本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、車両に搭載された端末装置間において車車間通信を実行するとともに、交差点等に設置された基地局装置から端末装置へ路車間通信も実行する通信システムに関する。車車間通信として、端末装置は、車両の速度や位置等の情報(以下、これらを「データ」という)を格納したパケット信号をブロードキャスト送信する。また、他の端末装置は、パケット信号を受信するとともに、データをもとに車両の接近等を認識する。また、路車間通信として、基地局装置は、複数のサブフレームが含まれたフレームを繰り返し規定する。基地局装置は、複数のサブフレームのいずれかを選択し、選択したサブフレームの先頭部分の期間において、制御情報等が格納されたパケット信号をブロードキャスト送信する。
制御情報には、当該基地局装置がパケット信号をブローキャスト送信するための期間(以下、「路車送信期間」という)に関する情報が含まれている。端末装置は、制御情報をもとに路車送信期間を特定し、路車送信期間以外の期間においてパケット信号を送信する。このように、路車間通信と車車間通信とが時間分割多重されるので、両者間のパケット信号の衝突確率が低減される。つまり、端末装置が制御情報の内容を認識することによって、路車間通信と車車間通信との干渉が低減される。ここで、基地局装置によって形成される通信エリアは、所定の範囲に限定される。路車間通信と車車間通信との干渉が低減される範囲を広げるためには、制御情報が端末装置に広い範囲で受信されるべきである。これに対応するために、端末装置は、制御情報を車車間通信によって転送する。
一方、路車間通信において、複数の基地局装置から送信されるパケット信号が衝突すると、路車間通信におけるパケット信号の誤り率が増加する。さらに、端末装置も、路車送信期間を特定できないので、車車間通信におけるパケット信号の衝突確率も増加する。このような状況下において、各基地局装置に互いに異なったサブフレームを選択させるために、本実施例は、次の処理を実行する。
基地局装置は、他の基地局装置から送信されるパケット信号を受信し、パケット信号から制御情報を取得することによって、他の基地局装置によって使用されているサブフレームを特定する。基地局装置は、他の基地局装置によって使用されているサブフレーム以外のサブフレームを選択する。一方、建物等の障害物が設けられていることによって、ある程度近くに設置されながらもパケット信号を受信できない他の基地局装置が存在することもある。そのような他の基地局装置によって使用されているサブフレームは、基地局装置に認識されない。
路車間通信におけるパケット信号の衝突確率を低減するために、基地局装置は、そのような他の基地局装置によって使用されているサブフレームも認識すべきである。そのために、基地局装置は、端末装置からのパケット信号も受信する。基地局装置は、パケット信号に格納された制御情報を取得し、制御情報をもとに、他の基地局装置によって使用されているサブフレームを認識する。さらに、基地局装置は、サブフレームを選択する際に、他の基地局装置によって使用されているサブフレーム以外を選択する。なお、選択したサブフレームは、次のフレームにおいても使用される。
図1は、本発明の実施例に係る通信システム100の構成を示す。これは、ひとつの交差点を上方から見た場合に相当する。通信システム100は、基地局装置10、車両12と総称される第1車両12a、第2車両12b、第3車両12c、第4車両12d、第5車両12e、第6車両12f、第7車両12g、第8車両12h、ネットワーク202を含む。なお、各車両12には、図示しない端末装置が搭載されている。また、基地局装置10によってエリア200が形成されている。
図示のごとく、図面の水平方向、つまり左右の方向に向かう道路と、図面の垂直方向、つまり上下の方向に向かう道路とが中心部分で交差している。ここで、図面の上側が方角の「北」に相当し、左側が方角の「西」に相当し、下側が方角の「南」に相当し、右側が方角の「東」に相当する。また、ふたつの道路の交差部分が「交差点」である。第1車両12a、第2車両12bが、左から右へ向かって進んでおり、第3車両12c、第4車両12dが、右から左へ向かって進んでいる。また、第5車両12e、第6車両12fが、上から下へ向かって進んでおり、第7車両12g、第8車両12hが、下から上へ向かって進んでいる。
通信システム100は、交差点に基地局装置10を配置する。基地局装置10は、図示しないGPS衛星から受信した信号や、図示しない他の基地局装置10にて形成されたフレームをもとに、複数のサブフレームが含まれたフレームを繰り返し生成する。ここで、各サブフレームの先頭部分に路車送信期間が設定可能であるような規定がなされている。基地局装置10は、複数のサブフレームのうち、他の基地局装置10によって路車送信期間が設定されていないサブフレームを選択する。基地局装置10は、選択したサブフレームの先頭部分に路車送信期間を設定する。基地局装置10は、路車送信期間に関する情報等が含まれた制御情報をパケット信号に格納する。また、基地局装置10は、所定のデータもパケット信号に格納する。基地局装置10は、設定した路車送信期間においてパケット信号を報知する。
複数の端末装置は、基地局装置10によって報知されたパケット信号を受信し、受信したパケット信号に含まれた制御情報をもとに、フレームを生成する。その結果、複数の端末装置のそれぞれにおいて生成されるフレームは、基地局装置10において生成されるフレームに同期する。また、端末装置は、各基地局装置10によって設定されている路車送信期間を認識し、パケット信号の送信のために、路車送信期間以外の期間を特定する。端末装置は、特定した期間においてCSMA/CAを実行することによって、パケット信号を送信する。
具体的には、端末装置は、複数のサブフレームのうちのいずれかを選択し、選択したサブフレームにおいて、路車送信期間以外の期間を特定する。また、端末装置は、次のフレームにおいても、相対的なタイミングが同一のサブフレームを選択する。ここで、端末装置は、データを取得し、データをパケット信号に格納する。データには、例えば、存在位置に関する情報が含まれる。また、端末装置は、制御情報もパケット信号に格納する。つまり、基地局装置10から送信された制御情報は、端末装置によって転送される。
