WO2006115271A1 - Organic photocatalyst - Google Patents

Organic photocatalyst Download PDF

Info

Publication number
WO2006115271A1
WO2006115271A1 PCT/JP2006/308748 JP2006308748W WO2006115271A1 WO 2006115271 A1 WO2006115271 A1 WO 2006115271A1 JP 2006308748 W JP2006308748 W JP 2006308748W WO 2006115271 A1 WO2006115271 A1 WO 2006115271A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
organic
type
type organic
photocatalyst
Prior art date
Application number
PCT/JP2006/308748
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Nagai
Toshiyuki Abe
Original Assignee
Osaka University
Hirosaki University
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Hirosaki University, Kansai Technology Licensing Organization Co., Ltd. filed Critical Osaka University
Priority to JP2007514770A priority Critical patent/JP5182665B2/en
Publication of WO2006115271A1 publication Critical patent/WO2006115271A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to an organic photocatalyst used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur, phosphorus, etc. under light irradiation, particularly under visible light irradiation, a method for producing the same, and use of the organic photocatalyst About.
  • a photocatalyst is a catalytic material that decomposes harmful substances, etc., using acid / reducing power generated by the input of light energy, and does not use toxic chemicals or fossil fuels.
  • various chemical substances that are difficult to be decomposed can be safely and easily decomposed only by using the energy of light. Therefore, it is attracting attention as an environmentally friendly environmental cleaning material.
  • Photocatalysts composed of organic compounds are known, and among these, titanium oxide is the material that has the most excellent photocatalytic action size and safety, as well as resource and cost, and has been widely studied. There are also commercialized products (see Non-Patent Document 1).
  • This titanium oxide titanium exhibits photocatalytic activity by light in the ultraviolet region, but only ultraviolet light corresponding to an energy density of 3% of natural light is used. Therefore, from the viewpoint of solar energy conversion efficiency, a photocatalyst that can effectively use visible light that accounts for about half of the natural light energy density is desired.
  • Non-Patent Document 2 ultraviolet light-responsive materials and have problems such as difficulty in use in a gas phase (wet air) phase or a liquid phase containing water.
  • Non-Patent Document 1 Illustrated photocatalysts all (supervised by Kazuhito Hashimoto and Akira Fujishima), Industrial Research Committee (2003 )
  • Non-Patent Document 2 J. Chem. Soc. Faraday Trans., 93, 221 (1997)
  • the present invention provides an organic substance or an inorganic substance containing nitrogen, sulfur, phosphorus, or the like efficiently under light (particularly visible light) irradiation in a gas phase or a liquid phase containing water. It is an object to provide an organic photocatalyst capable of decomposing water and a method for producing the same. Moreover, an object of this invention is to provide the use of this organic photocatalyst.
  • the present inventors have found that visible light (wavelength: 400 to 750 nm) is applied to a material composed of a specific p-type organic semiconductor and a specific n- type organic semiconductor. ), A photocatalytic acid-oxidation reduction reaction occurs via unidirectional photo-induced electr on transfer. Further, the present inventors have found that the material exhibits photocatalytic activity under light irradiation in a gas phase or a liquid phase, and can efficiently decompose an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus. Based on these findings, the present inventor has further developed and completed the present invention.
  • the present invention provides the following organic photocatalyst, method for producing the same, and use of the organic photocatalyst.
  • Item 1 An organic photocatalyst comprising a p-type organic semiconductor and an n-type organic semiconductor, which is used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation.
  • Item [0011] The organic photocatalyst according to Item 1, wherein the organic photocatalyst has a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated.
  • Item 3 The organic photocatalyst according to Item 1, wherein the p-type organic semiconductor layer has a thickness of about 20 to 500 nm, and the n-type organic semiconductor layer has a thickness of about 50 to 800 nm.
  • Item 4 The organic photocatalyst according to Item 1, wherein the organic photocatalyst has a three-layer structure including a co-deposition layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer.
  • Item 5 A two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are stacked on a substrate.
  • Item 2. The organic photocatalyst according to Item 1.
  • Item 6 The organic material according to Item 1, wherein the substrate has a three-layer structure including a co-deposited layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer. photocatalyst.
  • Item 7 The item in which the material of the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
  • Item 8 The organic photocatalyst according to Item 7, wherein the material of the p-type organic semiconductor is at least one selected from the group force consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
  • Item 9 The organic photocatalyst according to Item 8, wherein the material of the p-type organic semiconductor is a phthalocyanine derivative.
  • Item 10 The organic photocatalyst according to Item 1, wherein the n-type organic semiconductor material is a polycyclic aromatic compound.
  • Item 11 Material strength of n-type organic semiconductor Item 10 is a group force consisting of fullerenes, carbon nanotubes, conductive polymers doped with electron donors, perylene derivatives, and naphthalene derivatives. The organic photocatalyst described in 1.
  • Item 12 The organic photocatalyst according to Item 11, wherein the n-type organic semiconductor material is at least one selected from the group consisting of fullerenes and perylene derivatives.
  • Item 13 A method for producing an organic photocatalyst according to Item 5, wherein an n-type organic semiconductor layer and a p-type organic semiconductor layer are laminated on a substrate to form a two-layer structure. Manufacturing method.
  • Item 14 A method for producing an organic photocatalyst according to Item 6, wherein an n-type (or p-type) is formed on a substrate.
  • An organic semiconductor layer is formed, on which an n-type organic semiconductor and a p-type organic semiconductor are co-evaporated to form a co-deposited layer, on which a p-type (or n-type) organic semiconductor layer is formed.
  • a manufacturing method characterized by having a layer structure.
  • Item 15 A method for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus in a gas phase or an aqueous phase, wherein the organic photocatalyst according to Item 1 is treated with an organic substance or nitrogen, sulfur or phosphorus under light irradiation. A method of decomposing by contacting with an inorganic substance.
  • Item 16 A coating composition comprising the organic photocatalyst according to item 1 and a coating material.
  • the organic photocatalyst described in item 1 is an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus.
  • a method of treating water by dispersing it in water to be treated containing substances and irradiating it with light.
  • the organic photocatalyst of the present invention includes a p-type organic semiconductor and an n-type organic semiconductor. Specifically, it has a structure in which a portion made of a P-type organic semiconductor (balta layer) and a portion made of an n-type organic semiconductor (balta layer) are in contact with each other.
  • the organic photocatalyst of the present invention causes unidirectional photoinduced electron transfer at the interface where the p-type organic semiconductor material and the n-type organic semiconductor material are in contact with each other by light irradiation, which contains organic matter or nitrogen, sulfur or phosphorus. Used for inorganic decomposition. Therefore, this organic photocatalyst is used for decomposing organic substances or inorganic substances containing nitrogen, sulfur or phosphorus under light irradiation in a gas phase or a liquid phase.
  • the cage organic semiconductor examples include a macrocyclic ligand compound or a metal complex thereof.
  • a macrocyclic ligand compound means a cyclic compound that contains an atom having an unpaired electron on the ring and can be a metal ligand, and the metal complex is a macrocycle. It means a metal complex that also consists of a ligand and a metal nuclear power.
  • a nitrogen atom and an oxygen atom are mentioned, for example, A nitrogen atom is preferable.
  • a metal atom each metal element of 1-15 group of a periodic table is mentioned, Preferably it is a 4-14 group metal element.
  • the metal complex is usually one in which the metal atom and the macrocyclic ligand compound are composed of 1: 1 (molar ratio) to form a planar four-coordinate complex.
  • macrocyclic ligand compound or the metal complex thereof include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, and the like.
  • the phthalocyanine derivative means a compound having a basic skeleton of phthalocyanine.
  • M 1 represents a group force selected from group 4 to group 14 force in the periodic table, and represents a selected metal atom or an atomic group containing the metal atom, and a dotted line represents a coordination bond
  • the metal atoms of groups 4 to 14 of the periodic table represented by M 1 group 4 (especially Ti), group 5 (particularly V), group 6 (particularly Mo), group 7 ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (especially Al), and Group 14 (especially Pb).
  • the atomic group containing the metal atom means a group in which another ligand (for example, oxygen or cyan group) is coordinated to the metal (for example, THD).
  • phthalocyanine represented by the formula (1A), or M 1 in the formula (1B) is Ti, Co,
  • phthalocyanine derivatives especially from the viewpoint of photocatalytic activity for decomposition of organic substances or inorganic substances containing nitrogen, sulfur or phosphorus
  • (1A) metal-free phthalocyanine, (1B) iron phthalocyanine and cobalt phthalocyanine are preferred. These compounds are either commercially available or can be easily produced by those skilled in the art.
  • the naphthalocyanine derivative means a compound having a basic skeleton of naphthalocyanine. Specifically, for example, the following formula (2A) or (2B):
  • M 2 represents a group force selected from group 4 to group 14 forces in the periodic table, and represents a selected metal atom or an atomic group including the metal atom, and a dotted line represents a coordination bond.
  • the atomic group containing the metal atom means a group in which another ligand (for example, oxygen or cyan group) is coordinated to the metal (for example, THD).
  • Naphthalocyanine derivatives which are Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru are preferred, especially in terms of photocatalytic activity for decomposition of organic substances or inorganic substances containing nitrogen, sulfur or phosphorus To (2A) metal-free naphthalocyanine and (2B) iron naphthalocyanine-cobalt naphthalocyanine. These compounds are either commercially available or can be easily produced by those skilled in the art.
  • the porphyrin derivative means a compound having a basic skeleton of porphyrin. Specifically, for example, the following formula (3A) or (3B):
  • R 3 is a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • M 3 is a group force selected from Group 4 to 14 of the periodic table, including a selected metal atom or a metal atom thereof. (Shows atomic group, dotted line shows coordination bond)
  • the alkyl group represented by R 3 is a linear or branched alkyl group of C.
  • a kill group preferably an alkyl group of c. Specifically, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioe, methyl, ethioe, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl, methyl, ethioethyl,
  • N-propyl isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
  • examples of the aryl group represented by R 3 include monocyclic or bicyclic aryl groups, and specific examples include phenyl and naphthyl.
  • examples of the heteroaryl group represented by R 3 include pyridyl and pyrajur.
  • group 4 especially Ti
  • group 5 particularly V
  • group 6 particularly Mo
  • group 7 In particular, Mn
  • Group 8 Fe, Ru, Os
  • Group 9 Co, Rh, Ir
  • Group 10 Ni, Pd, Pt
  • Group 11 particularly Cu
  • Group 12 particularly Zn
  • Group 13 especially Al
  • Group 14 especially Pb
  • the atomic group containing the metal atom means a group in which another ligand (for example, oxygen or cyan group) is coordinated to the metal (for example, THD).
  • Examples of the n-type organic semiconductor include polycyclic aromatic compounds.
  • the polycyclic aromatic compound may be partially saturated.
  • a polycyclic aromatic compound is a compound having a structure in which at least two aromatic rings are condensed, or a structure in which a plurality of aromatic rings are bonded through unsaturated bonds (double bonds, triple bonds, etc.). It means the compound etc. which have.
  • a heteroaromatic ring such as a pyrrole ring, an imidazole ring, a pyridine ring, or a quinoxaline ring is also included (a part of the shift ring may be saturated) .
  • the polycyclic aromatic compound may have various substituents as long as the present invention is not adversely affected.
  • substituents include an electron withdrawing group, and specific examples include a carbonyl group, a sulfone group, and a sulfoxide group.
  • polycyclic aromatic compound examples include fullerenes such as C 1, C 2, C 3, C 5 and C 5.
  • Carbon nanotubes Carbon nanotubes; Conductive polymers doped with electron donors (such as phenylenediamine, tetraaminoethylene, tris (2,2-biviridine) ruthenium) (polyimide, polyphenylene vinylene, polyparaphenylene, polypyrrole) Etc.); perylene derivatives; naphthalene derivatives and the like. Among them, perylene derivatives, naphthalene derivatives, fullerenes (C etc.
  • electron donors such as phenylenediamine, tetraaminoethylene, tris (2,2-biviridine) ruthenium
  • polyimide polyphenylene vinylene, polyparaphenylene, polypyrrole
  • perylene derivatives naphthalene derivatives and the like. Among them, perylene derivatives, naphthalene derivatives, fullerenes (C etc.
  • the perylene derivative means a compound having a basic skeleton of perylene.
  • R 1 represents an alkyl group or an aryl group
  • the naphthalene derivative means a compound having a basic skeleton of naphthalene. Specifically, for example, the following formula (5A):
  • R 2 represents an alkyl group or an aryl group
  • the alkyl group represented by the above R 1 or R 2 is a C straight or branched chain.
  • alkyl group of C is preferable. Specifically, methyl
  • the aryl group represented by R 1 or R 2 is a monocyclic or bicyclic aryl group. Specific examples include phenyl and naphthyl.
  • the organic photocatalyst of the present invention contains the above p-type organic semiconductor and n-type organic semiconductor.
  • the bonding form of the P-type organic semiconductor and the n-type organic semiconductor in the organic photocatalyst is not particularly limited, but from the viewpoint of photocatalytic activity (that is, quantum yield), it is preferable to bond the two so that the contact area between the two increases. . Since the contact area between the n-type organic semiconductor and the n-type organic semiconductor is increased, photo-induced electron transfer is efficiently generated when light is irradiated, and the photocatalytic acid is effectively removed. This is because a reduction reaction occurs.
  • organic photocatalyst of the present invention include a laminated (film) structure in which a p-type organic semiconductor and an n-type organic semiconductor are laminated.
  • the laminated structure is preferably, for example, a two-layer structure in which a p-type organic semiconductor and an n-type organic semiconductor are laminated.
  • This may be a film itself having a two-layer structure strength, or may have a two-layer structure of an n-type organic semiconductor and a P-type organic semiconductor on a substrate.
  • the thickness of each layer is not particularly limited.
  • the n-type organic semiconductor layer has a thickness of 50 to About 800 nm, preferably about 100 to 650 nm, and the thickness of the p-type organic semiconductor layer is about 20 to 500 nm, preferably about 30 to 350 nm. It is preferable because the photocatalytic activity is optimized by adopting a strong thickness.
  • the laminated structure is a three-layer structure in which a co-evaporated layer formed by co-evaporating an n-type organic semiconductor and a p-type organic semiconductor is sandwiched between the p-type organic semiconductor layer and the n-type organic semiconductor layer. Also good.
  • the substrate may have this three-layer structure.
  • the thickness of each layer is not particularly limited.
  • the n-type organic semiconductor layer has a thickness of 50 to About 800 nm, preferably about 100 to 650 nm
  • the co-deposition layer is about 5 to 10 nm
  • the thickness of the ⁇ -type organic semiconductor layer is about 20 to 500 nm, preferably about 30 to 350 nm. is there. Adopting a strong thickness is preferable because the photocatalytic activity is optimized.
  • a transition metal catalyst for example, Ag, Cu, Ni, Pd, Pt, Ir catalyst, etc.
  • the substrate on which the laminated structure is formed is selected from materials and shapes according to the purpose.
  • the organic photocatalyst of the present invention is, for example, in the form of a powder (particles, fine particles, etc.) that is easily pulverized and cut into the above-mentioned film having a laminated structural force and easily dispersed in a medium. I'll do it.
  • the above-described organic photocatalyst (for example, a substrate (carrier) having a laminated structure (powder), a powdery substance, etc.) can be dispersed in a liquid medium (for example, water) and can be recovered by filtration or the like. Therefore, they can be dispersed in a medium containing an object to be processed such as organic matter (for example, water), subjected to decomposition treatment by light irradiation, and after treatment, only the photocatalyst can be separated by filtration or the like and reused. There is.
  • the organic photocatalyst of the present invention decomposes organic substances or inorganic substances containing nitrogen, sulfur, phosphorus, etc., efficiently absorbing natural light and visible light under irradiation of light in the gas phase or liquid phase. Can do.
  • the organic photocatalyst of the present invention can effectively utilize light in the visible region contained in natural light with high catalytic efficiency as an energy source. Furthermore, since the organic photocatalyst of the present invention is an organic compound, it is excellent in processability and moldability and is stable in water.
