JP5182665B2 - Organic photocatalyst - Google Patents

Organic photocatalyst Download PDF

Info

Publication number
JP5182665B2
JP5182665B2 JP2007514770A JP2007514770A JP5182665B2 JP 5182665 B2 JP5182665 B2 JP 5182665B2 JP 2007514770 A JP2007514770 A JP 2007514770A JP 2007514770 A JP2007514770 A JP 2007514770A JP 5182665 B2 JP5182665 B2 JP 5182665B2
Authority
JP
Japan
Prior art keywords
organic
organic semiconductor
photocatalyst
type
type organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007514770A
Other languages
Japanese (ja)
Other versions
JPWO2006115271A1 (en
Inventor
圭治 長井
敏之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Hirosaki University NUC
Original Assignee
Tokyo Institute of Technology NUC
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Hirosaki University NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2007514770A priority Critical patent/JP5182665B2/en
Publication of JPWO2006115271A1 publication Critical patent/JPWO2006115271A1/en
Application granted granted Critical
Publication of JP5182665B2 publication Critical patent/JP5182665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、光照射下、特に可視光照射下で、有機物或いは窒素、硫黄、リン等を含む無機物を分解するために使用する有機光触媒、その製造方法、及び該有機光触媒の用途に関する。   The present invention relates to an organic photocatalyst used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur, phosphorus, etc. under light irradiation, particularly under visible light irradiation, a method for producing the same, and an application of the organic photocatalyst.

光触媒とは、光エネルギーの投入により生じる酸化力・還元力を用いて有害物質等を分解する触媒材料のことであり、この光触媒は、有毒な薬品や化石燃料を使用せず、光のエネルギーを利用するだけで、分解されにくい種々の化学物質を安全かつ容易に分解することができるため、環境にやさしい環境浄化材料として脚光を浴びている。   A photocatalyst is a catalyst material that decomposes harmful substances using the oxidizing power and reducing power generated by the input of light energy. This photocatalyst does not use toxic chemicals or fossil fuels, Various chemical substances that are difficult to be decomposed can be safely and easily decomposed only by using them, and thus are attracting attention as environmentally friendly environmental purification materials.

現在、光触媒材料として、酸化チタン(TiO2)、酸化亜鉛、酸化タングステン等の無機化合物からなる光触媒が知られており、中でも酸化チタンは、その光触媒作用の大きさや安全性、また、資源的・コスト的な観点からも最も優れた材料であり、広く研究されており、実用化された製品も出されている(非特許文献1を参照)。At present, photocatalysts made of inorganic compounds such as titanium oxide (TiO 2 ), zinc oxide, and tungsten oxide are known as photocatalyst materials. Among them, titanium oxide is the size and safety of its photocatalytic action, It is the most excellent material from the viewpoint of cost, has been extensively studied, and has been put into practical use (see Non-Patent Document 1).

この酸化チタンは、紫外領域の光により光触媒活性が発現されるが、自然光のうちエネルギー密度3%相当の紫外光が利用されているにすぎない。そのため、太陽光エネルギー変換効率の観点からは、自然光エネルギー密度の約半分を占める可視光を有効活用できる光触媒が望まれる。   This titanium oxide exhibits photocatalytic activity by light in the ultraviolet region, but only ultraviolet light corresponding to an energy density of 3% of natural light is used. Therefore, from the viewpoint of solar energy conversion efficiency, a photocatalyst that can effectively use visible light that occupies about half of the natural light energy density is desired.

また、酸化チタンを塗料の顔料として用いた場合には、塗料の有機成分が酸化チタンにより分解されチョーキング現象を起こしてしまうという問題点を有している。   Further, when titanium oxide is used as a pigment for a paint, there is a problem that an organic component of the paint is decomposed by the titanium oxide to cause a choking phenomenon.

ところで、有機化合物からなる光触媒については、これまでほとんど報告例はなく、わずかに、ポリパラフェニレン及びその誘導体等が報告されているにすぎない(非特許文献2を参照)。これらは、紫外光応答性の材料であり、気(湿潤空気)相や水を含む液相での利用が困難である等の問題点を有している。
図解 光触媒のすべて(橋本和仁・藤嶋昭 監修)、工業調査会(2003) J. Chem. Soc. Faraday Trans., 93, 221 (1997)
By the way, about the photocatalyst which consists of an organic compound, there is almost no report example so far, and only polyparaphenylene, its derivative (s), etc. are reported (refer nonpatent literature 2). These are ultraviolet light-responsive materials and have problems such as difficulty in use in a gas (wet air) phase or a liquid phase containing water.
Illustrated All photocatalysts (supervised by Kazuhito Hashimoto and Akira Fujishima), Industrial Research Committee (2003) J. Chem. Soc. Faraday Trans., 93, 221 (1997)

以上の従来技術の問題点に鑑み、本発明は、気相又は水を含む液相において、光(特に可視光)照射下で効率的に有機物或いは窒素、硫黄、リン等を含む無機物を分解し得る有機光触媒、及びその製造方法を提供することを目的とする。また、本発明は、該有機光触媒の用途を提供することを目的とする。   In view of the above problems of the prior art, the present invention efficiently decomposes organic substances or inorganic substances containing nitrogen, sulfur, phosphorus, etc. under light (particularly visible light) irradiation in a gas phase or a liquid phase containing water. It is an object to provide an organic photocatalyst to be obtained and a method for producing the same. Moreover, an object of this invention is to provide the use of this organic photocatalyst.