図2は、本発明の実施例に係る通信システム100の別の構成を示す。図2は、図1での交差点が複数示されている場合に相当する。通信システム100は、基地局装置10と総称される第1基地局装置10a、第2基地局装置10b、第3基地局装置10c、車両12と総称される第1車両12a、第2車両12b、第3車両12cを含む。図2は、図1と同様に示されており、第1車両12aが東の方向に進行し、第2車両12bが西の方向に進行し、第3車両12cが南の方向に進行している。第1車両12aは、第2基地局装置10bの近傍を走行し、第1車両12aに搭載された端末装置は、第2基地局装置10bからの制御情報を受信している。ここで、第1車両12aの後方を走行している図示しない車両に搭載された端末装置は、第2基地局装置10bからの制御情報を直接受信できない場合であっても、第2基地局装置10bからの制御情報の受信を希望する。そのため、第1車両12aに搭載された端末装置は、第2基地局装置10bからの制御情報を転送する。
第2車両12bは、第3基地局装置10cの近傍を走行し、第2車両12bに搭載された端末装置は、第3基地局装置10cからの制御情報を受信している。ここで、第2車両12bの前方から、第2車両12bの方向へ向かってくる車両12、例えば、第1車両12aに搭載された端末装置は、第3基地局装置10cからの制御情報の受信を希望する。そのため、第2車両12bに搭載された端末装置は、第3基地局装置10cからの制御情報を転送する。第3車両12cは、第1基地局装置10aの近傍を走行し、第3車両12cに搭載された端末装置は、第1基地局装置10aからの制御情報を受信している。ここで、第3車両12cの後方を走行している図示しない車両に搭載された端末装置は、第1基地局装置10aからの制御情報の受信を希望する。そのため、第3車両12cに搭載された端末装置は、第1基地局装置10aからの制御情報を転送する。つまり、基地局装置10からの制御情報を直接受信している場合、端末装置は、当該制御情報を優先的に転送する。
ここでは、第2基地局装置10bおよび第3基地局装置10cが既に起動されており、第1基地局装置10aが新たに起動される場合を想定する。また、第1基地局装置10aは、第2基地局装置10bからのパケット信号を受信できるものの、第3基地局装置10cからのパケット信号を受信できないとする。例えば、第1基地局装置10aと第3基地局装置10cとの間には、障害物が存在する。第1基地局装置10aは、第2基地局装置10bからのパケット信号を受信することによって、第2基地局装置10bにおいて生成されるフレームに同期するようにフレームを生成する。
また、第1基地局装置10aは、第2基地局装置10bからの制御情報をもとに、第2基地局装置10bによって使用されているサブフレームを特定する。また、第1基地局装置10aは、第2車両12bに搭載された端末装置からのパケット信号を受信する。当該パケット信号には、第3基地局装置10cからの制御情報が含まれている。第1基地局装置10aは、その制御情報をもとに、第3基地局装置10cによって使用されているサブフレームを特定する。第1基地局装置10aは、特定したサブフレーム以外のサブフレームを選択し、選択したサブフレームに路車送信期間を設定する。
図3は、基地局装置10の構成を示す。基地局装置10は、アンテナ20、RF部22、変復調部24、処理部26、制御部30、ネットワーク通信部80を含む。また、処理部26は、第1特定部32、測定部38、第2特定部34、推定部40、生成部36、第3特定部42、記憶部44、フレーム形成部46を含む。
RF部22は、受信処理として、図示しない端末装置や他の基地局装置10からのパケット信号をアンテナ20にて受信する。RF部22は、受信した無線周波数のパケット信号に対して周波数変換を実行し、ベースバンドのパケット信号を生成する。さらに、RF部22は、ベースバンドのパケット信号を変復調部24に出力する。一般的に、ベースバンドのパケット信号は、同相成分と直交成分によって形成されるので、ふたつの信号線が示されるべきであるが、ここでは、図を明瞭にするためにひとつの信号線だけを示すものとする。RF部22には、LNA(Low Noise Amplifier)、ミキサ、AGC、A/D変換部も含まれる。
RF部22は、送信処理として、変復調部24から入力したベースバンドのパケット信号に対して周波数変換を実行し、無線周波数のパケット信号を生成する。さらに、RF部22は、路車送信期間において、無線周波数のパケット信号をアンテナ20から送信する。また、RF部22には、PA(Power Amplifier)、ミキサ、D/A変換部も含まれる。
変復調部24は、受信処理として、RF部22からのベースバンドのパケット信号に対して、復調を実行する。さらに、変復調部24は、復調した結果を処理部26に出力する。また、変復調部24は、送信処理として、処理部26からのデータに対して、変調を実行する。さらに、変復調部24は、変調した結果をベースバンドのパケット信号としてRF部22に出力する。ここで、通信システム100は、OFDM(Orthogonal Frequency Division Multiplexing)変調方式に対応するので、変復調部24は、受信処理としてFFT(Fast Fourier Transform)も実行し、送信処理としてIFFT(Inverse Fast Fourier Transform)も実行する。
フレーム形成部46は、RF部22、変復調部24を介して、図示しない他の基地局装置10からの復調結果を受けつける。フレーム形成部46は、復調結果をもとに、複数のサブフレームにて形成されたフレームを繰返し生成する。図4(a)−(e)は、通信システム100において規定されるフレームのフォーマットを示す。図4(a)は、フレームの構成を示す。フレームは、第1サブフレームから第Nサブフレームと示されるN個のサブフレームによって形成されている。例えば、フレームの長さが100msecであり、Nが10である場合、10msecの長さのサブフレームが規定される。
図4(b)は、第1基地局装置10aによって生成されるフレームの構成を示す。第1基地局装置10aは、第1サブフレームの先頭部分に路車送信期間を設定する。また、第1基地局装置10aは、第2サブフレームから第Nサブフレームに車車送信期間を設定する。車車送信期間とは、端末装置がパケット信号を送信可能な期間である。つまり、所定のサブフレームの先頭期間である路車送信期間において第1基地局装置10aがパケット信号を送信可能であり、かつフレームのうち、路車送信期間以外の車車送信期間において端末装置がパケット信号を送信可能であるような規定がなされる。
