion engine cannot be operated due to the regulation of the law.
 この開示は、上述の問題を解決するためになされたものであり、その目的は、還元剤を利用する触媒で内燃機関の排気を浄化するように構成されている場合に還元剤の残量に関わらず法律の規制に反しないように内燃機関を運転することが可能なハイブリッドシステム、ハイブリッドシステムの制御装置、および、ハイブリッドシステムの制御方法を提供することである。 This disclosure has been made to solve the above-mentioned problems, and its purpose is to reduce the amount of reducing agent remaining when it is configured to purify exhaust gas of an internal combustion engine with a catalyst that utilizes a reducing agent. (EN) Provided are a hybrid system, a hybrid system control device, and a hybrid system control method capable of operating an internal combustion engine so as not to violate legal regulations.
 この開示によるハイブリッドシステムは、内燃機関と、内燃機関の排気通路と、内燃機関から出力される動力を利用して発電を行なう発電機と、発電機による発電電力を充電する蓄電装置と、蓄電装置の放電電力および発電機による発電電力のうちの少なくとも一方の電力を用いて駆動される車両駆動用の電動機と、排気通路に配置され、還元剤を利用して排気に含まれる窒素酸化物を浄化する第1触媒と、排気通路における第1触媒の上流側に配置され、排気通路に還元剤を供給する還元剤供給装置と、排気通路に配置され、第1触媒の活性化温度よりも高い温度で活性化し排気に含まれる窒素酸化物を浄化する第2触媒と、内燃機関の運転状態を制御する制御装置とを備える。第2触媒は、排気通路を流れる排気によって温められる。制御装置は、還元剤の残量が所定量に満たない場合、内燃機関の運転時には常に内燃機関の排気温度が第2触媒が活性化する排気温度となることを制御目標として内燃機関を運転する。 A hybrid system according to the present disclosure includes an internal combustion engine, an exhaust passage of the internal combustion engine, a generator that uses the power output from the internal combustion engine to generate power, a power storage device that charges the power generated by the power generator, and a power storage device. The electric motor for driving the vehicle, which is driven by using at least one of the electric power generated by the generator and the electric power generated by the generator, and the nitrogen oxide contained in the exhaust gas, which is arranged in the exhaust passage and uses the reducing agent. And a reducing agent supply device that is arranged on the upstream side of the first catalyst in the exhaust passage and supplies the reducing agent to the exhaust passage, and a temperature that is arranged in the exhaust passage and is higher than the activation temperature of the first catalyst. And a control device for controlling the operating state of the internal combustion engine. The second catalyst is warmed by the exhaust gas flowing through the exhaust passage. When the remaining amount of the reducing agent is less than a predetermined amount, the control device operates the internal combustion engine with a control target that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated when the internal combustion engine is operating. .
 好ましくは、制御装置は、還元剤の残量が所定量に満たない場合、蓄電装置のSOCに従って内燃機関を運転する場合と停止させる場合とを切替えて間欠的に運転する。 Preferably, when the remaining amount of the reducing agent is less than a predetermined amount, the control device intermittently operates by switching between operating the internal combustion engine and stopping it according to the SOC of the power storage device.
 さらに好ましくは、制御装置は、蓄電装置のSOCが第1所定値よりも少ない場合には内燃機関を運転し、蓄電装置のSOCが第2所定値に達した場合には内燃機関を停止させることで内燃機関を間欠的に運転する。 More preferably, the control device operates the internal combustion engine when the SOC of the power storage device is less than the first predetermined value, and stops the internal combustion engine when the SOC of the power storage device reaches the second predetermined value. Operates the internal combustion engine intermittently.
 好ましくは、内燃機関は、ディーゼルエンジンである。第2触媒は、三元触媒である。制御装置は、内燃機関の排気温度が第2触媒が活性化する排気温度となることを制御目標として内燃機関を運転する場合、理論空燃比よりも低い空燃比となるように内燃機関を制御する。 Preferably, the internal combustion engine is a diesel engine. The second catalyst is a three-way catalyst. When operating the internal combustion engine with the exhaust gas temperature of the internal combustion engine at the exhaust gas temperature at which the second catalyst is activated, the control device controls the internal combustion engine to have an air-fuel ratio lower than the theoretical air-fuel ratio. .
 好ましくは、制御装置は、還元剤の残量が所定量を超える場合、内燃機関の排気温度が第1触媒が活性化する排気温度となることを制御目標として内燃機関を運転するときは、還元剤の供給を許可するよう還元剤供給装置を制御し、内燃機関の排気温度が第2触媒が活性化する排気温度となることを制御目標として内燃機関を運転するときは、還元剤の供給を禁止するよう還元剤供給装置を制御する。 Preferably, when the remaining amount of the reducing agent exceeds a predetermined amount, the control device reduces the exhaust gas temperature of the internal combustion engine when the internal combustion engine is operated with the exhaust gas temperature at which the first catalyst is activated as a control target. The reducing agent supply device is controlled to permit the supply of the reducing agent, and when the internal combustion engine is operated with the exhaust gas temperature of the internal combustion engine at the exhaust temperature at which the second catalyst is activated, the reducing agent is supplied. The reducing agent supply device is controlled to prohibit.
 さらに好ましくは、制御装置は、内燃機関の排気温度が第2触媒が活性化する排気温度となることを制御目標として内燃機関を運転するときは、回転速度を所定速度とし、出力トルクを増減させることで、出力を調整し、内燃機関の排気温度が第1触媒が活性化する排気温度となることを制御目標として内燃機関を運転するときは、出力トルクを所定値とし、回転速度を増減させることで、出力を調整する。 More preferably, when operating the internal combustion engine with a control target that the exhaust gas temperature of the internal combustion engine becomes the exhaust gas temperature at which the second catalyst is activated, the control device sets the rotation speed to a predetermined speed and increases or decreases the output torque. Thus, when the internal combustion engine is operated with the output adjusted, and the exhaust gas temperature of the internal combustion engine reaches the exhaust gas temperature at which the first catalyst is activated, the output torque is set to a predetermined value and the rotational speed is increased or decreased. By adjusting the output.
 さらに好ましくは、制御装置は、還元剤の残量が所定量に満たない場合、還元剤の残量が所定量を超える場合と比較して、排気通路への還元剤の供給を抑制するよう還元剤供給装置を制御する。 More preferably, when the remaining amount of the reducing agent is less than the predetermined amount, the control device reduces the supply of the reducing agent to the exhaust passage as compared with the case where the remaining amount of the reducing agent exceeds the predetermined amount. Control the agent supply device.
 さらに好ましくは、第1触媒は、SCR触媒であり、還元剤は、尿素水である。制御装置は、還元剤の残量が所定量に満たない場合であっても、当該ハイブリッドシステムを搭載する車両の車速が0となったときに、還元剤の供給を許可するよう還元剤供給装置を制御する。 More preferably, the first catalyst is an SCR catalyst and the reducing agent is urea water. Even when the remaining amount of the reducing agent is less than a predetermined amount, the control device allows the reducing agent to be supplied when the vehicle speed of the vehicle equipped with the hybrid system becomes 0. To control.
 この開示の他の局面によるハイブリッドシステムの制御装置は、内燃機関と、内燃機関の排気通路と、内燃機関から出力される動力を利用して発電を行なう発電機と、発電機による発電電力を充電する蓄電装置と、蓄電装置の放電電力および発電機による発電電力のうちの少なくとも一方の電力を用いて駆動される車両駆動用の電動機と、排気通路に配置され還元剤を利用して排気に含まれる窒素酸化物を浄化する第1触媒と、排気通路における第1触媒の上流側に配置され排気通路に還元剤を供給する還元剤供給装置と、排気通路に配置され第1触媒の活性化温度よりも高い温度で活性化し排気に含まれる窒素酸化物を浄化する第2触媒とを備えるハイブリッドシステムの内燃機関の運転状態を制御する制御装置である。制御装置は、還元剤の残量が所定量に満たない場合、内燃機関の運転時には常に内燃機関の排気温度が第2触媒が活性化する排気温度となることを制御目標として内燃機関を運転する。 A control device for a hybrid system according to another aspect of the present disclosure includes an internal combustion engine, an exhaust passage of the internal combustion engine, a generator that generates electric power using power output from the internal combustion engine, and a generated electric power generated by the generator. A power storage device, a motor for driving the vehicle that is driven by at least one of the power discharged by the power storage device and the power generated by the generator, and included in the exhaust gas that is arranged in the exhaust passage and uses the reducing agent. A first catalyst for purifying nitrogen oxides, a reducing agent supply device arranged upstream of the first catalyst in the exhaust passage to supply a reducing agent to the exhaust passage, and an activation temperature of the first catalyst arranged in the exhaust passage. And a second catalyst which is activated at a temperature higher than that of the second catalyst for purifying nitrogen oxides contained in exhaust gas, and is a control device for controlling an operating state of an internal combustion engine of a hybrid system. When the remaining amount of the reducing agent is less than a predetermined amount, the control device operates the internal combustion engine with a control target that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated when the internal combustion engine is operating. .
 この開示のさらに他の局面によるハイブリッドシステムの制御方法は、内燃機関と、内燃機関の排気通路と、内燃機関から出力される動力を利用して発電を行なう発電機と、発電機による発電電力を充電する蓄電装置と、蓄電装置の放電電力および発電機による発電電力のうちの少なくとも一方の電力を用いて駆動される車両駆動用の電動機と、排気通路に配置され還元剤を利用して排気に含まれる窒素酸化物を浄化する第1触媒と、排気通路における第1触媒の上流側に配置され排気通路に還元剤を供給する還元剤供給装置と、排気通路に配置され第1触媒の活性化温度よりも高い温度で活性化し排気に含まれる窒素酸化物を浄化する第2触媒とを備えるハイブリッドシステムの内燃機関の運転状態を制御する制御装置による制御方法である。制御方法は、制御装置が、還元剤の残量が所定量に満たない場合、内燃機関の運転時には常に内燃機関の排気温度が第2触媒が活性化する排気温度となることを制御目標として内燃機関を運転するステップを含む。 A hybrid system control method according to still another aspect of the present disclosure provides an internal combustion engine, an exhaust passage of the internal combustion engine, a generator that generates power using power output from the internal combustion engine, and power generated by the generator. A power storage device to be charged, a vehicle driving electric motor that is driven by using at least one of the discharge power of the power storage device and the power generated by the generator, and a reducing agent that is placed in the exhaust passage to generate exhaust gas. A first catalyst for purifying contained nitrogen oxides, a reducing agent supply device arranged upstream of the first catalyst in the exhaust passage to supply a reducing agent to the exhaust passage, and an activation of the first catalyst arranged in the exhaust passage. A control method by a control device for controlling an operating state of an internal combustion engine of a hybrid system including a second catalyst which is activated at a temperature higher than a temperature and purifies nitrogen oxides contained in exhaust gas That. In the control method, when the remaining amount of the reducing agent is less than a predetermined amount, the control device sets the internal combustion engine as a control target such that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated. Including the step of operating the engine.