  • p-type organic semiconductor those described above can be used, and typical examples include phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives. More preferable examples include compounds represented by the formulas (1A), (1B), (2A), (2B), (3A), (3B). In particular, a metal-free phthalocyanine of the formula (1A), an iron phthalocyanine of the formula (1B), or a cobalt phthalocyanine of the formula (1B) is preferable.
  • n-type organic semiconductor those described above can be used, and those having a good pn junction relationship with the p-type organic semiconductor are used.
  • Typical examples of the n-type organic semiconductor include perylene derivatives, naphthalene derivatives, and fullerenes. More preferable examples include compounds represented by the formulas (4A), (4B), (4C), and (5A).
  • an efficient key Perylene derivatives (3,4,9,10-perylenetetraforce ruboxyl-bisbenzimidazole) or fullerenes (C, etc.) represented by formula (4A) are preferably used from the viewpoint of formation of carriers.
  • the organic photocatalyst of the present invention includes a transition metal catalyst (for example, Ag, Cu, etc.) as necessary in addition to the n-type organic semiconductor and the p-type organic semiconductor in order to increase the activity of the photocatalyst.
  • a transition metal catalyst for example, Ag, Cu, etc.
  • Ni, Pd, Pt, Ir catalyst, etc. may be added.
  • the organic photocatalyst of the present invention has a form in which an n-type organic semiconductor and a p-type organic semiconductor have a pn junction so as to increase the contact area, and can be a manufacturing method capable of forming a strong junction form. There is no particular limitation.
  • the organic photocatalyst is a two-layer structure film in which an n-type organic semiconductor and a p-type organic semiconductor are stacked
  • the n-type organic semiconductor and the p-type organic semiconductor are stacked on the substrate to form a two-layer structure.
  • the two-layer structure film can be produced by peeling the substrate force.
  • the material of the substrate is not particularly limited as long as the formed two-layer structure film can be easily peeled off.
  • a glass substrate is mentioned.
  • the obtained two-layer structure film can be used as it is as a photocatalyst. If necessary, an adhesive layer is provided on the two-layer structure film and adhered to a substrate, or crushed and cut into a powder form. Is also possible.
  • an n-type (or p-type) organic semiconductor and a p-type (or n-type) organic semiconductor are directly laminated on a specific substrate from the beginning, and an organic photocatalytic layer is provided on the substrate.
  • an organic photocatalytic layer is provided on the substrate.
  • the material of the substrate any material that can be laminated with the organic photocatalyst of the present invention is suitable.
  • ceramics silicon, alumina, zirconia, etc.
  • the shape of the substrate may be any depending on the application.
  • a known method can be employed, for example, vacuum deposition, sputtering, electrochemical coating (electrodeposition), coating And the like.
  • a vacuum deposition method is preferable because a uniform coating film can be obtained.
  • the thickness of each layer is not particularly limited, but is preferably set as appropriate within the above-described range. That is, the thickness of the p-type organic semiconductor layer is about 20 to 500 nm. The thickness is preferably about 30 to 350 nm, and the thickness of the n-type organic semiconductor layer is about 50 to 800 nm, preferably about 100 to 650 nm.
  • the organic semiconductor has a three-layer structure
  • a p-type (or n-type) organic semiconductor layer is formed on the substrate, and a co-deposition layer comprising the p-type organic semiconductor and the n-type organic semiconductor is formed thereon.
  • an organic photocatalyst having a three-layer structure on a substrate may be formed by forming an n-type (or p-type) organic semiconductor layer thereon.
  • the three-layer structure film can be formed by peeling the three-layer structure film from the substrate.
  • stacking method can be employ
  • the film thickness of each layer is not particularly limited, but is preferably set as appropriate within the above-described range. That is, the thickness of the n-type organic semiconductor layer is about 50 to 800 nm, preferably about 100 to 650 nm, the co-deposited layer is about 5 to 10 nm, and the thickness of the p-type organic semiconductor layer is 20 It is about ⁇ 500 nm, preferably about 30 to 350 nm.
  • a transition metal catalyst for example, Ni, Pd, Pt, Ag, Ir catalyst, etc.
  • a transition metal catalyst for example, Ni, Pd, Pt, Ag, Ir catalyst, etc.
  • an electrolytic deposition method for example, a suspension casting method, or the like.
  • the transition metal catalyst to be supported need not be completely covered with the outer layer, but may be dispersed and supported.
  • the average particle diameter of the transition metal catalyst may be in the fine particle state of about 5 to 800 nm (preferably about 10 to 100 nm).
  • the organic photocatalyst of the present invention can be decomposed by contact with an organic substance contained in the gas phase or aqueous phase or an object to be decomposed such as an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation.
  • the light used in the organic photocatalyst of the present invention can be light having a wide range of wavelengths (wavelength of about 220 to 1200 nm).
  • natural light unsunlight
  • fluorescent lamp halogen lamp
  • high pressure mercury lamp low pressure mercury lamp
  • black light excimer laser
  • deuterium lamp xenon lamp
  • Hg-Zn-Pb lamp etc.
  • two types of light sources with different wavelength ranges can be used.
  • the organic photocatalyst of the present invention is extremely practical in that natural light (wavelength of 300 to 800 nm), particularly visible light (wavelength of 400 nm or more, particularly about 400 to 750 nm) can be used.
  • acid titanium used as an inorganic photocatalyst Considering the necessity of an ultraviolet light source indoors, this is extremely meaningful.
  • the organic photocatalyst of the present invention can efficiently decompose organic substances or inorganic substances containing nitrogen, sulfur or phosphorus only by light irradiation.
  • the method of decomposing organic matter by irradiating the photocatalyst with light while applying a bias electrochemically is a distinct line. is there.
  • a bias electrochemically for example, ChemPhysChem 2004, 5, 716-720
  • the electrochemical decomposition method for example, negative charges (electrons) generated by oxidative decomposition on the surface of the catalyst are removed through the electrode, but in the organic photocatalyst of the present invention, the electrons are accepted by oxygen present in the treatment medium. It is thought that it will be removed.
  • the decomposition reaction proceeds more efficiently when oxygen is present in a high concentration in the gas phase or the liquid phase (aqueous phase).
  • the oxygen concentration is preferably 20% by volume, more preferably 25% by volume or more.
  • the liquid phase for example, water
  • Degradable substances in the gas phase or aqueous phase include malodorous substances, dust, microorganisms, viruses, sick house syndrome causative substances (formaldehyde, etc.), odorous components (cigarette odor, pet odor, etc.), toxic substances (Dioxin, PCB, etc.), agricultural chemicals, ethylene gas, nitrogen compounds (ammonia, NOx, etc.), sulfur compounds (mercapbutane, sulfide, etc.) and phosphorus compounds (organic phosphorus, etc.).
  • the organic photocatalyst of the present invention is excellent in processing or moldability because the difference between the p-type organic semiconductor and the n-type organic semiconductor is also composed of an organic substance.
  • the inorganic photocatalyst, titanium oxide has difficulty in processability and moldability, but the organic photocatalyst of the present invention can solve such problems. Therefore, it is used for a very wide range of applications that exceed the applications of titanium oxide.
  • the organic photocatalyst of the present invention can be used as a surface material of various filters for filtering and decomposing an object to be decomposed in the gas phase to the aqueous phase.
  • a method for fixing the organic photocatalyst of the present invention to a single filter substrate the above-described methods such as vacuum deposition, sputtering, electrochemical coating (electrodeposition), and coating may be used.
  • the organic photocatalyst of the present invention is dispersed in water to be treated containing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus, subjected to a decomposition treatment by light irradiation, and further filtered after the treatment. Can be separated and recovered and used again for water treatment.
  • the organic photocatalyst of the present invention can be mixed into a paint to obtain a paint composition having photocatalytic activity. In the coating composition, since the organic photocatalyst has a high affinity for the coating, the catalyst can be dispersed uniformly.
  • the organic photocatalyst of the present invention is stable against water, the treatment of water containing the decomposition target can be carried out efficiently.
  • the powder is dispersed in water to be treated and irradiated with light to treat the water. After the treatment, the powder is filtered to obtain treated water, and the powder can be easily recovered.
  • the water phase (treated water) includes, for example, industrial circulating water, industrial wastewater, industrial wastewater, clean water, sewage, soil and groundwater, ponds, pools, domestic wastewater, pesticide residue wastewater, bath, water storage Examples include tanks, lakes, and dams.
  • These aqueous phases can be treated efficiently without any particular limitation on pH, hardness, and the like.
  • the pH is preferably about 7 to L1.
  • the organic photocatalyst comprising the p-type organic semiconductor and the n-type organic semiconductor titanium oxide of the present invention has a high catalytic activity against the decomposition of organic substances and the like by visible light irradiation.
  • the organic photocatalyst of the present invention is a photocatalyst that can use light energy in the entire visible light range, and is a very effective photocatalyst in particular because it can sufficiently use solar light (natural light).
  • the organic photocatalyst of the present invention is obtained by simply laminating a p-type organic semiconductor and an n-type organic semiconductor, and has a very high practicality because it is extremely easy to mold.
  • the organic material is generally easily decomposed by acid, but the organic photocatalyst of the present invention functions stably in the gas phase or liquid phase. Of course, it can be used indoors as well as outdoors. Brief Description of Drawings
  • FIG. 1 is a schematic diagram of a test cell for a photocatalytic reaction using an organic photocatalyst used in Examples 1 and 2.
  • FIG. 2 is a schematic diagram of a test cell for a photocatalytic reaction using the organic photocatalyst used in Comparative Example 1.
  • FIG. 3 is a graph showing the relationship between the reaction time (minutes) and the methylene blue concentration ( ⁇ ) in the photocatalytic reactions of Examples 1 and 2 and Comparative Example 1.
  • FIG. 4 is a graph showing the relationship between the reaction time (minutes) and the methylene blue concentration ( ⁇ ) in the photocatalytic reactions of Examples 3 and 4 and Comparative Examples 2 to 4.
  • Organic photocatalyst materials include ⁇ -type semiconductors such as 3,4,9,10 perylenetetracarboxyl bisbenzimidazole (hereinafter referred to as “PV”) and p-type semiconductors containing metal-free lid mouth cyanine (hereinafter “H Pc ”).
  • PV 3,4,9,10 perylenetetracarboxyl bisbenzimidazole
  • H Pc metal-free lid mouth cyanine
  • the double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, PV on the glass substrate with a thickness of 220 nm, then HPc with a thickness of 70 nm on the PV.
  • Methylene blue trihydrate was a special grade reagent stipulated in JIS K 8897, and purified water conforming to the 14th Japanese Pharmacopoeia standard was used.
  • a fresh aqueous methylene blue solution (10 ⁇ mol / 1) was prepared and adjusted to pH 10 using sodium hydroxide or potassium hydroxide.
  • the double layer film prepared in (2) above was peeled off from the glass substrate using a methylene blue aqueous solution and allowed to stand on the top of the test tube.
  • the effective area of the organic photocatalyst at this time was about 12.5 cm 2 , and the test bowl was filled with 35 ml of methylene blue aqueous solution.
  • the upper part of the cylindrical test cell was closed with a cut-off filter (L-42, manufactured by HOYA, 5 X 5 cm 2 ).
  • the organic photocatalytic reaction was carried out by irradiating visible light (wavelength: 400 to 750 nm) with an intensity of about 60 mW cm- 2 for 3 hours using a halogen lamp (manufactured by Nihon PI Corporation) as a light source. At this time, the upper force of the test cell was also irradiated with light.
  • the visible absorption spectrum of one aqueous solution was measured, and the amount of decomposition was quantified.
  • the visible absorption spectrum was measured using a MultiSpec-1500 manufactured by Shimadzu Corporation.
  • the spectrophotometer measurement cell was made of rosin and had an optical path length of 10 mm, and had a light transmittance in the wavelength range of 600 to 700 nm. More than 80% was used.
  • Example 2 Evaluation of the activity of organic photoerosion during visible irradiation
  • PV as an n-type semiconductor and iron phthalocyanine (hereinafter referred to as “FePc”) as a p-type semiconductor were used as organic photocatalyst materials.
  • FePc iron phthalocyanine
  • those purified by sublimation were used.
  • the double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, scrape PV on the glass substrate with a thickness of 130 nm, then scrape FePc on the PV with a thickness of 70 nm.
  • a photocatalyst standard sample (50SQC, manufactured by Photocatalyst Laboratory Co., Ltd.) was used as an acid-titanium photocatalyst. This is a glass plate coated with a titanium oxide photocatalyst, with a titanium oxide thickness of ⁇ m and a glass plate size of 50 mm x 50 mm x (thickness) 1.8 mm.
  • titanium dioxide Since titanium dioxide has the property of adsorbing methylene blue on its surface, the surface was saturated and adsorbed with methylene blue.
  • the reagents and water used were the same as in Examples 1 and 2. Using a 20 mol / 1 methylene blue aqueous solution prepared to pHIO, adsorption was performed on the surface of titanium oxide in a test cell as shown in Fig. 2. After adsorption for 12 hours, remove the liquid
  • the concentration of the methylene blue aqueous solution was decreased, and therefore, adsorption was carried out using a 20 mol / 1 aqueous solution of methylene blue for another 12 hours. Since the concentration of the methylene blue aqueous solution at this time was 10 ⁇ mol / 1 or more, titanium oxide with saturated adsorption of methylene blue on the surface was used for the photocatalytic reaction.
  • a photocatalytic reaction was performed using a test cell as shown in FIG.
  • Marumoto Struas Multiform inner diameter 40 mm, height 30 mm (code: EFOPY, No: 403000 46) was used.
  • the test cell was filled with a fresh aqueous methylene blue solution (10 ⁇ mol / U 35 ml) adjusted to pHIO.
  • the photocatalytic reaction was performed by irradiating with a halogen lamp (manufactured by Nippon P-I Co., Ltd.) for 3 hours at a wavelength of about 60 mWcm " 2 (wavelength: 400 to 750 nm).
  • a halogen lamp manufactured by Nippon P-I Co., Ltd.
  • the reaction was started 20 minutes, 40 minutes, 60 minutes, 80 minutes, 100 minutes, 120 minutes, 140 minutes, 160 minutes, and 180 minutes after the start of the reaction, the visible absorption of the methylene blue solution was observed.
  • the petrol was measured and the amount of decomposition was quantified, and the visible absorption spectrum measuring apparatus and measuring cell were the same as in Examples 1 and 2.
  • Example 1 Further, an experiment was conducted under the same conditions as in Example 1 except that no titanium oxide photocatalyst was used. As a result, decomposition of methylene blue was not confirmed even under irradiation with visible light.
  • n-type semiconductor 3,4,9,10 perylenetetracarboxyl bisbenzimidazole (PV) and p-type semiconductor metal-free phthalocyanine (HPc) Using.
  • PV perylenetetracarboxyl bisbenzimidazole
  • HPc p-type semiconductor metal-free phthalocyanine
  • the double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, PV on the glass substrate with a thickness of 200 nm, then HPc on the PV with a thickness of 120 nm.
  • Methylene blue trihydrate was a special grade reagent stipulated in JIS K 8897, and purified water conforming to the 14th Japanese Pharmacopoeia standard was used.
  • a fresh methylene blue aqueous solution (10 ⁇ mol / 1) was prepared and adjusted to pHIO using sodium hydroxide.
  • the photocatalyst carrying substrate produced in the above (2) was placed on the side surface of the cell so that the catalyst surface was inside.
  • the area of the organic photocatalyst at this time was about 5 cm 2 , and the test tube was filled with 5 ml of methylene blue aqueous solution.
  • the upper part is open and in contact with the atmosphere.
  • the bottom of the cell is stirred with a magnetic stirrer.
  • the organic photocatalytic reaction was carried out by irradiating visible light (wavelength: 400 to 750 nm) for 3 hours using a halogen lamp (manufactured by Nihon PI Corp., 100 mWcm- 2 ) as a light source. At this time, light was applied from the side of the test cell. Irradiation area is lcm 2. During the reaction, white light of 1 / z Wcm- 2 was irradiated from a right angle, and the visible absorption spectrum of the aqueous solution of methylene blue was measured, and the amount of decomposition was quantified. For measurement of the visible absorption spectrum, MPCD-7000 manufactured by Otsuka Electronics was used.
  • PV as an n-type semiconductor and FePc as a p-type semiconductor were used as organic photocatalytic materials. In the present invention, those purified by sublimation were used.
  • the double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, PV was laminated on a glass substrate with a thickness of 200 nm, and then FePc was laminated on the PV with a thickness of 50 nm. For FePc, a method of casting from a solution was also employed.
  • Example 3 was the same as Example 3 except that no organic photocatalyst was used and no light was irradiated (tested in a dark room). As a result of the experiment, the absorbance of methylene blue did not change at all, and decomposition did not occur. The results are shown in Fig. 4.
  • PV As an organic photocatalyst element, PV was deposited on a glass substrate with a thickness of 200 ° C by vacuum deposition.

