JP5605601B2 - Visible light responsive photocatalyst complex - Google Patents

Visible light responsive photocatalyst complex Download PDF

Info

Publication number
JP5605601B2
JP5605601B2 JP2008298437A JP2008298437A JP5605601B2 JP 5605601 B2 JP5605601 B2 JP 5605601B2 JP 2008298437 A JP2008298437 A JP 2008298437A JP 2008298437 A JP2008298437 A JP 2008298437A JP 5605601 B2 JP5605601 B2 JP 5605601B2
Authority
JP
Japan
Prior art keywords
visible light
responsive photocatalyst
light responsive
organic semiconductor
type organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008298437A
Other languages
Japanese (ja)
Other versions
JP2010119996A (en
Inventor
圭治 長井
ゆづり 保田
敏之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2008298437A priority Critical patent/JP5605601B2/en
Publication of JP2010119996A publication Critical patent/JP2010119996A/en
Application granted granted Critical
Publication of JP5605601B2 publication Critical patent/JP5605601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、有機光触媒と吸着材とを含む可視光応答型光触媒を積み重ねた可視光応答型光触媒複合体に関する。   The present invention relates to a visible light responsive photocatalyst complex in which visible light responsive photocatalysts including an organic photocatalyst and an adsorbent are stacked.

近年、光触媒を環境浄化に応用する試みが進められている。このような光触媒として、主に酸化チタンが利用されている。しかしながら、酸化チタンは、紫外領域の光により光触媒活性が発現されるものであるため、太陽光のうちエネルギー密度3%相当の紫外光が利用されているにすぎない。   In recent years, attempts have been made to apply photocatalysts to environmental purification. As such a photocatalyst, titanium oxide is mainly used. However, since titanium oxide exhibits photocatalytic activity by light in the ultraviolet region, only ultraviolet light corresponding to an energy density of 3% is used in sunlight.

このため、光触媒反応の効率化、太陽光のうちの可視光を利用することができる光触媒の開発等が盛んに行われている。   For this reason, the development of photocatalysts that can improve the efficiency of the photocatalytic reaction and that can utilize visible light of sunlight has been actively conducted.

有機化合物からなる光触媒については、ポリパラフェニレン及びその誘導体等が報告されている(非特許文献1を参照)。これらは、酸化条件で不安定な材料であり、酸素存在下や気(湿潤空気)相や水を含む液相での利用が困難である等の問題点を有している。   As for photocatalysts composed of organic compounds, polyparaphenylene and derivatives thereof have been reported (see Non-Patent Document 1). These are materials that are unstable under oxidation conditions, and have problems such as difficulty in use in the presence of oxygen, a gas (wet air) phase, and a liquid phase containing water.

また、フタロシアニン等のp型有機半導体と、ペリレン誘導体等のn型有機半導体からなる二層膜が、可視光応答型光触媒として働くことが報告されている(特許文献1)。しかしながら、これを水処理に用いる場合、実用的な条件ではその被処理水量に対する水処理能力は必ずしも高くないため、該可視光応答型光触媒を用いて水処理を行う場合にはさらなる改善の余地があった。
国際公開第2006/115271号パンフレット J. Chem. Soc. Faraday Trans., 93, 221 (1997)
In addition, it has been reported that a bilayer film composed of a p-type organic semiconductor such as phthalocyanine and an n-type organic semiconductor such as a perylene derivative works as a visible light responsive photocatalyst (Patent Document 1). However, when this is used for water treatment, the water treatment capacity for the amount of treated water is not necessarily high under practical conditions, so there is room for further improvement when water treatment is performed using the visible light responsive photocatalyst. there were.
International Publication No. 2006/115271 Pamphlet J. Chem. Soc. Faraday Trans., 93, 221 (1997)

本発明は、可視光応答型光触媒複合体、この可視光応答型光触媒複合体を用いた水処理装置及び水処理方法を提供することを目的とする。   An object of the present invention is to provide a visible light responsive photocatalyst complex, a water treatment apparatus and a water treatment method using the visible light responsive photocatalyst complex.

本発明者らは、上記の課題を解決するため鋭意研究を行った結果、特許文献1に記載されるp型有機半導体とn型有機半導体とを含む有機光触媒に、所定の吸着材を組み合わせたものを複数枚積み重ねれば、少ない光照射面積で被処理水量に対する水処理能力が飛躍的に向上することを見いだした。本発明者らは、かかる知見に基づき更に研究を行った結果、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors combined a predetermined adsorbent with an organic photocatalyst including a p-type organic semiconductor and an n-type organic semiconductor described in Patent Document 1. It was found that the water treatment capacity for the amount of water to be treated can be dramatically improved by stacking multiple items. As a result of further studies based on this finding, the present inventors have completed the present invention.

即ち、本発明は、以下の可視光応答型光触媒複合体、水処理装置及び水処理方法を提供する。   That is, the present invention provides the following visible light responsive photocatalyst complex, water treatment apparatus, and water treatment method.

項1.吸着材層上に、p型有機半導体及びn型有機半導体を含む層が形成された可視光応答型光触媒を複数枚積み重ねて構成される可視光応答型光触媒複合体。   Item 1. A visible light responsive photocatalyst complex formed by stacking a plurality of visible light responsive photocatalysts each having a layer containing a p-type organic semiconductor and an n-type organic semiconductor formed on an adsorbent layer.

項2.前記可視光応答型光触媒が、吸着材層上に、p型有機半導体層及びn型有機半導体層がこの順に積層されたものである項1に記載の可視光応答型光触媒複合体。   Item 2. Item 2. The visible light responsive photocatalyst composite according to Item 1, wherein the visible light responsive photocatalyst is formed by laminating a p-type organic semiconductor layer and an n-type organic semiconductor layer in this order on an adsorbent layer.

項3.前記可視光応答型光触媒のp型有機半導体層の厚みが5〜20nmであり、n型有機半導体層の厚みが5〜20nmである項2に記載の可視光応答型光触媒複合体。   Item 3. Item 3. The visible light responsive photocatalyst composite according to Item 2, wherein the visible light responsive photocatalyst has a p-type organic semiconductor layer thickness of 5 to 20 nm and an n-type organic semiconductor layer thickness of 5 to 20 nm.

項4.前記可視光応答型光触媒が10〜50枚積み重ねられている項1〜3のいずれかに記載の可視光応答型光触媒複合体。   Item 4. Item 4. The visible light responsive photocatalyst complex according to any one of Items 1 to 3, wherein 10 to 50 visible light responsive photocatalysts are stacked.

項5.前記可視光応答型光触媒が50〜200μmの間隔で積み重ねられている請求項1〜4のいずれかに記載の可視光応答型光触媒複合体。   Item 5. The visible light responsive photocatalyst complex according to any one of claims 1 to 4, wherein the visible light responsive photocatalyst is stacked at an interval of 50 to 200 µm.

項6.前記可視光応答型光触媒の膜の間に、スペーサーが配置されている項5に記載の可視光応答型光触媒複合体。   Item 6. Item 6. The visible light responsive photocatalyst complex according to Item 5, wherein a spacer is disposed between the visible light responsive photocatalyst films.

項7.p型有機半導体の材料が、フタロシアニン誘導体、ナフタロシアニン誘導体、及びポルフィリン誘導体からなる群から選ばれる少なくとも1種である項1〜6のいずれかに記載の可視光応答型光触媒複合体。   Item 7. Item 7. The visible light responsive photocatalyst complex according to any one of Items 1 to 6, wherein the material of the p-type organic semiconductor is at least one selected from the group consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.

項8.n型有機半導体の材料が、フラーレン類、カーボンナノチューブ類、ペリレン誘導体、及びナフタレン誘導体からなる群から選ばれる少なくとも1種である項1〜7のいずれかに記載の可視光応答型光触媒複合体。   Item 8. Item 8. The visible light responsive photocatalyst complex according to any one of Items 1 to 7, wherein the n-type organic semiconductor material is at least one selected from the group consisting of fullerenes, carbon nanotubes, perylene derivatives, and naphthalene derivatives.

項9.前記吸着材が、イオン交換樹脂、セルロースゲル、活性炭及びフェノール系樹脂からなる群から選ばれる少なくとも1種である請求項1〜8のいずれかに記載の可視光応答型光触媒複合体。   Item 9. The visible light responsive photocatalyst complex according to any one of claims 1 to 8, wherein the adsorbent is at least one selected from the group consisting of an ion exchange resin, cellulose gel, activated carbon, and a phenolic resin.

項10.項1〜9のいずれかに記載の可視光応答型光触媒複合体と光源とを備えた水処理装置。   Item 10. Item 10. A water treatment apparatus comprising the visible light responsive photocatalyst complex according to any one of Items 1 to 9 and a light source.

項11.前記光源が自然光である請求項10に記載の水処理装置。   Item 11. The water treatment apparatus according to claim 10, wherein the light source is natural light.

項12.項1〜9のいずれかに記載の可視光応答型光触媒複合体に、光源で光を照射しながら、積み重なっている各可視光応答型光触媒の間に被処理水を流して被処理水に含まれる有機物又は無機物を分解する水処理方法。   Item 12. The water to be treated is caused to flow between the visible light responsive photocatalysts stacked while irradiating the visible light responsive photocatalyst complex according to any one of Items 1 to 9 with light from a light source, and is included in the water to be treated. Water treatment method for decomposing organic or inorganic substances.

本発明の可視光応答型光触媒複合体は、吸着材層にp型有機半導体及びn型有機半導体を積層させた可視光応答型光触媒を複数枚積み重ねているので、光照射面積を一定にしつつ被処理水の光触媒面への接触面積を広くとることができる。これにより、少ない光照射面積で、大量の被処理水を光触媒的に処理することができる。   In the visible light responsive photocatalyst complex of the present invention, a plurality of visible light responsive photocatalysts in which a p-type organic semiconductor and an n-type organic semiconductor are stacked on an adsorbent layer are stacked. The contact area with the photocatalyst surface of treated water can be taken widely. Thereby, a large amount of water to be treated can be treated photocatalytically with a small light irradiation area.