 この開示に従えば、還元剤の残量が所定量に満たない場合、還元剤を利用しない第2触媒が活性化する排気温度となることを制御目標として内燃機関が運転される。その結果、還元剤を利用する触媒で内燃機関の排気を浄化するように構成されている場合に還元剤の残量に関わらず内燃機関を運転することが可能なハイブリッドシステム、ハイブリッドシステムの制御装置、および、ハイブリッドシステムの制御方法を提供することができる。 According to this disclosure, when the remaining amount of the reducing agent is less than the predetermined amount, the internal combustion engine is operated with the exhaust gas temperature at which the second catalyst not using the reducing agent is activated as a control target. As a result, a hybrid system capable of operating the internal combustion engine regardless of the remaining amount of the reducing agent when the exhaust gas of the internal combustion engine is configured to be purified by the catalyst using the reducing agent, and a control device for the hybrid system , And a method of controlling the hybrid system can be provided.
この実施の形態における車両の概略構成を示す図である。It is a figure which shows schematic structure of the vehicle in this Embodiment. この実施の形態におけるエンジン制御処理の流れを示すフローチャートである。6 is a flowchart showing a flow of engine control processing in this embodiment. この実施の形態におけるエンジンの性能曲線を示すグラフである。It is a graph which shows the performance curve of the engine in this embodiment. この実施の形態における制御により尿素水の減少を抑制できることを説明するための図である。It is a figure for demonstrating that the decrease in urea water can be suppressed by the control in this embodiment.
 以下、図面を参照しつつ、本開示の実施の形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返されない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following description, the same reference numerals are given to the same components. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1は、この実施の形態における車両100の概略構成を示す図である。図1を参照して、車両100は、バッテリ10と、電力制御ユニット(以下、「PCU(Power Control Unit)」と称する)11と、エンジン20と、モータジェネレータ(以下、「MG(Motor Generator)」と称する)31と、MG32と、駆動輪40とを含む。また、車両100は、後述するHV-ECU51やEG-ECU52など、各種電子制御装置(ECU:Electronic Control Unit)をさらに含む。本実施の形態に係るバッテリ10は、本開示に係る「蓄電装置」の一例に相当する。 FIG. 1 is a diagram showing a schematic configuration of a vehicle 100 in this embodiment. Referring to FIG. 1, a vehicle 100 includes a battery 10, a power control unit (hereinafter, referred to as “PCU (Power Control Unit)”) 11, an engine 20, and a motor generator (hereinafter, “MG (Motor Generator)”). 31), MG 32, and drive wheel 40. The vehicle 100 further includes various electronic control units (ECU: Electronic Control Unit) such as an HV-ECU 51 and an EG-ECU 52 described later. The battery 10 according to the present embodiment corresponds to an example of the “power storage device” according to the present disclosure.
 エンジン20は、燃料(ガソリンや軽油等)を燃焼させたときに生じる燃焼エネルギをピストンやクランクシャフトなどの運動子の運動エネルギに変換することによって動力を出力する内燃機関である。MG31およびMG32は、電気エネルギを力学的エネルギに変換したり、力学的エネルギを電気エネルギに変換したりする電力機器である。本実施の形態では、エンジン20としてディーゼルエンジンを採用し、MG31およびMG32として、ロータに永久磁石が埋設された三相交流同期式の電動発電機を採用する。エンジン20は、吸排気系にターボチャージャ(たとえば、可変ノズルターボ)を備えていてもよい。 The engine 20 is an internal combustion engine that outputs power by converting combustion energy generated when fuel (gasoline, light oil, etc.) is burned into kinetic energy of a moving element such as a piston or a crankshaft. MG31 and MG32 are electric power devices that convert electric energy into mechanical energy or convert mechanical energy into electric energy. In the present embodiment, a diesel engine is adopted as engine 20, and a three-phase AC synchronous motor generator in which permanent magnets are embedded in rotors is adopted as MG31 and MG32. The engine 20 may include a turbocharger (for example, a variable nozzle turbo) in the intake / exhaust system.
 本実施の形態に係る車両100は、シリーズハイブリッド車両である。車両100において、MG31(走行用モータ)は、電動機として動作することによって駆動輪40を駆動し、MG32は、エンジン20により駆動されることによって発電を行なう。MG31を駆動するための動力源は、MG32で発電される電力、およびバッテリ10に蓄えられる電力である。より具体的には、エンジン20の回転軸21とMG32の回転軸22とは、互いにギア23を介して機械的に連結され、エンジン20の回転軸21の回転に伴ってMG32の回転軸22も回転して、MG32が発電する。一方、MG31の回転軸41は、回転軸21,22とは機械的に連結されておらず、動力伝達ギア43を介して駆動軸42と機械的に連結されている。MG31の回転軸41に出力されるトルク(駆動力)は動力伝達ギア43を介して駆動軸42に伝達され、MG31の駆動力によって駆動軸42が回転する。そして、駆動軸42が回転することによって、駆動軸42の両端に設けられた駆動輪40が回転する。 Vehicle 100 according to the present embodiment is a series hybrid vehicle. In vehicle 100, MG 31 (traveling motor) drives drive wheels 40 by operating as an electric motor, and MG 32 is driven by engine 20 to generate electric power. Power sources for driving MG 31 are electric power generated by MG 32 and electric power stored in battery 10. More specifically, the rotary shaft 21 of the engine 20 and the rotary shaft 22 of the MG 32 are mechanically connected to each other via a gear 23, and the rotary shaft 22 of the MG 32 also rotates with the rotation of the rotary shaft 21 of the engine 20. It rotates and the MG 32 generates electricity. On the other hand, rotary shaft 41 of MG 31 is not mechanically connected to rotary shafts 21 and 22, but mechanically connected to drive shaft 42 via power transmission gear 43. The torque (driving force) output to the rotating shaft 41 of the MG 31 is transmitted to the driving shaft 42 via the power transmission gear 43, and the driving force of the MG 31 causes the driving shaft 42 to rotate. Then, as the drive shaft 42 rotates, the drive wheels 40 provided at both ends of the drive shaft 42 rotate.
 MG31は、車両100の加速時において電動機として動作し、車両100の駆動輪40を駆動する。他方、車両100の制動時や下り斜面での加速度低減時においては、MG31は発電機として動作して回生発電を行なう。MG31が発電した電力は、PCU11を介してバッテリ10に供給される。 The MG 31 operates as an electric motor during acceleration of the vehicle 100, and drives the drive wheels 40 of the vehicle 100. On the other hand, when the vehicle 100 is being braked or the acceleration on the down slope is being reduced, the MG 31 operates as a generator to perform regenerative power generation. The electric power generated by MG 31 is supplied to battery 10 via PCU 11.
 MG32は、エンジン20から出力される動力を利用して発電(エンジン発電)を行なうように構成される。MG32において生成されたエンジン発電電力は、MG32からMG31に供給されたり、MG32からPCU11を介してバッテリ10に供給されたりする。 MG 32 is configured to generate power (engine power generation) by using power output from engine 20. The engine-generated electric power generated in MG 32 is supplied from MG 32 to MG 31, or is supplied from MG 32 to battery 10 via PCU 11.
 PCU11は、MG31およびMG32に対応して設けられる2つのインバータと、各インバータに供給される直流電圧をバッテリ10の電圧以上(たとえば、600V)に昇圧する昇圧コンバータとを含んで構成される。PCU11は、HV-ECU51からの制御信号に従ってバッテリ10とMG31およびMG32との間で電力変換を実行する。PCU11は、MG31およびMG32の状態をそれぞれ別々に制御可能に構成されている。 PCU 11 is configured to include two inverters provided corresponding to MG31 and MG32, and a boost converter that boosts the DC voltage supplied to each inverter to the voltage of battery 10 or higher (for example, 600V). PCU 11 executes electric power conversion between battery 10 and MG31 and MG32 in accordance with a control signal from HV-ECU 51. The PCU 11 is configured to be able to control the states of the MG 31 and the MG 32 separately.
 バッテリ10は、再充電可能な直流電源である。バッテリ10の定格電圧は、たとえば300V~450Vである。バッテリ10は、たとえば二次電池(再充電可能な電池)を含んで構成される。二次電池としては、たとえばリチウムイオン電池を採用できる。バッテリ10は、直列および/または並列に接続された複数の二次電池(たとえば、リチウムイオン電池)から構成される組電池を含んでいてもよい。なお、バッテリ10を構成する二次電池は、リチウムイオン電池に限られず、他の二次電池(たとえば、ニッケル水素電池)を採用してもよい。電解液式二次電池を採用してもよいし、全固体式二次電池を採用してもよい。また、バッテリ10としては、大容量のキャパシタなども採用可能である。 The battery 10 is a rechargeable DC power supply. The rated voltage of the battery 10 is, for example, 300V to 450V. The battery 10 is configured to include, for example, a secondary battery (rechargeable battery). As the secondary battery, for example, a lithium ion battery can be adopted. Battery 10 may include an assembled battery including a plurality of secondary batteries (for example, lithium ion batteries) connected in series and / or in parallel. The secondary battery forming the battery 10 is not limited to the lithium ion battery, and another secondary battery (for example, a nickel hydrogen battery) may be adopted. An electrolytic solution type secondary battery or an all solid state type secondary battery may be adopted. Further, as the battery 10, a large-capacity capacitor or the like can be adopted.
 バッテリ10に対しては、バッテリ10の状態を監視する監視ユニット61が設けられている。監視ユニット61は、バッテリ10の状態(温度、電流、電圧等)を検出する各種センサを含む。HV-ECU51は、監視ユニット61の出力に基づいてバッテリ10の状態(SOC等)を検出するように構成される。SOC(State Of Charge)は、蓄電残量を示し、たとえば、満充電状態の蓄電量に対する現在の蓄電量の割合を0~100%で表わしたものである。SOCの測定方法としては、たとえば、電流値積算(クーロンカウント)による手法、または開放電圧(OCV:Open Circuit Voltage)の推定による手法など、種々の公知の手法を採用できる。 A monitoring unit 61 for monitoring the state of the battery 10 is provided for the battery 10. The monitoring unit 61 includes various sensors that detect the state of the battery 10 (temperature, current, voltage, etc.). The HV-ECU 51 is configured to detect the state (SOC or the like) of the battery 10 based on the output of the monitoring unit 61. SOC (State Of Charge) indicates the remaining charge amount, for example, the ratio of the current charge amount to the charge amount in the fully charged state is expressed as 0 to 100%. As the SOC measuring method, various known methods such as a method using current value integration (Coulomb count) or a method using open circuit voltage (OCV: Open Circuit Voltage) estimation can be adopted.