図4(c)は、路車送信期間において、第1基地局装置10aから送信されるパケット信号を示す。複数のパケット信号は、SIFSの間隔をあけて、連続的に送信される。ここで、通信システム100は、OFDM変調方式を採用しているので、各パケット信号は、複数のOFDMシンボルから構成される。また、OFDMシンボルは、ガードインターバル(GI)と有効シンボルとによって構成される。
図4(d)は、第2基地局装置10bによって生成されるフレームの構成を示す。第2基地局装置10bは、第2サブフレームの先頭部分に路車送信期間を設定する。また、第2基地局装置10bは、第1サブフレーム、第3サブフレームから第Nサブフレームに車車送信期間を設定する。図4(e)は、第3基地局装置10cによって生成されるフレームの構成を示す。第3基地局装置10cは、第3サブフレームの先頭部分に路車送信期間を設定する。また、第3基地局装置10cは、第1サブフレーム、第2サブフレーム、第4サブフレームから第Nサブフレームに車車送信期間を設定する。このように、複数の基地局装置10は、互いに異なったサブフレームを選択し、選択したサブフレームの先頭部分に路車送信期間を設定する。図3に戻る。
フレーム形成部46は、復調結果から制御情報を検出する。フレーム形成部46は、制御情報の受信タイミングを特定する。制御情報の受信タイミングは、制御情報が含まれたパケット信号の受信タイミングであるので、路車送信期間が配置されたサブフレームの先頭タイミングに相当する。また、フレーム形成部46は、制御情報に含まれたサブフレーム番号を取得する。さらに、サブフレームの先頭タイミングと、サブフレーム番号をもとにフレームを生成する。なお、フレーム形成部46は、複数の基地局装置10からのパケット信号を受信している場合、受信電力が最大となるパケット信号を選択し、選択したパケット信号に対して上記の処理を実行する。このように、フレーム形成部46は、他の基地局装置10において生成されたフレームに同期したフレームを生成する。
フレーム形成部46は、他の基地局装置10からのパケット信号を受信できない場合、次の処理を実行してもよい。フレーム形成部46は、図示しないGPS衛星からの信号を受信し、受信した信号をもとに時刻の情報を取得する。なお、時刻の情報の取得には公知の技術が使用されればよいので、ここでは説明を省略する。フレーム形成部46は、時刻の情報をもとに、複数のフレームを生成する。例えば、フレーム形成部46は、「0msec」となるタイミングを基準にして、「1sec」の期間を10分割することによって、「100msec」のフレームを10個生成する。
処理部26は、RF部22、変復調部24を介して、図示しない他の基地局装置10あるいは端末装置からの復調結果を入力する。ここでは、復調結果として、パケット信号に格納されるMACフレームの構成を説明する。なお、処理部26に入力されるMACフレームと、処理部26から出力されるMACフレームとは、同様の構成を有する。図5(a)−(b)は、通信システム100において規定されるパケット信号に格納されるMACフレームのフォーマットを示す。図5(a)は、MACフレームのフォーマットを示す。MACフレームは、先頭から順に、「MACヘッダ」、「RSUコントロールヘッダ」、「アプリケーションデータ」、「CRC」を配置する。RSUコントロールヘッダが、前述の制御情報に相当する。アプリケーションデータには、事故情報等の端末装置へ通知すべきデータが格納される。
図5(b)は、RSUコントロールヘッダのフォーマットを示す。RSUコントロールヘッダは、先頭から順に、「基本情報」、「タイマ値」、「転送回数」、「サブフレーム数」、「フレーム周期」、「使用サブフレーム番号」、「開始タイミング&時間長」を配置する。なお、RSUコントロールヘッダの構成は、図5(b)に限定されず、一部の要素が除外されてもよく、別の要素が含まれてもよい。転送回数は、基地局装置10から送信された制御情報、特にRSUコントロールヘッダの内容が、図示しない端末装置によって転送された回数を示す。ここで、処理部26から出力されるMACフレームに対して、基地局装置10とは、本基地局装置10に相当し、処理部26へ入力されるMACフレームに対して、基地局装置10とは、他の基地局装置10に相当する。これは、以下の説明においても共通である。
処理部26から出力されるMACフレームに対して、後述の生成部36は、転送回数を「0」に設定する。また、処理部26へ入力されるMACフレームに対して、転送回数は、「1」以上に設定されている。サブフレーム数は、ひとつのフレームを形成しているサブフレーム数を示す。フレーム周期は、フレームの周期を示し、前述のごとく、例えば「100msec」に設定される。使用サブフレーム番号は、基地局装置10が車車送信期間を設定しているサブフレームの番号である。図4(a)のごとく、フレームの先頭においてサブフレーム番号が「1」に設定される。開始タイミング&時間長では、フレームの先頭とした路車送信期間の開始タイミングと、路車送信期間の時間長が示される。図3に戻る。
第1特定部32は、処理部26に入力されたMACフレームのうち、転送回数が「0」に設定されたMACフレームを抽出する。これは、他の基地局装置10から直接送信されたパケット信号に相当する。第1特定部32は、抽出したMACフレームのうち、使用サブフレーム番号の値を特定する。これは、他の基地局装置10に使用されたサブフレームを特定することに相当する。第1特定部32は、特定したサブフレームに関する情報を測定部38、第3特定部42に通知する。
測定部38は、RF部22において受信したパケット信号の受信電力をパケット信号単位に測定する。また、測定部38は、第1特定部32において特定されたサブフレームの先頭に配置されたパケット信号の受信電力を抽出する。これは、他の基地局装置10からのパケット信号の受信電力を抽出することに相当する。なお、測定部38は、第1特定部32から路車送信期間に関する情報も受けつけ、路車送信期間に含まれたパケット信号の受信電力を平均することによって、他の基地局装置10からのパケット信号の受信電力を導出してもよい。測定部38は、抽出した受信電力を第3特定部42へ出力する。