Abstract

An organic photocatalyst that in a gas phase or a liquid phase containing water, is capable of efficiently decomposing an organic matter or an inorganic matter containing nitrogen, sulfur, phosphorus, etc. under irradiation with light (especially, visible light); a process for producing the same; and use thereof. In particular, there is provided an organic photocatalyst comprising a p-type organic semiconductor and an n-type organic semiconductor, which organic photocatalyst is used to decompose an organic matter or an inorganic matter containing nitrogen, sulfur, phosphorus, etc. under light irradiation. More particularly, there is provided an organic photocatalyst of double-layer structure comprising a base material and, superimposed thereon, a p-type organic semiconductor layer and an n-type organic semiconductor layer.

Description

明 細 書  Specification
有機光触媒  Organic photocatalyst
技術分野  Technical field
[0001] 本発明は、光照射下、特に可視光照射下で、有機物或いは窒素、硫黄、リン等を 含む無機物を分解するために使用する有機光触媒、その製造方法、及び該有機光 触媒の用途に関する。  The present invention relates to an organic photocatalyst used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur, phosphorus, etc. under light irradiation, particularly under visible light irradiation, a method for producing the same, and use of the organic photocatalyst About.
背景技術  Background art
[0002] 光触媒とは、光エネルギーの投入により生じる酸ィ匕カ ·還元力を用いて有害物質等 を分解する触媒材料のことであり、この光触媒は、有毒な薬品や化石燃料を使用せ ず、光のエネルギーを利用するだけで、分解されにくい種々の化学物質を安全かつ 容易に分解することができるため、環境にやさしい環境浄ィ匕材料として脚光を浴びて いる。  [0002] A photocatalyst is a catalytic material that decomposes harmful substances, etc., using acid / reducing power generated by the input of light energy, and does not use toxic chemicals or fossil fuels. As a result, various chemical substances that are difficult to be decomposed can be safely and easily decomposed only by using the energy of light. Therefore, it is attracting attention as an environmentally friendly environmental cleaning material.
[0003] 現在、光触媒材料として、酸化チタン (TiO )、酸化亜鉛、酸ィ匕タングステン等の無  [0003] Currently, photocatalytic materials such as titanium oxide (TiO 2), zinc oxide, and tungsten oxide are available.
2  2
機化合物からなる光触媒が知られており、中でも酸ィ匕チタンは、その光触媒作用の 大きさや安全性、また、資源的'コスト的な観点力もも最も優れた材料であり、広く研 究されており、実用化された製品も出されている (非特許文献 1を参照)。  Photocatalysts composed of organic compounds are known, and among these, titanium oxide is the material that has the most excellent photocatalytic action size and safety, as well as resource and cost, and has been widely studied. There are also commercialized products (see Non-Patent Document 1).
[0004] この酸ィ匕チタンは、紫外領域の光により光触媒活性が発現されるが、自然光のうち エネルギー密度 3%相当の紫外光が利用されているにすぎない。そのため、太陽光 エネルギー変換効率の観点からは、自然光エネルギー密度の約半分を占める可視 光を有効活用できる光触媒が望まれる。  [0004] This titanium oxide titanium exhibits photocatalytic activity by light in the ultraviolet region, but only ultraviolet light corresponding to an energy density of 3% of natural light is used. Therefore, from the viewpoint of solar energy conversion efficiency, a photocatalyst that can effectively use visible light that accounts for about half of the natural light energy density is desired.
[0005] また、酸ィ匕チタンを塗料の顔料として用いた場合には、塗料の有機成分が酸化チタ ンにより分解されチョーキング現象を起こしてしまうという問題点を有している。  [0005] Further, when titanium oxide is used as a pigment of a paint, there is a problem that an organic component of the paint is decomposed by titanium oxide to cause a choking phenomenon.
[0006] ところで、有機化合物力もなる光触媒については、これまでほとんど報告例はなぐ わずかに、ポリバラフヱ-レン及びその誘導体等が報告されて 、るにすぎな 、(非特 許文献 2を参照)。これらは、紫外光応答性の材料であり、気 (湿潤空気)相や水を含 む液相での利用が困難である等の問題点を有している。  [0006] By the way, with respect to photocatalysts having organic compound power, there have been few reports so far, and polybaraphthalene and derivatives thereof have only been reported (see Non-Patent Document 2). These are ultraviolet light-responsive materials and have problems such as difficulty in use in a gas phase (wet air) phase or a liquid phase containing water.
非特許文献 1 :図解 光触媒のすべて (橋本和仁,藤嶋昭 監修)、工業調査会 (2003 ) Non-Patent Document 1: Illustrated photocatalysts all (supervised by Kazuhito Hashimoto and Akira Fujishima), Industrial Research Committee (2003 )
非特許文献 2 : J. Chem. Soc. Faraday Trans., 93, 221 (1997)  Non-Patent Document 2: J. Chem. Soc. Faraday Trans., 93, 221 (1997)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 以上の従来技術の問題点に鑑み、本発明は、気相又は水を含む液相において、 光 (特に可視光)照射下で効率的に有機物或いは窒素、硫黄、リン等を含む無機物 を分解し得る有機光触媒、及びその製造方法を提供することを目的とする。また、本 発明は、該有機光触媒の用途を提供することを目的とする。 [0007] In view of the above problems of the prior art, the present invention provides an organic substance or an inorganic substance containing nitrogen, sulfur, phosphorus, or the like efficiently under light (particularly visible light) irradiation in a gas phase or a liquid phase containing water. It is an object to provide an organic photocatalyst capable of decomposing water and a method for producing the same. Moreover, an object of this invention is to provide the use of this organic photocatalyst.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記の目的を達成するために鋭意研究を行った結果、特定の p型 有機半導体と特定の n型有機半導体からなる材料に、可視光 (波長 :400〜750nm) を照射したところ、単方向性の光誘起電子移動(unidirectional photo-induced electr on transfer)を経て光触媒的な酸ィ匕還元反応が生じることを見出した。また、該材料 は、気相乃至液相中、光照射下で光触媒活性を発揮し、効率的に有機物或いは窒 素、硫黄又はリンを含む無機物を分解し得ることを見出した。本発明者は、これらの 知見に基づき、さらに発展させて本発明を完成するに至った。 [0008] As a result of intensive studies to achieve the above object, the present inventors have found that visible light (wavelength: 400 to 750 nm) is applied to a material composed of a specific p-type organic semiconductor and a specific n- type organic semiconductor. ), A photocatalytic acid-oxidation reduction reaction occurs via unidirectional photo-induced electr on transfer. Further, the present inventors have found that the material exhibits photocatalytic activity under light irradiation in a gas phase or a liquid phase, and can efficiently decompose an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus. Based on these findings, the present inventor has further developed and completed the present invention.
[0009] すなわち、本発明は、以下の有機光触媒、その製造方法、及び該有機光触媒の用 途を提供する。  That is, the present invention provides the following organic photocatalyst, method for producing the same, and use of the organic photocatalyst.
[0010] 項 1 p型有機半導体と n型有機半導体とを含む有機光触媒であって、光照射下で 有機物或いは窒素、硫黄又はリンを含む無機物を分解するために使用する有機光 触媒。  Item 1 An organic photocatalyst comprising a p-type organic semiconductor and an n-type organic semiconductor, which is used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation.
[0011] 項 2 p型有機半導体層及び n型有機半導体層が積層した二層構造を有する項 1 に記載の有機光触媒。  Item [0011] The organic photocatalyst according to Item 1, wherein the organic photocatalyst has a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated.
[0012] 項 3 p型有機半導体層の厚さが 20〜500 nm程度であり、 n型有機半導体層の厚さ が 50〜800 nm程度である項 1に記載の有機光触媒。  Item 3 The organic photocatalyst according to Item 1, wherein the p-type organic semiconductor layer has a thickness of about 20 to 500 nm, and the n-type organic semiconductor layer has a thickness of about 50 to 800 nm.
[0013] 項 4 p型有機半導体層と n型有機半導体層の間に、 p型有機半導体と n型有機半 導体との共蒸着層を含む三層構造を有する項 1に記載の有機光触媒。 Item 4 The organic photocatalyst according to Item 1, wherein the organic photocatalyst has a three-layer structure including a co-deposition layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer.
[0014] 項 5 基体上に、 p型有機半導体層及び n型有機半導体層が積層した二層構造を 有する項 1に記載の有機光触媒。 Item 5 A two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are stacked on a substrate. Item 2. The organic photocatalyst according to Item 1.
[0015] 項 6 基体上に、 p型有機半導体層と n型有機半導体層の間に p型有機半導体と n 型有機半導体との共蒸着層を含む三層構造を有する項 1に記載の有機光触媒。 [0015] Item 6. The organic material according to Item 1, wherein the substrate has a three-layer structure including a co-deposited layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer. photocatalyst.
[0016] 項 7 p型有機半導体の材料が大環状の配位子化合物又はその金属錯体である項 Item 7 The item in which the material of the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
1に記載の有機光触媒。 1. The organic photocatalyst according to 1.
[0017] 項 8 p型有機半導体の材料が、フタロシアニン誘導体、ナフタロシアニン誘導体、 及びポルフィリン誘導体力 なる群力 選ばれる少なくとも 1種である項 7に記載の有 機光触媒。 [0017] Item 8. The organic photocatalyst according to Item 7, wherein the material of the p-type organic semiconductor is at least one selected from the group force consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
[0018] 項 9 p型有機半導体の材料が、フタロシアニン誘導体である項 8に記載の有機光 触媒。  Item 9 The organic photocatalyst according to Item 8, wherein the material of the p-type organic semiconductor is a phthalocyanine derivative.
[0019] 項 10 n型有機半導体の材料が多環式芳香族化合物である項 1に記載の有機光 触媒。  [0019] Item 10. The organic photocatalyst according to Item 1, wherein the n-type organic semiconductor material is a polycyclic aromatic compound.
[0020] 項 11 n型有機半導体の材料力 フラーレン類、カーボンナノチューブ類、電子供 与体をドープした導電性高分子、ペリレン誘導体、及びナフタレン誘導体からなる群 力も選ばれる少なくとも 1種である項 10に記載の有機光触媒。  Item 11: Material strength of n-type organic semiconductor Item 10 is a group force consisting of fullerenes, carbon nanotubes, conductive polymers doped with electron donors, perylene derivatives, and naphthalene derivatives. The organic photocatalyst described in 1.
[0021] 項 12 n型有機半導体の材料が、フラーレン類及びペリレン誘導体からなる群から 選ばれる少なくとも 1種である項 11に記載の有機光触媒。 Item 12 The organic photocatalyst according to Item 11, wherein the n-type organic semiconductor material is at least one selected from the group consisting of fullerenes and perylene derivatives.
[0022] 項 13 項 5に記載の有機光触媒を製造する方法であって、基体上に n型有機半導 体層と p型有機半導体層とを積層して二層構造とすることを特徴とする製造方法。 [0022] Item 13. A method for producing an organic photocatalyst according to Item 5, wherein an n-type organic semiconductor layer and a p-type organic semiconductor layer are laminated on a substrate to form a two-layer structure. Manufacturing method.
[0023] 項 14 項 6に記載の有機光触媒を製造する方法であって、基体上に n型 (又は p型[0023] Item 14. A method for producing an organic photocatalyst according to Item 6, wherein an n-type (or p-type) is formed on a substrate.
)有機半導体層を形成し、その上に n型有機半導体と p型有機半導体を共蒸着して 共蒸着層を形成し、その上に p型 (又は n型)有機半導体層を形成して三層構造とす ることを特徴とする製造方法。 ) An organic semiconductor layer is formed, on which an n-type organic semiconductor and a p-type organic semiconductor are co-evaporated to form a co-deposited layer, on which a p-type (or n-type) organic semiconductor layer is formed. A manufacturing method characterized by having a layer structure.
[0024] 項 15 気相又は水相中の有機物或いは窒素、硫黄又はリンを含む無機物を分解 する方法であって、光照射下で項 1に記載の有機光触媒を有機物或いは窒素、硫黄 又はリンを含む無機物と接触させて分解する方法。 Item 15 A method for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus in a gas phase or an aqueous phase, wherein the organic photocatalyst according to Item 1 is treated with an organic substance or nitrogen, sulfur or phosphorus under light irradiation. A method of decomposing by contacting with an inorganic substance.
[0025] 項 16 項 1に記載の有機光触媒及び塗料を含む塗料組成物。 [0025] Item 16. A coating composition comprising the organic photocatalyst according to item 1 and a coating material.
[0026] 項 17 項 1に記載の有機光触媒を、有機物或いは窒素、硫黄又はリンを含む無機 物を含む被処理水に分散させて、これに光を照射して水を処理する方法。 [0026] Item 17. The organic photocatalyst described in item 1 is an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus. A method of treating water by dispersing it in water to be treated containing substances and irradiating it with light.
[0027] 項 18 さらに、処理後に該有機光触媒をろ過して回収し、再度水処理に供する項 1 Item 18 Further, after the treatment, the organic photocatalyst is recovered by filtration and again subjected to water treatment.
7に記載の水処理方法。 The water treatment method according to 7.
[0028] 以下、本発明について詳細に説明する。 [0028] Hereinafter, the present invention will be described in detail.
I.有機光蝕  I. Organic light erosion
本発明の有機光触媒は、 p型有機半導体と n型有機半導体とを含む。具体的には、 P型有機半導体からなる部分 (バルタ層)と n型有機半導体からなる部分 (バルタ層)と が接し合う構造を有している。本発明の有機光触媒は、光照射により、 p型有機半導 体材料と n型有機半導体材料が接する界面で、単方向性の光誘起電子移動を生じ、 これが有機物或いは窒素、硫黄又はリンを含む無機物の分解に用いられる。そのた め、この有機光触媒は、気相乃至液相中において光照射下で有機物或いは窒素、 硫黄又はリンを含む無機物を分解するために使用する。  The organic photocatalyst of the present invention includes a p-type organic semiconductor and an n-type organic semiconductor. Specifically, it has a structure in which a portion made of a P-type organic semiconductor (balta layer) and a portion made of an n-type organic semiconductor (balta layer) are in contact with each other. The organic photocatalyst of the present invention causes unidirectional photoinduced electron transfer at the interface where the p-type organic semiconductor material and the n-type organic semiconductor material are in contact with each other by light irradiation, which contains organic matter or nitrogen, sulfur or phosphorus. Used for inorganic decomposition. Therefore, this organic photocatalyst is used for decomposing organic substances or inorganic substances containing nitrogen, sulfur or phosphorus under light irradiation in a gas phase or a liquid phase.
[0029] Ώ 有機半導体 [0029] Ώ organic semiconductor
Ρ型有機半導体としては、大環状の配位子化合物又はその金属錯体が挙げられる 。大環状の配位子化合物とは、不対電子を有する原子を環上に含み、金属の配位 子となり得る環状ィ匕合物の意であり、また、その金属錯体とは、該大環状配位子と金 属原子力もなる金属錯体の意味である。不対電子を有する原子としては、例えば、窒 素原子、酸素原子が挙げられ、窒素原子が好ましい。金属原子としては、周期律表 1 〜15族の各金属元素が挙げられ、好ましくは 4〜14族の金属元素である。また、金属 錯体は、通常、該金属原子と大環状の配位子化合物とが 1 : 1 (モル比)からなり、平 面 4配位の錯体を形成するものであればょ 、。  Examples of the cage organic semiconductor include a macrocyclic ligand compound or a metal complex thereof. A macrocyclic ligand compound means a cyclic compound that contains an atom having an unpaired electron on the ring and can be a metal ligand, and the metal complex is a macrocycle. It means a metal complex that also consists of a ligand and a metal nuclear power. As an atom which has an unpaired electron, a nitrogen atom and an oxygen atom are mentioned, for example, A nitrogen atom is preferable. As a metal atom, each metal element of 1-15 group of a periodic table is mentioned, Preferably it is a 4-14 group metal element. In addition, the metal complex is usually one in which the metal atom and the macrocyclic ligand compound are composed of 1: 1 (molar ratio) to form a planar four-coordinate complex.