 また、エンジン20に対しては、エンジン20の状態を監視する監視ユニット62が設けられている。監視ユニット62は、エンジン20の状態(冷却水温、吸気量、回転速度等)を検出する各種センサを含む。HV-ECU51およびEG-ECU52は、監視ユニット62の出力に基づいてエンジン20の状態を検出するように構成される。 Further, a monitoring unit 62 that monitors the state of the engine 20 is provided for the engine 20. The monitoring unit 62 includes various sensors that detect the state of the engine 20 (cooling water temperature, intake air amount, rotational speed, etc.). The HV-ECU 51 and the EG-ECU 52 are configured to detect the state of the engine 20 based on the output of the monitoring unit 62.
 また、MG31およびMG32に対しては、それぞれMG31およびMG32の状態を監視する監視ユニット63,64が設けられている。監視ユニット63,64は、MG31およびMG32の状態(温度、回転速度等)を検出する各種センサを含む。HV-ECU51は、監視ユニット63,64の出力に基づいてMG31およびMG32の状態を検出するように構成される。 Also, monitoring units 63 and 64 for monitoring the states of the MG 31 and MG 32 are provided for the MG 31 and MG 32, respectively. Monitoring units 63 and 64 include various sensors that detect the states (temperature, rotation speed, etc.) of MG31 and MG32. HV-ECU 51 is configured to detect the states of MG31 and MG32 based on the outputs of monitoring units 63 and 64.
 車両100に含まれる各ECU(HV-ECU51、EG-ECU52)は、演算装置としてのCPU(Central Processing Unit)と、記憶装置と、各種信号を入出力するための入出力ポートと(いずれも図示せず)を含んで構成される。記憶装置は、作業用メモリとしてのRAM(Random Access Memory)と、保存用ストレージ(ROM(Read Only Memory)、書き換え可能な不揮発性メモリ等)とを含む。各ECUは、入力ポートに接続された各種機器(センサ等)から信号を受信し、受信した信号に基づいて出力ポートに接続された各種機器を制御する。記憶装置に記憶されているプログラムをCPUが実行することで、各種制御が実行される。ただし、各ECUが行なう制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。本実施の形態に係るHV-ECU51およびEG-ECU52は、本開示に係る「制御装置」として機能する。 Each of the ECUs (HV-ECU 51, EG-ECU 52) included in the vehicle 100 has a CPU (Central Processing Unit) as a computing device, a storage device, and an input / output port for inputting / outputting various signals (both are shown in FIG. (Not shown). The storage device includes a RAM (Random Access Memory) as a working memory and a storage for storage (ROM (Read Only Memory), rewritable nonvolatile memory, etc.). Each ECU receives signals from various devices (sensors and the like) connected to the input port and controls various devices connected to the output port based on the received signals. Various controls are executed by the CPU executing the programs stored in the storage device. However, the control performed by each ECU is not limited to the processing by software, and may be performed by dedicated hardware (electronic circuit). The HV-ECU 51 and the EG-ECU 52 according to the present embodiment function as the “control device” according to the present disclosure.
 HV-ECU51は、エンジン20に対する出力要求値と、MG31およびMG32に対する出力要求値(たとえば、トルク要求値)とを算出する。そして、HV-ECU51は、エンジン20に対する出力要求値をEG-ECU52へ送信するとともに、MG31およびMG32に対する出力要求値に基づいて、MG31およびMG32に対する電力の供給(ひいては、MG31およびMG32の出力トルク)を制御する。HV-ECU51は、PCU11等を制御することにより、MG31およびMG32へ供給される電力の大きさ(振幅)および周波数等を制御することができる。また、HV-ECU51は、PCU11等を制御することにより、バッテリ10の充放電制御を行なう。 The HV-ECU 51 calculates an output request value for the engine 20 and an output request value for the MG 31 and MG 32 (for example, a torque request value). Then, HV-ECU 51 transmits the output request value for engine 20 to EG-ECU 52, and supplies power to MG 31 and MG 32 based on the output request value for MG 31 and MG 32 (and thus the output torque of MG 31 and MG 32). To control. The HV-ECU 51 can control the magnitude (amplitude) and frequency of the electric power supplied to the MG 31 and the MG 32 by controlling the PCU 11 and the like. Further, the HV-ECU 51 controls charge / discharge of the battery 10 by controlling the PCU 11 and the like.
 HV-ECU51の入力ポートに接続された各種機器は、監視ユニット61,63,64に含まれる各種センサのほかに、アクセル開度センサ65、および、車速センサ66をさらに含む。 The various devices connected to the input port of the HV-ECU 51 further include an accelerator opening sensor 65 and a vehicle speed sensor 66 in addition to the various sensors included in the monitoring units 61, 63 and 64.
 アクセル開度センサ65は、車両100のアクセルペダル(図示せず)の踏み込み量をアクセル開度として検出し、その検出結果(アクセル開度を示す信号)をHV-ECU51へ出力する。HV-ECU51は、アクセルペダルの踏み込み量が大きくなるほど、MG31の駆動力を大きくする。 The accelerator opening sensor 65 detects the amount of depression of an accelerator pedal (not shown) of the vehicle 100 as the accelerator opening, and outputs the detection result (a signal indicating the accelerator opening) to the HV-ECU 51. The HV-ECU 51 increases the driving force of the MG 31 as the depression amount of the accelerator pedal increases.
 また、車速センサ66は、車両100の速度を検出し、その検出結果(車速を示す信号)をHV-ECU51へ出力する。 Further, the vehicle speed sensor 66 detects the speed of the vehicle 100 and outputs the detection result (a signal indicating the vehicle speed) to the HV-ECU 51.
 EG-ECU52は、HV-ECU51からエンジン20に対する出力要求値を受信し、その出力要求値に対応する運動エネルギがエンジン20で発生するように、エンジン20の運転制御(燃料噴射制御、点火制御、吸入空気量調節制御等)を行なう。エンジン20の駆動によってエンジン発電が実行され、エンジン発電が行なわれていないときは、エンジン20は停止している。エンジン20が駆動されることによって、MG32においてエンジン発電電力が生成される。また、EG-ECU52は、監視ユニット62に含まれる各種センサの検出値を受信し、各検出値をHV-ECU51へ送信する。 The EG-ECU 52 receives the output request value for the engine 20 from the HV-ECU 51, and controls the operation of the engine 20 (fuel injection control, ignition control, so that kinetic energy corresponding to the output request value is generated in the engine 20). Intake air amount control etc.). Engine power generation is performed by driving the engine 20, and the engine 20 is stopped when the engine power generation is not performed. By driving engine 20, MG 32 generates engine-generated electric power. Further, the EG-ECU 52 receives the detection values of various sensors included in the monitoring unit 62 and transmits the detection values to the HV-ECU 51.
 車両100の走行は、MG31が駆動輪40を駆動することによって行なわれる。HV-ECU51は、車両100の走行中に、バッテリ10のSOCが充電開始SOC以下になった場合に、エンジン発電電力によるバッテリ10の充電を開始し、バッテリ10のSOCが充電完了SOC以上になった場合に、その充電を停止させる。 The vehicle 100 travels when the MG 31 drives the drive wheels 40. The HV-ECU 51 starts charging the battery 10 with the engine-generated power when the SOC of the battery 10 becomes equal to or lower than the charge start SOC while the vehicle 100 is traveling, and the SOC of the battery 10 becomes equal to or higher than the charge completion SOC. If so, the charging is stopped.
 バッテリ10のSOCが充電開始SOC以下であり、エンジン発電電力によるバッテリ10の充電を実行する場合、HV-ECU51は、発電に適した所定条件でエンジン20を駆動することをEG-ECU52に要求し、この要求に従ってEG-ECU52がエンジン20を制御することによって、車両100の走行で消費される電力よりも大きなエンジン発電電力がMG32で生成される。また、HV-ECU51は、PCU11等を制御して、生成されたエンジン発電電力をバッテリ10に供給する。これにより、エンジン発電電力によってバッテリ10が充電され、バッテリ10のSOCが高くなる。 When the SOC of the battery 10 is equal to or lower than the charge start SOC and the battery 10 is charged by the engine-generated power, the HV-ECU 51 requests the EG-ECU 52 to drive the engine 20 under a predetermined condition suitable for power generation. By controlling the engine 20 by the EG-ECU 52 in accordance with this request, MG 32 generates engine generated electric power larger than the electric power consumed when the vehicle 100 travels. Further, the HV-ECU 51 controls the PCU 11 and the like to supply the generated engine-generated electric power to the battery 10. As a result, the battery 10 is charged by the engine-generated power, and the SOC of the battery 10 increases.
 バッテリ10のSOCが充電完了SOC以上となった場合には、HV-ECU51が、EG-ECU52に指示してエンジン20を停止させるとともに、PCU11等を制御してバッテリ10への電力の供給を停止させる。 When the SOC of the battery 10 becomes equal to or higher than the charge completion SOC, the HV-ECU 51 instructs the EG-ECU 52 to stop the engine 20, and also controls the PCU 11 etc. to stop the supply of electric power to the battery 10. Let
 このように、車両100の走行中においては、バッテリ10のSOCが充電開始SOC以下になるたびにエンジン20が起動し、エンジン発電電力によるバッテリ10の充電が実行される。これにより、バッテリ10のSOCは、充電開始SOC以上かつ充電完了SOC以下の範囲内に概ね維持される。 As described above, while the vehicle 100 is traveling, the engine 20 is started every time the SOC of the battery 10 becomes equal to or lower than the charge start SOC, and the battery 10 is charged with the engine generated power. As a result, the SOC of the battery 10 is generally maintained within the range from the charging start SOC to the charging completion SOC.
 また、本実施の形態においては、車両100は、エンジン20の排気を処理する装置として、三元触媒71と、DPF(Diesel Particulate Filter)72と、SCR触媒73とを含む。エンジン20、三元触媒71、DPF72およびSCR触媒73の間は、それぞれ排気管で接続される。 Further, in the present embodiment, vehicle 100 includes a three-way catalyst 71, a DPF (Diesel Particulate Filter) 72, and an SCR catalyst 73 as a device that processes the exhaust gas of engine 20. Exhaust pipes are connected between the engine 20, the three-way catalyst 71, the DPF 72, and the SCR catalyst 73.