また、本発明の可視光応答型光触媒複合体と光源とを備えた水処理装置を用いれば、可視光応答型光触媒複合体に光を照射しながら、積み重なっている各可視光応答型光触媒膜の間に被処理水を流すことにより、被処理水に含まれる被処理物を効率よく分解することができる。   In addition, if a water treatment apparatus provided with the visible light responsive photocatalyst complex of the present invention and a light source is used, each visible light responsive photocatalyst film stacked while irradiating the visible light responsive photocatalyst complex with light is used. By flowing the water to be treated in between, the object to be treated contained in the water to be treated can be efficiently decomposed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の可視光応答型光触媒複合体は、可視光応答型光触媒を複数枚積み重ねて構成されている。そして、可視光応答型光触媒は、吸着材層上に、p型有機半導体及びn型有機半導体を積層させたものである。   The visible light responsive photocatalyst complex of the present invention is formed by stacking a plurality of visible light responsive photocatalysts. The visible light responsive photocatalyst is obtained by laminating a p-type organic semiconductor and an n-type organic semiconductor on an adsorbent layer.

可視光応答型光触媒は、具体的には、層状の吸着材と、その上に積層されたp型有機半導体からなる部分(バルク層)とn型有機半導体からなる部分(バルク層)とが接し合う構造を有する有機光触媒とで構成されており、吸着材と有機光触媒とが結合乃至接触した構造を有している。   Specifically, in the visible light responsive photocatalyst, a layered adsorbent is in contact with a portion made of a p-type organic semiconductor (bulk layer) and a portion made of an n-type organic semiconductor (bulk layer) stacked thereon. The organic photocatalyst has a structure in which the adsorbent and the organic photocatalyst are bonded to or in contact with each other.

有機光触媒では、光照射によりp型有機半導体材料とn型有機半導体材料が接する界面で電子キャリアと正孔キャリアが生じ、単方向性の光誘起電子移動が起こる。この光照射下で生じたキャリアが被処理物(例えば、有機物、窒素、硫黄又はリンを含む無機物等)の分解に用いられる。しかも、吸着材により触媒反応面の被処理物濃度を高めることができるため、該有機光触媒上での反応効率が飛躍的に高められる。   In the organic photocatalyst, electron carriers and hole carriers are generated at the interface where the p-type organic semiconductor material and the n-type organic semiconductor material are in contact with each other by light irradiation, and unidirectional photoinduced electron transfer occurs. Carriers generated under this light irradiation are used for decomposition of an object to be treated (for example, an inorganic substance containing organic matter, nitrogen, sulfur, or phosphorus). Moreover, since the concentration of the object to be treated on the catalytic reaction surface can be increased by the adsorbent, the reaction efficiency on the organic photocatalyst can be dramatically increased.

酸化作用を有するp型有機半導体としては、大環状の配位子化合物又はその金属錯体が挙げられる。大環状の配位子化合物とは、不対電子を有する原子を環上に含み、金属原子に対する配位子となり得る環状化合物の意であり、また、その金属錯体とは、該大環状配位子と金属原子からなる金属錯体の意味である。不対電子を有する原子としては、例えば、窒素原子、酸素原子が挙げられ、窒素原子が好ましい。金属原子としては、周期律表1〜15族の各金属元素が挙げられ、好ましくは4〜14族の金属元素である。また、金属錯体は、通常、該金属原子と大環状の配位子化合物とが1:1(モル比)からなり、平面4配位の錯体を形成するものであればよい。   Examples of the p-type organic semiconductor having an oxidizing action include a macrocyclic ligand compound or a metal complex thereof. The macrocyclic ligand compound means a cyclic compound that contains an atom having an unpaired electron on the ring and can be a ligand for a metal atom, and the metal complex is the macrocyclic coordination. It means a metal complex consisting of a child and a metal atom. As an atom which has an unpaired electron, a nitrogen atom and an oxygen atom are mentioned, for example, A nitrogen atom is preferable. As a metal atom, each metal element of 1-15 group of a periodic table is mentioned, Preferably it is a 4-14 group metal element. In addition, the metal complex may be any metal as long as the metal atom and the macrocyclic ligand compound are 1: 1 (molar ratio) and form a planar four-coordinate complex.

大環状の配位子化合物又はその金属錯体の具体例としては、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体等が挙げられる。   Specific examples of the macrocyclic ligand compound or the metal complex thereof include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, and the like.

フタロシアニン誘導体とは、フタロシアニンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(1A)又は(1B):   A phthalocyanine derivative means a compound having a basic phthalocyanine skeleton. Specifically, for example, the following formula (1A) or (1B):

Figure 0005605601
Figure 0005605601

(式中、Mは、周期律表4〜14族からなる群から選ばれる金属原子又はその金属原子を含む原子団を示し、点線は配位結合を示す)
で表されるフタロシアニン誘導体が挙げられる。
(In the formula, M 1 represents a metal atom selected from the group consisting of groups 4 to 14 of the periodic table or an atomic group containing the metal atom, and a dotted line represents a coordinate bond)
The phthalocyanine derivative represented by these is mentioned.

で示される周期律表4〜14族の金属原子のうち好ましくは、7族(特に、Mn)、8族(Fe,Ru,Os)、9族(Co,Rh,Ir)、10族(Ni,Pd,Pt)、11族(特に、Cu)、12族(特に、Zn)が挙げられる。 Preferably among the Periodic Table 4-14 metals atom represented by M 1, 7 group (in particular, Mn), Group 8 (Fe, Ru, Os) , 9 group (Co, Rh, Ir), 10 Group (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn).

上記のうち、式(1A)で表されるフタロシアニン、又は式(1B)においてMがCo,Pt,Os,Mn,Ir,Fe,Rh,Cu,Zn,Ni,Pd又はRuであるフタロシアニン誘導体が好ましく、特に被処理物の分解における活性の点から無金属フタロシアニン、亜鉛フタロシアニン又は銅フタロシアニンが好ましい。これらの化合物は、いずれも市販されているか又は当業者が容易に製造することができる。 Among the above, the phthalocyanine represented by the formula (1A), or the phthalocyanine derivative in which M 1 is Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd, or Ru in the formula (1B) In particular, metal-free phthalocyanine, zinc phthalocyanine, or copper phthalocyanine is preferable from the viewpoint of activity in decomposition of the object to be treated. These compounds are either commercially available or can be easily produced by those skilled in the art.

ナフタロシアニン誘導体とは、ナフタロシアニンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(2A)又は(2B):   A naphthalocyanine derivative means a compound having a basic skeleton of naphthalocyanine. Specifically, for example, the following formula (2A) or (2B):

Figure 0005605601
Figure 0005605601

(式中、Mは、周期律表4〜14族からなる群から選ばれる金属原子又はその金属原子を含む原子団を示し、点線は配位結合を示す)
で表されるナフタロシアニン誘導体が挙げられる。
(In the formula, M 2 represents a metal atom selected from the group consisting of groups 4 to 14 of the periodic table or an atomic group containing the metal atom, and a dotted line represents a coordinate bond)
The naphthalocyanine derivative represented by these is mentioned.

で示される周期律表4〜14族の金属原子のうち好ましくは、7族(特に、Mn)、8族(Fe,Ru,Os)、9族(Co,Rh,Ir)、10族(Ni,Pd,Pt)、11族(特に、Cu)、12族(特に、Zn)が挙げられる。 Of the metal atoms in groups 4 to 14 of the periodic table represented by M 2 , group 7 (particularly Mn), group 8 (Fe, Ru, Os), group 9 (Co, Rh, Ir), group 10 are preferred. (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn).

上記のうち、式(2A)表されるナフタロシアニン、又は式(2B)においてMがCo,Pt,Os,Mn,Ir,Fe,Rh,Cu,Zn,Ni,Pd又はRuであるナフタロシアニン誘導体が好ましく、特に被処理物の分解における活性の点から無金属ナフタロシアニン、亜鉛ナフタロシアニン又は銅ナフタロシアニンが好ましい。これらの化合物は、いずれも市販されているか又は当業者が容易に製造することができる。 Among the above, naphthalocyanine represented by the formula (2A), or naphthalocyanine in which M 2 is Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd, or Ru in the formula (2B) Derivatives are preferable, and metal-free naphthalocyanine, zinc naphthalocyanine, or copper naphthalocyanine is particularly preferable from the viewpoint of activity in the decomposition of an object to be treated. These compounds are either commercially available or can be easily produced by those skilled in the art.

ポルフィリン誘導体とは、ポルフィリンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(3A)又は(3B):   A porphyrin derivative means a compound having a basic skeleton of porphyrin. Specifically, for example, the following formula (3A) or (3B):

Figure 0005605601
Figure 0005605601

(式中、Rは、同一又は異なって、水素原子、アルキル基、アリール基又はヘテロアリール基、Mは、周期律表4〜14族からなる群から選ばれる金属原子又はその金属原子を含む原子団を示し、点線は配位結合を示す)
で表されるポルフィリン誘導体が挙げられる。
(Wherein R 3 is the same or different, a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group, M 3 represents a metal atom selected from the group consisting of groups 4 to 14 of the periodic table, or a metal atom thereof. (Indicates the atomic group that contains it, and the dotted line shows the coordination bond
The porphyrin derivative represented by these is mentioned.

ここで、上記のRで示されるアルキル基としては、C1−20の直鎖又は分岐鎖のアルキル基が挙げられ、好ましくはC1−10のアルキル基である。具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、sec−ブチル、イソブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチルなどが挙げられる。 Here, examples of the alkyl group represented by R 3 include a C 1-20 linear or branched alkyl group, and a C 1-10 alkyl group is preferable. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.

また、上記のRで示されるアリール基としては、単環又は2環のアリール基が挙げられ、具体的にはフェニル、ナフチル等が挙げられる。 Moreover, as an aryl group shown by said R < 3 >, a monocyclic or bicyclic aryl group is mentioned, Specifically, a phenyl, a naphthyl, etc. are mentioned.

また、上記のRで示されるヘテロアリール基としては、ピリジル、ピラジニル等が挙げられる。 Examples of the heteroaryl group represented by R 3 include pyridyl and pyrazinyl.