第2特定部34は、処理部26に入力されたMACフレームのうち、転送回数が「1」以上に設定されたMACフレームを抽出する。これは、他の基地局装置10から送信された後に端末装置によって転送されたパケット信号に相当する。第2特定部34は、抽出したMACフレームのうち、使用サブフレーム番号の値を特定する。これは、他の基地局装置10に使用されたサブフレームを特定することに相当する。なお、端末装置は、他の基地局装置10からのパケット信号を端末装置が受信したときのサブフレーム番号を転送している。第2特定部34は、特定したサブフレームに関する情報を推定部40、第3特定部42に通知する。
推定部40は、第2特定部34に入力されたパケット信号の受信電力を測定する。また、推定部40は、測定した受信信号が、当該パケット信号にて制御情報を転送された他の基地局装置10からのパケット信号の受信電力であると推定する。なお、第2特定部34、推定部40は、第1特定部32において特定したサブフレームを処理対象から除外してもよい。推定部40は、受信電力を第3特定部42へ出力する。
第3特定部42は、第1特定部32と第2特定部34とから、サブフレームに関する情報を入力し、測定部38と推定部40とから、受信電力を入力する。第3特定部42は、サブフレームに関する情報および受信電力をテーブルにまとめる。第3特定部42は、テーブルを記憶部44に記憶させる。図6は、記憶部44に記憶されたテーブルのデータ構造を示す。図示のごとく、サブフレーム番号欄220、使用サイズ欄222、受信電力欄224、種別欄226が含まれる。サブフレーム番号欄220には、図4(a)に対応したサブフレーム番号が1からNまで順に示される。使用サイズ欄222には、各サブフレームに配置される路車送信期間が示される。
受信電力欄224には、測定部38において測定した受信電力あるいは推定部40において推定した受信電力が示される。サブフレーム番号に対応した受信電力を測定部38が測定してれば、第3特定部42は、当該サブフレーム番号に対応した受信電力欄224に、測定部38において測定した受信電力を記入する。一方、サブフレーム番号に対応した受信電力を測定部38が測定しておらず、推定部40が推定してれば、第3特定部42は、当該サブフレーム番号に対応した受信電力欄224に、推定部40において推定した受信電力を記入する。なお、サブフレーム番号に対応した受信電力が存在しなければ、第3特定部42は、当該サブフレーム番号に対応した受信電力欄224に、「未使用」を記入する。
種別欄226には、受信電力欄224に記入した受信電力が、測定部38によって測定された値であるか、推定部40によって推定された値であるかを示す。前者は、他の基地局装置10からパケット信号が直接受信されている状態に相当し、後者は、他の基地局装置10からパケット信号が直接受信されず、端末装置によって転送されたパケット信号が受信されている状態に相当する。また、前者の場合、種別欄226に「基」が示され、後者の場合、種別欄226に「端」が示される。図3に戻る。
第3特定部42は、記憶部44に記憶したテーブルを参照しながら、路車送信期間を設定すべきサブフレームを特定する。具体的には、第3特定部42は、テーブルの受信電力欄224に「未使用」のサブフレームが存在するかを確認する。存在する場合、第3特定部42は、「未使用」のサブフレームのうちのいずれかを選択する。ここで、複数のサブフレームが未使用である場合、第3特定部42は、ランダムにひとつのサブフレームを選択する。つまり、第3特定部42は、第1特定部32において特定したサブフレームと、第2特定部34において特定したサブフレームとをもとに、未使用のサブフレームのうちのいずれかを特定する。なお、端末装置からのパケット信号の受信電力を測定し、当該受信電力の小さいサブフレームが選択されてもよい。
未使用のサブフレームが存在しない場合、つまり複数のサブフレームのそれぞれが使用されている場合に、第3特定部42は、テーブルの受信電力欄224を参照する。第3特定部42は、測定部38において測定した受信電力と、推定部40において推定した受信電力とをもとに、使用すべきサブフレームを特定する。具体的には、第3特定部42は、受信電力の小さいサブフレームを優先的に特定する。このように、第3特定部42は、第1特定部32において特定したサブフレームと、第2特定部34において特定したサブフレームとをもとに、使用すべきサブフレームを特定する。第3特定部42は、特定したサブフレーム番号を生成部36へ出力する。
生成部36は、生成部36は、第3特定部42から、特定されたサブフレーム番号を受けつける。また、生成部36は、受けつけたサブフレーム番号のサブフレームの先頭部分に路車送信期間を設定する。生成部36は、パケット信号に格納すべきMACフレームを生成する。その際、路車送信期間の設定に応じて、生成部36は、MACフレームのRSUコントロールヘッダの値を決定する。生成部36は、ネットワーク通信部80を介して所定の情報を取得し、所定の情報をアプリケーションデータに含める。ここで、ネットワーク通信部80は、図示しないネットワーク202に接続される。生成部36は、変復調部24、RF部22に対して、路車送信期間においてパケット信号を送信させる。制御部30は、基地局装置10全体の処理を制御する。
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
図7は、車両12に搭載された端末装置14の構成を示す。端末装置14は、アンテナ50、RF部52、変復調部54、処理部56、制御部58を含む。また、処理部56は、タイミング特定部60、取得部62、生成部64、通知部70、選択部90、指示部92を含む。また、タイミング特定部60は、制御情報抽出部66、CSMA実行部74を含み、選択部90は、転送回数取得部110、抽出回数計測部112、管理部114、記憶部116、比較部118を含む。アンテナ50、RF部52、変復調部54は、図3のアンテナ20、RF部22、変復調部24と同様の処理を実行する。そのため、ここでは、これらの説明を省略する。
取得部62は、図示しないGPS受信機、ジャイロスコープ、車速センサ等を含んでおり、それらから供給されるデータによって、図示しない車両12、つまり端末装置14が搭載された車両12の存在位置、進行方向、移動速度等を取得する。なお、存在位置は、緯度・経度によって示される。これらの取得には公知の技術が使用されればよいので、ここでは説明を省略する。取得部62は、取得した情報を生成部64へ出力する。