 三元触媒71は、エンジン20の排気通路を流れる排気に含まれる窒素酸化物(NOx)、一酸化炭素(CO)、および、未燃焼炭化水素(HC)を浄化する触媒である。三元触媒71は、還元性ガス(H2、COまたは炭化水素)の存在下でNOxを窒素および酸素に還元し、酸化性ガスの存在下で一酸化炭素を二酸化炭素に酸化し、酸化性ガスの存在下で未燃焼炭化水素(HC)を二酸化炭素および水に酸化する。三元触媒71が効率良く酸化または還元するためには、エンジン20において、燃料が完全燃焼し、かつ、酸素の余らない理論空燃比(stoichiometry)で燃焼(ストイキ燃焼)することが必要である。酸素が余るリーン状態である場合、三元触媒71によるNOxの還元には好ましくない。触媒の温度が低い場合、三元触媒71の効率は低下する。三元触媒71は、SCR触媒73よりも高い温度域で活性化し処理効率が良くなる。 The three-way catalyst 71 is a catalyst that purifies nitrogen oxides (NOx), carbon monoxide (CO), and unburned hydrocarbons (HC) contained in the exhaust flowing through the exhaust passage of the engine 20. The three-way catalyst 71 reduces NOx to nitrogen and oxygen in the presence of a reducing gas (H2, CO or hydrocarbon), oxidizes carbon monoxide to carbon dioxide in the presence of an oxidizing gas, and oxidizes the oxidizing gas. Oxidize unburned hydrocarbons (HC) to carbon dioxide and water in the presence of. In order for the three-way catalyst 71 to be efficiently oxidized or reduced, it is necessary for the engine 20 to completely burn fuel and to burn (stoichiometric combustion) at a stoichiometric stoichiometry with no oxygen remaining. If the oxygen is in a lean state, the three-way catalyst 71 is not preferable for NOx reduction. When the temperature of the catalyst is low, the efficiency of the three-way catalyst 71 decreases. The three-way catalyst 71 is activated in a temperature range higher than that of the SCR catalyst 73 and the processing efficiency is improved.
 エンジン20および三元触媒71の間の排気管には、排気温センサ81と、A/Fセンサ82とが設けられる。排気温センサ81は、エンジン20からの排気の温度を検出し、その検出結果(排気温を示す信号)をEG-ECU52へ出力する。A/Fセンサ82は、エンジン20からの排気を分析して空燃比を検出し、その検出結果(空燃比を示す信号)をEG-ECU52へ出力する。 An exhaust temperature sensor 81 and an A / F sensor 82 are provided in the exhaust pipe between the engine 20 and the three-way catalyst 71. The exhaust temperature sensor 81 detects the temperature of the exhaust gas from the engine 20, and outputs the detection result (a signal indicating the exhaust temperature) to the EG-ECU 52. The A / F sensor 82 analyzes the exhaust gas from the engine 20 to detect the air-fuel ratio, and outputs the detection result (a signal indicating the air-fuel ratio) to the EG-ECU 52.
 DPF72は、エンジン20の排気通路を流れる排気に含まれる粒子状物質(PM:Particulate Matter)を捕集するフィルタである。捕集されたPMは、DPF72の内部に堆積する。このため、定期的にDPF72の内部を高温にして、PMを燃焼させて除去することで、DPF72を再生する。 The DPF 72 is a filter that collects particulate matter (PM: Particulate Matter) contained in the exhaust flowing through the exhaust passage of the engine 20. The collected PM accumulates inside the DPF 72. Therefore, the DPF 72 is regenerated by periodically heating the inside of the DPF 72 to burn and remove PM.
 SCR触媒73は、還元剤を利用して、エンジン20の排気通路を流れる排気に含まれるNOxを選択的に浄化する触媒である。還元剤としては、本実施の形態においては、尿素水が用いられる。尿素水噴射ノズル74は、DPF72およびSCR触媒73の間の排気管に設けられ、尿素水タンク75から供給された尿素水を排気管の内部に噴射する。尿素水タンク75には、残量センサ84が設けられる。残量センサ84は、尿素水タンク75の尿素水の残量を検出し、その検出結果(尿素水の残量を示す信号)をEG-ECU52へ出力する。尿素水噴射ノズル74から噴射された尿素水が排気熱により加水分解することによって、還元剤としてのアンモニアが生成される。生成されたアンモニアは、SCR触媒73の表面に吸着し、排気ガス中のNOxと選択的に反応し、NOxを窒素および水に浄化する。SCR触媒73は、三元触媒71よりも低い温度域で活性化し処理効率が良くなる。 The SCR catalyst 73 is a catalyst that selectively purifies NOx contained in the exhaust gas flowing through the exhaust passage of the engine 20 by using a reducing agent. As the reducing agent, urea water is used in the present embodiment. The urea water injection nozzle 74 is provided in the exhaust pipe between the DPF 72 and the SCR catalyst 73, and injects the urea water supplied from the urea water tank 75 into the exhaust pipe. A residual amount sensor 84 is provided in the urea water tank 75. The remaining amount sensor 84 detects the remaining amount of urea water in the urea water tank 75, and outputs the detection result (a signal indicating the remaining amount of urea water) to the EG-ECU 52. The urea water injected from the urea water injection nozzle 74 is hydrolyzed by exhaust heat to generate ammonia as a reducing agent. The produced ammonia is adsorbed on the surface of the SCR catalyst 73 and selectively reacts with NOx in the exhaust gas to purify NOx into nitrogen and water. The SCR catalyst 73 is activated in a temperature range lower than that of the three-way catalyst 71, and the processing efficiency is improved.
 なお、SCR触媒73の下流に、SCR触媒73をすり抜けたアンモニアを酸化して大気への排出を防止するASC(Ammonia Slip Catalyst)のような酸化触媒を設けるようにしてもよい。 Note that an oxidation catalyst such as ASC (Ammonia Slip Catalyst) that oxidizes the ammonia that has passed through the SCR catalyst 73 to prevent it from being discharged into the atmosphere may be provided downstream of the SCR catalyst 73.
 SCR触媒73の下流の排気管には、NOxセンサ83が設けられる。NOxセンサ83は、SCR触媒73から出てきた排気に含まれるNOxの量を検出し、その検出結果(NOxの量を示す信号)をEG-ECU52へ出力する。 A NOx sensor 83 is provided in the exhaust pipe downstream of the SCR catalyst 73. The NOx sensor 83 detects the amount of NOx contained in the exhaust gas emitted from the SCR catalyst 73, and outputs the detection result (a signal indicating the amount of NOx) to the EG-ECU 52.
 このようなSCR触媒73を備える車両100において、還元剤としての尿素水が無くなってしまうと排気を浄化できなくなり、NOxの排出量の法的基準を満たすことができなくなる。その結果、法律の規制により内燃機関を運転することができなくなってしまう。 In the vehicle 100 equipped with such an SCR catalyst 73, if the urea water as a reducing agent is used up, the exhaust gas cannot be purified and the NOx emission amount cannot meet the legal standard. As a result, it becomes impossible to operate the internal combustion engine due to legal regulations.
 そこで、この実施の形態においては、HV-ECU51およびEG-ECU52は、尿素水の残量が所定量に満たない場合、三元触媒71が活性化する排気温度となるようにエンジン20を運転するようにする。これにより、尿素水の残量が所定量に満たない場合、尿素水を利用しない三元触媒71が活性化する排気温度となるようにエンジン20が運転される。その結果、尿素水を利用するSCR触媒73でエンジン20の排気を浄化するように構成されている場合に尿素水の残量に関わらず法律の規制に反しないようにエンジン20を運転することができる。 Therefore, in this embodiment, the HV-ECU 51 and the EG-ECU 52 operate the engine 20 so that the exhaust temperature is such that the three-way catalyst 71 is activated when the residual amount of urea water is less than a predetermined amount. To do so. As a result, when the remaining amount of urea water is less than the predetermined amount, the engine 20 is operated so as to reach the exhaust temperature at which the three-way catalyst 71 that does not use urea water is activated. As a result, when the SCR catalyst 73 that uses urea water is configured to purify the exhaust gas of the engine 20, it is possible to operate the engine 20 regardless of the remaining amount of urea water without violating legal regulations. it can.
 図2は、この実施の形態におけるエンジン制御処理の流れを示すフローチャートである。このエンジン制御処理は、メイン処理から所定の制御周期ごとに呼出されて、EG-ECU52によって実行される。図2を参照して、EG-ECU52は、尿素水タンク75の残量センサ84からの検出結果を用いて尿素水の残量を算出する(ステップ(以下「S」と記載する)101)。 FIG. 2 is a flow chart showing the flow of engine control processing in this embodiment. The engine control process is called by the main process at predetermined control cycles and executed by the EG-ECU 52. Referring to FIG. 2, EG-ECU 52 calculates the remaining amount of urea water using the detection result from remaining amount sensor 84 of urea water tank 75 (step (hereinafter referred to as “S”) 101).
 EG-ECU52は、尿素水の残量が所定量以下であるか否かを判断する(S102)。所定量は、尿素水タンク75に尿素水を補給することが推奨される予め定められた量であり、たとえば、尿素水タンク75の満量の数分の一の量である。残量が所定量以下である(S102でYES)と判断した場合、EG-ECU52は、排気を処理するモードを尿素抑制モードに移行させる(S103)。残量が所定量以下でない(S102でNO)と判断した場合、EG-ECU52は、排気を処理するモードを尿素非抑制モードに移行させる(S104)。 EG-ECU 52 determines whether or not the remaining amount of urea water is equal to or less than a predetermined amount (S102). The predetermined amount is a predetermined amount recommended to replenish the urea water tank 75 with urea water, and is, for example, a fraction of the full amount of the urea water tank 75. If it is determined that the remaining amount is equal to or less than the predetermined amount (YES in S102), the EG-ECU 52 shifts the exhaust gas processing mode to the urea suppression mode (S103). When it is determined that the remaining amount is not less than or equal to the predetermined amount (NO in S102), the EG-ECU 52 shifts the exhaust gas processing mode to the urea non-suppression mode (S104).