[0030] 大環状の配位子化合物又はその金属錯体の具体例としては、フタロシアニン誘導 体、ナフタロシアニン誘導体、ポルフィリン誘導体等が挙げられる。  [0030] Specific examples of the macrocyclic ligand compound or the metal complex thereof include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, and the like.
[0031] フタロシアニン誘導体とは、フタロシアニンの基本骨格を有する化合物を意味する。  [0031] The phthalocyanine derivative means a compound having a basic skeleton of phthalocyanine.
具体的には、例えば、下記式(1A)又は(1B):  Specifically, for example, the following formula (1A) or (1B):
[0032] [化 1] [0032] [Chemical 1]
Figure imgf000007_0001
Figure imgf000007_0001
(1A) (IB) (1A) (IB)
[0033] (式中、 M1は、周期律表 4〜14族力 なる群力 選ばれる金属原子又はその金属原 子を含む原子団を示し、点線は配位結合を示す) [In the formula, M 1 represents a group force selected from group 4 to group 14 force in the periodic table, and represents a selected metal atom or an atomic group containing the metal atom, and a dotted line represents a coordination bond)
で表されるフタロシアニン誘導体が挙げられる。  The phthalocyanine derivative represented by these is mentioned.
[0034] M1で示される周期律表 4〜14族の金属原子のうち好ましくは、 4族 (特に、 Ti)、 5族( 特に、 V)、 6族(特に、 Mo)、 7族 (特に、 Mn)、 8族 (Fe, Ru, Os)、 9族 (Co, Rh, Ir)、 10 族 (Ni, Pd, Pt)、 11族 (特に、 Cu)、 12族 (特に、 Zn)、 13族 (特に、 Al)、 14族 (特に、 Pb )が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子 (例 えば、酸素、シァノ基)が配位したもの(例えば、 THD)を意味する。 [0034] Among the metal atoms of groups 4 to 14 of the periodic table represented by M 1 , group 4 (especially Ti), group 5 (particularly V), group 6 (particularly Mo), group 7 ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (especially Al), and Group 14 (especially Pb). Further, the atomic group containing the metal atom means a group in which another ligand (for example, oxygen or cyan group) is coordinated to the metal (for example, THD).
[0035] 上記のうち、式(1A)で表されるフタロシアニン、又は式(1B)において M1が Ti, Co, [0035] Among the above, phthalocyanine represented by the formula (1A), or M 1 in the formula (1B) is Ti, Co,
Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又は Ruであるフタロシア-ン誘導体が好まし ぐ特に有機物或いは窒素、硫黄又はリンを含む無機物の分解に対する光触媒活性 の点から(1A)の無金属のフタロシアニンや(1B)の鉄フタロシアニンやコバルトフタ ロシアニンが好ましい。これらの化合物は、いずれも市販されているか又は当業者が 容易に製造することができる。  Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru are preferred phthalocyanine derivatives, especially from the viewpoint of photocatalytic activity for decomposition of organic substances or inorganic substances containing nitrogen, sulfur or phosphorus (1A) metal-free phthalocyanine, (1B) iron phthalocyanine and cobalt phthalocyanine are preferred. These compounds are either commercially available or can be easily produced by those skilled in the art.
[0036] ナフタロシアニン誘導体とは、ナフタロシアニンの基本骨格を有する化合物を意味 する。具体的には、例えば、下記式(2A)又は(2B):  [0036] The naphthalocyanine derivative means a compound having a basic skeleton of naphthalocyanine. Specifically, for example, the following formula (2A) or (2B):
[0037] [化 2] [0037] [Chemical 2]
Figure imgf000008_0001
Figure imgf000008_0001
[0038] (式中、 M2は、周期律表 4〜14族力 なる群力 選ばれる金属原子又はその金属原 子を含む原子団を示し、点線は配位結合を示す) [In the formula, M 2 represents a group force selected from group 4 to group 14 forces in the periodic table, and represents a selected metal atom or an atomic group including the metal atom, and a dotted line represents a coordination bond.]
で表されるナフタロシアニン誘導体が挙げられる。  The naphthalocyanine derivative represented by these is mentioned.
[0039] M2で示される周期律表 4〜14族の金属原子のうち好ましくは、 4族 (特に、 Ti)、 5族( 特に、 V)、 6族(特に、 Mo)、 7族 (特に、 Mn)、 8族 (Fe, Ru, Os)、 9族 (Co, Rh, Ir)、 10 族 (Ni, Pd, Pt)、 11族 (特に、 Cu)、 12族 (特に、 Zn)、 13族 (特に、 Al)、 14族 (特に、 Pb )が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子 (例 えば、酸素、シァノ基)が配位したもの(例えば、 THD)を意味する。 [0039] Preferably one of the Periodic Table 4-14 metals atom represented by M 2, Group 4 (especially, Ti), Group 5 (in particular, V), Group 6 (in particular, Mo), 7 group ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (especially Al), and Group 14 (especially Pb). Further, the atomic group containing the metal atom means a group in which another ligand (for example, oxygen or cyan group) is coordinated to the metal (for example, THD).
[0040] 上記のうち、式(2A)表されるナフタロシアニン、又は式(2B)にお!/、て M2が Ti, Co, [0040] Among the above, the naphthalocyanine represented by the formula (2A) or the formula (2B)! /, Where M 2 is Ti, Co,
Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又は Ruであるナフタロシア-ン誘導体が好ま しぐ特に有機物或いは窒素、硫黄又はリンを含む無機物の分解に対する光触媒活 性の点から(2A)の無金属のナフタロシアニンや(2B)の鉄ナフタロシア-ンゃコバル トナフタロシアニンが好ましい。これらの化合物は、いずれも市販されているか又は当 業者が容易に製造することができる。  Naphthalocyanine derivatives which are Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru are preferred, especially in terms of photocatalytic activity for decomposition of organic substances or inorganic substances containing nitrogen, sulfur or phosphorus To (2A) metal-free naphthalocyanine and (2B) iron naphthalocyanine-cobalt naphthalocyanine. These compounds are either commercially available or can be easily produced by those skilled in the art.
[0041] ポルフィリン誘導体とは、ポルフィリンの基本骨格を有する化合物を意味する。具体 的には、例えば、下記式(3A)又は(3B):  [0041] The porphyrin derivative means a compound having a basic skeleton of porphyrin. Specifically, for example, the following formula (3A) or (3B):
[0042] [化 3]
Figure imgf000009_0001
[0042] [Chemical 3]
Figure imgf000009_0001
(3B)  (3B)
[0043] (式中、 R3は、水素原子、アルキル基、ァリール基又はへテロアリール基、 M3は、周 期律表 4〜14族力 なる群力 選ばれる金属原子又はその金属原子を含む原子団を 示し、点線は配位結合を示す) (Wherein R 3 is a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group, and M 3 is a group force selected from Group 4 to 14 of the periodic table, including a selected metal atom or a metal atom thereof. (Shows atomic group, dotted line shows coordination bond)
で表されるポルフィリン誘導体が挙げられる。  The porphyrin derivative represented by these is mentioned.
[0044] ここで、上記の R3で示されるアルキル基としては、 C の直鎖又は分岐鎖のアル [0044] Here, the alkyl group represented by R 3 is a linear or branched alkyl group of C.
1 -20  1 -20
キル基が挙げられ、好ましくは c のアルキル基である。具体的には、メチル、ェチ  And a kill group, preferably an alkyl group of c. Specifically, methyl, ethi
1 - 10  1-10
ル、 n—プロピル、イソプロピル、 n—ブチル、 sec—ブチル、イソブチル、 n—ペンチ ル、 n—へキシル、 n—へプチル、 n—ォクチルなどが挙げられる。  , N-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
[0045] また、上記の R3で示されるァリール基としては、単環又は 2環のァリール基が挙げら れ、具体的にはフエ-ル、ナフチル等が挙げられる。 [0045] Further, examples of the aryl group represented by R 3 include monocyclic or bicyclic aryl groups, and specific examples include phenyl and naphthyl.
[0046] また、上記の R3で示されるヘテロァリール基としては、ピリジル、ピラジュル等が挙 げられる。 In addition, examples of the heteroaryl group represented by R 3 include pyridyl and pyrajur.
[0047] M3で示される周期律表 4〜14族の金属原子のうち好ましくは、 4族 (特に、 Ti)、 5族( 特に、 V)、 6族(特に、 Mo)、 7族 (特に、 Mn)、 8族 (Fe, Ru, Os)、 9族 (Co, Rh, Ir)、 10 族 (Ni, Pd, Pt)、 11族 (特に、 Cu)、 12族 (特に、 Zn)、 13族 (特に、 Al)、 14族 (特に、 Pb )が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子 (例 えば、酸素、シァノ基)が配位したもの(例えば、 THD)を意味する。 [0047] Of the metal atoms in groups 4 to 14 of the periodic table represented by M 3 , group 4 (especially Ti), group 5 (particularly V), group 6 (particularly Mo), group 7 ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (especially Al), and Group 14 (especially Pb). Further, the atomic group containing the metal atom means a group in which another ligand (for example, oxygen or cyan group) is coordinated to the metal (for example, THD).
[0048] 上記のうち、式(3A)で表されるポルフィリン、又は式(3B)において M3が Ti, Co, Pt , Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又は Ru、 Rがフエ-ル又は水素原子であるポル フィリン誘導体が好ましぐ特に有機物或いは窒素、硫黄又はリンを含む無機物の分 解に対する光触媒活性の点から(3A)の無金属のポルフィリンや(3B)の鉄ボルフイリ ンゃコバルトポルフィリンが好ましい。これらの化合物は、いずれも市販されているか 又は当業者が容易に製造することができる。 [0048] Among the above, a porphyrin of the formula (3A), or M 3 in the formula (3B) Ti, Co, Pt , Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or A porphyrin derivative in which Ru and R are ferrules or hydrogen atoms is preferred, particularly from the viewpoint of photocatalytic activity for the decomposition of organic substances or inorganic substances containing nitrogen, sulfur or phosphorus (3A) metal-free porphyrins or (3B ) Iron Borhuili Nya cobalt porphyrin is preferred. These compounds are either commercially available or can be easily produced by those skilled in the art.
[0049] n型有機半導体  [0049] n-type organic semiconductor
また、 n型有機半導体としては、多環式芳香族化合物が挙げられる。該多環式芳香 族化合物は、一部が飽和していても良い。多環式芳香族化合物とは、少なくとも 2個 以上の芳香環が縮環した構造を有する化合物、或いは複数の芳香環が不飽和結合 (二重結合、三重結合等)を介して結合した構造を有する化合物等を意味する。芳香 環としては、ベンゼン環等のほかに、ピロール環、イミダゾール環、ピリジン環、キノキ サリン環等の複素芳香環も含まれる( 、ずれの環も一部が飽和して 、ても良 、)。  Examples of the n-type organic semiconductor include polycyclic aromatic compounds. The polycyclic aromatic compound may be partially saturated. A polycyclic aromatic compound is a compound having a structure in which at least two aromatic rings are condensed, or a structure in which a plurality of aromatic rings are bonded through unsaturated bonds (double bonds, triple bonds, etc.). It means the compound etc. which have. As the aromatic ring, in addition to a benzene ring, a heteroaromatic ring such as a pyrrole ring, an imidazole ring, a pyridine ring, or a quinoxaline ring is also included (a part of the shift ring may be saturated) .
[0050] 多環式芳香族化合物には、本発明に悪影響を与えない範囲で、種々の置換基を 有していても良い。置換基としては、電子吸引基が挙げられ、具体的にはカルボニル 基、スルホン基、スルホキシド基等が挙げられる。  [0050] The polycyclic aromatic compound may have various substituents as long as the present invention is not adversely affected. Examples of the substituent include an electron withdrawing group, and specific examples include a carbonyl group, a sulfone group, and a sulfoxide group.
[0051] 多環式芳香族化合物の具体例としては、 C 、C 、C 、C 、C などのフラーレン類  [0051] Specific examples of the polycyclic aromatic compound include fullerenes such as C 1, C 2, C 3, C 5 and C 5.
60 70 76 82 84  60 70 76 82 84
;カーボンナノチューブ類;電子供与体 (フエ-レンジァミン、テトラアミノエチレン、トリ ス (2,2 -ビビリジン)ルテニウムなど)をドープした導電性高分子 (ポリイミド、ポリフエ- レンビ-レン、ポリパラフエ-レン、ポリピロール等);ペリレン誘導体;ナフタレン誘導 体等が挙げられる。中でも、ペリレン誘導体、ナフタレン誘導体、フラーレン類 (C 等  Carbon nanotubes; Conductive polymers doped with electron donors (such as phenylenediamine, tetraaminoethylene, tris (2,2-biviridine) ruthenium) (polyimide, polyphenylene vinylene, polyparaphenylene, polypyrrole) Etc.); perylene derivatives; naphthalene derivatives and the like. Among them, perylene derivatives, naphthalene derivatives, fullerenes (C etc.
60 60
)等が好ましく採用され、特にペリレン誘導体やフラーレン類 (C 等)が好ましい。 And the like are preferably employed, and perylene derivatives and fullerenes (C and the like) are particularly preferred.
60  60
[0052] ペリレン誘導体とは、ペリレンの基本骨格を有する化合物を意味する。具体的には [0052] The perylene derivative means a compound having a basic skeleton of perylene. In particular
、例えば、下記式 (4A)〜(4C): For example, the following formulas (4A) to (4C):
[0053] [化 4] [0053] [Chemical 4]
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0003
[0054] (式中、 R1は、アルキル基又はァリール基を示す) [In the formula, R 1 represents an alkyl group or an aryl group]
で表されるペリレン誘導体が挙げられる。  The perylene derivative represented by these is mentioned.
[0055] ナフタレン誘導体とは、ナフタレンの基本骨格を有する化合物を意味する。具体的 には、例えば、下記式(5A) : [0055] The naphthalene derivative means a compound having a basic skeleton of naphthalene. Specifically, for example, the following formula (5A):
[0056] [化 5] [0056] [Chemical 5]
Figure imgf000011_0004
Figure imgf000011_0004
(5A)  (5A)
[0057] (式中、 R2は、アルキル基又はァリール基を示す) [In the formula, R 2 represents an alkyl group or an aryl group]
で表されるナフタレン誘導体が挙げられる。  The naphthalene derivative represented by these is mentioned.
[0058] ここで、上記の R1又は R2で示されるアルキル基としては、 C の直鎖又は分岐鎖 Here, the alkyl group represented by the above R 1 or R 2 is a C straight or branched chain.
1 - 20  1-20
のアルキル基が挙げられ、好ましくは C のアルキル基である。具体的には、メチル  And an alkyl group of C is preferable. Specifically, methyl
1 - 10  1-10
、ェチル、 n—プロピル、イソプロピル、 sec—ブチル、イソブチル、 n—ペンチル、 n— へキシル、 n プチル、 n—ォクチルなどが挙げられる。  , Ethyl, n-propyl, isopropyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-butyl, n-octyl and the like.
[0059] また、上記の R1又は R2で示されるァリール基としては、単環又は 2環のァリール基 が挙げられ、具体的にはフ ニル、ナフチル等が挙げられる。 [0059] The aryl group represented by R 1 or R 2 is a monocyclic or bicyclic aryl group. Specific examples include phenyl and naphthyl.
[0060] 有機光触媒  [0060] Organic photocatalyst
本発明の有機光触媒は、上記の p型有機半導体と n型有機半導体を含むものであ る。有機光触媒における P型有機半導体と n型有機半導体の接合形態は特に限定は ないが、光触媒活性 (即ち量子収率)の点から、両者の接触面積が増大するように接 合させることが好ま ヽ。 n型有機半導体と n型有機半導体の接触面積が増大するこ と〖こより、光照射した場合に、効率的に光誘起電子移動(photo-induced electron tra nsfer)が生じ、有効に光触媒的酸ィ匕還元反応が起きるからである。  The organic photocatalyst of the present invention contains the above p-type organic semiconductor and n-type organic semiconductor. The bonding form of the P-type organic semiconductor and the n-type organic semiconductor in the organic photocatalyst is not particularly limited, but from the viewpoint of photocatalytic activity (that is, quantum yield), it is preferable to bond the two so that the contact area between the two increases. . Since the contact area between the n-type organic semiconductor and the n-type organic semiconductor is increased, photo-induced electron transfer is efficiently generated when light is irradiated, and the photocatalytic acid is effectively removed. This is because a reduction reaction occurs.