で示される周期律表4〜14族の金属原子のうち好ましくは、7族(特に、Mn)、8族(Fe,Ru,Os)、9族(Co,Rh,Ir)、10族(Ni,Pd,Pt)、11族(特に、Cu)、12族(特に、Zn)が挙げられる。 Of the metal atoms of groups 4 to 14 of the periodic table represented by M 3 , group 7 (particularly Mn), group 8 (Fe, Ru, Os), group 9 (Co, Rh, Ir), group 10 are preferred. (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn).

上記のうち、式(3A)で表されるポルフィリン、又は式(3B)においてMがCo,Pt,Os,Mn,Ir,Fe,Rh,Cu,Zn,Ni,Pd又はRu、Rがフェニル又は水素原子であるポルフィリン誘導体が好ましく、特に被処理物の分解における活性の点から無金属ポルフィリン、亜鉛ポルフィリン又は銅ポルフィリンが好ましい。これらの化合物は、いずれも市販されているか又は当業者が容易に製造することができる。 Among the above, porphyrin represented by the formula (3A), or in the formula (3B), M 3 is Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru, R 3 is A porphyrin derivative which is a phenyl or hydrogen atom is preferable, and metal-free porphyrin, zinc porphyrin or copper porphyrin is particularly preferable from the viewpoint of activity in decomposition of the object to be treated. These compounds are either commercially available or can be easily produced by those skilled in the art.

p型有機半導体としては、上述した大環状の配位子化合物又はその金属錯体が挙げられ、好ましくは、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体が挙げられる。より好ましくは、式(1A)、(1B)、(2A)、(2B)、(3A)、(3B)で表される化合物が挙げられる。特に、有機物等の分解活性の点から、式(1A)で示される無金属フタロシアニン、及び式(1B)においてMがZn、Cuでそれぞれ示されるフタロシアニンの金属錯体(亜鉛フタロシアニン及び銅フタロシアニン)が好ましい。上記のp型有機半導体は、市販品として入手可能か、或いは当業者が容易に製造できるものである。 Examples of the p-type organic semiconductor include the above-described macrocyclic ligand compounds or metal complexes thereof, preferably phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives. More preferably, the compound represented by Formula (1A), (1B), (2A), (2B), (3A), (3B) is mentioned. In particular, from the viewpoint of decomposition activity of organic substances and the like, metal-free phthalocyanine represented by formula (1A) and metal complexes of phthalocyanine (zinc phthalocyanine and copper phthalocyanine) in which M 1 is represented by Zn and Cu in formula (1B), respectively preferable. The p-type organic semiconductor is available as a commercial product or can be easily manufactured by those skilled in the art.

n型有機半導体としては、多環式芳香族化合物(一部が飽和していても良い)が挙げられる。多環式芳香族化合物とは、少なくとも2個以上の芳香環が縮環した構造を有する化合物、或いは複数の芳香環が不飽和結合(二重結合、三重結合等)を介して結合した構造を有する化合物等を意味する。芳香環としては、ベンゼン環等のほかに、ピロール環、イミダゾール環、ピリジン環、キノキサリン環等の複素芳香環も含まれる(いずれの環も一部が飽和していても良い)。   Examples of the n-type organic semiconductor include polycyclic aromatic compounds (which may be partially saturated). A polycyclic aromatic compound is a compound having a structure in which at least two aromatic rings are condensed, or a structure in which a plurality of aromatic rings are bonded via unsaturated bonds (double bonds, triple bonds, etc.). It means the compound etc. which have. In addition to the benzene ring and the like, the aromatic ring includes a heteroaromatic ring such as a pyrrole ring, an imidazole ring, a pyridine ring, and a quinoxaline ring (all of the rings may be partially saturated).

多環式芳香族化合物には、本発明に悪影響を与えない範囲で、種々の置換基を有していても良い。置換基としては、電子吸引基が挙げられ、具体的にはカルボニル基、スルホン基、スルホキシド基等が挙げられる。   The polycyclic aromatic compound may have various substituents within a range that does not adversely affect the present invention. Examples of the substituent include an electron withdrawing group, and specific examples include a carbonyl group, a sulfone group, and a sulfoxide group.

多環式芳香族化合物の具体例としては、C60、C70、C76、C82、C84等のフラーレン類;カーボンナノチューブ類;ペリレン誘導体;ナフタレン誘導体等が挙げられる。中でも、ペリレン誘導体、ナフタレン誘導体、フラーレン類(C60等)等が好ましく採用され、特にペリレン誘導体やフラーレン類(C60等)が好ましい。 Specific examples of the polycyclic aromatic compound include fullerenes such as C 60 , C 70 , C 76 , C 82 , and C 84 ; carbon nanotubes; perylene derivatives; naphthalene derivatives. Among these, perylene derivatives, naphthalene derivatives, fullerenes (C 60 and the like) are preferably used, and perylene derivatives and fullerenes (C 60 and the like) are particularly preferable.

ペリレン誘導体とは、ペリレンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(4A)〜(4C):   A perylene derivative means a compound having a basic skeleton of perylene. Specifically, for example, the following formulas (4A) to (4C):

Figure 0005605601
Figure 0005605601

(式中、Rは、同一又は異なって、アルキル基又はアリール基を示す)
で表されるペリレン誘導体が挙げられる。
(Wherein R 1 is the same or different and represents an alkyl group or an aryl group)
The perylene derivative represented by these is mentioned.

ナフタレン誘導体とは、ナフタレンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(5A):   A naphthalene derivative means a compound having a basic skeleton of naphthalene. Specifically, for example, the following formula (5A):

Figure 0005605601
Figure 0005605601

(式中、Rは、同一又は異なって、アルキル基又はアリール基を示す)
で表されるナフタレン誘導体が挙げられる。
(Wherein R 2 is the same or different and represents an alkyl group or an aryl group)
The naphthalene derivative represented by these is mentioned.

ここで、上記のR又はRで示されるアルキル基としては、C1−20の直鎖又は分岐鎖のアルキル基が挙げられ、好ましくはC1−10のアルキル基である。具体的には、メチル、エチル、n−プロピル、イソプロピル、sec−ブチル、イソブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル等が挙げられる。 Here, examples of the alkyl group represented by R 1 or R 2 include a C 1-20 linear or branched alkyl group, and a C 1-10 alkyl group is preferable. Specific examples include methyl, ethyl, n-propyl, isopropyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.

また、上記のR又はRで示されるアリール基としては、単環又は2環のアリール基が挙げられ、具体的にはフェニル、ナフチル等が挙げられる。 Moreover, as an aryl group shown by said R < 1 > or R < 2 >, a monocyclic or bicyclic aryl group is mentioned, Specifically, a phenyl, a naphthyl, etc. are mentioned.

n型有機半導体としては、上記のp型有機半導体との間において良好なp−n接合の関係を有しているものが用いられる。このn型有機半導体としては、上述した多環式芳香族化合物(一部が飽和していても良い)が挙げられ、好ましくは、ペリレン誘導体、ナフタレン誘導体又はフラーレン類が挙げられる。より好ましくは、式(4A)、(4B)、(4C)、(5A)で表される化合物が挙げられる。特に、効率的なキャリア生成の点から、式(4A)で示されるペリレン誘導体(3,4,9,10−ペリレンテトラカルボキシル−ビスベンズイミダゾール)又はフラーレン類(C60等)が好適に用いられる。上記のn型有機半導体は、市販品として入手可能か、或いは当業者が容易に製造できるものである。 As the n-type organic semiconductor, one having a good pn junction relationship with the p-type organic semiconductor is used. Examples of the n-type organic semiconductor include the above-described polycyclic aromatic compounds (which may be partially saturated), and preferred are perylene derivatives, naphthalene derivatives, and fullerenes. More preferably, the compound represented by Formula (4A), (4B), (4C), (5A) is mentioned. In particular, from the viewpoint of efficient carrier generation, a perylene derivative (3,4,9,10-perylenetetracarboxyl-bisbenzimidazole) or a fullerene (C 60 or the like) represented by the formula (4A) is preferably used. . The n-type organic semiconductor is available as a commercial product or can be easily manufactured by those skilled in the art.

可視光応答型光触媒で用いる吸着材には、吸着能の高い材料が使用される。このような材料として、イオン交換樹脂、セルロースゲル、活性炭、フェノール系樹脂等が挙げられる。本発明においては可視光応答型光触媒を複数枚積み重ねて使用するため、吸着材は光を透過する材料であることが好ましい。例えば、全光線透過率が90%/100μm程度のものが、吸着材として好ましく用いられる。このような材料として、例えば、炭化水素、炭化フッ素、シリカ、アルミナ等を基材とするイオン交換樹脂等が挙げられる。このうち、被処理物がアミン類やカルボン酸類である場合の吸着材には、特にイオン交換樹脂が好適である。被処理物がアミン類の場合には陽イオン交換樹脂が好ましく、具体的には、パーフルオロスルホン酸又はその塩/PTFE(ポリテトラフルオロエチレン)の共重合体(例えばナフィオン(登録商標))や、パーフルオロカルボン酸又はその塩/PTFEの共重合体(例えばフレミオン(登録商標))等が挙げられる。被処理物がカルボン酸類の場合には陰イオン交換樹脂が好ましい。   As the adsorbent used in the visible light responsive photocatalyst, a material having a high adsorption ability is used. Examples of such materials include ion exchange resins, cellulose gels, activated carbon, phenolic resins, and the like. In the present invention, since a plurality of visible light responsive photocatalysts are stacked and used, the adsorbent is preferably a material that transmits light. For example, those having a total light transmittance of about 90% / 100 μm are preferably used as the adsorbent. Examples of such materials include ion exchange resins based on hydrocarbons, fluorine carbides, silica, alumina, and the like. Among these, an ion exchange resin is particularly suitable for the adsorbent when the object to be treated is an amine or a carboxylic acid. When the object to be treated is an amine, a cation exchange resin is preferable. Specifically, a perfluorosulfonic acid or a salt thereof / PTFE (polytetrafluoroethylene) copolymer (for example, Nafion (registered trademark)), , Perfluorocarboxylic acid or a salt thereof / PTFE copolymer (for example, Flemion (registered trademark)), and the like. When the object to be treated is a carboxylic acid, an anion exchange resin is preferable.

可視光応答型光触媒は、吸着材層上に、p型有機半導体及びn型有機半導体を含む層が形成されたものである。   The visible light responsive photocatalyst is obtained by forming a layer containing a p-type organic semiconductor and an n-type organic semiconductor on an adsorbent layer.