 EG-ECU52は、排気を処理するモードが、現在、尿素抑制モードであるか否かを判断する(S105)。尿素抑制モードでない(S105でNO)、つまり、尿素非抑制モードであると判断した場合、EG-ECU52は、発電要求がHV-ECU51から出されたか否かを判断する(S111)。発電要求は、バッテリ10のSOCが充電開始SOC以下になった場合にHV-ECU51によってEG-ECU52に出される。 EG-ECU 52 determines whether the mode for processing the exhaust gas is currently the urea suppression mode (S105). When it is determined that the mode is not the urea suppression mode (NO in S105), that is, the mode is the urea non- suppression mode, the EG-ECU 52 determines whether or not a power generation request is issued from the HV-ECU 51 (S111). The power generation request is issued by the HV-ECU 51 to the EG-ECU 52 when the SOC of the battery 10 becomes equal to or lower than the charge start SOC.
 発電要求が無い(S111でNO)と判断した場合、EG-ECU52は、エンジン20を止めるよう制御する(S112)。その後、EG-ECU52は、実行する処理を呼出元の処理に戻す。 If it is determined that there is no power generation request (NO in S111), the EG-ECU 52 controls to stop the engine 20 (S112). After that, the EG-ECU 52 returns the processing to be executed to the calling processing.
 発電要求が有る(S111でYES)と判断した場合、EG-ECU52は、発電要求に従った負荷および回転速度となるようエンジン20を制御する(S113)。 If it is determined that there is a power generation request (YES in S111), the EG-ECU 52 controls the engine 20 so that the load and rotation speed are in accordance with the power generation request (S113).
 図3は、この実施の形態におけるエンジン20の性能曲線を示すグラフである。図3(A)を参照して、エンジン20が出力可能な最大トルクは、図3(A)のトルクカーブLで示されるように、回転速度の変化に伴ない変化する。トルクカーブはエンジンの諸元によって異なる。このトルクカーブLの範囲内でエンジン20が発生するトルク(=エンジン20に負荷するトルク)およびエンジン20の回転速度を制御することが可能である。高負荷な領域の方がエンジン20の熱効率が良くなるため、主に高負荷となるような発電要求が出されるように制御されることが好ましい。 FIG. 3 is a graph showing a performance curve of the engine 20 in this embodiment. Referring to FIG. 3 (A), the maximum torque that can be output by engine 20 changes as the rotation speed changes, as indicated by torque curve L in FIG. 3 (A). The torque curve differs depending on the engine specifications. It is possible to control the torque generated by the engine 20 (= torque applied to the engine 20) and the rotation speed of the engine 20 within the range of the torque curve L. Since the thermal efficiency of the engine 20 is higher in the high load region, it is preferable to control the power generation request such that the load is mainly high.
 図2に戻って、EG-ECU52は、エンジン20の負荷が所定負荷以上であるか否かを判断する(S114)。エンジン20の負荷が高い程、排気温度が高くなる。排気温度が低い場合は、SCR触媒73の方が三元触媒71よりも活性化し、排気温度が高い場合は、三元触媒71の方がSCR触媒73よりも活性化する。所定負荷は、三元触媒71とSCR触媒73とのNOxの浄化効率が同程度となる排気温度に対応する負荷として定められる。 Returning to FIG. 2, the EG-ECU 52 determines whether the load on the engine 20 is equal to or higher than a predetermined load (S114). The higher the load on the engine 20, the higher the exhaust temperature. When the exhaust temperature is low, the SCR catalyst 73 is more active than the three-way catalyst 71, and when the exhaust temperature is higher, the three-way catalyst 71 is more active than the SCR catalyst 73. The predetermined load is determined as a load corresponding to the exhaust temperature at which the NOx purification efficiencies of the three-way catalyst 71 and the SCR catalyst 73 are about the same.
 エンジン20の負荷が所定負荷以上である(S114でYES)と判断した場合、EG-ECU52は、尿素水の噴射を禁止し、三元触媒71を適正に機能させるため、A/Fセンサ82の検出結果を用いてストイキ燃焼となるようエンジン20を制御する(S115)。理論空燃比のストイキ燃焼であることが好ましいが、理論空燃比よりも高い空燃比のリーン状態での燃焼でなければよく、理論空燃比よりも低い空燃比のリッチ状態での燃焼であってもよい。エンジン20の負荷が所定負荷以上である場合、三元触媒71によるNOxの浄化効率の方が、SCR触媒73によるNOxの浄化効率よりも高くなる。エンジン20の負荷が所定負荷以上である場合、尿素水は噴射しない。 When it is determined that the load on the engine 20 is equal to or higher than the predetermined load (YES in S114), the EG-ECU 52 prohibits the injection of urea water and causes the three-way catalyst 71 to function properly. The engine 20 is controlled so that stoichiometric combustion is performed using the detection result (S115). It is preferable to be stoichiometric combustion with a stoichiometric air-fuel ratio, but it is sufficient if it is not combustion in a lean state with an air-fuel ratio higher than the theoretical air-fuel ratio, even if combustion is in a rich state with an air-fuel ratio lower than the theoretical air-fuel ratio Good. When the load on the engine 20 is equal to or higher than the predetermined load, the NOx purification efficiency of the three-way catalyst 71 is higher than the NOx purification efficiency of the SCR catalyst 73. When the load on the engine 20 is equal to or higher than the predetermined load, urea water is not injected.
 一方、エンジン20の負荷が所定負荷未満である(S114でNO)と判断した場合、EG-ECU52は、尿素水の噴射を許可し、排気状態(たとえば、排気に含まれるNOxの量)に従って尿素水を噴射するよう尿素水噴射ノズル74を制御する(S116)。本実施の形態では、尿素水の噴射量は、SCR触媒73の下流に設けられるNOxセンサ83の検出結果を用いて制御される。SCR触媒73に流入する排気に含まれるNOxの量は、SCR触媒73の下流に設けられるNOxセンサ83の検出結果および尿素水噴射ノズル74での尿素水の噴射量から算出される。なお、SCR触媒73の上流にもNOxセンサを設けて、このNOxセンサの検出結果および下流のNOxセンサ83の検出結果を用いて、SCR触媒73に流入する排気に含まれるNOxの量、および、尿素水の噴射量が算出されるようにしてもよい。エンジン20の負荷が所定負荷未満である場合、ストイキ燃焼ではなく、通常のディーゼルエンジンの燃焼であるリーン状態での燃焼となるようエンジン20を制御する。S115およびS116の後、EG-ECU52は、実行する処理をこの処理の呼出元に戻す。 On the other hand, when it is determined that the load of the engine 20 is less than the predetermined load (NO in S114), the EG-ECU 52 permits the injection of the urea water, and the urea is discharged according to the exhaust state (for example, the amount of NOx contained in the exhaust). The urea water injection nozzle 74 is controlled to inject water (S116). In the present embodiment, the injection amount of urea water is controlled using the detection result of the NOx sensor 83 provided downstream of the SCR catalyst 73. The amount of NOx contained in the exhaust gas flowing into the SCR catalyst 73 is calculated from the detection result of the NOx sensor 83 provided downstream of the SCR catalyst 73 and the injection amount of urea water from the urea water injection nozzle 74. A NOx sensor is also provided upstream of the SCR catalyst 73, and the amount of NOx contained in the exhaust gas flowing into the SCR catalyst 73, and the detection result of the NOx sensor 83 on the downstream side are used, and The injection amount of urea water may be calculated. When the load of the engine 20 is less than the predetermined load, the engine 20 is controlled so that the combustion is not the stoichiometric combustion but the lean combustion which is the combustion of the normal diesel engine. After S115 and S116, the EG-ECU 52 returns the process to be executed to the calling source of this process.
 図3(A)を参照して、尿素非抑制モードにおいて、エンジン20の負荷が所定負荷以上である、つまり、三元触媒71が活性化する排気温度となるようにエンジン20を運転する場合、図3(A)で示すように、三元触媒可能領域でエンジン20を制御する。本実施の形態においては、回転速度の目標を一定速度とし、出力トルクを増減させることで、出力を調整する。 Referring to FIG. 3 (A), in the urea non-suppression mode, when the load of engine 20 is equal to or higher than a predetermined load, that is, when engine 20 is operated so that the exhaust temperature activates three-way catalyst 71, As shown in FIG. 3 (A), the engine 20 is controlled in the three-way catalytic enable area. In the present embodiment, the target of the rotation speed is set to a constant speed, and the output torque is increased or decreased to adjust the output.
 尿素非抑制モードにおいて、エンジン20の負荷が所定負荷未満である、つまり、SCR触媒73が活性化する排気温度となるようエンジン20を運転する場合、図3(A)で示すように、SCR活用可能領域でエンジン20を制御する。本実施の形態においては、出力トルクの目標を一定値とし、回転速度を増減させることで、出力を調整する。 In the urea non-suppression mode, when the engine 20 is operated so that the load of the engine 20 is less than the predetermined load, that is, the exhaust temperature activates the SCR catalyst 73, as shown in FIG. The engine 20 is controlled in the feasible region. In the present embodiment, the output is adjusted by setting the target of the output torque to a constant value and increasing or decreasing the rotation speed.
 図2に戻って、一方、排気を処理するモードが、現在、尿素抑制モードである(S105でYES)と判断した場合、EG-ECU52は、発電要求がHV-ECU51から出されたか否かを判断する(S121)。発電要求が有る(S121でYES)と判断した場合、EG-ECU52は、尿素水の噴射を禁止し、ストイキ燃焼で、前述の所定負荷よりも高負荷となるようエンジン20を制御する(S122)。 Returning to FIG. 2, on the other hand, when it is determined that the mode for processing the exhaust gas is currently the urea suppression mode (YES in S105), the EG-ECU 52 determines whether the power generation request is issued from the HV-ECU 51. It is determined (S121). When it is determined that there is a power generation request (YES in S121), the EG-ECU 52 prohibits the injection of urea water and controls the engine 20 by stoichiometric combustion so that the load is higher than the predetermined load (S122). .
 図3(B)を参照して、尿素抑制モードにおいては、図3(B)で示すように、三元触媒可能領域でエンジン20を制御する。本実施の形態においては、回転速度も目標を一定速度とし、出力トルクを増減させることで、出力を調整する。 Referring to FIG. 3 (B), in the urea suppression mode, as shown in FIG. 3 (B), the engine 20 is controlled in the three-way catalyst available range. In the present embodiment, the output is adjusted by increasing and decreasing the output torque by setting the target of the rotation speed to a constant speed.
 図2に戻って、一方、発電要求が無い(S121でNO)と判断した場合、EG-ECU52は、エンジン20を止めるよう制御する(S123)。S122およびS123の後、EG-ECU52は、実行する処理を呼出元の処理に戻す。 Returning to FIG. 2, on the other hand, when it is determined that there is no power generation request (NO in S121), the EG-ECU 52 controls to stop the engine 20 (S123). After S122 and S123, the EG-ECU 52 returns the processing to be executed to the calling processing.