[0061] 本発明の有機光触媒の具体的な態様としては、例えば、 p型有機半導体と n型有機 半導体とが積層した積層 (膜)構造が例示される。  [0061] Specific examples of the organic photocatalyst of the present invention include a laminated (film) structure in which a p-type organic semiconductor and an n-type organic semiconductor are laminated.
[0062] 積層構造は、例えば、 p型有機半導体と n型有機半導体とが積層した二層構造が 好ましい。これは、二層構造力 なるフィルムそのものでもよいが、基体上に n型有機 半導体と P型有機半導体の二層構造を有するものであってもよい。  [0062] The laminated structure is preferably, for example, a two-layer structure in which a p-type organic semiconductor and an n-type organic semiconductor are laminated. This may be a film itself having a two-layer structure strength, or may have a two-layer structure of an n-type organic semiconductor and a P-type organic semiconductor on a substrate.
[0063] 有機光触媒が二層構造力 なるフィルム或いは基体上に二層構造を有するもので ある場合、各層の厚さは特に限定はないが、例えば、 n型有機半導体層の厚さは 50 〜800 nm程度、好ましくは 100〜650 nm程度であり、 p型有機半導体層の厚さは 20〜 500 nm程度、好ましくは 30〜350 nm程度である。力かる厚さを採用することにより、光 触媒活性が最適となるため好まし 、。  [0063] When the organic photocatalyst has a two-layer structure on a film or a substrate having a two-layer structure, the thickness of each layer is not particularly limited. For example, the n-type organic semiconductor layer has a thickness of 50 to About 800 nm, preferably about 100 to 650 nm, and the thickness of the p-type organic semiconductor layer is about 20 to 500 nm, preferably about 30 to 350 nm. It is preferable because the photocatalytic activity is optimized by adopting a strong thickness.
[0064] また、積層構造は、 n型有機半導体と p型有機半導体とを共蒸着してなる共蒸着層 を、 p型有機半導体層と n型有機半導体層でサンドイッチした三層構造であっても良 い。もちろん、基体上にこの三層構造を有するものであってもよい。  [0064] The laminated structure is a three-layer structure in which a co-evaporated layer formed by co-evaporating an n-type organic semiconductor and a p-type organic semiconductor is sandwiched between the p-type organic semiconductor layer and the n-type organic semiconductor layer. Also good. Of course, the substrate may have this three-layer structure.
[0065] 有機光触媒が三層構造力 なるフィルム或いは基体上に三層構造を有するもので ある場合、各層の厚さは特に限定はないが、例えば、 n型有機半導体層の厚さは 50 〜800 nm程度、好ましくは 100〜650 nm程度であり、共蒸着層は、 5〜10nm程度であ り、 ρ型有機半導体層の厚さは 20〜500 nm程度、好ましくは 30〜350 nm程度である。 力かる厚さを採用することにより、光触媒活性が最適となるため好ましい。  [0065] When the organic photocatalyst has a three-layer structure on a film or a substrate having a three-layer structure, the thickness of each layer is not particularly limited. For example, the n-type organic semiconductor layer has a thickness of 50 to About 800 nm, preferably about 100 to 650 nm, the co-deposition layer is about 5 to 10 nm, and the thickness of the ρ-type organic semiconductor layer is about 20 to 500 nm, preferably about 30 to 350 nm. is there. Adopting a strong thickness is preferable because the photocatalytic activity is optimized.
[0066] 本発明の有機光触媒には、光触媒の活性を上げるために、必要に応じて遷移金属 触媒 (例えば、 Ag, Cu, Ni, Pd, Pt, Ir触媒等)等を添加しても良い。 [0067] なお、積層構造が形成される基体は、目的に応じた材質及び形状のものが選択さ れる。 [0066] In order to increase the activity of the photocatalyst, a transition metal catalyst (for example, Ag, Cu, Ni, Pd, Pt, Ir catalyst, etc.) may be added to the organic photocatalyst of the present invention as necessary. . [0067] The substrate on which the laminated structure is formed is selected from materials and shapes according to the purpose.
[0068] さらに、本発明の有機光触媒は、例えば、上記の積層構造力 なるフィルムをさら に粉砕、切断した、媒体に分散しやすい粉末状物 (粒子、微粒子等)の形態とするこ とちでさる。  [0068] Further, the organic photocatalyst of the present invention is, for example, in the form of a powder (particles, fine particles, etc.) that is easily pulverized and cut into the above-mentioned film having a laminated structural force and easily dispersed in a medium. I'll do it.
[0069] 上記した有機光触媒 (例えば、積層構造を有する基体 (担体)、粉末状物等)は、液 状媒体 (例えば水)中に分散させることができまた濾過等により回収することができる 。そのため、それらは、有機物等の被処理物を含有する媒体 (例えば水)中に分散さ せて、光照射による分解処理をおこない、処理後に光触媒のみを濾過等により分離 して再度利用できるというメリットがある。  [0069] The above-described organic photocatalyst (for example, a substrate (carrier) having a laminated structure (powder), a powdery substance, etc.) can be dispersed in a liquid medium (for example, water) and can be recovered by filtration or the like. Therefore, they can be dispersed in a medium containing an object to be processed such as organic matter (for example, water), subjected to decomposition treatment by light irradiation, and after treatment, only the photocatalyst can be separated by filtration or the like and reused. There is.
[0070] 本発明の有機光触媒は、気相又は液相中において、光照射下、特に自然光、可視 光を効率的に吸収して、有機物或いは窒素、硫黄、リン等を含む無機物を分解する ことができる。本発明の有機光触媒は、触媒効率が高ぐ自然光に含まれる可視領 域の光をエネルギー源として有効に活用できる。さらに、本発明の有機光触媒は、有 機化合物であるため加工性、成形性に優れており、しかも水中においても安定である という特徴を有している。  [0070] The organic photocatalyst of the present invention decomposes organic substances or inorganic substances containing nitrogen, sulfur, phosphorus, etc., efficiently absorbing natural light and visible light under irradiation of light in the gas phase or liquid phase. Can do. The organic photocatalyst of the present invention can effectively utilize light in the visible region contained in natural light with high catalytic efficiency as an energy source. Furthermore, since the organic photocatalyst of the present invention is an organic compound, it is excellent in processability and moldability and is stable in water.
TT.有機 ^ の ¾告  TT. Organic ^ ¾ testimony
本発明の有機光触媒の製造方法を以下に説明するが、これに限定されるものでは ない。  Although the manufacturing method of the organic photocatalyst of this invention is demonstrated below, it is not limited to this.
[0071] p型有機半導体は上記したものが使用でき、典型的には、フタロシアニン誘導体、 ナフタロシアニン誘導体、ポルフィリン誘導体が挙げられる。より好ましくは、式(1A) 、(1B)、(2A)、(2B)、(3A)、 (3B)で表される化合物が挙げられる。特に、式(1A) の無金属フタロシア-ン、式(1B)の鉄フタロシア-ン、又は式(1B)のコバルトフタ口 シァニンが好ましい。  [0071] As the p-type organic semiconductor, those described above can be used, and typical examples include phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives. More preferable examples include compounds represented by the formulas (1A), (1B), (2A), (2B), (3A), (3B). In particular, a metal-free phthalocyanine of the formula (1A), an iron phthalocyanine of the formula (1B), or a cobalt phthalocyanine of the formula (1B) is preferable.
[0072] n型有機半導体は上記したものが使用でき、 p型有機半導体との間において良好な p— n接合の関係を有して ヽるものが用いられる。 n型有機半導体としては典型的に は、ペリレン誘導体、ナフタレン誘導体又はフラーレン類が挙げられる。より好ましくは 、式 (4A)、(4B)、(4C)、(5A)で表される化合物が挙げられる。特に、効率的なキ ャリア生成の点から、式 (4A)で示されるペリレン誘導体 (3,4,9, 10—ペリレンテトラ力 ルボキシル—ビスべンズイミダゾール)又はフラーレン類(C 等)が好適に用いられる [0072] As the n-type organic semiconductor, those described above can be used, and those having a good pn junction relationship with the p-type organic semiconductor are used. Typical examples of the n-type organic semiconductor include perylene derivatives, naphthalene derivatives, and fullerenes. More preferable examples include compounds represented by the formulas (4A), (4B), (4C), and (5A). In particular, an efficient key Perylene derivatives (3,4,9,10-perylenetetraforce ruboxyl-bisbenzimidazole) or fullerenes (C, etc.) represented by formula (4A) are preferably used from the viewpoint of formation of carriers.
60  60
[0073] なお、本発明の有機光触媒には、光触媒の活性を上げるために、上記の n型有機 半導体及び p型有機半導体に加えて、必要に応じて遷移金属触媒 (例えば、 Ag, Cu,[0073] The organic photocatalyst of the present invention includes a transition metal catalyst (for example, Ag, Cu, etc.) as necessary in addition to the n-type organic semiconductor and the p-type organic semiconductor in order to increase the activity of the photocatalyst.
Ni, Pd, Pt, Ir触媒等)等を添加しても良い。 Ni, Pd, Pt, Ir catalyst, etc.) may be added.
[0074] 本発明の有機光触媒は、 n型有機半導体と p型有機半導体とが接触面積を大きく なるように p—n接合した形態を有し、力かる接合形態を形成できる製造方法であれ ば特に限定はない。 [0074] The organic photocatalyst of the present invention has a form in which an n-type organic semiconductor and a p-type organic semiconductor have a pn junction so as to increase the contact area, and can be a manufacturing method capable of forming a strong junction form. There is no particular limitation.
[0075] 例えば、有機光触媒が n型有機半導体と p型有機半導体とが積層した二層構造フィ ルムである場合、基体上に n型有機半導体と p型有機半導体とを積層して二層構造 を形成し、該ニ層構造フィルムを基体力 剥離させることにより製造できる。この場合 、基体の材質としては、形成された二層構造フィルムを容易に剥離できるものであれ ば特に限定はない。例えば、ガラス基板が挙げられる。得られた二層構造フィルムは 、そのまま光触媒として用いることもできる力 必要に応じて二層構造フィルムに粘着 剤層を設けて基材に貼着したり、粉砕'切断して粉末状にすることも可能である。  [0075] For example, when the organic photocatalyst is a two-layer structure film in which an n-type organic semiconductor and a p-type organic semiconductor are stacked, the n-type organic semiconductor and the p-type organic semiconductor are stacked on the substrate to form a two-layer structure. And the two-layer structure film can be produced by peeling the substrate force. In this case, the material of the substrate is not particularly limited as long as the formed two-layer structure film can be easily peeled off. For example, a glass substrate is mentioned. The obtained two-layer structure film can be used as it is as a photocatalyst. If necessary, an adhesive layer is provided on the two-layer structure film and adhered to a substrate, or crushed and cut into a powder form. Is also possible.
[0076] 或 、は、初めから特定の基体上に、直接 n型 (又は p型)有機半導体と p型 (又は n 型)有機半導体とを積層して、基体上に有機光触媒層を設けることもできる。この場 合、基体の材質としては、本発明の有機光触媒を積層できるものであれば良ぐ例え ば、セラミックス (シリカ、アルミナ、ジルコユア等)、金属、合金、木材、活性炭、軽石、 コンクリート、紙、繊維、濾紙等が挙げられる。なお、基体の形状は、用途に応じたも のであればよい。  Alternatively, an n-type (or p-type) organic semiconductor and a p-type (or n-type) organic semiconductor are directly laminated on a specific substrate from the beginning, and an organic photocatalytic layer is provided on the substrate. You can also. In this case, as the material of the substrate, any material that can be laminated with the organic photocatalyst of the present invention is suitable. For example, ceramics (silica, alumina, zirconia, etc.), metal, alloy, wood, activated carbon, pumice, concrete, paper , Fiber, filter paper and the like. In addition, the shape of the substrate may be any depending on the application.
[0077] n型有機半導体及び p型有機半導体を基体に積層する方法は、公知の方法を採用 することができ、例えば、真空蒸着法、スパッタリング法、電気化学的被覆 (電析)、塗 布等の方法が挙げられる。中でも、ペリレン誘導体 Zフタロシアニン誘導体系に関し ては、均一な被覆膜が得られる点から、真空蒸着法が好ましい。  [0077] As a method of laminating an n-type organic semiconductor and a p-type organic semiconductor on a substrate, a known method can be employed, for example, vacuum deposition, sputtering, electrochemical coating (electrodeposition), coating And the like. Among these, for the perylene derivative Z phthalocyanine derivative system, a vacuum deposition method is preferable because a uniform coating film can be obtained.
[0078] 有機半導体が二層構造の場合、各層の膜厚は特に限定はないが、前述した範囲 に適宜設定することが好ましい。即ち、 p型有機半導体層の厚さは 20〜500 nm程度、 好ましくは 30〜350 nm程度であり、 n型有機半導体層の厚さは 50〜800 nm程度、好 ましくは 100〜650 nm程度である。 [0078] When the organic semiconductor has a two-layer structure, the thickness of each layer is not particularly limited, but is preferably set as appropriate within the above-described range. That is, the thickness of the p-type organic semiconductor layer is about 20 to 500 nm. The thickness is preferably about 30 to 350 nm, and the thickness of the n-type organic semiconductor layer is about 50 to 800 nm, preferably about 100 to 650 nm.
[0079] また、有機半導体が三層構造の場合、基体上に p型 (又は n型)有機半導体層を形 成し、その上に p型有機半導体と n型有機半導体とからなる共蒸着層を形成し、さら にその上に n型 (又は p型)有機半導体層を積層してなる、基体上に三層構造を有す る有機光触媒としてもよい。さらには、該基体上から三層構造フィルムを剥離して三 層構造フィルムを形成できる。なお、積層方法は、上記の方法を採用でき、共蒸着層 も公知の方法を用いて形成できる。  [0079] Also, when the organic semiconductor has a three-layer structure, a p-type (or n-type) organic semiconductor layer is formed on the substrate, and a co-deposition layer comprising the p-type organic semiconductor and the n-type organic semiconductor is formed thereon. In addition, an organic photocatalyst having a three-layer structure on a substrate may be formed by forming an n-type (or p-type) organic semiconductor layer thereon. Further, the three-layer structure film can be formed by peeling the three-layer structure film from the substrate. In addition, said lamination | stacking method can be employ | adopted for a lamination | stacking method, and a co-deposition layer can also be formed using a well-known method.
[0080] 有機半導体が三層構造の場合、各層の膜厚は特に限定はないが、前述した範囲 に適宜設定することが好ましい。即ち、 n型有機半導体層の厚さは 50〜800 nm程度、 好ましくは 100〜650 nm程度であり、共蒸着層は 5〜10nm程度であり、 p型有機半導 体層の厚さは 20〜500 nm程度、好ましくは 30〜350 nm程度である。  [0080] When the organic semiconductor has a three-layer structure, the film thickness of each layer is not particularly limited, but is preferably set as appropriate within the above-described range. That is, the thickness of the n-type organic semiconductor layer is about 50 to 800 nm, preferably about 100 to 650 nm, the co-deposited layer is about 5 to 10 nm, and the thickness of the p-type organic semiconductor layer is 20 It is about ˜500 nm, preferably about 30 to 350 nm.
[0081] さらに、積層構造に加えて、さらに外層の上に、電解析出法、懸濁液のキャスト法等 を用いて、遷移金属触媒 (例えば、 Ni, Pd, Pt, Ag, Ir触媒等、好ましくは Ag又は IrO  [0081] Further, in addition to the laminated structure, a transition metal catalyst (for example, Ni, Pd, Pt, Ag, Ir catalyst, etc.) is further formed on the outer layer by using an electrolytic deposition method, a suspension casting method, or the like. , Preferably Ag or IrO
2 触媒)を担持したものであってもよい。担持される遷移金属触媒は、外層を完全に被 覆する必要はなく分散担持されて ヽればよ ヽ。遷移金属触媒の平均粒径は 5〜800n m程度 (好ましくは 10〜100nm程度)の微粒子状態であればよい。  2 catalyst) may be supported. The transition metal catalyst to be supported need not be completely covered with the outer layer, but may be dispersed and supported. The average particle diameter of the transition metal catalyst may be in the fine particle state of about 5 to 800 nm (preferably about 10 to 100 nm).