制御情報抽出部66は、RF部52からのパケット信号あるいは変復調部54からの復調結果を受けつける。また、制御情報抽出部66は、復調結果が、図示しない基地局装置10からのパケット信号である場合に、制御情報抽出部66は、路車送信期間が配置されたサブフレームのタイミングを特定する。また、制御情報抽出部66は、サブフレームのタイミングと、RSUコントロールヘッダの内容とをもとに、フレームを生成する。なお、フレームの生成は、前述のフレーム形成部46と同様になされればよいので、ここでは説明を省略する。その結果、制御情報抽出部66は、基地局装置10において形成されたフレームに同期したフレームを生成する。また、制御情報抽出部66は、RSUコントロールヘッダの内容をもとに、路車送信期間を特定する。さらに、制御情報抽出部66は、複数のサブフレームのうちのいずれかを選択し、選択したサブフレームのうち、路車送信期間以外の期間を車車送信期間として特定する。制御情報抽出部66は、フレームおよびサブフレームのタイミング、車車送信期間に関する情報をCSMA実行部74へ出力する。
CSMA実行部74は、制御情報抽出部66から、フレームおよびサブフレームのタイミング、車車送信期間に関する情報を入力する。CSMA実行部74は、車車送信期間においてCSMAを実行する。具体的に説明すると、CSMA実行部74は、キャリアセンスを実行することによって、干渉電力を測定する。また、CSMA実行部74は、干渉電力をもとに、送信タイミングを推定する。具体的に説明すると、CSMA実行部74は、所定のしきい値を予め記憶しており、干渉電力としきい値とを比較する。干渉電力がしきい値よりも小さければ、CSMA実行部74は、送信タイミングを決定する。CSMA実行部74は、決定した送信タイミングを生成部64へ通知する。
生成部64は、取得部62において取得された情報を含めるようにデータを生成する。その際、図5(a)−(b)に示されたMACフレームが使用され、生成部64は、測位した存在位置をアプリケーションデータに格納する。生成部64は、CSMA実行部74において決定した送信タイミングにて、変復調部54、RF部52、アンテナ50を介して、データが含まれたパケット信をブロードキャスト送信する。通知部70は、路車送信期間において、図示しない基地局装置10からのパケット信号を取得するとともに、車車送信期間において、図示しない他の端末装置14からのパケット信号を取得する。通知部70は、パケット信号に格納されたデータの内容に応じて、図示しない他の車両12の接近等を運転者へモニタやスピーカを介して通知する。
以下では、端末装置14によるRSUコントロールヘッダの転送を説明する。制御情報抽出部66は、基地局装置10が情報源とされるパケット信号から、RSUコントロールヘッダを抽出する。前述のごとく、パケット信号が基地局装置10から直接送信されている場合には、転送回数が「0」に設定されているが、パケット信号が他の端末装置14から送信されている場合には、転送回数が「1以上」の値に設定されている。ここで、使用サブフレーム番号は、端末装置14によって転送される場合に変更されないので、使用サブフレーム番号を参照することによって、情報源となる基地局装置10にて使用されるサブフレームが特定される。
転送回数取得部110は、情報源となる基地局装置10ごとに、転送回数に関する情報を取得する。具体的に説明すると、転送回数取得部110は、サブフレーム番号「1」に対応した転送回数を順次取得し、その後、他のサブフレーム番号に対応した転送回数に対しても同様の処理を実行する。さらに、転送回数取得部110は、情報源となる基地局装置10ごとに、当該基地局装置10に関連した転送回数に関する情報の中から、少ない方の転送回数、例えば最小の転送回数の値を取得する。つまり、転送回数取得部110は、サブフレーム番号「1」に対応した転送回数の最小値、サブフレーム番号「2」に対応した転送回数の最小値等をそれぞれ取得する。
抽出回数計測部112は、情報源となる基地局装置10ごとに、RSUコントロールヘッダ、つまり制御情報の抽出回数を計測する。また、抽出回数計測部112は、情報源となる基地局装置10ごとに、転送回数取得部110において取得した転送回数の値が含まれた制御情報の抽出回数を選択する。具体的に説明すると、抽出回数計測部112は、ひとつのサブフレーム番号に対して、転送回数ごとに制御情報の抽出回数を計測する。その結果、例えば、サブフレーム番号「1」に対して、転送回数「0」回の制御情報の抽出回数が「0」回になり、転送回数「1」回の制御情報の抽出回数が「4」回になり、転送回数「2」回の制御情報の抽出回数が「6」回になる。また、転送回数取得部110において取得した転送回数が「1」回であれば、抽出回数計測部112は、この転送回数が含まれた制御情報の抽出回数「4」を選択する。抽出回数計測部112は、情報源となる基地局装置10ごとに、選択した抽出回数を管理部114へ出力する。
管理部114は、転送回数取得部110からの転送回数と、抽出回数計測部112からの抽出回数とを受けつける。管理部114は、サブフレーム番号、転送回数、抽出回数を対応づけて記憶部116に記憶させる。また、管理部114は、転送回数や抽出回数が更新された場合に、記憶部116での記憶内容を更新させる。記憶部116は、管理部114からの指示にしたがって、サブフレーム番号、転送回数、抽出回数対応づけて記憶する。図8(a)−(c)は、記憶部116に記憶されたテーブルのデータ構造を示す。これらは、別の端末装置14における記憶部116に記憶されたテーブルのデータ構造に相当しており、例えば、第1車両12aから第3車両12cのそれぞれに搭載された端末装置14での記憶部116に記憶されている。
各テーブルは、サブフレーム番号欄210、転送回数欄212、抽出回数欄214を含む。サブフレーム番号欄210には、図5(b)の使用サブフレーム番号に示された値が入力される。転送回数欄212には、転送回数取得部110において取得した転送回数が入力され、抽出回数欄214には、抽出回数計測部112において取得した抽出回数が入力される。図8(a)において、サブフレーム番号「1」に対応した基地局装置10を情報源とする制御情報が、転送回数「1」を最小の転送回数として「4」回抽出されている。一方、図8(a)において、サブフレーム番号「2」に対応した基地局装置10を情報源とする制御情報が、転送回数「0」を最小の転送回数として「15」回抽出されている。図7に戻る。