 図4は、この実施の形態における制御により尿素水の減少を抑制できることを説明するための図である。図4を参照して、図4(A)で示すように、車両100が、車速一定で定常運転されている場合について示す。この場合に、時刻t1となったときに尿素水の残量が所定量以下となったとする。 FIG. 4 is a diagram for explaining that the decrease in urea water can be suppressed by the control according to this embodiment. With reference to FIG. 4, as shown in FIG. 4 (A), a case where vehicle 100 is in steady operation at a constant vehicle speed will be described. In this case, it is assumed that the remaining amount of urea water has become equal to or less than the predetermined amount at time t1.
 時刻t1となるまでは、図4(C),(D)で示すように、SCR活用可能領域で賄える負荷および回転速度でエンジン20が制御される。これにより、図4(E)で示すように、バッテリ10のSOCはほぼ一定となる。また、図4(B)で示すように、尿素水の残量は一定のペースで減少する。 Until time t1, as shown in FIGS. 4C and 4D, the engine 20 is controlled with a load and a rotation speed that can be covered by the SCR usable area. As a result, the SOC of the battery 10 becomes substantially constant, as shown in FIG. Further, as shown in FIG. 4 (B), the residual amount of urea water decreases at a constant pace.
 時刻t1以降は、図4(C),(D)で示すように、三元触媒可能領域でエンジン20が制御される。これにより、図4(E)で示すように、時刻t2で、バッテリ10のSOCが充電完了SOCに達し、エンジン20が停止される。 After time t1, as shown in FIGS. 4C and 4D, the engine 20 is controlled in the three-way catalyst enabled area. As a result, as shown in FIG. 4 (E), at time t2, the SOC of battery 10 reaches the charge completion SOC, and engine 20 is stopped.
 バッテリ10の電力がMG31の駆動等に用いられ、時刻t3で、バッテリ10のSOCが充電開始SOC以下となり、三元触媒可能領域でエンジン20が制御される。このように、尿素水の残量が所定量以下となった場合、車両100が低負荷から中負荷の定常運転であるときは、バッテリ10のSOCに従ってエンジン20が間欠的に運転される。なお、車両100が高負荷の運転であるときは、バッテリのSOCに従ってエンジン20が連続的に運転される場合もある。これにより、SCR活用可能領域でエンジン20が制御されず、三元触媒可能領域でエンジン20が制御される。このため、三元触媒71によりNOxが処理されるので、尿素水を使用しなくてもよくなる。 The electric power of the battery 10 is used for driving the MG 31, etc., and at time t3, the SOC of the battery 10 becomes equal to or lower than the charge start SOC, and the engine 20 is controlled in the three-way catalyst available range. As described above, when the residual amount of the urea water is equal to or less than the predetermined amount and the vehicle 100 is in the steady operation from low load to medium load, the engine 20 is intermittently operated according to the SOC of the battery 10. When vehicle 100 is operating under a high load, engine 20 may be continuously operated according to the SOC of the battery. As a result, the engine 20 is not controlled in the SCR usable area, but the engine 20 is controlled in the three-way catalyst enabled area. Therefore, NOx is treated by the three-way catalyst 71, and it is not necessary to use urea water.
 [変形例]
 (1) 前述した実施の形態においては、MG31およびMG32は、いずれも電動発電機であることとした。しかし、これに限定されず、MG31は、発電機であってもよい。MG32は、電動機であってもよい。
[Modification]
(1) In the above-described embodiments, both MG31 and MG32 are motor generators. However, the MG 31 is not limited to this, and may be a generator. MG 32 may be an electric motor.
 (2) 前述した実施の形態においては、還元剤を利用して排気に含まれるNOxを浄化する触媒が、尿素水を還元剤として利用するSCR触媒73であることとした。しかし、還元剤を利用して排気に含まれるNOxを浄化する触媒であれば、これに限定されず、たとえば、HCを還元剤として利用するSCR触媒であってもよい。 (2) In the above-described embodiment, the catalyst that purifies NOx contained in the exhaust using the reducing agent is the SCR catalyst 73 that uses urea water as the reducing agent. However, the catalyst is not limited to this as long as it is a catalyst that purifies NOx contained in exhaust gas by using a reducing agent, and may be, for example, an SCR catalyst that uses HC as a reducing agent.
 (3) 前述した実施の形態においては、図2で示したように、尿素抑制モードであるときは、尿素非抑制モードであるときとは異なり、尿素水をまったく使用しないこととした。しかし、尿素抑制モードであるときは、尿素非抑制モードであるときと比較して、SCR触媒への尿素水の供給を抑制するのであれば、これに限定されない。たとえば、冷間状態からエンジン20を始動させる場合は三元触媒71の処理効率が良くないので、この場合にNOxの排出を抑制するために、車速が0となったときに、EG-ECU52は、尿素水の供給を許可して、エンジン20を一時的に運転して、SCR触媒73にアンモニアを吸着させるために尿素水を噴射するようにしてもよい。 (3) In the above-described embodiment, as shown in FIG. 2, unlike the urea non-suppression mode, urea water is not used at all in the urea suppression mode. However, the urea suppression mode is not limited to this as long as the supply of the urea water to the SCR catalyst is suppressed as compared with the urea non-suppression mode. For example, when the engine 20 is started from the cold state, the processing efficiency of the three-way catalyst 71 is not good, so in this case, in order to suppress the emission of NOx, when the vehicle speed becomes 0, the EG-ECU 52 Alternatively, the supply of urea water may be permitted, the engine 20 may be temporarily operated, and the urea water may be injected to cause the SCR catalyst 73 to adsorb ammonia.
 (4) 前述した実施の形態を、エンジン20とMG31とMG32とバッテリ10とSCR触媒73と三元触媒71とを含むハイブリッドシステムの開示として捉えることができる。また、このようなハイブリッドシステムの制御装置(HV-ECU51,EG-ECU52)の開示、または、ハイブリッドシステムの制御方法の開示として捉えることができる。また、このようなハイブリッドシステムを備えた車両100の開示として捉えることができる。 (4) The above-described embodiment can be regarded as a disclosure of a hybrid system including the engine 20, the MG 31, the MG 32, the battery 10, the SCR catalyst 73, and the three-way catalyst 71. Further, it can be regarded as disclosure of such a hybrid system control device (HV-ECU 51, EG-ECU 52) or disclosure of a hybrid system control method. Further, it can be regarded as a disclosure of a vehicle 100 provided with such a hybrid system.
 [効果]
 (1) 図1で示したように、ハイブリッドシステムは、エンジン20と、エンジン20の排気管と、エンジン20から出力される動力を利用して発電を行なうMG32と、MG32による発電電力を充電するバッテリ10と、バッテリ10の放電電力およびMG32による発電電力のうちの少なくとも一方の電力を用いて駆動される車両駆動用のMG31と、排気管に配置され還元剤を利用して排気に含まれる窒素酸化物を浄化するSCR触媒73と、排気管におけるSCR触媒の上流側に配置され排気管に還元剤を供給する尿素水噴射ノズル74および尿素水タンク75と、排気管に配置されSCR触媒73の活性化温度よりも高い温度で活性化し排気に含まれる窒素酸化物を浄化する三元触媒71と、エンジン20の運転状態を制御するEG-ECU52,HV-ECU51とを備える。図2のS122で示したように、EG-ECU52,HV-ECU51は、還元剤の残量が所定量に満たない場合、エンジン20の運転時には常にエンジン20の排気温度が三元触媒71が活性化する排気温度となることを制御目標としてエンジン20を運転する。
[effect]
(1) As shown in FIG. 1, the hybrid system charges the engine 20, the exhaust pipe of the engine 20, the MG 32 that generates electric power using the power output from the engine 20, and the electric power generated by the MG 32. Battery 10, MG 31 for driving a vehicle that is driven using at least one of the electric power discharged from battery 10 and the electric power generated by MG 32, and nitrogen contained in the exhaust gas that is arranged in the exhaust pipe and uses a reducing agent. The SCR catalyst 73 that purifies oxides, the urea water injection nozzle 74 and the urea water tank 75 that are arranged upstream of the SCR catalyst in the exhaust pipe and that supply the reducing agent to the exhaust pipe, and the SCR catalyst 73 that is arranged in the exhaust pipe A three-way catalyst 71 that is activated at a temperature higher than the activation temperature to purify nitrogen oxides contained in the exhaust gas and an operating state of the engine 20 are controlled. An EG-ECU 52 and an HV-ECU 51 are provided. As shown in S122 of FIG. 2, the EG-ECU 52 and the HV-ECU 51 are configured such that, when the remaining amount of the reducing agent is less than the predetermined amount, the exhaust temperature of the engine 20 always activates the three-way catalyst 71 when the engine 20 is operating. The engine 20 is operated with the control target being that the exhaust gas temperature is reduced.
 これにより、還元剤の残量が所定量に満たない場合、還元剤を利用しない三元触媒71が活性化する排気温度となることを制御目標としてエンジン20が運転される。その結果、還元剤を利用するSCR触媒73でエンジン20の排気を浄化するように構成されている場合に還元剤の残量に関わらず法律の規制に反しないようにエンジン20を運転することができる。 As a result, when the remaining amount of the reducing agent is less than the predetermined amount, the engine 20 is operated with a control target that the exhaust temperature is such that the three-way catalyst 71 that does not use the reducing agent is activated. As a result, when the SCR catalyst 73 using the reducing agent is configured to purify the exhaust gas of the engine 20, the engine 20 can be operated without violating the legal regulation regardless of the remaining amount of the reducing agent. it can.
 (2) 図4(C),(D)で示したように、EG-ECU52,HV-ECU51は、還元剤の残量が所定量に満たない場合、バッテリ10のSOCに従ってエンジン20を運転する場合と停止させる場合とを切替えて間欠的に運転する。これにより、三元触媒71が活性化する高負荷でエンジン20を運転することができる。 (2) As shown in FIGS. 4C and 4D, the EG-ECU 52 and the HV-ECU 51 operate the engine 20 according to the SOC of the battery 10 when the remaining amount of the reducing agent is less than the predetermined amount. The operation is intermittently switched by switching between the case and the case of stopping. As a result, the engine 20 can be operated under a high load that activates the three-way catalyst 71.