in. ^Mm^ ^rm^  in. ^ Mm ^ ^ rm ^
本発明の有機光触媒は、光照射下、気相又は水相中に含まれる有機物或いは窒 素、硫黄又はリンを含む無機物等の分解対象物と接触することにより、分解すること ができる。  The organic photocatalyst of the present invention can be decomposed by contact with an organic substance contained in the gas phase or aqueous phase or an object to be decomposed such as an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation.
[0082] 本発明の有機光触媒で使用する光は、広範な波長を有する光 (波長 220〜1200n m程度)を用いることができる。その光源としては、例えば、自然光 (太陽光)、蛍光灯 、ハロゲンランプ、高圧水銀灯、低圧水銀灯、ブラックライト、エキシマレーザ、重水素 ランプ、キセノンランプ、 Hg-Zn-Pbランプ等力 選ばれる 1種類の光源または波長域 の異なる 2種類の光源を用いることができる。とりわけ、本発明の有機光触媒は、自然 光(波長 300〜800nm)、特に可視光(波長が 400nm以上、特に 400〜750nm程度)を 利用できる点で極めて実用的である。無機光触媒として用いられる酸ィ匕チタンでは、 屋内では紫外光源が必要であったことを考慮すると、極めて有意義である。 [0082] The light used in the organic photocatalyst of the present invention can be light having a wide range of wavelengths (wavelength of about 220 to 1200 nm). For example, natural light (sunlight), fluorescent lamp, halogen lamp, high pressure mercury lamp, low pressure mercury lamp, black light, excimer laser, deuterium lamp, xenon lamp, Hg-Zn-Pb lamp, etc. Or two types of light sources with different wavelength ranges can be used. In particular, the organic photocatalyst of the present invention is extremely practical in that natural light (wavelength of 300 to 800 nm), particularly visible light (wavelength of 400 nm or more, particularly about 400 to 750 nm) can be used. In acid titanium used as an inorganic photocatalyst, Considering the necessity of an ultraviolet light source indoors, this is extremely meaningful.
[0083] また、本発明の有機光触媒は、光照射のみにより有機物或いは窒素、硫黄又はリ ンを含む無機物を効率的に分解することができる。この点において、電気化学的に バイアスを印カロしながら、光触媒に光照射して有機物等を分解処理する方法 (例え ば、 ChemPhysChem 2004, 5, 716-720)とは、一線を画するものである。電気化学的 な分解方法では、例えば、触媒表面における酸化分解で生じるマイナス電荷 (電子) は電極を通して除かれるが、本発明の有機光触媒では、該電子は処理媒体中に存 在する酸素により受容されて除去されると考えられる。そのため、気相又は液相(水 相)中に酸素が高濃度に存在する場合に、より効率的に分解反応が進行する。例え ば、気相中では酸素濃度が 20体積%、さらに 25体積%以上とすることが好ましい。 また、液相(例えば、水)中では空気や酸素含有気体を供給 (パブリング等)したり、 液相を撹拌しながら反応させるのが好まし 、。  [0083] Further, the organic photocatalyst of the present invention can efficiently decompose organic substances or inorganic substances containing nitrogen, sulfur or phosphorus only by light irradiation. In this respect, the method of decomposing organic matter by irradiating the photocatalyst with light while applying a bias electrochemically (for example, ChemPhysChem 2004, 5, 716-720) is a distinct line. is there. In the electrochemical decomposition method, for example, negative charges (electrons) generated by oxidative decomposition on the surface of the catalyst are removed through the electrode, but in the organic photocatalyst of the present invention, the electrons are accepted by oxygen present in the treatment medium. It is thought that it will be removed. Therefore, the decomposition reaction proceeds more efficiently when oxygen is present in a high concentration in the gas phase or the liquid phase (aqueous phase). For example, in the gas phase, the oxygen concentration is preferably 20% by volume, more preferably 25% by volume or more. Also, in the liquid phase (for example, water), it is preferable to supply air or oxygen-containing gas (such as publishing) or to react while stirring the liquid phase.
[0084] 気相中乃至水相中における分解対象物としては、悪臭原因物質、粉塵、微生物、 ウィルス、シックハウス症候群の原因物質 (ホルムアルデヒド等)、臭い成分 (たばこ臭 、ペット臭等)、有害物質 (ダイォキシン、 PCB等)、農薬、エチレンガス、窒素化合物( アンモニア、 NOx等)、硫黄化合物 (メルカブタン、スルフイド等)や、リン化合物(有機 リン等)が挙げられる。  [0084] Degradable substances in the gas phase or aqueous phase include malodorous substances, dust, microorganisms, viruses, sick house syndrome causative substances (formaldehyde, etc.), odorous components (cigarette odor, pet odor, etc.), toxic substances (Dioxin, PCB, etc.), agricultural chemicals, ethylene gas, nitrogen compounds (ammonia, NOx, etc.), sulfur compounds (mercapbutane, sulfide, etc.) and phosphorus compounds (organic phosphorus, etc.).
[0085] また、本発明の有機光触媒は、 p型有機半導体と n型有機半導体の ヽずれも有機 物から構成されるため加工乃至成形性に優れて ヽる。無機光触媒の酸ィ匕チタンでは 加工性乃至成形性に難があつたが、本発明の有機光触媒では、この様な問題は解 消される。そのため、酸化チタンの用途を越える極めて広範な用途に用いられる。  [0085] Further, the organic photocatalyst of the present invention is excellent in processing or moldability because the difference between the p-type organic semiconductor and the n-type organic semiconductor is also composed of an organic substance. The inorganic photocatalyst, titanium oxide, has difficulty in processability and moldability, but the organic photocatalyst of the present invention can solve such problems. Therefore, it is used for a very wide range of applications that exceed the applications of titanium oxide.
[0086] 本発明の有機光触媒は、上記気相中乃至水相中における分解対象物をろ過し分 解する、各種フィルターの表面素材として用いることができる。本発明の有機光触媒 をフィルタ一基体に固着する方法は、上記した真空蒸着法、スパッタリング法、電気 化学的被覆 (電析)、塗布等の方法を用いればょ ヽ。  [0086] The organic photocatalyst of the present invention can be used as a surface material of various filters for filtering and decomposing an object to be decomposed in the gas phase to the aqueous phase. As a method for fixing the organic photocatalyst of the present invention to a single filter substrate, the above-described methods such as vacuum deposition, sputtering, electrochemical coating (electrodeposition), and coating may be used.
[0087] また、本発明の有機光触媒は、有機物或いは窒素、硫黄又はリンを含む無機物を 含む被処理水に分散させて、光照射による分解処理をおこない、さらに、処理後に 該有機光触媒をろ過して分離回収し、再度水処理に供することができる。 [0088] また、本発明の有機光触媒は塗料に混入させて、光触媒活性を有する塗料組成物 とすることができる。該塗料組成物では、塗料に対し有機光触媒の親和性が高いた め、均一な触媒の分散が可能となる。 [0087] Further, the organic photocatalyst of the present invention is dispersed in water to be treated containing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus, subjected to a decomposition treatment by light irradiation, and further filtered after the treatment. Can be separated and recovered and used again for water treatment. [0088] Further, the organic photocatalyst of the present invention can be mixed into a paint to obtain a paint composition having photocatalytic activity. In the coating composition, since the organic photocatalyst has a high affinity for the coating, the catalyst can be dispersed uniformly.
[0089] 本発明の有機光触媒は水に対しても安定であるため、上記分解対象物を含む水の 処理も効率的に実施できる。例えば、該粉末を被処理水に分散させて光を照射して 水を処理し、処理後は該粉末をろ過して処理水を得、該粉末は簡便に回収できる。 なお、水相 (被処理水)としては、例えば、工業用循環水、工業用排水、産業用排水 、上水、下水、土壌及び地下水、池、プール、生活排水、農薬残存廃液、風呂、貯水 タンク、湖水、ダムなどが挙げられる。これらの水相は、 pH、硬度等は特に限定はな ぐ効率的に処理が可能である。特に、 pH7〜: L 1程度とするのが好ましい。  [0089] Since the organic photocatalyst of the present invention is stable against water, the treatment of water containing the decomposition target can be carried out efficiently. For example, the powder is dispersed in water to be treated and irradiated with light to treat the water. After the treatment, the powder is filtered to obtain treated water, and the powder can be easily recovered. The water phase (treated water) includes, for example, industrial circulating water, industrial wastewater, industrial wastewater, clean water, sewage, soil and groundwater, ponds, pools, domestic wastewater, pesticide residue wastewater, bath, water storage Examples include tanks, lakes, and dams. These aqueous phases can be treated efficiently without any particular limitation on pH, hardness, and the like. In particular, the pH is preferably about 7 to L1.
発明の効果  The invention's effect
[0090] 本発明の p型有機半導体と n型有機半導体酸化チタンからなる有機光触媒は、可 視光照射による有機物等の分解に対して高い触媒活性を有している。特に、本発明 の有機光触媒は、可視光全域の光エネルギーを利用できる光触媒であり、特に太陽 光(自然光)を充分に利用できる点にぉ 、て非常に有効な光触媒である。  [0090] The organic photocatalyst comprising the p-type organic semiconductor and the n-type organic semiconductor titanium oxide of the present invention has a high catalytic activity against the decomposition of organic substances and the like by visible light irradiation. In particular, the organic photocatalyst of the present invention is a photocatalyst that can use light energy in the entire visible light range, and is a very effective photocatalyst in particular because it can sufficiently use solar light (natural light).
[0091] 本発明の有機光触媒は、無機の光触媒と異なり、 p型有機半導体と n型有機半導体 を積層させるだけで得られ、成形加工が極めて容易であるため、実用性が高い。  [0091] Unlike the inorganic photocatalyst, the organic photocatalyst of the present invention is obtained by simply laminating a p-type organic semiconductor and an n-type organic semiconductor, and has a very high practicality because it is extremely easy to mold.
[0092] 有機材料は一般に酸ィ匕分解しやす ヽが、本発明の有機光触媒は気相又は液相中 において安定に機能する。もちろん、屋外だけでなく室内でも利用可能である。 図面の簡単な説明  [0092] The organic material is generally easily decomposed by acid, but the organic photocatalyst of the present invention functions stably in the gas phase or liquid phase. Of course, it can be used indoors as well as outdoors. Brief Description of Drawings
[0093] [図 1]実施例 1及び 2で使用する有機光触媒を用いた光触媒反応用の試験セルの模 式図である。  FIG. 1 is a schematic diagram of a test cell for a photocatalytic reaction using an organic photocatalyst used in Examples 1 and 2.
[図 2]比較例 1で使用する有機光触媒を用いた光触媒反応用の試験セルの模式図 である。  FIG. 2 is a schematic diagram of a test cell for a photocatalytic reaction using the organic photocatalyst used in Comparative Example 1.
[図 3]実施例 1及び 2、比較例 1の光触媒反応における反応時間(分)とメチレンブル 一濃度( μ Μ)との関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the reaction time (minutes) and the methylene blue concentration (μΜ) in the photocatalytic reactions of Examples 1 and 2 and Comparative Example 1.
[図 4]実施例 3及び 4、比較例 2〜4の光触媒反応における反応時間(分)とメチレンブ ルー濃度( μ Μ)との関係を示すグラフである。 発明を実施するための最良の形態 FIG. 4 is a graph showing the relationship between the reaction time (minutes) and the methylene blue concentration (μΜ) in the photocatalytic reactions of Examples 3 and 4 and Comparative Examples 2 to 4. BEST MODE FOR CARRYING OUT THE INVENTION
[0094] 以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によ つて限定されるものではな 、。  [0094] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0095] ¾施例 ί (可視,光照細きにおける有機光触 の活件評 ) [0095] ¾ Example ί (Activity of organic light touch in visible and light illumination)
(1)有機光触媒材料として、 η型半導体である 3,4,9,10 ペリレンテトラカルボキシル ビスべンズイミダゾール (以下「PV」と表記する)及び p型半導体である無金属フタ口 シァニン (以下「H Pc」と表記する)を用いた。本発明においては、それぞれ昇華精製  (1) Organic photocatalyst materials include η-type semiconductors such as 3,4,9,10 perylenetetracarboxyl bisbenzimidazole (hereinafter referred to as “PV”) and p-type semiconductors containing metal-free lid mouth cyanine (hereinafter “ H Pc ”). In the present invention, each sublimation purification
2  2
したものを用いた。  What was done was used.
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った 。まず、ガラス基板上に PVを 220nmの厚さで、次いで、 PV上に H Pcを 70nmの厚さで  (2) The double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, PV on the glass substrate with a thickness of 220 nm, then HPc with a thickness of 70 nm on the PV.
2  2
責屑し 7こ。  7 wastes.
(3)実験装置の構成 ·方法は以下の通りに行った。まず、図 1に示すような試験セル を作製した。円筒状の試験漕としては、丸本ストルァス社製マルチフォーム(内径 40m m、高さ 30mm (code: EFOPY, No:40300046))を用いた。ガラス板の上にポリプロピレ ンシートを敷 、たものをセルの底部とした。円筒状の試験漕部とポリプロピレンシート 間を密閉するために、その接触部分にシリコングリース (高真空用、耐薬品性を有す るもの)を塗布した。 (参考:光触媒製品フォーラム編、光触媒製品における湿式分解 性能試験方法 (2004年 5月 28日改訂) )  (3) Configuration of the experimental apparatus · The method was as follows. First, a test cell as shown in Fig. 1 was fabricated. As a cylindrical test rod, a multifoam made by Marumoto Struth Co., Ltd. (inner diameter: 40 mm, height: 30 mm (code: EFOPY, No: 40300046)) was used. A polypropylene sheet was laid on the glass plate, and the tile was used as the bottom of the cell. In order to seal between the cylindrical test cage and the polypropylene sheet, silicon grease (for high vacuum and chemical resistance) was applied to the contact area. (Reference: Photocatalyst Product Forum, wet decomposition performance test method for photocatalyst products (revised on May 28, 2004))
(4)メチレンブルー三水和物は JIS K 8897に規定された特級試薬を、精製水は第 14 日本薬局方基準に適合したものを用いた。フレッシュなメチレンブルー水溶液(10 μ mol/1)を作製し、水酸ィ匕ナトリウムあるいは水酸ィ匕カリウムを用 、て pH 10に調整した 。上記(2)で作製した二重層フィルムはメチレンブルー水溶液を用いてガラス基板か ら剥離させて、試験漕の上部に静置した。この時の有機光触媒の有効面積は約 12.5 cm2であり、試験漕には 35mlのメチレンブルー水溶液が満たされた。円筒状試験セ ルの上部はカットオフフィルター(L-42、 HO YA製、 5 X 5cm2)で閉じた。 (4) Methylene blue trihydrate was a special grade reagent stipulated in JIS K 8897, and purified water conforming to the 14th Japanese Pharmacopoeia standard was used. A fresh aqueous methylene blue solution (10 μmol / 1) was prepared and adjusted to pH 10 using sodium hydroxide or potassium hydroxide. The double layer film prepared in (2) above was peeled off from the glass substrate using a methylene blue aqueous solution and allowed to stand on the top of the test tube. The effective area of the organic photocatalyst at this time was about 12.5 cm 2 , and the test bowl was filled with 35 ml of methylene blue aqueous solution. The upper part of the cylindrical test cell was closed with a cut-off filter (L-42, manufactured by HOYA, 5 X 5 cm 2 ).
(5)有機光触媒反応は、ハロゲンランプ(日本ピーアイ社製)を光源として、約 60 mW cm— 2の強度の可視光(波長: 400〜750nm)を 3時間照射して行った。この時、試験セ ルの上部力も光照射を施した。反応開始後から 180分経過した時点で、メチレンブル 一水溶液の可視吸収スペクトルを測定し、その分解量を定量した。尚、可視吸収スぺ タトルの測定には、島津製作所製 MultiSpec-1500を用い、分光光度計用測定セル は榭脂製で光路長 10mmのもので、波長域 600〜700nmの光の透過率が 80%以上の ものを用いた。 (5) The organic photocatalytic reaction was carried out by irradiating visible light (wavelength: 400 to 750 nm) with an intensity of about 60 mW cm- 2 for 3 hours using a halogen lamp (manufactured by Nihon PI Corporation) as a light source. At this time, the upper force of the test cell was also irradiated with light. When 180 minutes have passed since the start of the reaction, The visible absorption spectrum of one aqueous solution was measured, and the amount of decomposition was quantified. The visible absorption spectrum was measured using a MultiSpec-1500 manufactured by Shimadzu Corporation. The spectrophotometer measurement cell was made of rosin and had an optical path length of 10 mm, and had a light transmittance in the wavelength range of 600 to 700 nm. More than 80% was used.