可視光応答型光触媒の具体的な態様としては、薄膜状の吸着材上に、p型有機半導体とn型有機半導体とが積層した積層(膜)構造、薄膜状の吸着材上に、p型有機半導体及びn型有機半導体の混合物からなる層(膜)が形成された構造等が挙げられる。積層構造としては、例えば、薄膜化した吸着材上に、p型有機半導体とn型有機半導体とがこの順に積層した三層構造が好ましい。これは、吸着材中の被処理物の酸化反応(分解反応)がp型有機半導体の正孔によって引き起こされるためである。なお、p型有機半導体及びn型有機半導体として、前記したものを用いることができる。   As a specific mode of the visible light responsive photocatalyst, a laminated (film) structure in which a p-type organic semiconductor and an n-type organic semiconductor are laminated on a thin-film adsorbent, and a p-type on a thin-film adsorbent. Examples include a structure in which a layer (film) made of a mixture of an organic semiconductor and an n-type organic semiconductor is formed. As a laminated structure, for example, a three-layer structure in which a p-type organic semiconductor and an n-type organic semiconductor are laminated in this order on a thinned adsorbent is preferable. This is because the oxidation reaction (decomposition reaction) of the object to be treated in the adsorbent is caused by the holes of the p-type organic semiconductor. Note that those described above can be used as the p-type organic semiconductor and the n-type organic semiconductor.

可視光応答型光触媒が、吸着材上にp型有機半導体とn型有機半導体とを積層した積層構造である場合、可視光応答型光触媒の吸着材層、p型有機半導体層及びn型有機半導体層の膜厚は、適宜設定することができる。   When the visible light responsive photocatalyst has a laminated structure in which a p-type organic semiconductor and an n-type organic semiconductor are stacked on an adsorbent, the adsorbent layer, the p-type organic semiconductor layer, and the n-type organic semiconductor of the visible light responsive photocatalyst The film thickness of the layer can be set as appropriate.

吸着材の厚みは特に限定はないが、例えば、1〜200μm程度、好ましくは10〜100μm程度である。また、p型有機半導体層の厚みは特に限定はないが、例えば、5〜20nm程度、好ましくは8〜15nm程度、より好ましくは10nm程度である。n型有機半導体層の厚みは特に限定はないが、例えば、5〜20nm程度、好ましくは8〜15nm程度、より好ましくは10nm程度である。   The thickness of the adsorbent is not particularly limited, but is, for example, about 1 to 200 μm, preferably about 10 to 100 μm. The thickness of the p-type organic semiconductor layer is not particularly limited, but is, for example, about 5 to 20 nm, preferably about 8 to 15 nm, and more preferably about 10 nm. The thickness of the n-type organic semiconductor layer is not particularly limited, but is, for example, about 5 to 20 nm, preferably about 8 to 15 nm, and more preferably about 10 nm.

p型有機半導体層及びn型有機半導体層の膜厚を上記の範囲に設定する根拠は以下のとおりである。   The grounds for setting the film thicknesses of the p-type organic semiconductor layer and the n-type organic semiconductor layer in the above ranges are as follows.

例えば、複数枚の可視光応答型光触媒を重ねた可視光応答型光触媒複合体の外側から光を照射する場合、内側(内部)に位置する可視光応答型光触媒に対しても十分な光が入射される必要がある。   For example, when irradiating light from the outside of a visible light responsive photocatalyst complex in which multiple visible light responsive photocatalysts are stacked, sufficient light is incident on the visible light responsive photocatalyst located inside (inside) Need to be done.

可視光応答型光触媒を1枚だけ使用する場合、例えば、p型有機半導体がフタロシアニン、n型有機半導体がペリレン誘導体である場合、吸着材、フタロシアニン及びペリレン誘導体の好適な厚みはそれぞれ、50μm程度、50nm程度、200nm程度であり、この可視光応答型光触媒の光(100μW/cm)の吸収効率は99%(600nm)以上に達する。よって、該厚みを有する可視光応答型光触媒を積み重ねた場合には、外側から光照射しても、内部へは光がほとんど到達せず、内部では光触媒反応が起こらないことになる。例えば、Nafion膜で3ppmのトリメチルアミン(TMA)を含む水を0.2ml/min吸着処理する場合、Nafion膜24枚(5mm×7mm×5cm)を100μm間隔で積み重ねる(並列配置する)必要があるが、外側から10枚目までに光を100μW/cm到達させようとした場合、1枚あたりの吸光度を0.2とする必要がある。この0.2という吸光度は、フタロシアニンの厚み10nm及びペリレン誘導体の厚み10nmに相当する(600nm)。したがって、この程度の膜厚まで薄くする必要がある。なお、この程度の厚みにすると、光触媒効率は、フタロシアニンの膜厚が50nmであってペリレン誘導体の膜厚が200nmである可視光応答型光触媒の場合よりも悪くなるが、低濃度の水処理においては、分解反応よりも吸着が律速であるので実際の(光触媒処理量/光触媒面積)は小さいため、フタロシアニン及びペリレン誘導体の膜厚を上述した程度まで薄くしても実際に水処理可能である。 When only one visible light responsive photocatalyst is used, for example, when the p-type organic semiconductor is phthalocyanine and the n-type organic semiconductor is a perylene derivative, suitable thicknesses of the adsorbent, phthalocyanine, and perylene derivative are about 50 μm, The absorption efficiency of light (100 μW / cm 2 ) of this visible light responsive photocatalyst reaches 99% (600 nm) or more. Therefore, when the visible light responsive photocatalyst having the thickness is stacked, even if light is irradiated from the outside, the light hardly reaches the inside, and the photocatalytic reaction does not occur inside. For example, when water containing 3 ppm of trimethylamine (TMA) is adsorbed at 0.2 ml / min with a Nafion membrane, 24 Nafion membranes (5 mm × 7 mm × 5 cm) must be stacked at 100 μm intervals (arranged in parallel). When the light reaches 100 μW / cm 2 from the outside to the 10th sheet, the absorbance per sheet needs to be 0.2. The absorbance of 0.2 corresponds to a thickness of 10 nm of phthalocyanine and a thickness of 10 nm of the perylene derivative (600 nm). Therefore, it is necessary to reduce the film thickness to this extent. In this case, the photocatalytic efficiency is worse than that in the case of a visible light responsive photocatalyst where the film thickness of phthalocyanine is 50 nm and the film thickness of the perylene derivative is 200 nm. Since the actual (photocatalyst treatment amount / photocatalyst area) is small because adsorption is rate-determined more than the decomposition reaction, water treatment can actually be performed even if the phthalocyanine and perylene derivative film thicknesses are reduced to the above-mentioned levels.

なお、通常の有機半導体の吸光度は0.1/10nm又はそれ以上であるので、フタロシアニン及びペリレン誘導体以外の有機半導体を用いる場合でも、同様の計算で求められる。これより吸光度の高い有機半導体を用いる場合には、積み重ねる枚数を減らす必要があり、もちろんこの場合には、水処理能力(リットル/分)は小さくなる。   In addition, since the light absorbency of a normal organic semiconductor is 0.1 / 10 nm or more, even when using organic semiconductors other than a phthalocyanine and a perylene derivative, it calculates | requires by the same calculation. When using an organic semiconductor having a higher absorbance than this, it is necessary to reduce the number of stacked layers. In this case, the water treatment capacity (liter / minute) is reduced.

なお、膜厚は、ランベルト・ベールの法則に従い、吸収度に比例することから吸光光度法により求めることが可能である。この比例定数は、エリプソメトリーや干渉顕微鏡を用いて求めた膜厚と吸光度の関係から決定することができる。   The film thickness can be determined by the absorptiometry because it is proportional to the absorbance according to the Lambert-Beer law. This proportionality constant can be determined from the relationship between the film thickness and the absorbance determined using ellipsometry or an interference microscope.

本発明の可視光応答型光触媒の製造方法を以下に説明するが、これに限定されるものではない。   Although the manufacturing method of the visible light responsive type photocatalyst of this invention is demonstrated below, it is not limited to this.

例えば、可視光応答型光触媒が、薄膜化した吸着材上にp型有機半導体とn型有機半導体とが積層した三層フィルムである場合、吸着材膜上にp型有機半導体とn型有機半導体を順次積層させることにより製造できる。この場合、吸着材の材質として、上記したパーフルオロスルホン酸又はその塩/PTFEの共重合体、特にナフィオン(登録商標)膜が好適である。得られた三層フィルムは、そのまま光触媒として用いることができる。   For example, when the visible light responsive photocatalyst is a three-layer film in which a p-type organic semiconductor and an n-type organic semiconductor are laminated on a thinned adsorbent, the p-type organic semiconductor and the n-type organic semiconductor are formed on the adsorbent film. Can be manufactured by sequentially laminating. In this case, the above-mentioned perfluorosulfonic acid or a salt thereof / PTFE copolymer, particularly Nafion (registered trademark) membrane is suitable as the material of the adsorbent. The obtained three-layer film can be used as a photocatalyst as it is.

n型有機半導体及びp型有機半導体を吸着材上に積層する方法は、公知の方法を採用することができ、例えば、真空蒸着法、スパッタリング法、電気化学的被覆(電析)、塗布等の方法が挙げられる。ペリレン誘導体/フタロシアニン誘導体系を、均一に被覆するためには、真空蒸着法が好ましい。   As a method of laminating the n-type organic semiconductor and the p-type organic semiconductor on the adsorbent, a known method can be adopted, for example, vacuum deposition method, sputtering method, electrochemical coating (electrodeposition), coating, etc. A method is mentioned. In order to uniformly coat the perylene derivative / phthalocyanine derivative system, vacuum deposition is preferred.

あるいは、吸着材上にp型有機半導体とn型有機半導体とを共蒸着して、共蒸着層を形成しても良い。共蒸着は公知の方法を用いて実施できる。   Alternatively, a co-deposited layer may be formed by co-evaporating a p-type organic semiconductor and an n-type organic semiconductor on the adsorbent. Co-evaporation can be performed using a known method.