 (3) 図4(C)~(E)で示したように、EG-ECU52,HV-ECU51は、バッテリ10のSOCが充電開始SOCよりも少ない場合にはエンジン20を運転し、バッテリ10のSOCが充電完了SOCに達した場合にはエンジン20を停止させることでエンジン20を間欠的に運転する。これにより、三元触媒71が活性化する高負荷でエンジン20を運転することができる。 (3) As shown in FIGS. 4C to 4E, the EG-ECU 52 and the HV-ECU 51 operate the engine 20 when the SOC of the battery 10 is less than the charge start SOC, and When the SOC reaches the charge completion SOC, the engine 20 is stopped to intermittently operate the engine 20. As a result, the engine 20 can be operated under a high load that activates the three-way catalyst 71.
 (4) 図1で示したように、エンジン20は、ディーゼルエンジンである。図2のS115,S122で示したように、EG-ECU52,HV-ECU51は、エンジン20の排気温度が三元触媒71が活性化する排気温度となることを制御目標としてエンジン20を運転する場合、理論空燃比よりも低い空燃比となるようにエンジン20を制御する。これにより、三元触媒71を効率良く機能させることができる。 (4) As shown in FIG. 1, the engine 20 is a diesel engine. As shown in S115 and S122 of FIG. 2, when the EG-ECU 52 and the HV-ECU 51 operate the engine 20 with a control target that the exhaust temperature of the engine 20 becomes the exhaust temperature at which the three-way catalyst 71 is activated. The engine 20 is controlled so that the air-fuel ratio is lower than the stoichiometric air-fuel ratio. This allows the three-way catalyst 71 to function efficiently.
 (5) 図2のS111~S116で示したように、EG-ECU52,HV-ECU51は、還元剤の残量が所定量を超える場合、エンジン20の排気温度がSCR触媒73が活性化する排気温度となることを制御目標としてエンジン20を運転するときは、還元剤の供給を許可するよう尿素水噴射ノズル74を制御し、エンジン20の排気温度が三元触媒71が活性化する排気温度となることを制御目標としてエンジン20を運転するときは、還元剤の供給を禁止するよう制御する。これにより、還元剤の残量が所定量を超える場合であっても、還元剤の消費を抑制することができる。 (5) As shown in S111 to S116 of FIG. 2, the EG-ECU 52 and the HV-ECU 51 cause the exhaust gas temperature of the engine 20 to activate the SCR catalyst 73 when the remaining amount of the reducing agent exceeds a predetermined amount. When the engine 20 is operated with the temperature set as a control target, the urea water injection nozzle 74 is controlled so as to permit the supply of the reducing agent, and the exhaust temperature of the engine 20 becomes the exhaust temperature at which the three-way catalyst 71 is activated. When the engine 20 is operated with the control target set to "0" as the control target, the supply of the reducing agent is prohibited. Thereby, even when the remaining amount of the reducing agent exceeds the predetermined amount, the consumption of the reducing agent can be suppressed.
 (6) 図3で示したように、EG-ECU52,HV-ECU51は、エンジン20の排気温度が三元触媒71が活性化する排気温度となることを制御目標としてエンジン20を運転するときは、回転速度を所定速度とし、出力トルクを増減させることで、出力を調整し、エンジン20の排気温度がSCR触媒73が活性化する排気温度となることを制御目標としてエンジン20を運転するときは、出力トルクを所定値とし、回転速度を増減させることで、出力を調整する。これにより、三元触媒71およびSCR触媒73が効率良く機能するようにエンジン20を制御することができる。 (6) As shown in FIG. 3, when the EG-ECU 52 and the HV-ECU 51 operate the engine 20 with a control target that the exhaust temperature of the engine 20 becomes the exhaust temperature at which the three-way catalyst 71 is activated. When the engine 20 is operated with the control target that the exhaust temperature of the engine 20 becomes the exhaust temperature at which the SCR catalyst 73 is activated, the output is adjusted by setting the rotation speed to a predetermined speed and increasing or decreasing the output torque. , The output torque is set to a predetermined value, and the output is adjusted by increasing or decreasing the rotation speed. As a result, the engine 20 can be controlled so that the three-way catalyst 71 and the SCR catalyst 73 function efficiently.
 (7) 図2で示したように、EG-ECU52,HV-ECU51は、還元剤の残量が所定量に満たない場合、還元剤の残量が所定量を超える場合と比較して、排気管への還元剤の供給を抑制するよう制御する。これにより、還元剤が少ない場合に還元剤の消費を抑制することができる。 (7) As shown in FIG. 2, the EG-ECU 52 and the HV-ECU 51 exhaust the exhaust gas when the remaining amount of the reducing agent is less than the predetermined amount, compared to when the remaining amount of the reducing agent exceeds the predetermined amount. Control is performed so as to suppress the supply of the reducing agent to the tube. This makes it possible to suppress the consumption of the reducing agent when the amount of the reducing agent is small.
 (8) 図1で示したように、還元剤は、尿素水である。変形例で示したように、EG-ECU52,HV-ECU51は、還元剤の残量が所定量に満たない場合であっても、当該ハイブリッドシステムを搭載する車両100の車速が0となったときに、還元剤の供給を許可する。これにより、冷間状態からエンジン20を始動させる場合に三元触媒71が効率良く機能し難い場合であっても、SCR触媒73に吸着したアンモニアによって、NOxの排出を抑制することができる。 (8) As shown in FIG. 1, the reducing agent is urea water. As shown in the modified example, the EG-ECU 52 and the HV-ECU 51 detect that the vehicle speed of the vehicle 100 equipped with the hybrid system becomes 0 even when the remaining amount of the reducing agent is less than the predetermined amount. To permit the supply of the reducing agent. As a result, even when the three-way catalyst 71 does not function efficiently when the engine 20 is started from the cold state, the NOx emission can be suppressed by the ammonia adsorbed on the SCR catalyst 73.
 今回開示された各実施の形態は、適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 -Each embodiment disclosed this time is also planned to be implemented in an appropriate combination. The embodiments disclosed this time must be considered as illustrative in all points and not restrictive. The scope of the present disclosure is shown not by the above description of the embodiments but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 10 バッテリ、11 PCU、20 エンジン、21,22,41 回転軸、23 ギア、31,32 MG、40 駆動輪、42 駆動軸、43 動力伝達ギア、51 HV-ECU、52 EG-ECU、61,62,63,64 監視ユニット、65 アクセル開度センサ、66 車速センサ、71 三元触媒、73 SCR触媒、74 尿素水噴射ノズル、75 尿素水タンク、81 排気温センサ、82 A/Fセンサ、83 NOxセンサ、84 残量センサ、100 車両。 10 battery, 11 PCU, 20 engine, 21,22,41 rotary shaft, 23 gear, 31,32 MG, 40 drive wheel, 42 drive shaft, 43 power transmission gear, 51 HV-ECU, 52 EG-ECU, 61, 62, 63, 64 monitoring unit, 65 accelerator opening sensor, 66 vehicle speed sensor, 71 three-way catalyst, 73 SCR catalyst, 74 urea water injection nozzle, 75 urea water tank, 81 exhaust temperature sensor, 82 A / F sensor, 83 NOx sensor, 84 remaining amount sensor, 100 vehicles.

Claims (10)

  1.  内燃機関と、
     前記内燃機関の排気通路と、
     前記内燃機関から出力される動力を利用して発電を行なう発電機と、
     前記発電機による発電電力を充電する蓄電装置と、
     前記蓄電装置の放電電力および前記発電機による発電電力のうちの少なくとも一方の電力を用いて駆動される車両駆動用の電動機と、
     前記排気通路に配置され、還元剤を利用して排気に含まれる窒素酸化物を浄化する第1触媒と、
     前記排気通路における前記第1触媒の上流側に配置され、前記排気通路に前記還元剤を供給する還元剤供給装置と、
     前記排気通路に配置され、前記第1触媒の活性化温度よりも高い温度で活性化し排気に含まれる窒素酸化物を浄化する第2触媒と、
     前記内燃機関の運転状態を制御する制御装置とを備え、
     前記第2触媒は、前記排気通路を流れる排気によって温められ、
     前記制御装置は、前記還元剤の残量が所定量に満たない場合、前記内燃機関の運転時には常に前記内燃機関の排気温度が前記第2触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転する、ハイブリッドシステム。
    An internal combustion engine,
    An exhaust passage of the internal combustion engine,
    A generator that generates power using the power output from the internal combustion engine;
    A power storage device that charges the power generated by the generator,
    An electric motor for driving a vehicle, which is driven by using at least one of electric power discharged from the power storage device and electric power generated by the generator,
    A first catalyst disposed in the exhaust passage for purifying nitrogen oxides contained in the exhaust using a reducing agent;
    A reducing agent supply device that is arranged upstream of the first catalyst in the exhaust passage and supplies the reducing agent to the exhaust passage;
    A second catalyst that is disposed in the exhaust passage and that is activated at a temperature higher than the activation temperature of the first catalyst to purify nitrogen oxides contained in the exhaust;
    A control device for controlling the operating state of the internal combustion engine,
    The second catalyst is warmed by the exhaust gas flowing through the exhaust passage,
    When the remaining amount of the reducing agent is less than a predetermined amount, the control device sets a control target that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated when the internal combustion engine is operating. A hybrid system for operating the internal combustion engine.
  2.  前記制御装置は、前記還元剤の残量が前記所定量に満たない場合、前記蓄電装置のSOCに従って前記内燃機関を運転する場合と停止させる場合とを切替えて間欠的に運転する、請求項1に記載のハイブリッドシステム。 The control device performs intermittent operation by switching between a case where the internal combustion engine is operated and a case where the internal combustion engine is stopped according to the SOC of the power storage device, when the remaining amount of the reducing agent is less than the predetermined amount. The hybrid system described in.
  3.  前記制御装置は、前記蓄電装置のSOCが第1所定値よりも少ない場合には前記内燃機関を運転し、前記蓄電装置のSOCが第2所定値に達した場合には前記内燃機関を停止させることで前記内燃機関を間欠的に運転する、請求項2に記載のハイブリッドシステム。 The control device operates the internal combustion engine when the SOC of the power storage device is less than a first predetermined value, and stops the internal combustion engine when the SOC of the power storage device reaches a second predetermined value. The hybrid system according to claim 2, wherein the internal combustion engine is operated intermittently.
  4.  前記内燃機関は、ディーゼルエンジンであり、
     前記第2触媒は、三元触媒であり、
     前記制御装置は、前記内燃機関の排気温度が前記第2触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転する場合、理論空燃比よりも低い空燃比となるように前記内燃機関を制御する、請求項1に記載のハイブリッドシステム。
    The internal combustion engine is a diesel engine,
    The second catalyst is a three-way catalyst,
    When the internal combustion engine is operated with the exhaust gas temperature of the internal combustion engine being the exhaust gas temperature at which the second catalyst is activated as a control target, the control device sets the air-fuel ratio lower than the theoretical air-fuel ratio. The hybrid system according to claim 1, which controls an internal combustion engine.