(6)上記(5)の結果、メチレンブルーの分解の進行により、吸光度の減少が観察され た。 180分後におけるメチレンブルー水溶液の濃度は約 0.5 mol/1減少し、初期濃度 の約 5%分解が起こったことが確認された。結果を図 3に示す。  (6) As a result of (5) above, a decrease in absorbance was observed as methylene blue decomposed. After 180 minutes, the concentration of the aqueous methylene blue solution decreased by about 0.5 mol / 1, confirming that about 5% decomposition of the initial concentration occurred. The results are shown in Figure 3.
[0096] 実施例 2 (可視 照射時における有機光蝕 の活件評価) [0096] Example 2 (Evaluation of the activity of organic photoerosion during visible irradiation)
(1)有機光触媒材料として、 n型半導体である PV及び p型半導体である鉄フタロシア ニン (以下「FePc」と表記する)を用いた。本発明においては、それぞれ昇華精製した ものを用いた。  (1) PV as an n-type semiconductor and iron phthalocyanine (hereinafter referred to as “FePc”) as a p-type semiconductor were used as organic photocatalyst materials. In the present invention, those purified by sublimation were used.
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った 。まず、ガラス基板上に PVを 130nmの厚さで、次いで、 PV上に FePcを 70nmの厚さで 責屑し 7こ。  (2) The double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, scrape PV on the glass substrate with a thickness of 130 nm, then scrape FePc on the PV with a thickness of 70 nm.
(3)実験装置の構成 ·方法は、実施例 1の(3)〜(5)と同様とした。  (3) Configuration of the experimental apparatus The method was the same as (3) to (5) in Example 1.
(4)実験の結果、メチレンブルーの分解の進行により、吸光度の減少が観察された。 180分後におけるメチレンブルー水溶液の濃度は約 1.2 mol/1減少し、初期濃度の 約 12%分解が起こったことが確認された。  (4) As a result of the experiment, a decrease in absorbance was observed as methylene blue decomposed. After 180 minutes, the concentration of the aqueous methylene blue solution decreased by about 1.2 mol / 1, confirming that about 12% of the initial concentration had decomposed.
[0097] 一方で、有機光触媒を用いないこと以外は実施例 1と同じ条件で実験したところ、 光照射下でもメチレンブルーの分解が確認されな力つた。  On the other hand, when an experiment was performed under the same conditions as in Example 1 except that no organic photocatalyst was used, the decomposition of methylene blue was confirmed even under light irradiation.
[0098] 実施例 1及び 2の結果から、広範な可視光を吸収する有機光触媒を用いて、メチレ ンブルーの分解反応が起こることがゎカゝつた。結果を図 3に示す。 [0098] From the results of Examples 1 and 2, it was found that the decomposition reaction of methylene blue occurred using an organic photocatalyst that absorbs a wide range of visible light. The results are shown in Figure 3.
[0099] 比 例 1 (可視 照射時における酸化チタン光蝕 の活件評価) [0099] Comparative Example 1 (Evaluation of the activity of titanium oxide photoemission during visible irradiation)
(1)酸ィ匕チタン光触媒を用いて、実施例 1及び 2に準じた方法でメチレンブルーの分 解試験を行った。  (1) A methylene blue decomposition test was conducted by the method according to Examples 1 and 2 using an acid-titanium photocatalyst.
(2)酸ィ匕チタン光触媒として、光触媒標準サンプル (50SQC、光触媒研究所社製)を 用いた。これは酸ィ匕チタン光触媒がガラス板に被覆されたもので、酸化チタンの厚さ 力 μ m、ガラス板のサイズが 50 mm X 50 mm X (厚さ) 1.8mmであるものを使用した (3)酸ィ匕チタンはその表面にメチレンブルーを吸着する性質を有するため、その表 面をメチレンブルーで飽和吸着させた。用いた試薬及び水は実施例 1及び 2と同様 である。 pHIOに調製した 20 mol/1のメチレンブルー水溶液を用いて、図 2に示すよう な試験セル中で酸ィ匕チタン表面への吸着を行った。 12時間吸着後、液を取り出して(2) A photocatalyst standard sample (50SQC, manufactured by Photocatalyst Laboratory Co., Ltd.) was used as an acid-titanium photocatalyst. This is a glass plate coated with a titanium oxide photocatalyst, with a titanium oxide thickness of μm and a glass plate size of 50 mm x 50 mm x (thickness) 1.8 mm. (3) Since titanium dioxide has the property of adsorbing methylene blue on its surface, the surface was saturated and adsorbed with methylene blue. The reagents and water used were the same as in Examples 1 and 2. Using a 20 mol / 1 methylene blue aqueous solution prepared to pHIO, adsorption was performed on the surface of titanium oxide in a test cell as shown in Fig. 2. After adsorption for 12 hours, remove the liquid
、吸光度を測定したところ、メチレンブルー水溶液の濃度が低下していたので、さらに 12時間、 20 mol/1のメチレンブルー水溶液を用いて吸着を実行した。この時のメチ レンブルー水溶液の濃度が 10 μ mol/1以上であったので、この表面にメチレンブルー を飽和吸着した酸ィ匕チタンを光触媒反応に用いた。 When the absorbance was measured, the concentration of the methylene blue aqueous solution was decreased, and therefore, adsorption was carried out using a 20 mol / 1 aqueous solution of methylene blue for another 12 hours. Since the concentration of the methylene blue aqueous solution at this time was 10 μmol / 1 or more, titanium oxide with saturated adsorption of methylene blue on the surface was used for the photocatalytic reaction.
(4)図 2に示すような試験セルを用いて、光触媒反応を行った。試験漕としては、丸 本ストルァス社製マルチフォーム(内径 40mm、高さ 30mm (code: EFOPY, No:403000 46))を用いた。試験セルは pHIOに調整されたフレッシュなメチレンブルー水溶液(10 μ mol/U 35ml)で満たした。  (4) A photocatalytic reaction was performed using a test cell as shown in FIG. As a test rod, Marumoto Struas Multiform (inner diameter 40 mm, height 30 mm (code: EFOPY, No: 403000 46)) was used. The test cell was filled with a fresh aqueous methylene blue solution (10 μmol / U 35 ml) adjusted to pHIO.
(5)光触媒反応は、ハロゲンランプ(日本ピーアイ社製)を光源として、約 60 mWcm"2 の強度の(波長: 400〜750nm)を 3時間照射して行った。この時、試験セルの下部か ら光照射を施した。反応開始後から 20分、 40分、 60分、 80分、 100分、 120分、 140分、 160分、 180分それぞれ経過した時点で、メチレンブルー水溶液の可視吸収スぺタト ルを測定し、その分解量を定量した。尚、可視吸収スペクトル測定装置と測定用セル は実施例 1及び 2と同様である。 (5) The photocatalytic reaction was performed by irradiating with a halogen lamp (manufactured by Nippon P-I Co., Ltd.) for 3 hours at a wavelength of about 60 mWcm " 2 (wavelength: 400 to 750 nm). When the reaction was started 20 minutes, 40 minutes, 60 minutes, 80 minutes, 100 minutes, 120 minutes, 140 minutes, 160 minutes, and 180 minutes after the start of the reaction, the visible absorption of the methylene blue solution was observed. The petrol was measured and the amount of decomposition was quantified, and the visible absorption spectrum measuring apparatus and measuring cell were the same as in Examples 1 and 2.
(6)上記(5)の結果、メチレンブルーの分解の進行は認められなかった。  (6) As a result of the above (5), no progress of decomposition of methylene blue was observed.
[0100] また、酸ィ匕チタン光触媒を用いないこと以外は実施例 1と同じ条件で実験したところ 、可視光照射下でもメチレンブルーの分解が確認されなカゝつた。  [0100] Further, an experiment was conducted under the same conditions as in Example 1 except that no titanium oxide photocatalyst was used. As a result, decomposition of methylene blue was not confirmed even under irradiation with visible light.
[0101] 実施例 1及び 2と比較例 1の結果から、有機二重層フィルムが広範な可視光応答性 を有する光触媒であることがわかり、可視光を有効に利用できる点で、従来の酸化チ タンよりも優れた光触媒であることが確認された。結果を図 3に示す。  [0101] From the results of Examples 1 and 2 and Comparative Example 1, it can be seen that the organic double layer film is a photocatalyst having a wide range of visible light responsiveness. It was confirmed that the photocatalyst was superior to tan. The results are shown in Figure 3.
[0102] 実施例 3 (可視 照射時における有機光蝕 の活件評価)  [0102] Example 3 (Evaluation of activity of organic photoerosion during visible irradiation)
(1)有機光触媒材料として、 n型半導体である 3,4,9,10 ペリレンテトラカルボキシル ビスべンズイミダゾール(PV)及び p型半導体である無金属フタロシアニン(H Pc)を 用いた。本発明においては、それぞれ昇華精製したものを用いた。 (1) As organic photocatalyst materials, n-type semiconductor 3,4,9,10 perylenetetracarboxyl bisbenzimidazole (PV) and p-type semiconductor metal-free phthalocyanine (HPc) Using. In the present invention, those purified by sublimation were used.
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った 。まず、ガラス基板上に PVを 200nmの厚さで、次いで、 PV上に H Pcを 120nmの厚さで  (2) The double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, PV on the glass substrate with a thickness of 200 nm, then HPc on the PV with a thickness of 120 nm.
2  2
責屑し 7こ。  7 wastes.
(3)実験装置の構成'方法は以下の通りに行った。まず、ガラスセル(1 cm X 1 cm X 5 cm)の内部に所定濃度のメチレンブルー水溶液を満たした。  (3) Configuration of the experimental apparatus' method was performed as follows. First, a glass cell (1 cm × 1 cm × 5 cm) was filled with a predetermined concentration of methylene blue aqueous solution.
(4)メチレンブルー三水和物は JIS K 8897に規定された特級試薬を、精製水は第 14 日本薬局方基準に適合したものを用いた。フレッシュなメチレンブルー水溶液(10 μ mol/1)を作製し、水酸ィ匕ナトリウム用いて pHIOに調整した。上記(2)で作製した光触 媒担持基板をセルの側面に触媒面が内側となるように静置した。この時の有機光触 媒の面積は約 5 cm2であり、試験漕には 5mlのメチレンブルー水溶液が満たされた。 上部は開口状態であり大気と触れている。セル底部にはマグネティックスターラで攪 拌されている。 (4) Methylene blue trihydrate was a special grade reagent stipulated in JIS K 8897, and purified water conforming to the 14th Japanese Pharmacopoeia standard was used. A fresh methylene blue aqueous solution (10 μmol / 1) was prepared and adjusted to pHIO using sodium hydroxide. The photocatalyst carrying substrate produced in the above (2) was placed on the side surface of the cell so that the catalyst surface was inside. The area of the organic photocatalyst at this time was about 5 cm 2 , and the test tube was filled with 5 ml of methylene blue aqueous solution. The upper part is open and in contact with the atmosphere. The bottom of the cell is stirred with a magnetic stirrer.
(5)有機光触媒反応は、ハロゲンランプ(日本ピーアイ社製、 100 mWcm— 2)を光源と して可視光 (波長: 400〜750nm) 3時間照射して行った。この時、試験セルの側部か ら光照射を施した。照射面積は lcm2である。反応中、直角方向から 1 /z Wcm— 2の白色 光を照射して、その透過量力 メチレンブルー水溶液の可視吸収スペクトルを測定し 、その分解量を定量した。尚、可視吸収スペクトルの測定には、大塚電子製 MPCD- 7000を用いた。 (5) The organic photocatalytic reaction was carried out by irradiating visible light (wavelength: 400 to 750 nm) for 3 hours using a halogen lamp (manufactured by Nihon PI Corp., 100 mWcm- 2 ) as a light source. At this time, light was applied from the side of the test cell. Irradiation area is lcm 2. During the reaction, white light of 1 / z Wcm- 2 was irradiated from a right angle, and the visible absorption spectrum of the aqueous solution of methylene blue was measured, and the amount of decomposition was quantified. For measurement of the visible absorption spectrum, MPCD-7000 manufactured by Otsuka Electronics was used.
(6)上記(5)の結果、メチレンブルーの分解の進行により、吸光度の大幅な減少が観 察された。結果を図 4に示す。  (6) As a result of (5) above, a significant decrease in absorbance was observed as methylene blue decomposed. The results are shown in Fig. 4.
実施例 4 (可視 照射時における有機光蝕 の活件評価)  Example 4 (Evaluation of activity of organic photoerosion during visible irradiation)
(1)有機光触媒材料として、 n型半導体である PV及び p型半導体である FePcを用いた 。本発明においては、それぞれ昇華精製したものを用いた。  (1) PV as an n-type semiconductor and FePc as a p-type semiconductor were used as organic photocatalytic materials. In the present invention, those purified by sublimation were used.
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った 。まず、ガラス基板上に PVを 200nmの厚さで、次いで、 PV上に FePcを 50nmの厚さで 積層した。 FePcに関しては溶液よりキャストする方法も採った。  (2) The double layer film used as the organic photocatalytic element was produced by a vacuum deposition method. First, PV was laminated on a glass substrate with a thickness of 200 nm, and then FePc was laminated on the PV with a thickness of 50 nm. For FePc, a method of casting from a solution was also employed.
(3)実験装置の構成 ·方法は、実施例 3の(3)〜(5)と同様とした。 (4)実験の結果、メチレンブルーの分解の進行により、吸光度の大幅な減少が観察 された。結果を図 4に示す。 (3) Configuration of the experimental apparatus The method was the same as in (3) to (5) of Example 3. (4) As a result of the experiment, a significant decrease in absorbance was observed as methylene blue decomposed. The results are shown in Fig. 4.
[0104] i:hfei列 2 (蝕 なし Γ視, 照 におけるブランク 験) [0104] i: hfei row 2 (no blanking in Γ vision, illumination)
有機光触媒を用いないこと以外は、実施例 3と同様にして可視光を照射した。実験 の結果、光照射によりメチレンブルーの吸光度が徐々に減少することが分力つた。結 果を図 4に示す。これは、光照射により、メチレンブルーが溶存酸素等と反応して分 解したと考えられる。  Visible light was irradiated in the same manner as in Example 3 except that no organic photocatalyst was used. As a result of experiments, it was found that the absorbance of methylene blue gradually decreased by light irradiation. The results are shown in Fig. 4. This is thought to be due to the reaction of methylene blue with dissolved oxygen and the like by light irradiation.
[0105] 比 例 3 (蝕 なし光照射なしにおけるブランク試験) [0105] Comparative Example 3 (Blank test without corrosion and without light irradiation)
有機光触媒を用いな 、こと及び光照射しな 、こと (暗室にて試験したこと)以外は、 実施例 3と同様とした。実験の結果、メチレンブルーの吸光度は全く変化せず分解は 起きな力つた。結果を図 4に示す。  Example 3 was the same as Example 3 except that no organic photocatalyst was used and no light was irradiated (tested in a dark room). As a result of the experiment, the absorbance of methylene blue did not change at all, and decomposition did not occur. The results are shown in Fig. 4.
[0106] 比 例 4 (可視,光照射 に: ける PVの活件評 ) [0106] Comparative example 4 (Visible, light irradiation: PV activity review)
(1)有機光触媒材料として、昇華精製した PVのみを用いた。  (1) Sublimation-purified PV alone was used as the organic photocatalytic material.
(2)有機光触媒素子として、真空蒸着法により、ガラス基板上に PVを 200應の厚さで 着した。  (2) As an organic photocatalyst element, PV was deposited on a glass substrate with a thickness of 200 ° C by vacuum deposition.
(3)実験装置の構成 ·方法は、実施例 3の(3)〜(5)と同様とした。  (3) Configuration of the experimental apparatus The method was the same as in (3) to (5) of Example 3.
(4)実験の結果、メチレンブルーの分解は進行するが、吸光度の減少は比較例 2の ブランク試験と同等であり、 PVのみではほとんど光触媒反応が進行していないことが 分力つた。結果を図 4に示す。  (4) As a result of the experiment, the decomposition of methylene blue progressed, but the decrease in absorbance was equivalent to the blank test of Comparative Example 2, and it was found that the photocatalytic reaction hardly progressed with PV alone. The results are shown in Fig. 4.