比較部118は、記憶部116にアクセスすることによって、各基地局装置10に対する転送回数と抽出回数を取得する。比較部118は、これらの転送回数と抽出回数をもとに、少なくともひとつの基地局装置10に対応した制御情報を、転送すべき制御情報として選択する。具体的に説明すると、比較部118は、複数の基地局装置10に対して転送回数を比較した後に、抽出回数を比較する。つまり、転送回数が少ない方の制御情報、例えば、最小の転送回数を有した制御情報を選択した後に、選択した制御情報の中から、抽出回数が多い方の制御情報、最大の抽出回数を有した制御情報が選択される。図8(b)の場合、最小の転送回数は、サブフレーム番号「2」と「3」に対応した「0」であるので、比較部118は、第1段階としてサブフレーム番号「2」と「3」の制御情報を選択する。これにつづいて、サブフレーム番号「2」の抽出回数は「9」であり、サブフレーム番号「3」の抽出回数は「20」であり、後者の抽出回数の方が大きいので、比較部118は、第2段階としてサブフレーム番号「3」の制御情報を選択する。
このように、最小の転送回数を有した制御情報であって、かつ当該転送回数に対応した最大の抽出回数を有した制御情報が、比較部118によって選択される。転送回数が少ないほど、情報源となる基地局装置10の近くにおいて、制御情報が受信されているといえる。また、抽出回数が多いほど、無線環境の変動が少ない状況において、制御情報が受信されているといえる。そのため、前述の状況を満たすような制御情報を選択することによって、端末装置14は、なるべく近くに設置された基地局装置10からの制御情報を選択しているといえる。
これは、図2において、第1車両12aに搭載された端末装置が、第2基地局装置10bからの制御情報を転送することによって、第1車両12aの後方を走行している図示しない車両に搭載された端末装置に制御情報を受信させることに相当する。また、第2車両12bに搭載された端末装置が、第3基地局装置10cからの制御情報を転送することによって、第1車両12aに搭載された端末装置に制御情報を受信させることに相当する。さらに、第3車両12cに搭載された端末装置が、第1基地局装置10aからの制御情報を転送することによって、第3車両12cの後方を走行している図示しない車両に搭載された端末装置に制御情報を受信させることに相当する。
指示部92は、比較部118において選択した制御情報をもとにRSUコントロールヘッダを生成するように、生成部36に指示する。指示部92は、制御情報をRSUコントロールヘッダに格納させる際に、転送回数に関する情報における転送回数を増加させる。生成部64は、このような指示に応じて、比較部118において選択された制御情報をもとにRSUコントロールヘッダを生成するとともに、その際に転送回数を増加させる。なお、指示部92は、転送回数を増加させた旨を管理部114に通知し、管理部114は、対応した制御情報の転送回数を増加するように記憶部116を制御する。制御部58は、端末装置14全体の動作を制御する。
以上の構成による通信システム100の動作を説明する。図9は、基地局装置10における送信手順を示すフローチャートである。RF部22、変復調部24、処理部26は、信号をサーチし(S10)、第2特定部34、第3特定部42は、端末装置14からの基地局装置情報を統計処理する(S12)。ここで、基地局装置情報は、前述のRSUコントロールヘッダに含まれる内容に相当する。他の基地局装置10からのパケット信号が受信されており(S14のY)、複数の基地局装置10からのパケット信号が受信されていれば(S16のY)、第3特定部42は、受信電力の大きい他の基地局装置10を選択する(S18)。複数の基地局装置10からのパケット信号が受信されていなければ(S16のN)、ステップ18はスキップされる。
第3特定部42は、選択した他の基地局装置10のフレーム同期タイミングを保持し(S20)、他の基地局装置10が使用していないサブフレームをサーチする(S22)。他の基地局装置10からのパケット信号が受信されていなければ(S14のN)、ステップ16からステップ22はスキップされる。第2特定部34は、端末装置からの基地局装置情報を判定処理する(S24)。選択した基地局装置10がなければ(S26のN)、第3特定部42は、他の基地局装置10を選択し、フレーム同期タイミングを保持する(S28)。選択した基地局装置10があれば(S26のY)、ステップ28はスキップされる。他の基地局装置10が未使用のサブフレームがあり(S30のY)、かつ端末装置14も未使用のサブフレームがあれば(S32のY)、第3特定部42は、他の基地局装置10、端末装置14が未使用のサブフレームの中から、サブフレームをランダムに選択する(S34)。
端末装置14も未使用のサブフレームがなければ(S32のN)、第3特定部42は、他の基地局装置10が未使用で、かつ端末装置14が使用中のサブフレームの中から、端末装置14の受信電力が小さいサブフレームを選択する(S36)。他の基地局装置10が未使用のサブフレームがなければ(S30のN)、第3特定部42は、他の基地局装置10が使用中と判断したサブフレームのうち、パケット信号の受信電力が最小となるサブフレームを選択する(S38)。生成部36、変復調部24、RF部22は、選択したサブフレームでパケット信号を送信する(S40)。
図10は、基地局装置10における統計処理手順を示すフローチャートである。これは、図9のステップ12に対応する。第3特定部42は、前フレーム内で受信した情報をもとに生成したテーブルを初期化する(S50)。第3特定部42は、全受信パケット信号に関し、端末装置14のRSUコントロールヘッダに設定されたサブフレーム番号にしたがって、サブフレーム番号ごとに他の基地局装置10の受信電力を記載するとともに使用サイズも更新する(S52)。
図11は、基地局装置10における判定処理手順を示すフローチャートである。これは、図9のステップ24に対応する。第2特定部34は、Xを1に設定する(S60)。XがN以下である場合(S62のY)、サブフレームXの情報を他の基地局装置10から直接受信しておらず(S64のN)、受信電力がしきい値以上であれば(S66のY)、第2特定部34は、新たにサブフレームXを使用中と判定する(S68)。サブフレームXの情報を他の基地局装置10から直接受信しており(S64のY)、あるいは受信電力がしきい値以上でなければ(S66のN)、ステップ68はスキップされる。第2特定部34は、Xに1を加算する(S70)。その後、ステップ62に帰還される。XがN以下でない場合(S62のN)、処理は終了される。