例えば、可視光応答型光触媒が、吸着材上に、p型有機半導体及びn型有機半導体の混合物からなる層(膜)が形成された構造である場合、スピンコート法により、n型有機半導体及びp型有機半導体を含む溶液に吸着材上に滴下し、乾燥させて成膜することにより製造することができる。   For example, when the visible light responsive photocatalyst has a structure in which a layer (film) made of a mixture of a p-type organic semiconductor and an n-type organic semiconductor is formed on an adsorbent, the n-type organic semiconductor and It can manufacture by dripping on the adsorption material to the solution containing a p-type organic semiconductor, making it dry and forming a film.

p型有機半導体として典型的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体が挙げられる。より好ましくは、式(1A)、(1B)、(2A)、(2B)、(3A)、(3B)で表される化合物が挙げられる。さらに、式(1A)の無金属フタロシアニン又は亜鉛フタロシアニン又は銅フタロシアニンが好ましい。   Typical examples of the p-type organic semiconductor include phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives. More preferably, the compound represented by Formula (1A), (1B), (2A), (2B), (3A), (3B) is mentioned. Furthermore, metal-free phthalocyanine, zinc phthalocyanine or copper phthalocyanine of the formula (1A) is preferred.

n型有機半導体は、上記のp型有機半導体との間において良好なp−n接合の関係を有しているものが用いられる。n型有機半導体としては典型的には、ペリレン誘導体、ナフタレン誘導体又はフラーレン類が挙げられる。より好ましくは、式(4A)、(4B)、(4C)、(5A)で表される化合物が挙げられる。特に、効率的なキャリア生成の点から、式(4A)で示されるペリレン誘導体(3,4,9,10−ペリレンテトラカルボキシル−ビスベンズイミダゾール)又はフラーレン類(C60等)が好適に用いられる。 As the n-type organic semiconductor, one having a good pn junction relationship with the p-type organic semiconductor is used. Typical examples of the n-type organic semiconductor include perylene derivatives, naphthalene derivatives, and fullerenes. More preferably, the compound represented by Formula (4A), (4B), (4C), (5A) is mentioned. In particular, from the viewpoint of efficient carrier generation, a perylene derivative (3,4,9,10-perylenetetracarboxyl-bisbenzimidazole) or a fullerene (C 60 or the like) represented by the formula (4A) is preferably used. .

最も好適な可視光応答型光触媒としては、ナフィオン膜、即ちパーフルオロスルホン酸又はその塩/PTFE(ポリテトラフルオロエチレン)の共重合体(1〜150μm程度)に、無金属フタロシアニン(5〜20nm程度)及びペリレン(5〜20nm程度)がこの順で積層されたものが挙げられる。   As a most suitable visible light responsive photocatalyst, a Nafion membrane, that is, a copolymer of perfluorosulfonic acid or a salt thereof / PTFE (polytetrafluoroethylene) (about 1 to 150 μm), metal-free phthalocyanine (about 5 to 20 nm) ) And perylene (about 5 to 20 nm) are stacked in this order.

なお、可視光応答型光触媒には、光触媒の活性を上げるために、上記のn型有機半導体及びp型有機半導体以外に、必要に応じて銀、銅等を添加しても良い。   In addition to the above-mentioned n-type organic semiconductor and p-type organic semiconductor, silver, copper, or the like may be added to the visible light responsive photocatalyst as necessary in order to increase the activity of the photocatalyst.

図1(a)は、本発明の可視光応答型光触媒複合体の第1の実施形態を示す模式図である。図1(a)に示すように、本発明の可視光応答型光触媒複合体1は、上述した可視光応答型光触媒2を複数枚積み重ねたものである。   Fig.1 (a) is a schematic diagram which shows 1st Embodiment of the visible light response type photocatalyst composite_body | complex of this invention. As shown in FIG. 1A, a visible light responsive photocatalyst complex 1 according to the present invention is obtained by stacking a plurality of the visible light responsive photocatalysts 2 described above.

可視光応答型光触媒2を積み重ねる枚数は、積層されるp型有機半導体及びn型有機半導体の厚み、使用される光強度等に応じて、その内部まで光が到達する枚数とすることが好ましい。例えば、p型有機半導体及びn型有機半導体の厚みがそれぞれ10nm程度の場合には、10〜50枚程度であり、好ましくは20〜30枚程度である。   The number of the visible light responsive photocatalysts 2 stacked is preferably set so that the light reaches the inside depending on the thickness of the p-type organic semiconductor and the n-type organic semiconductor to be stacked, the light intensity used, and the like. For example, when the thickness of each of the p-type organic semiconductor and the n-type organic semiconductor is about 10 nm, the number is about 10 to 50, preferably about 20 to 30.

各可視光応答型光触媒2の間隔dは、50〜200μm程度に設定することが好ましい。膜と膜との間隔dをこの範囲に設定することにより、膜と膜との間の空間を水が通って被処理水中の分解対象物を吸着材に吸着し易くするとともに、水の抵抗を低くして送水装置へかかる負荷を小さくすることができる。より好ましい間隔dは、100μm程度である。   The distance d between the visible light responsive photocatalysts 2 is preferably set to about 50 to 200 μm. By setting the distance d between the membranes within this range, water can easily pass through the space between the membranes to adsorb the decomposition target in the water to be treated to the adsorbent and reduce the resistance of the water. The load applied to the water supply device can be reduced by lowering. A more preferable distance d is about 100 μm.

各可視光応答型光触媒2の間隔dを上記範囲にするため、可視光応答型光触媒複合体1は、図1(b)に示すように、可視光応答型光触媒2の膜間に、スペーサー3を配置させることができる。可視光応答型光触媒2の膜間にスペーサー3を入れることにより、各可視光応答型光触媒2の間隔dの制御を簡単に行うことができる。スペーサー3の材料としては、光を透過させるものが好ましく、例えば、プラスチック、ガラス、無機材料等が挙げられる。スペーサー3は、可視光応答型光触媒2の膜間に50〜200μm程度の間隔dを作り、流路を確保することができればどのような形状であってもよく、図1(b)のように可視光応答型光触媒2の膜の両端に四角柱状のスペーサー3を配置する場合に限られず、例えば、可視光応答型光触媒2より小さいサイズの板状のスペーサーを膜間に配置することもできる。また、スペーサー3として、例えば、球状、円柱状、棒状、網目状等の形状のものを使用してもよい。   In order to make the distance d between the visible light responsive photocatalysts 2 within the above range, the visible light responsive photocatalyst complex 1 has a spacer 3 between the films of the visible light responsive photocatalyst 2 as shown in FIG. Can be arranged. By inserting the spacer 3 between the films of the visible light responsive photocatalyst 2, the distance d between the visible light responsive photocatalysts 2 can be easily controlled. As a material of the spacer 3, a material that transmits light is preferable, and examples thereof include plastic, glass, and inorganic materials. The spacer 3 may have any shape as long as a gap d of about 50 to 200 μm is formed between the films of the visible light responsive photocatalyst 2 and a flow path can be secured, as shown in FIG. The present invention is not limited to the case where the square columnar spacers 3 are arranged at both ends of the film of the visible light responsive photocatalyst 2, and for example, plate-like spacers smaller in size than the visible light responsive photocatalyst 2 can be arranged between the films. Further, as the spacer 3, for example, a spherical shape, a cylindrical shape, a rod shape, a mesh shape or the like may be used.

なお、ここではスペーサーを3を用いて可視光応答型光触媒2の間隔dを50〜200μm程度に設定したが、各可視光応答型光触媒2の間隔dをこの範囲にすることが可能であれば、いかなる方法を用いてもかまわない。例えば、二次元的に可視光応答型光触媒2の膜を交差させて、例えば、図2(a)及び(b)に示すようなハニカム構造にしてもよい。   Here, the distance d between the visible light responsive photocatalysts 2 is set to about 50 to 200 μm using the spacer 3, but the distance d between the visible light responsive photocatalysts 2 can be within this range. Any method can be used. For example, the films of the visible light responsive photocatalyst 2 may be crossed two-dimensionally to form a honeycomb structure as shown in FIGS. 2 (a) and 2 (b), for example.

可視光応答型光触媒は、光照射下、水相中に含まれる有機物或いは窒素、硫黄又はリンを含む無機物等の分解対象物と接触してこれらを分解することができるとともに、水に対しても安定であるため、上記分解対象物を含む水の処理を効率的に実施することができる。このことから、本発明の可視光応答型光触媒複合体を用いて、水を処理する水処理装置に適用することができる。   Visible light responsive photocatalysts can be decomposed by contacting with organic substances contained in the aqueous phase or inorganic substances containing nitrogen, sulfur or phosphorus under light irradiation, and also for water. Since it is stable, the water containing the decomposition target can be efficiently treated. From this, it can apply to the water treatment apparatus which processes water using the visible light response type photocatalyst composite of the present invention.

本発明の水処理装置は、上述した可視光応答型光触媒複合体と光源とを備えている。   The water treatment apparatus of the present invention includes the above-described visible light responsive photocatalyst complex and a light source.

図3は、本発明の水処理装置の1つの実施形態を示す模式図である。図3に示すように、水処理装置4は、被処理水を貯留している被処理水貯留槽5と、被処理水が流れる流水管路6と、処理された水が導入される処理水槽7とを備えており、流水管路6の途中に上述した可視光応答型光触媒複合体1が充填されている。また、被処理水貯留槽5内の被処理水を流水管路6の可視光応答型光触媒複合体1に送る送水装置8も備えており、可視光応答型光触媒複合体1の近くには光源9が設けられている。なお、この装置では可視光応答型光触媒複合体1を1つだけ用いているが、2つ以上用いることも可能である。   Drawing 3 is a mimetic diagram showing one embodiment of the water treatment equipment of the present invention. As shown in FIG. 3, the water treatment device 4 includes a treated water storage tank 5 storing treated water, a flowing water pipe 6 through which treated water flows, and a treated water tank into which treated water is introduced. 7 and the visible light responsive photocatalyst complex 1 described above is filled in the middle of the flowing water pipe 6. In addition, a water supply device 8 for sending the water to be treated in the water to be treated storage tank 5 to the visible light responsive photocatalyst complex 1 in the flowing water pipe 6 is also provided, and a light source is provided near the visible light responsive photocatalyst complex 1. 9 is provided. In this apparatus, only one visible light responsive photocatalyst complex 1 is used, but two or more may be used.