  5.  前記制御装置は、前記還元剤の残量が前記所定量を超える場合、
      前記内燃機関の排気温度が前記第1触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転するときは、前記還元剤の供給を許可するよう前記還元剤供給装置を制御し、
      前記内燃機関の排気温度が前記第2触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転するときは、前記還元剤の供給を禁止するよう前記還元剤供給装置を制御する、請求項1に記載のハイブリッドシステム。
    The control device, when the remaining amount of the reducing agent exceeds the predetermined amount,
    When the internal combustion engine is operated with a control target that the exhaust gas temperature of the internal combustion engine becomes the exhaust gas temperature at which the first catalyst is activated, the reducing agent supply device is controlled to permit the supply of the reducing agent. ,
    When the internal combustion engine is operated with a control target that the exhaust gas temperature of the internal combustion engine becomes the exhaust gas temperature at which the second catalyst is activated, the reducing agent supply device is controlled to prohibit the supply of the reducing agent. The hybrid system according to claim 1.
  6.  前記制御装置は、
      前記内燃機関の排気温度が前記第2触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転するときは、回転速度を所定速度とし、出力トルクを増減させることで、出力を調整し、
      前記内燃機関の排気温度が前記第1触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転するときは、出力トルクを所定値とし、回転速度を増減させることで、出力を調整する、請求項5に記載のハイブリッドシステム。
    The control device is
    When the internal combustion engine is operated with a control target that the exhaust gas temperature of the internal combustion engine becomes the exhaust gas temperature at which the second catalyst is activated, the rotation speed is set to a predetermined speed and the output torque is increased or decreased to output the output. Adjust,
    When the internal combustion engine is operated with a control target that the exhaust gas temperature of the internal combustion engine becomes the exhaust gas temperature at which the first catalyst is activated, the output torque is set to a predetermined value, and the rotation speed is increased or decreased to increase the output. The hybrid system of claim 5, wherein the hybrid system is tuned.
  7.  前記制御装置は、前記還元剤の残量が前記所定量に満たない場合、前記還元剤の残量が前記所定量を超える場合と比較して、前記排気通路への前記還元剤の供給を抑制するよう前記還元剤供給装置を制御する、請求項5に記載のハイブリッドシステム。 When the remaining amount of the reducing agent is less than the predetermined amount, the control device suppresses the supply of the reducing agent to the exhaust passage as compared with the case where the remaining amount of the reducing agent exceeds the predetermined amount. The hybrid system according to claim 5, wherein the reducing agent supply device is controlled to perform.
  8.  前記第1触媒は、SCR触媒であり、前記還元剤は、尿素水であり、
     前記制御装置は、前記還元剤の残量が前記所定量に満たない場合であっても、当該ハイブリッドシステムを搭載する車両の車速が0となったときに、前記還元剤の供給を許可するよう前記還元剤供給装置を制御する、請求項5に記載のハイブリッドシステム。
    The first catalyst is an SCR catalyst, the reducing agent is aqueous urea,
    Even when the remaining amount of the reducing agent is less than the predetermined amount, the control device permits the supply of the reducing agent when the vehicle speed of the vehicle equipped with the hybrid system becomes zero. The hybrid system according to claim 5, which controls the reducing agent supply device.
  9.  内燃機関と、前記内燃機関の排気通路と、前記内燃機関から出力される動力を利用して発電を行なう発電機と、前記発電機による発電電力を充電する蓄電装置と、前記蓄電装置の放電電力および前記発電機による発電電力のうちの少なくとも一方の電力を用いて駆動される車両駆動用の電動機と、前記排気通路に配置され還元剤を利用して排気に含まれる窒素酸化物を浄化する第1触媒と、前記排気通路における前記第1触媒の上流側に配置され前記排気通路に前記還元剤を供給する還元剤供給装置と、前記排気通路に配置され前記第1触媒の活性化温度よりも高い温度で活性化し排気に含まれる窒素酸化物を浄化する第2触媒とを備えるハイブリッドシステムの前記内燃機関の運転状態を制御する制御装置であって、
     前記還元剤の残量が所定量に満たない場合、前記内燃機関の運転時には常に前記内燃機関の排気温度が前記第2触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転する、ハイブリッドシステムの制御装置。
    An internal combustion engine, an exhaust passage of the internal combustion engine, a generator that generates power using the power output from the internal combustion engine, a power storage device that charges the power generated by the power generator, and discharge power of the power storage device. And an electric motor for driving a vehicle that is driven by using at least one of the electric power generated by the generator, and a nitrogen oxide contained in the exhaust gas that is disposed in the exhaust passage and uses a reducing agent. 1 catalyst, a reducing agent supply device which is arranged on the upstream side of the first catalyst in the exhaust passage and supplies the reducing agent to the exhaust passage, and an activation temperature of the first catalyst which is arranged in the exhaust passage. A control device for controlling an operating state of the internal combustion engine of a hybrid system including a second catalyst which is activated at a high temperature and purifies nitrogen oxides contained in exhaust gas,
    When the remaining amount of the reducing agent is less than a predetermined amount, the internal combustion engine is operated with a control target that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated when the internal combustion engine is operating. Control device for hybrid system.
  10.  内燃機関と、前記内燃機関の排気通路と、前記内燃機関から出力される動力を利用して発電を行なう発電機と、前記発電機による発電電力を充電する蓄電装置と、前記蓄電装置の放電電力および前記発電機による発電電力のうちの少なくとも一方の電力を用いて駆動される車両駆動用の電動機と、前記排気通路に配置され還元剤を利用して排気に含まれる窒素酸化物を浄化する第1触媒と、前記排気通路における前記第1触媒の上流側に配置され前記排気通路に前記還元剤を供給する還元剤供給装置と、前記排気通路に配置され前記第1触媒の活性化温度よりも高い温度で活性化し排気に含まれる窒素酸化物を浄化する第2触媒とを備えるハイブリッドシステムの前記内燃機関の運転状態を制御する制御装置による制御方法であって、
     前記制御装置が、前記還元剤の残量が所定量に満たない場合、前記内燃機関の運転時には常に前記内燃機関の排気温度が前記第2触媒が活性化する排気温度となることを制御目標として前記内燃機関を運転するステップを含む、ハイブリッドシステムの制御方法。
    An internal combustion engine, an exhaust passage of the internal combustion engine, a generator that generates power using the power output from the internal combustion engine, a power storage device that charges the power generated by the power generator, and discharge power of the power storage device. And an electric motor for driving a vehicle that is driven by using at least one of the electric power generated by the generator, and a nitrogen oxide contained in the exhaust gas that is disposed in the exhaust passage and uses a reducing agent. 1 catalyst, a reducing agent supply device which is arranged on the upstream side of the first catalyst in the exhaust passage and supplies the reducing agent to the exhaust passage, and an activation temperature of the first catalyst which is arranged in the exhaust passage. A control method by a control device for controlling an operating state of the internal combustion engine of a hybrid system comprising a second catalyst which is activated at a high temperature and purifies nitrogen oxides contained in exhaust gas,
    When the remaining amount of the reducing agent is less than a predetermined amount, the control device sets a control target that the exhaust gas temperature of the internal combustion engine is always the exhaust gas temperature at which the second catalyst is activated when the internal combustion engine is operating. A method of controlling a hybrid system, comprising: operating the internal combustion engine.
PCT/JP2019/038162 2018-10-18 2019-09-27 Hybrid system, hybrid system control device, and hybrid system control method WO2020080063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-196572 2018-10-18
JP2018196572A JP2020063711A (en) 2018-10-18 2018-10-18 Hybrid system, control device for hybrid system, and control method for hybrid system

Publications (1)

Publication Number Publication Date
WO2020080063A1 true WO2020080063A1 (en) 2020-04-23

Family

ID=70284284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038162 WO2020080063A1 (en) 2018-10-18 2019-09-27 Hybrid system, hybrid system control device, and hybrid system control method

Country Status (2)

Country Link
JP (1) JP2020063711A (en)
WO (1) WO2020080063A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342816B2 (en) * 2020-08-03 2023-09-12 株式会社豊田自動織機 Series hybrid vehicle exhaust treatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024210A (en) * 2011-07-25 2013-02-04 Nissan Motor Co Ltd Exhaust post-processing device for diesel engine
WO2013118252A1 (en) * 2012-02-07 2013-08-15 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2017115640A (en) * 2015-12-22 2017-06-29 三菱自動車工業株式会社 Exhaust emission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024210A (en) * 2011-07-25 2013-02-04 Nissan Motor Co Ltd Exhaust post-processing device for diesel engine
WO2013118252A1 (en) * 2012-02-07 2013-08-15 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2017115640A (en) * 2015-12-22 2017-06-29 三菱自動車工業株式会社 Exhaust emission control device

Also Published As

Publication number Publication date
JP2020063711A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US9821795B2 (en) Hybrid vehicle and control method for hybrid vehicle
US10309329B2 (en) Hybrid vehicle with exhaust filter and ECU permitting fuel cut
US10400694B2 (en) Hybrid vehicle
US20100251996A1 (en) Power output apparatus, hybrid vehicle provided with same, and control method of power output apparatus
JP2015140150A (en) hybrid vehicle
WO2018194046A1 (en) Plug-in hybrid vehicle
WO2014207810A1 (en) Hybrid vehicle control device
EP2211033A1 (en) Exhaust purification device for hybrid electric automobile
JP2015128935A (en) Hybrid electric vehicle
JP2020111164A (en) Hybrid vehicle
WO2020080063A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
JP4631767B2 (en) Exhaust gas purification device for hybrid system
CN113302101B (en) Hybrid system, control device for hybrid system, and control method for hybrid system
WO2020085003A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
JP2011084202A (en) Power output device, hybrid vehicle equipped with the same, and control method for the power output device
JP4311414B2 (en) Vehicle and control method thereof
JP4329385B2 (en) Exhaust gas purification system for internal combustion engine
JP2020164006A (en) Hybrid vehicle
JP2004124827A (en) Power output device and hybrid type power output device, and control method thereof, and hybrid vehicle
JP2009275616A (en) Vehicles and control method for vehicles
JP2011194926A (en) Vehicle and control method thereof
WO2020095416A1 (en) Control method for hybrid vehicle and control device for hybrid vehicle
JP2015051743A (en) Hybrid vehicle control device
JP2020142695A (en) Vehicular control apparatus
JP2020111165A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873721

Country of ref document: EP

Kind code of ref document: A1