次に、本発明の変形例を説明する。本発明の変形例は、実施例と同様に、車両に搭載された端末装置間において車車間通信を実行するとともに、交差点等に設置された基地局装置から端末装置へ路車間通信も実行する通信システムに関する。また、実施例と同様に、フレームも構成されるとともに、サブフレームの先頭部分に路車送信期間も設定される。実施例に係る基地局装置は、他の基地局装置からの受信電力をもとに、路車送信期間を設定するためのサブフレームを選択している。一方、変形例に係る基地局装置は、他の基地局装置との距離をもとに、路車送信期間を設定するためのサブフレームを選択する。変形例に係る通信システム100は、図1、図2と同様のタイプである。
図12は、本発明の変形例に係る基地局装置10の構成を示す。基地局装置10は、アンテナ20、RF部22、変復調部24、処理部26、制御部30、ネットワーク通信部80を含む。また、処理部26は、第1特定部32、第2特定部34、取得部48、生成部36、第3特定部42、記憶部44、フレーム形成部46を含む。ここでは、図3に示した基地局装置10との相違点を中心に説明する。
取得部48は、図示しないGPS受信機、ジャイロスコープ、車速センサ等を含んでおり、それらから供給されるデータによって、本基地局装置10が設置された位置に関する位置情報を取得する。位置情報は、緯度・経度によって示される。これらの取得には公知の技術が使用されればよいので、ここでは説明を省略する。取得部48は、取得した位置情報を取得部48へ出力する。
処理部26は、RF部22、変復調部24を介して、図示しない他の基地局装置10あるいは端末装置からの復調結果を入力する。ここでは、復調結果として、パケット信号に格納されるMACフレームの構成を説明する。なお、処理部26に入力されるMACフレームと、処理部26から出力されるMACフレームとは、同様の構成を有する。図13(a)−(b)は、本発明の変形例において規定されるパケット信号に格納されるMACフレームのフォーマットを示す。図13(a)は、MACフレームの構成であるが、これは、図5(a)と同様であるので、ここでは説明を省略する。図13(b)は、RSUコントロールヘッダの構成を示す。図13(b)に示したRSUコントロールヘッダでは、図5(b)に示したRSUコントロールヘッダと比較して、位置情報が付加される。位置情報は、基地局装置10が設置された位置に関する情報である。図12に戻る。
フレーム形成部46は、実施例と同様にフレームを生成し、第1特定部32および第2特定部34は、実施例と同様にサブフレームを特定するので、ここではこれらの説明を省略する。第3特定部42は、他の基地局装置10や端末装置14から受信したパケット信号から、位置情報を抽出する。当該位置情報は、他の基地局装置10についての位置情報である。第3特定部42は、抽出した位置情報と、取得部48において取得した位置情報とをもとに、本基地局装置10から他の基地局装置10までの距離を導出する。距離の導出には、例えば、ベクトル演算が使用される。
第3特定部42は、サブフレームに関する情報および距離をテーブルにまとめる。第3特定部42は、テーブルを記憶部44に記憶させる。図14は、記憶部44に記憶されたテーブルのデータ構造を示す。図示のごとく、サブフレーム番号欄220、使用サイズ欄222、距離欄228、位置欄230が含まれる。サブフレーム番号欄220、使用サイズ欄222は、図6と同様であるので、ここでは説明を省略する。距離欄228には、第3特定部42において導出された距離が示される。また、位置欄230には、第3特定部42において抽出された他の基地局装置10についての位置情報が示される。図12に戻る。
第3特定部42は、記憶部44に記憶したテーブルを参照しながら、路車送信期間を設定すべきサブフレームを特定する。具体的には、第3特定部42は、「未使用」のサブフレームが存在するかを確認する。存在する場合、第3特定部42は、「未使用」のサブフレームのうちのいずれかを選択する。ここで、複数のサブフレームが未使用である場合、第3特定部42は、ランダムにひとつのサブフレームを選択する。つまり、第3特定部42は、第1特定部32において特定したサブフレームと、第2特定部34において特定したサブフレームとをもとに、未使用のサブフレームのうちのいずれかを特定する。なお、端末装置からのパケット信号の受信電力を測定し、当該受信電力の小さいサブフレームが選択されてもよい。
未使用のサブフレームが存在しない場合、つまり複数のサブフレームのそれぞれが使用されている場合に、第3特定部42は、テーブルの距離欄228を参照する。第3特定部42は、距離をもとに、使用すべきサブフレームを特定する。具体的には、第3特定部42は、距離の長い他の基地局装置10を選択し、選択した基地局装置10によって使用されたサブフレームを優先的に特定する。このように、第3特定部42は、第1特定部32において特定したサブフレームと、第2特定部34において特定したサブフレームと、距離をもとに、使用すべきサブフレームを特定する。第3特定部42は、特定したサブフレーム番号を生成部36へ出力する。
図15は、基地局装置10における送信手順を示すフローチャートである。RF部22、変復調部24、処理部26は、信号をサーチし(S80)、第2特定部34、第3特定部42は、端末装置14からの基地局装置情報を統計処理する(S82)。ここで、基地局装置情報は、前述のRSUコントロールヘッダに含まれる内容に相当する。他の基地局装置10からのパケット信号が受信されており(S84のY)、複数の基地局装置10からのパケット信号が受信されていれば(S86のY)、第3特定部42は、距離の近い他の基地局装置10を選択する(S88)。複数の基地局装置10からのパケット信号が受信されていなければ(S86のN)、ステップ88はスキップされる。
第3特定部42は、選択した他の基地局装置10のフレーム同期タイミングを保持し(S90)、他の基地局装置10が使用していないサブフレームをサーチする(S92)。他の基地局装置10からのパケット信号が受信されていなければ(S84のN)、ステップ86からステップ92はスキップされる。第2特定部34は、端末装置からの基地局装置情報を判定処理する(S94)。選択した基地局装置10がなく、あるいは距離更新が不要でなければ(S96のN)、第3特定部42は、他の基地局装置10を選択し、フレーム同期タイミングを保持する(S98)。選択した基地局装置10があり、かつ距離更新が不要であれば(S96のY)、ステップ98はスキップされる。他の基地局装置10が未使用のサブフレームがあり(S100のY)、かつ端末装置14も未使用のサブフレームがあれば(S102のY)、第3特定部42は、他の基地局装置10、端末装置14が未使用のサブフレームの中から、サブフレームをランダムに選択する(S104)。