被処理水としては、例えば、工業用循環水、工業用排水、産業用排水、上水、下水、土壌及び地下水、生活排水、農薬残存廃液、風呂、貯水タンク、湖、池、ダム又はプールの水等が挙げられる。これらの被処理水は、pH、硬度等は特に限定はなく、効率的に処理することが可能である。特に、pH7〜11程度とするのが好ましい。   Examples of treated water include industrial circulating water, industrial wastewater, industrial wastewater, clean water, sewage, soil and groundwater, domestic wastewater, residual pesticide wastewater, bath, water tank, lake, pond, dam or pool. Water etc. are mentioned. These treated waters are not particularly limited in pH, hardness, etc., and can be treated efficiently. In particular, the pH is preferably about 7 to 11.

被処理水に含まれる分解対象物としては、有機物又は無機物が挙げられる。具体的には、悪臭原因物質(トリメチルアミン等)、粉塵、微生物、ウイルス、シックハウス症候群の原因物質(ホルムアルデヒド等)、臭い成分(たばこ臭、ペット臭等)、有害物質(ダイオキシン、PCB、フェノール等)、農薬、エチレンガス、窒素化合物(アンモニア、尿素等)、硫黄化合物(チオフェノール等のメルカプタン;スルフィド等)や、リン化合物(有機リン等)が挙げられる。   Examples of the decomposition target contained in the water to be treated include organic substances and inorganic substances. Specifically, malodor-causing substances (trimethylamine, etc.), dust, microorganisms, viruses, sick house syndrome causative substances (formaldehyde, etc.), odor components (cigarette odor, pet odor, etc.), toxic substances (dioxins, PCBs, phenols, etc.) , Agricultural chemicals, ethylene gas, nitrogen compounds (ammonia, urea, etc.), sulfur compounds (mercaptans such as thiophenol; sulfides), and phosphorus compounds (organic phosphorus, etc.).

本発明では、広範な波長を有する光(波長220〜1200nm程度)を用いることができるので、その光源9としては、例えば、自然光(太陽光)、蛍光灯、ハロゲンランプ、高圧水銀灯、低圧水銀灯、ブラックライト、エキシマレーザ、重水素ランプ、キセノンランプ、Hg−Zn−Pbランプ等から選ばれる1種類の光源又は波長域の異なる2種類の光源を用いることができる。とりわけ、本発明の水処理装置4は、自然光(波長300〜800nm)、特に可視光(波長が400nm以上、特に400〜750nm程度)を利用できる点で極めて実用的である。従来の水処理装置に使用されている酸化チタンでは、屋内では紫外光源が必要であったことを考慮すると、極めて有意義である。   In the present invention, since light having a wide range of wavelengths (wavelength of about 220 to 1200 nm) can be used, examples of the light source 9 include natural light (sunlight), fluorescent lamp, halogen lamp, high pressure mercury lamp, low pressure mercury lamp, One type of light source selected from a black light, an excimer laser, a deuterium lamp, a xenon lamp, an Hg—Zn—Pb lamp, or two types of light sources having different wavelength ranges can be used. In particular, the water treatment apparatus 4 of the present invention is extremely practical in that natural light (wavelength of 300 to 800 nm), particularly visible light (wavelength of 400 nm or more, particularly about 400 to 750 nm) can be used. The titanium oxide used in the conventional water treatment apparatus is extremely significant in consideration of the necessity of an ultraviolet light source indoors.

本発明の水処理装置4では、送水装置8によって被処理水貯留槽5内の被処理水を流水管路6に供給し、光源9により可視光応答型光触媒複合体1に光を照射しながら(図1(a)の矢印a参照)、一方の端面側から被処理水を注入すれば(図1(a)の矢印b参照)、可視光応答型光触媒の膜間を被処理水が通過する間に、被処理水中に含まれる分解対象物が吸着材に吸着され、光照射によって光触媒が活性化されて発生したキャリアによって分解されることにより、他方の端面側から浄化された水を取り出すことができる。   In the water treatment device 4 of the present invention, the water to be treated in the treated water storage tank 5 is supplied to the flowing water pipe 6 by the water supply device 8, and the visible light responsive photocatalyst complex 1 is irradiated with light by the light source 9. (See arrow a in FIG. 1 (a)) If treated water is injected from one end face side (see arrow b in FIG. 1 (a)), the treated water passes between the films of the visible light responsive photocatalyst. In the meantime, the decomposition target contained in the for-treatment water is adsorbed by the adsorbent, and the photocatalyst is activated by light irradiation and decomposed by the generated carrier, thereby taking out purified water from the other end face side. be able to.

そして、このような水処理装置4を用いれば、可視光応答型光触媒複合体1に、光源9で光を照射しながら、該可視光応答型光触媒複合体1の可視光応答型光触媒の間に被処理水を流し、該被処理水に含まれる有機物又は無機物の分解対象物を分解することができる。流す水量は、流通管路6の内径、可視光応答型光触媒の吸着材、p型有機半導体及びn型有機半導体の厚み、可視光応答型光触媒を積み重ねる枚数、被処理水に含まれる分解対象物の量等によって異なるが、通常、0.2〜2ml/分・cm程度である。このとき、被処理水に空気や酸素含有気体を供給(バブリング等)すると、より効率的に分解反応が進行するので好ましい。 If such a water treatment apparatus 4 is used, the visible light responsive photocatalyst complex 1 is irradiated with light from the light source 9 while the visible light responsive photocatalyst complex 1 is exposed to the visible light responsive photocatalyst. The water to be treated is allowed to flow, and the organic or inorganic decomposition target contained in the water to be treated can be decomposed. The amount of water to flow is the inner diameter of the distribution pipe 6, the adsorbent of the visible light responsive photocatalyst, the thickness of the p-type organic semiconductor and the n-type organic semiconductor, the number of stacked visible light responsive photocatalysts, and the decomposition target contained in the water to be treated Usually, it is about 0.2 to 2 ml / min · cm 2 , although it varies depending on the amount of the liquid. At this time, it is preferable to supply air or oxygen-containing gas to the water to be treated (such as bubbling) because the decomposition reaction proceeds more efficiently.

図4(a)に、本発明の水処理装置の別の実施形態を示す模式図を示す。この水処理装置4には、膜厚50μmの吸着材(ナフィオン膜)上にp型有機半導体(無金属フタロシアニン)(膜厚10nm)及びn型有機半導体(ペリレン誘導体)(膜厚10nm)を積層した可視光応答型光触媒を100μm間隔で24枚積み重ねた可視光応答型光触媒複合体を4つ並べた1ユニット(1cm×1m×5cm)(図4(b)の側面図及び図4(c)の断面図参照)を4ユニット(合計16個の可視光応答型光触媒複合体)組み込んでいる。図4(a)の水処理装置4によれば、1日に1時間程度自然光を10mW/cm程度照射するだけで、10ppmのトリメチルアミンを約1/100まで除去することができる。この水処理装置4を用いれば、一日1トンの被処理水を処理することが可能である。 FIG. 4A is a schematic diagram showing another embodiment of the water treatment apparatus of the present invention. In this water treatment device 4, a p-type organic semiconductor (metal-free phthalocyanine) (thickness 10 nm) and an n-type organic semiconductor (perylene derivative) (thickness 10 nm) are stacked on an adsorbent (Nafion film) having a thickness of 50 μm. 1 unit (1 cm × 1 m × 5 cm) in which four visible light responsive photocatalyst composites in which 24 visible light responsive photocatalysts are stacked at 100 μm intervals are arranged (a side view of FIG. 4B and FIG. 4C) 4 units (16 total visible light responsive photocatalyst composites) are incorporated. According to the water treatment device 4 of FIG. 4 (a), 10 ppm of trimethylamine can be removed to about 1/100 only by irradiating about 10 mW / cm 2 of natural light for about 1 hour per day. If this water treatment apparatus 4 is used, it is possible to treat 1 ton of water to be treated per day.

これより、可視光応答型光触媒複合体に、光源で光を照射しながら、積み重なっている各可視光応答型光触媒の間に被処理水を流して被処理水に含まれる有機物又は無機物を分解する水処理方法が提供される。   As a result, while irradiating the visible light responsive photocatalyst complex with light from a light source, the water to be treated is caused to flow between the stacked visible light responsive photocatalysts to decompose organic or inorganic substances contained in the water to be treated. A water treatment method is provided.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
(1)光触媒材料として、n型半導体である3,4,9,10−ペリレンテトラカルボキシル−ビスベンズイミダゾール(以下「PTCBI」と表記する)及びp型半導体である無金属フタロシアニン(以下「HPc」と表記する)を用いた。本実施例においては、それぞれ昇華精製したものを用いた。
Example 1
(1) As a photocatalytic material, 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (hereinafter referred to as “PTCBI”) which is an n-type semiconductor and metal-free phthalocyanine (hereinafter referred to as “H 2 ”) which is a p-type semiconductor. Pc ”) was used. In this example, those purified by sublimation were used.

(2)光触媒として用いる三重層フィルムの作製は、市販のNafion膜(Dupont社製、Nafion 117,50μm厚)に二種類の有機半導体を真空蒸着することにより行った。まず、Nafion膜上に、HPcを約10nmの厚さで積層して二層フィルムを形成し、次いで、HPc層上に厚さ約10nmのPTCBI層を有する三層からなる光触媒複合体を得た。この光触媒複合体を6mm×50mmに切断し、これを24枚積み重ね、それぞれの膜の間にスペーサーとして4mm×20mmのプラスチック板(厚さ100μm)を挿入して光触媒複合体を得た。そして、この光触媒複合体を熱収縮チューブ(三菱樹脂株式会社製のヒシチューブ(UGEB3050))に入れて熱収縮させたものを以下の水処理装置中に導入した。
なお、上記の膜厚は、吸収スペクトル法及び光干渉法により測定した。
(2) Preparation of a triple layer film used as a photocatalyst was performed by vacuum-depositing two types of organic semiconductors on a commercially available Nafion film (manufactured by Dupont, Nafion 117, 50 μm thick). First, a two-layer film is formed by laminating H 2 Pc with a thickness of about 10 nm on a Nafion film, and then a three-layer photocatalytic composite having a PTCBI layer with a thickness of about 10 nm on the H 2 Pc layer. Got the body. This photocatalyst complex was cut into 6 mm × 50 mm, 24 sheets were stacked, and a 4 mm × 20 mm plastic plate (thickness 100 μm) was inserted as a spacer between each film to obtain a photocatalyst complex. And what put this photocatalyst complex into the heat contraction tube (Hishi tube (UGEB3050) by Mitsubishi Resin Co., Ltd.) and was heat-shrinked was introduce | transduced in the following water treatment apparatuses.
The film thickness was measured by an absorption spectrum method and an optical interference method.