Claims

請求の範囲 The scope of the claims
[I] p型有機半導体と n型有機半導体とを含む有機光触媒であって、光照射下で有機 物或いは窒素、硫黄又はリンを含む無機物を分解するために使用する有機光触媒。  [I] An organic photocatalyst comprising a p-type organic semiconductor and an n-type organic semiconductor, which is used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation.
[2] p型有機半導体層及び n型有機半導体層が積層した二層構造を有する請求項 1〖こ 記載の有機光触媒。  [2] The organic photocatalyst according to claim 1, which has a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated.
[3] p型有機半導体層の厚さが 20〜500 nm程度であり、 n型有機半導体層の厚さが 50 [3] The thickness of the p-type organic semiconductor layer is about 20 to 500 nm, and the thickness of the n-type organic semiconductor layer is 50
〜800 nm程度である請求項 1に記載の有機光触媒。 The organic photocatalyst according to claim 1, which is about -800 nm.
[4] p型有機半導体層と n型有機半導体層の間に、 p型有機半導体と n型有機半導体と の共蒸着層を含む三層構造を有する請求項 1に記載の有機光触媒。 [4] The organic photocatalyst according to claim 1, wherein the organic photocatalyst has a three-layer structure including a co-deposited layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer.
[5] 基体上に、 p型有機半導体層及び n型有機半導体層が積層した二層構造を有する 請求項 1に記載の有機光触媒。 5. The organic photocatalyst according to claim 1, which has a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated on a substrate.
[6] 基体上に、 p型有機半導体層と n型有機半導体層の間に p型有機半導体と n型有機 半導体との共蒸着層を含む三層構造を有する請求項 1に記載の有機光触媒。 6. The organic photocatalyst according to claim 1, wherein the organic photocatalyst has a three-layer structure including a co-deposition layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer on the substrate. .
[7] p型有機半導体の材料が大環状の配位子化合物又はその金属錯体である請求項[7] The material of the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
1に記載の有機光触媒。 1. The organic photocatalyst according to 1.
[8] p型有機半導体の材料が、フタロシアニン誘導体、ナフタロシアニン誘導体、及び ポルフィリン誘導体力 なる群力 選ばれる少なくとも 1種である請求項 7に記載の有 機光触媒。 [8] The organic photocatalyst according to claim 7, wherein the material of the p-type organic semiconductor is at least one selected from the group force consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
[9] p型有機半導体の材料が、フタロシアニン誘導体である請求項 8に記載の有機光触 媒。  [9] The organic photocatalyst according to claim 8, wherein the material of the p-type organic semiconductor is a phthalocyanine derivative.
[10] n型有機半導体の材料が多環式芳香族化合物である請求項 1に記載の有機光触 媒。  [10] The organic photocatalyst according to claim 1, wherein the material of the n-type organic semiconductor is a polycyclic aromatic compound.
[II] n型有機半導体の材料が、フラーレン類、カーボンナノチューブ類、電子供与体を ドープした導電性高分子、ペリレン誘導体、及びナフタレン誘導体からなる群から選 ばれる少なくとも 1種である請求項 10に記載の有機光触媒。  [II] The material of the n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, conductive polymers doped with electron donors, perylene derivatives, and naphthalene derivatives. The organic photocatalyst described.
[12] n型有機半導体の材料が、フラーレン類及びペリレン誘導体からなる群から選ばれ る少なくとも 1種である請求項 11に記載の有機光触媒。  12. The organic photocatalyst according to claim 11, wherein the material of the n-type organic semiconductor is at least one selected from the group consisting of fullerenes and perylene derivatives.
[13] 請求項 5に記載の有機光触媒を製造する方法であって、基体上に n型有機半導体 層と P型有機半導体層とを積層して二層構造とすることを特徴とする製造方法。 [13] A method for producing an organic photocatalyst according to claim 5, wherein an n-type organic semiconductor is formed on a substrate. A manufacturing method, wherein a layer and a P-type organic semiconductor layer are laminated to form a two-layer structure.
[14] 請求項 6に記載の有機光触媒を製造する方法であって、基体上に n型 (又は p型) 有機半導体層を形成し、その上に n型有機半導体と p型有機半導体を共蒸着して共 蒸着層を形成し、その上に p型 (又は n型)有機半導体層を形成して三層構造とする ことを特徴とする製造方法。 [14] A method for producing an organic photocatalyst according to claim 6, wherein an n-type (or p-type) organic semiconductor layer is formed on a substrate, and the n-type organic semiconductor and the p-type organic semiconductor are coexisted thereon. A manufacturing method comprising forming a co-evaporated layer by vapor deposition and forming a p-type (or n-type) organic semiconductor layer thereon to form a three-layer structure.
[15] 気相又は水相中の有機物或いは窒素、硫黄又はリンを含む無機物を分解する方 法であって、光照射下で請求項 1に記載の有機光触媒を有機物或いは窒素、硫黄 又はリンを含む無機物と接触させて分解する方法。 [15] A method for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus in a gas phase or an aqueous phase, wherein the organic photocatalyst according to claim 1 is treated with an organic substance or nitrogen, sulfur or phosphorus under light irradiation. A method of decomposing by contacting with an inorganic substance.
[16] 請求項 1に記載の有機光触媒及び塗料を含む塗料組成物。 [16] A coating composition comprising the organic photocatalyst according to claim 1 and a coating material.
[17] 請求項 1に記載の有機光触媒を、有機物或いは窒素、硫黄又はリンを含む無機物 を含む被処理水に分散させて、これに光を照射して水を処理する方法。 [17] A method for treating water by dispersing the organic photocatalyst according to claim 1 in water to be treated containing an organic substance or an inorganic substance containing nitrogen, sulfur, or phosphorus, and irradiating it with light.
[18] さらに、処理後に該有機光触媒をろ過して回収し、再度水処理に供する請求項 17 に記載の水処理方法。 18. The water treatment method according to claim 17, further comprising collecting the organic photocatalyst by filtration after the treatment and subjecting it to water treatment again.
PCT/JP2006/308748 2005-04-26 2006-04-26 Organic photocatalyst WO2006115271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514770A JP5182665B2 (en) 2005-04-26 2006-04-26 Organic photocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-127338 2005-04-26
JP2005127338 2005-04-26

Publications (1)

Publication Number Publication Date
WO2006115271A1 true WO2006115271A1 (en) 2006-11-02

Family

ID=37214884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308748 WO2006115271A1 (en) 2005-04-26 2006-04-26 Organic photocatalyst

Country Status (2)

Country Link
JP (1) JP5182665B2 (en)
WO (1) WO2006115271A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028669A (en) * 2007-07-27 2009-02-12 Hirosaki Univ Visible-light response type photocatalyst
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film
JP2010050115A (en) * 2008-08-19 2010-03-04 Hirosaki Univ Reaction cell for organic optical response element
JP2010089052A (en) * 2008-10-10 2010-04-22 Nittetsu Mining Co Ltd Method for removing polysulfide ion from basic aqueous solution
JP2010119996A (en) * 2008-11-21 2010-06-03 Osaka Univ Visible light responsive photocatalyst composite
CN103449563A (en) * 2013-09-06 2013-12-18 广西大学 Method for removing organic matter under synergy of visible light photoelectric catalysis and three-dimensional electrode/electro-fenton
CN104694153A (en) * 2013-12-05 2015-06-10 中国科学院大连化学物理研究所 Fuel oil photo-oxidation treatment method taking cage-shaped fullerene as photosensitizer
CN105268479A (en) * 2015-11-10 2016-01-27 安徽理工大学 Efficient photocatalyst based on iron and phenanthroline and preparation method thereof
CN109158111A (en) * 2018-10-03 2019-01-08 佛山霖诺环保科技有限公司 A kind of preparation method of nano carbon-base Supported Manganese cobalt dual-metal formaldehyde catalyst
JP2021528520A (en) * 2019-01-31 2021-10-21 エルジー・ケム・リミテッド Antibacterial polymer coating composition and antibacterial polymer film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033265A (en) * 1998-07-17 2000-02-02 Chisso Corp Selective oxidation photocatalyst for olefin and aromatic carbon compound, and production of oxygen- containing compound using the same
JP2001347162A (en) * 2000-06-07 2001-12-18 Sharp Corp Photocatalytic material with thin titanium dioxide film
JP3995051B2 (en) * 2003-12-26 2007-10-24 関西ティー・エル・オー株式会社 Water electrolysis using organic photocatalyst

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABE T.: "Kohan'na Kashiko ni Oto suru Yuki Hikari Shokubai", ELECTRO-ORGANIC CHEMISTRY TORONKAI KOEN YOSHISHU, vol. 28TH, 2004, pages 98 - 99, XP003003327 *
ABE T.: "Perylene Yudotai/Mukinzoku Phthalocyanine Yuki Nijuso no Sisshikikei Hikari Anode Tokusei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 85TH, no. 1, 11 March 2005 (2005-03-11), pages 415, XP003003326 *
ABE T.: "perylene Yudotai/Phthalocyanine Nijuso de Kosei sareru Yuki Hikari Shokubai", POLYMER PREPRINTS, JAPAN, vol. 53, no. 2, 2004, pages 2PF106, XP003003329 *
ABE T.: "Perylene Yudotai/Phthalocyanine Yuki Nijuso de Kosei sareru Shinkina Shisshikikei Hikari Anode", KAGAKUKEIGAKU KYOKAI RENGO TOHOKU CHIHO TAIKAI PROGRAM OYOBI KOEN YOKOSHU, 2004, pages 128, XP003003328 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028669A (en) * 2007-07-27 2009-02-12 Hirosaki Univ Visible-light response type photocatalyst
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film
JP2010050115A (en) * 2008-08-19 2010-03-04 Hirosaki Univ Reaction cell for organic optical response element
JP2010089052A (en) * 2008-10-10 2010-04-22 Nittetsu Mining Co Ltd Method for removing polysulfide ion from basic aqueous solution
JP2010119996A (en) * 2008-11-21 2010-06-03 Osaka Univ Visible light responsive photocatalyst composite
CN103449563B (en) * 2013-09-06 2015-06-17 广西大学 Method for removing organic matter under synergy of visible light photoelectric catalysis and three-dimensional electrode/electro-fenton
CN103449563A (en) * 2013-09-06 2013-12-18 广西大学 Method for removing organic matter under synergy of visible light photoelectric catalysis and three-dimensional electrode/electro-fenton
CN104694153A (en) * 2013-12-05 2015-06-10 中国科学院大连化学物理研究所 Fuel oil photo-oxidation treatment method taking cage-shaped fullerene as photosensitizer
CN104694153B (en) * 2013-12-05 2016-08-17 中国科学院大连化学物理研究所 Cage fullerenes is the fuel oil photooxidation processing method of photosensitizer
CN105268479A (en) * 2015-11-10 2016-01-27 安徽理工大学 Efficient photocatalyst based on iron and phenanthroline and preparation method thereof
CN109158111A (en) * 2018-10-03 2019-01-08 佛山霖诺环保科技有限公司 A kind of preparation method of nano carbon-base Supported Manganese cobalt dual-metal formaldehyde catalyst
CN109158111B (en) * 2018-10-03 2022-04-26 佛山霖诺环保科技有限公司 Preparation method of nano carbon-based supported manganese-cobalt bimetallic formaldehyde catalyst
JP2021528520A (en) * 2019-01-31 2021-10-21 エルジー・ケム・リミテッド Antibacterial polymer coating composition and antibacterial polymer film
JP7180051B2 (en) 2019-01-31 2022-11-30 エルジー・ケム・リミテッド Antimicrobial polymeric coating composition and antimicrobial polymeric film

Also Published As

Publication number Publication date
JP5182665B2 (en) 2013-04-17
JPWO2006115271A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5182665B2 (en) Organic photocatalyst
Koe et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane
Li et al. High-efficiency ultrathin porous phosphorus-doped graphitic carbon nitride nanosheet photocatalyst for energy production and environmental remediation
Zhou et al. Rational design of carbon-doped carbon nitride/Bi12O17Cl2 composites: a promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline
Chen et al. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr (VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism
Cheng et al. Construction of pn heterojunction film of Cu2O/α-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline
Abazari et al. Instantaneous sonophotocatalytic degradation of tetracycline over NU-1000@ ZnIn2S4 core–shell nanorods as a robust and eco-friendly catalyst
Chen et al. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation
Chen et al. Highly-efficient degradation of amiloride by sulfate radicals-based photocatalytic processes: reactive kinetics, degradation products and mechanism
Salimi et al. Photocatalytic degradation of cefixime with MIL-125 (Ti)-mixed linker decorated by g-C3N4 under solar driven light irradiation
Hu et al. Biomimetic O2-carrying and highly in-situ H2O2 generation using Ti3C2 MXene/MIL-100 (Fe) hybrid via Fe-Protoporphyrin bridging for photo-fenton synergistic degradation of thiacloprid
Chowdhury et al. Dye-sensitized photocatalyst: A breakthrough in green energy and environmental detoxification
Pattanaik et al. TiO2 photocatalysis: progress from fundamentals to modification technology
Chuaicham et al. Fabrication of graphitic carbon nitride/ZnTi-mixed metal oxide heterostructure: Robust photocatalytic decomposition of ciprofloxacin
JP4962958B2 (en) Visible light responsive photocatalyst
Salgado et al. Photocatalysis and photodegradation of pollutants
Zhong et al. Origin of the enhanced photocatalytic activity of graphitic carbon nitride nanocomposites and the effects of water constituents
Guo et al. Fabrication of a Z-scheme heterojunction polyhedral-shaped BiOIO3/MIL-53 (Fe) photocatalyst for enhancing gaseous Hg0 removal
Li et al. N-Doped TiO2 Coupled with Manganese-Substituted Phosphomolybdic Acid Composites As Efficient Photocatalysis-Fenton Catalysts for the Degradation of Rhodamine B
Xu et al. Cu single atoms/O doping g-C3N4 mediated photocatalytic activation of peroxymonosulfate for ultrafast carbamazepine removal via high 1O2 yield
Alamdari et al. Immobilization of ZnO: Ga nanocrystals in a polystyrene/cellulose matrix: A novel hybrid nanocomposite photocatalyst for future photo energy application
Firoozbakht et al. Effective photocatalytic degradation of amphotericin B and naproxen from aqueous solutions using carbon quantum dots combined in MIL-88B (Fe) under visible light.
Toan et al. Ultrasonic-assisted synthesis of magnetic recyclable Fe 3 O 4/rice husk biochar based photocatalysts for ciprofloxacin photodegradation in aqueous solution
Luo et al. Fabrication of a Heterojunction by Coupling a Metal–Organic Framework and N-Doped Carbon for the Photocatalytic Removal of Antibiotic Drugs with High Efficiency
Mele et al. Semiconductor@ sensitizer composites for enhanced photoinduced processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007514770

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745726

Country of ref document: EP

Kind code of ref document: A1