端末装置14も未使用のサブフレームがなければ(S102のN)、第3特定部42は、他の基地局装置10が未使用で、かつ端末装置14が使用中のサブフレームの中から、端末装置14の受信電力が小さいサブフレームを選択する(S106)。他の基地局装置10が未使用のサブフレームがなければ(S100のN)、第3特定部42は、他の基地局装置10が使用中と判断したサブフレームのうち、最大距離となる基地局装置10が使用したサブフレームを選択する(S108)。生成部36、変復調部24、RF部22は、選択したサブフレームでパケット信号を送信する(S110)。
図16は、基地局装置10における統計処理手順を示すフローチャートである。これは、図15のステップ82に対応する。第3特定部42は、前フレーム内で受信した情報をもとに生成したテーブルを初期化する(S120)。第3特定部42は、全受信パケット信号に関し、端末装置14のRSUコントロールヘッダに設定されたサブフレーム番号にしたがって、サブフレーム番号ごとに、位置情報をもとに距離が最短のものを記載するとともに使用サイズも更新する(S122)。
図17は、基地局装置10における判定処理手順を示すフローチャートである。これは、図15のステップ94に対応する。第2特定部34は、Xを1に設定する(S130)。XがN以下である場合(S132のY)、サブフレームXの情報を他の基地局装置10から直接受信しておらず(S134のN)、距離がしきい値以下であれば(S136のY)、第2特定部34は、新たにサブフレームXを使用中と判定する(S138)。サブフレームXの情報を他の基地局装置10から直接受信しており(S134のY)、あるいは距離がしきい値以下でなければ(S136のN)、ステップ138はスキップされる。第2特定部34は、Xに1を加算する(S140)。その後、ステップ132に帰還される。XがN以下でない場合(S132のN)、処理は終了される。
図18(a)−(b)は、本発明の別の変形例において規定されるパケット信号に格納されるMACフレームのフォーマットを示す。図18(a)−(b)は、図13(a)−(b)に示されたMACフレームのフォーマットの別のパターンといえる。図18(a)では、MACヘッダ、RSUコントロールヘッダ、上位ヘッダ、アプリケーションデータ、CRCが配置されている。ここで、MACヘッダ、RSUコントロールヘッダ、アプリケーションデータは、図5(a)−(b)の場合と同様である。一方、上位ヘッダには、位置情報、当該位置情報に対応した基地局装置10の識別番号が含まれる。位置情報だけであってもよく、あるいはこれら以外の情報が含まれてもよい。図18(b)では、MACヘッダ、上位ヘッダ、アプリケーションヘッダ、CRCが配置されている。ここで、上位ヘッダが、図13(a)−(b)のRSUコントロールヘッダに相当する。なお、上位ヘッダには、図13(b)のうちの一部の情報が含まれていなくてもよい。
本発明の実施例によれば、フレームの中に複数のサブフレームを設け、サブフレームの先頭部分に路車送信期間を設けるので、路車間通信と車車間通信との干渉を低減できる。また、他の基地局装置から直接受信したパケット信号だけではなく、端末装置から受信したパケット信号をもとに、他の基地局装置によって使用されているサブフレームを特定するので、使用中のサブフレームの特定精度を向上できる。また、使用中のサブフレームの特定精度が向上するので、基地局装置から送信されるパケット信号間の衝突確率を低減できる。また、基地局装置から送信されるパケット信号間の衝突確率が低減されるので、端末装置が制御情報を正確に認識できる。また、制御情報が正確に認識されるので、路車送信期間を正確に認識できる。また、路車送信期間が正確に認識されるので、パケット信号の衝突確率を低減できる。
また、使用中のサブフレーム以外を優先的に使用するので、他の基地局装置からのパケット信号と重複したタイミングで、パケット信号を送信する可能性を低減できる。また、いずれのサブフレームも他の基地局装置によって使用されている場合に、受信電力の低いサブフレームを選択するので、パケット信号の干渉の影響を抑制できる。また、端末装置によって中継された制御情報の送信元になる他の基地局装置からの受信電力として、当該端末装置の受信電力を使用するので、受信電力の推定処理を簡易にできる。
また、基地局装置と他の基地局装置との距離をもとに、サブフレームを選択するので、基地局装置と他の基地局装置との配置を考慮したサブフレームを選択できる。また、距離の長い他の基地局装置によって使用されているサブフレームを選択するので、干渉の影響を抑制できる。また、干渉の影響が抑制されるので、パケット信号の受信確率の悪化を抑制できる。
以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施例において、第3特定部42は、サブフレームを選択する際に、受信電力を使用する。しかしながらこれに限らず例えば、第3特定部42は、受信電力の代わりに信号品質を使用してもよい。信号品質としては、誤り率が測定される。また、信号品質として、誤り率の代わりに、EVM(Error Vector Magnitude)等が測定されてもよい。本変形例によれば、設計の自由度を向上できる。
本発明の変形例において、第3特定部42は、サブフレームを選択する際に、距離を使用する。しかしながらこれに限らず例えば、第3特定部42は、距離に加えて受信電力を使用してもよい。その際、処理部26には、図3と同様に測定部38と推定部40とが含まれる。測定部38は、他の基地局装置10からのパケット信号の受信電力を測定し、推定部40は、推定部40からのパケット信号をもとに、他の基地局装置10からのパケット信号の受信電力を推定する。第3特定部42は、他の基地局装置10との距離としきい値とを比較し、しきい値よりも長い距離の他の基地局装置10を選択する。また、第3特定部42は、しきい値よりも長い距離の他の基地局装置を複数選択する場合に、低い受信電力のサブフレームを特定する。本変形例によれば、距離と受信電力とをもとに、サブフレームを特定するので、特定精度を向上できる。