(3)水処理装置の模式図を図5に示す。この水処理装置では、ポンプに2本の市販のタイゴンチューブ(サンゴバン株式会社製、TYGON(登録商標) FLEXIBLE PLASTIC TUBING(R−3603))が連結されている(各チューブの長さ1m)。一方のチューブの先端に(2)で得られた熱収縮チューブを取り付け、他方のチューブをトリメチルアミン(以下、TMAという)が入ったタンク(以下、TMAタンクという)に挿入する。このTMAタンクは、TMAの濃度が変化しないように、ガラス管を通したゴム栓で密閉されているとともに、アルゴンガスで満たしたテドラーバック(ジーエルサイエンス株式会社製、ミニバルブ付きテドラーバック(CEK−1))が取り付けられており、送水装置への負荷及びTMAの揮発による減少を防ぐとともに、供給水であるTMAタンク中の圧力を大気圧に保っている。なお、このテドラーバックは、データの正確性を保証することを目的として用いたのであって、実用上の水処理システムでは必ずしも必要条件ではない。ポンプによりTMAタンクから1分間に0.2mlずつ被処理水を引き上げて光触媒複合体の膜の間を流す(TMA濃度:3.08ppm)。そして、光触媒複合体の膜の間を通過した水を、シリンジを用いて1μl採取し、ガスクロマトグラフィー(GC−2014)によりTMA濃度を求めた。実験は100時間行い、前半の50時間は、光を照射せず、後半の50時間はハロゲンランプで可視光を照射(強度:100mW/cm)した。その結果を図6に示す。 (3) A schematic diagram of the water treatment apparatus is shown in FIG. In this water treatment apparatus, two commercially available Tygon tubes (manufactured by Saint-Gobain Co., Ltd., TYGON (registered trademark) FLEXIBLE PLASTIC TUBINING (R-3603)) are connected to the pump (the length of each tube is 1 m). The heat shrinkable tube obtained in (2) is attached to the tip of one tube, and the other tube is inserted into a tank (hereinafter referred to as TMA tank) containing trimethylamine (hereinafter referred to as TMA tank). This TMA tank is sealed with a rubber plug through a glass tube so that the concentration of TMA does not change, and is filled with argon gas (Tedlar bag with a mini valve (CEK-1) manufactured by GL Sciences Inc.) Is attached, and the pressure in the TMA tank as the supply water is kept at atmospheric pressure while preventing the load on the water supply device and the decrease due to the volatilization of TMA. This Tedlar back was used for the purpose of guaranteeing the accuracy of data, and is not necessarily a necessary condition in a practical water treatment system. The water to be treated is pulled up from the TMA tank by 0.2 ml per minute by a pump and flows between the membranes of the photocatalyst complex (TMA concentration: 3.08 ppm). And 1 microliter of water which passed between the films | membranes of a photocatalyst composite_body | complex was extract | collected using the syringe, and TMA density | concentration was calculated | required by gas chromatography (GC-2014). The experiment was performed for 100 hours. No light was irradiated for the first 50 hours, and visible light was irradiated with a halogen lamp for 50 hours of the second half (intensity: 100 mW / cm 2 ). The result is shown in FIG.

また、比較例として、Nafion膜を6mm×50mmに切断し、これを24枚積み重ね、それぞれの膜の間にスペーサーとして実施例1(2)と同じ4mm×20mmのプラスチック板を挿入し、実施例1(3)と同様の条件でTMA濃度を測定した。その結果も図6に示す。   As a comparative example, the Nafion film was cut into 6 mm × 50 mm, 24 sheets were stacked, and the same 4 mm × 20 mm plastic plate as in Example 1 (2) was inserted as a spacer between each film. The TMA concentration was measured under the same conditions as in 1 (3). The result is also shown in FIG.

図6の結果から、光を照射しなくても光触媒複合体のNafion膜の吸着能により初めはTMAが吸着されるが、24時間の間にNafion膜の吸着能が落ちてきてTMA濃度が十分低くならないこと、及び、その後に光を照射することにより、TMAが除去されることがわかった。   From the results shown in FIG. 6, although TMA is initially adsorbed by the adsorption ability of the Nafion film of the photocatalyst complex without irradiating light, the adsorption ability of the Nafion film has dropped during 24 hours, and the TMA concentration is sufficient. It was found that TMA was removed by not being lowered, and by subsequent irradiation with light.

また、比較例であるNafion膜のみ(□)の結果をみると、Nafion膜により初めはTMAが吸着されるが、光を照射した後も吸着能は回復せず、TMA濃度が十分低くならないことがわかる。これより、Nafion膜だけでは、短期間に吸着能が劣化してしまうことがわかる。   In addition, looking at the results of only the Nafion film (□) as a comparative example, TMA is initially adsorbed by the Nafion film, but the adsorption ability does not recover even after irradiation with light, and the TMA concentration does not become sufficiently low. I understand. From this, it can be seen that the adsorption ability deteriorates in a short time only with the Nafion film.

これらの結果から、光触媒複合体では、Nafion膜に吸着されたTMAが、光照射により活性化された有機光触媒によって分解されることにより、Nafion膜の吸着能が再生していることが示される。   From these results, it is shown that in the photocatalyst complex, TMA adsorbed on the Nafion film is decomposed by the organic photocatalyst activated by light irradiation, thereby regenerating the adsorption ability of the Nafion film.

なお、Nafion膜上にPTCBI層を積層し、PTCBI層上にHPc層を形成したこと以外は実施例1(1)及び(2)と同様にして作成した光触媒複合体を用いて、実施例1(3)と同様の条件でTMA濃度を測定したところ、Nafion膜上にHPc層及びPTCBI層の順に積層した光触媒複合体よりも光照射後のTMA除去率が悪いという結果であった(図示せず)。 Incidentally, stacking the PTCBI layer on Nafion membrane, except for forming the H 2 Pc layer on PTCBI layer in Example 1 (1) and (2) using the photocatalyst composite was produced in the same manner as, performed When the TMA concentration was measured under the same conditions as in Example 1 (3), the TMA removal rate after light irradiation was worse than that of the photocatalyst composite in which the H 2 Pc layer and the PTCBI layer were laminated in this order on the Nafion film. (Not shown).

実施例2
実施例1(1)及び(2)と同様にして作成した光触媒複合体を入れた熱収縮チューブを図3の水処理装置に導入した。TMAタンク中のTMA濃度を3ppmとし、被処理水を実施例1(3)と同じく流速0.2ml/分で光触媒の膜の間を通過させた。実験は47日間行い、その間、1日に1回ハロゲンランプで可視光を1時間照射(強度10mW/cm)した。実験を開始してから3週間(21日目)までは1週間毎に、それ以降は1週間に2〜3回、光を照射しない状態で光触媒複合体の膜の間を通過した水と、光照射から1時間後に光触媒複合体の膜の間を通過した水とをそれぞれシリンジで1μl採取し、ガスクロマトグラフィー(GC−2014)によりTMA濃度を求めた。その結果を図7に示す。
Example 2
A heat-shrinkable tube containing a photocatalyst complex prepared in the same manner as in Example 1 (1) and (2) was introduced into the water treatment apparatus of FIG. The TMA concentration in the TMA tank was 3 ppm, and the water to be treated was passed between the photocatalyst membranes at a flow rate of 0.2 ml / min as in Example 1 (3). The experiment was carried out for 47 days, during which time visible light was irradiated once a day with a halogen lamp for 1 hour (intensity 10 mW / cm 2 ). Water that has passed between the membranes of the photocatalyst complex without irradiation with light every week up to 3 weeks (21st day) after the start of the experiment, and 2 to 3 times a week thereafter, 1 μl of water that passed between the membranes of the photocatalyst complex 1 hour after the light irradiation was collected with a syringe, and the TMA concentration was determined by gas chromatography (GC-2014). The result is shown in FIG.

図7の結果をみると、どの場合も初日(0日目)はTMAがほとんど除去され、0.0ppmのTMAが検出された。Nafion膜のみ(HPC/PTCBI無)の場合は18日目からTMA濃度の上昇がみられ、36日目には2.1ppmのTMAが検出された。光触媒複合体を用いた場合、27日目からTMA濃度の上昇がみられたが、1時間の可視光照射直後にはTMAの検出量は少なくなり、40日目でも0.1ppmのTMAしか検出されなかった。その後は、日数が増すにつれてTMA濃度が上昇した。但し、1時間の可視光照射によるTMAの除去能の部分的回復は、実験開始から47日でも観測された。TMAの完全除去能をTMA濃度0.2ppm以下と定義すれば、吸着材に光触媒を積層することにより、TMAの完全除去能の寿命が20日から40日に延びたといえる。 From the results shown in FIG. 7, in all cases, TMA was almost removed on the first day (day 0), and 0.0 ppm of TMA was detected. In the case of only the Nafion membrane (without H 2 PC / PTCBI), an increase in TMA concentration was observed from the 18th day, and 2.1 ppm of TMA was detected on the 36th day. When the photocatalyst complex was used, the TMA concentration increased from the 27th day, but the amount of TMA detected decreased immediately after 1 hour of visible light irradiation, and only 0.1 ppm of TMA was detected even on the 40th day. Was not. Thereafter, the TMA concentration increased as the number of days increased. However, a partial recovery of the ability to remove TMA by 1 hour of visible light irradiation was observed even on the 47th day from the start of the experiment. If the complete removal ability of TMA is defined as a TMA concentration of 0.2 ppm or less, it can be said that the life of the complete removal ability of TMA is extended from 20 days to 40 days by laminating the photocatalyst on the adsorbent.

(a)は本発明の可視光応答型光触媒複合体の1つの実施形態を示す模式図であり、(b)は本発明の可視光応答型光触媒複合体の別の実施形態を示す模式図(斜視図)である。(A) is a schematic diagram showing one embodiment of the visible light responsive photocatalyst complex of the present invention, and (b) is a schematic diagram showing another embodiment of the visible light responsive photocatalyst complex of the present invention ( Perspective view). (a)及び(b)は、可視光応答型光触媒膜の交差状態の例を示す模式図(断面図)である。(A) And (b) is a schematic diagram (sectional drawing) which shows the example of the crossing state of a visible light response type photocatalyst film. 本発明の水処理装置の1つの実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of the water treatment equipment of the present invention. (a)は本発明の水処理装置の別の実施形態を示す模式図であり、(b)及び(c)は、(a)の水処理装置に使用される可視光応答型光触媒複合体の、それぞれ側面図及び断面図である。(A) is a schematic diagram which shows another embodiment of the water treatment apparatus of this invention, (b) and (c) are visible light response type photocatalyst composites used for the water treatment apparatus of (a). They are a side view and a sectional view, respectively. 実施例1で用いた水処理装置の模式図である。1 is a schematic diagram of a water treatment device used in Example 1. FIG. 光触媒複合体通過後のトリエチルアミン濃度の経時変化(100時間)を示すグラフである。It is a graph which shows a time-dependent change (100 hours) of the triethylamine density | concentration after passing a photocatalyst composite_body | complex. 光触媒複合体通過後のトリエチルアミン濃度の経時変化(47日間)を示すグラフである。It is a graph which shows a time-dependent change (47 days) of the triethylamine density | concentration after passing a photocatalyst composite_body | complex.

符号の説明Explanation of symbols

1 可視光応答型光触媒複合体
2 可視光応答型光触媒
3 スペーサー
4 水処理装置
5 被処理水貯留槽
6 流水管路
7 処理水槽
8 送水装置
9 光源
DESCRIPTION OF SYMBOLS 1 Visible light response type photocatalyst complex 2 Visible light response type photocatalyst 3 Spacer 4 Water treatment device 5 Water to be treated storage tank 6 Flow channel 7 Treatment water tank 8 Water supply device 9 Light source

Claims (7)

吸着材層上に、p型有機半導体及びn型有機半導体層この順に積層された可視光応答型光触媒を10〜50枚積み重ねて構成される可視光応答型光触媒複合体であって、前記p型有機半導体層の材料がフタロシアニン誘導体でその厚みが5〜20nmであり、前記n型有機半導体層の材料がペリレン誘導体でその厚みが5〜20nmである、可視光応答型光触媒複合体The adsorbent layer, a p-type organic semiconductor layer and an n-type organic semiconductor layer is visible light responsive photocatalyst complex composed by stacking 10 to 50 sheets of the visible-light-responsive photocatalyst, which are laminated in this order The p-type organic semiconductor layer is a phthalocyanine derivative with a thickness of 5 to 20 nm, and the n-type organic semiconductor layer is a perylene derivative with a thickness of 5 to 20 nm. . 前記可視光応答型光触媒が50〜200μmの間隔で積み重ねられている請求項1に記載の可視光応答型光触媒複合体。 The visible light responsive photocatalyst complex according to claim 1, wherein the visible light responsive photocatalyst is stacked at an interval of 50 to 200 μm. 前記可視光応答型光触媒の膜の間に、スペーサーが配置されている請求項に記載の可視光応答型光触媒複合体。 The visible light responsive photocatalyst complex according to claim 2 , wherein a spacer is disposed between the visible light responsive photocatalyst films. 前記吸着材が、イオン交換樹脂、セルロースゲル、活性炭及びフェノール系樹脂からなる群から選ばれる少なくとも1種である請求項1〜のいずれかに記載の可視光応答型光触媒複合体。 The visible light responsive photocatalyst complex according to any one of claims 1 to 3 , wherein the adsorbent is at least one selected from the group consisting of an ion exchange resin, cellulose gel, activated carbon, and a phenolic resin. 請求項1〜のいずれかに記載の可視光応答型光触媒複合体と光源とを備え、前記可視光応答型光触媒複合体に前記光源で光を膜厚方向から照射しながら、被処理水を膜に平行な方向に流す水処理装置。 A visible light responsive photocatalyst complex according to any one of claims 1 to 4 and a light source , wherein the visible light responsive photocatalyst complex is irradiated with light from the film thickness direction with the light source, Water treatment device that flows in a direction parallel to the membrane . 前記光源が自然光である請求項に記載の水処理装置。 The water treatment apparatus according to claim 5 , wherein the light source is natural light. 請求項1〜のいずれかに記載の可視光応答型光触媒複合体に、光源で光を膜厚方向から照射しながら、積み重なっている各可視光応答型光触媒の間に被処理水を膜に平行な方向に流して被処理水に含まれる有機物又は無機物を分解する水処理方法。 The visible light responsive photocatalyst composite according to any one of claims 1-4, while irradiating light from a thickness direction of the light source, the water to be treated film between the visible light responsive photocatalyst that are stacked A water treatment method for decomposing organic matter or inorganic matter contained in water to be treated by flowing in parallel directions .
JP2008298437A 2008-11-21 2008-11-21 Visible light responsive photocatalyst complex Active JP5605601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298437A JP5605601B2 (en) 2008-11-21 2008-11-21 Visible light responsive photocatalyst complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298437A JP5605601B2 (en) 2008-11-21 2008-11-21 Visible light responsive photocatalyst complex

Publications (2)

Publication Number Publication Date
JP2010119996A JP2010119996A (en) 2010-06-03
JP5605601B2 true JP5605601B2 (en) 2014-10-15

Family

ID=42321809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298437A Active JP5605601B2 (en) 2008-11-21 2008-11-21 Visible light responsive photocatalyst complex

Country Status (1)

Country Link
JP (1) JP5605601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362424A (en) * 2020-04-10 2020-07-03 浙江龙奇印染有限公司 Efficient composite oxidant for treating COD (chemical oxygen demand) of printing and dyeing wastewater

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063712A (en) * 1992-06-22 1994-01-14 Kanegafuchi Chem Ind Co Ltd Light control material made of multilayered films
JPH10230168A (en) * 1997-02-18 1998-09-02 Yazaki Corp Photocatalyst cell and its production
JPH11290840A (en) * 1998-04-06 1999-10-26 Mitsubishi Heavy Ind Ltd Waste water treatment apparatus using photocatalyst
JP3622585B2 (en) * 1999-08-05 2005-02-23 日本板硝子株式会社 Articles having photocatalytic activity
JP2001129364A (en) * 1999-11-09 2001-05-15 Shinto Fine Co Ltd PHOTOCATALYST CARRIER AND METHOD FOR DECOMPOSING NOx
JP2001259668A (en) * 2000-03-23 2001-09-25 Meidensha Corp Liquid phase treating method and gas phase treating method using ozone adsorption photocatalyst
JP4172149B2 (en) * 2000-09-22 2008-10-29 富士ゼロックス株式会社 Low potential electrodeposition electrodeposition liquid and electrodeposition method using the same
JP3423280B2 (en) * 2000-09-25 2003-07-07 科学技術振興事業団 Organic / inorganic composite thin film solar cell
JP2003053195A (en) * 2001-08-13 2003-02-25 Tasuke Iwashita Photocatalyst device consisting of sheet light emitting element as light source
JP2003287601A (en) * 2002-03-27 2003-10-10 Murakami Corp Composite material
JP2004136260A (en) * 2002-10-15 2004-05-13 Koichi Nakayama Device for photocatalytically cleaning and magnetically activating water
WO2006115271A1 (en) * 2005-04-26 2006-11-02 Osaka University Organic photocatalyst

Also Published As

Publication number Publication date
JP2010119996A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
Qu et al. Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: dynamic catalysis under natural light
Shen et al. Defect-abundant covalent triazine frameworks as sunlight-driven self-cleaning adsorbents for volatile aromatic pollutants in water
Chen et al. Photocatalytic H2O2 production Systems: Design strategies and environmental applications
Cho et al. Amine-functionalized graphene/CdS composite for photocatalytic reduction of CO2
Qin et al. Creating well-defined hexabenzocoronene in zirconium metal–organic framework by postsynthetic annulation
Ma et al. Metal–organic framework films and their potential applications in environmental pollution control
Wang et al. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4
Liu et al. Multiphase porous electrochemical catalysts derived from iron-based metal–organic framework compounds
Molinari et al. Visible-light photocatalysts and their perspectives for building photocatalytic membrane reactors for various liquid phase chemical conversions
Raza et al. Recent advances in carbonaceous sustainable nanomaterials for wastewater treatments
Almaie et al. Volatile organic compounds (VOCs) removal by photocatalysts: A review
Habibi-Yangjeh et al. A review on emerging homojunction photocatalysts with impressive performances for wastewater detoxification
Gan et al. Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution
JP5182665B2 (en) Organic photocatalyst
Wang et al. Role of electric field and reactive oxygen species in enhancing antibacterial activity: a case study of 3D Cu foam electrode with branched CuO–ZnO NWs
Ajmal et al. Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO2, NOx, and VOCs
Khan et al. Efficient removal of norfloxacin by MOF@ GO composite: isothermal, kinetic, statistical, and mechanistic study
Ojha et al. Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: a critical review
Zhu et al. Bidirectional progressive optimization of carbon and nitrogen defects in solar-driven regenerable adsorbent to remove UV-filters from water
Ma et al. A light-permeable solar evaporator with three-dimensional photocatalytic sites to boost volatile-organic-compound rejection for water purification
Djellabi et al. Advances in photocatalytic reduction of hexavalent chromium: from fundamental concepts to materials design and technology challenges
JP4962958B2 (en) Visible light responsive photocatalyst
Cui et al. Co nanoparticles modified N-doped carbon nanosheets array as a novel bifunctional photothermal membrane for simultaneous solar-driven interfacial water evaporation and persulfate mediating water purification
Sajna et al. An overview of graphene-based 2D/3D nanostructures for photocatalytic applications
Liu et al. Recent progress in environmental applications of metal-organic frameworks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140813

R150 Certificate of patent or registration of utility model

Ref document number: 5605601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250