本発明者らは、上記の目的を達成するために鋭意研究を行った結果、特定のp型有機半導体と特定のn型有機半導体からなる材料に、可視光(波長:400〜750nm)を照射したところ、単方向性の光誘起電子移動(unidirectional photo-induced electron transfer)を経て光触媒的な酸化還元反応が生じることを見出した。また、該材料は、気相乃至液相中、光照射下で光触媒活性を発揮し、効率的に有機物或いは窒素、硫黄又はリンを含む無機物を分解し得ることを見出した。本発明者は、これらの知見に基づき、さらに発展させて本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors irradiate a material composed of a specific p-type organic semiconductor and a specific n-type organic semiconductor with visible light (wavelength: 400 to 750 nm). As a result, it has been found that a photocatalytic oxidation-reduction reaction occurs through unidirectional photo-induced electron transfer. Further, it has been found that the material exhibits photocatalytic activity under light irradiation in a gas phase or a liquid phase, and can efficiently decompose an organic substance or an inorganic substance containing nitrogen, sulfur, or phosphorus. Based on these findings, the present inventor has further developed and completed the present invention.

すなわち、本発明は、以下の有機光触媒、その製造方法、及び該有機光触媒の用途を提供する。   That is, this invention provides the following organic photocatalysts, its manufacturing method, and the use of this organic photocatalyst.

項1 p型有機半導体とn型有機半導体とを含む有機光触媒であって、光照射下で有機物或いは窒素、硫黄又はリンを含む無機物を分解するために使用する有機光触媒。   Item 1. An organic photocatalyst containing a p-type organic semiconductor and an n-type organic semiconductor, which is used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation.

項2 p型有機半導体層及びn型有機半導体層が積層した二層構造を有する項1に記載の有機光触媒。   Item 2. The organic photocatalyst according to Item 1, having a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated.

項3 p型有機半導体層の厚さが20〜500 nm程度であり、n型有機半導体層の厚さが50〜800 nm程度である項1に記載の有機光触媒。   Item 3. The organic photocatalyst according to Item 1, wherein the p-type organic semiconductor layer has a thickness of about 20 to 500 nm and the n-type organic semiconductor layer has a thickness of about 50 to 800 nm.

項4 p型有機半導体層とn型有機半導体層の間に、p型有機半導体とn型有機半導体との共蒸着層を含む三層構造を有する項1に記載の有機光触媒。   Item 4. The organic photocatalyst according to Item 1, wherein the organic photocatalyst has a three-layer structure including a co-evaporated layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer.

項5 基体上に、p型有機半導体層及びn型有機半導体層が積層した二層構造を有する項1に記載の有機光触媒。   Item 5. The organic photocatalyst according to Item 1, having a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated on a substrate.

項6 基体上に、p型有機半導体層とn型有機半導体層の間にp型有機半導体とn型有機半導体との共蒸着層を含む三層構造を有する項1に記載の有機光触媒。   Item 6. The organic photocatalyst according to Item 1, wherein the organic photocatalyst has a three-layer structure including a co-deposited layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer on the substrate.

項7 p型有機半導体の材料が大環状の配位子化合物又はその金属錯体である項1に記載の有機光触媒。   Item 7. The organic photocatalyst according to Item 1, wherein the material of the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.

項8 p型有機半導体の材料が、フタロシアニン誘導体、ナフタロシアニン誘導体、及びポルフィリン誘導体からなる群から選ばれる少なくとも1種である項7に記載の有機光触媒。   Item 8 The organic photocatalyst according to Item 7, wherein the material of the p-type organic semiconductor is at least one selected from the group consisting of phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives.

項9 p型有機半導体の材料が、フタロシアニン誘導体である項8に記載の有機光触媒。   Item 9 The organic photocatalyst according to Item 8, wherein the material of the p-type organic semiconductor is a phthalocyanine derivative.

項10 n型有機半導体の材料が多環式芳香族化合物である項1に記載の有機光触媒。   Item 10. The organic photocatalyst according to Item 1, wherein the material of the n-type organic semiconductor is a polycyclic aromatic compound.

項11 n型有機半導体の材料が、フラーレン類、カーボンナノチューブ類、電子供与体をドープした導電性高分子、ペリレン誘導体、及びナフタレン誘導体からなる群から選ばれる少なくとも1種である項10に記載の有機光触媒。   Item 11. The material according to Item 10, wherein the material of the n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, a conductive polymer doped with an electron donor, a perylene derivative, and a naphthalene derivative. Organic photocatalyst.

項12 n型有機半導体の材料が、フラーレン類及びペリレン誘導体からなる群から選ばれる少なくとも1種である項11に記載の有機光触媒。   Item 12. The organic photocatalyst according to Item 11, wherein the material of the n-type organic semiconductor is at least one selected from the group consisting of fullerenes and perylene derivatives.

項13 項5に記載の有機光触媒を製造する方法であって、基体上にn型有機半導体層とp型有機半導体層とを積層して二層構造とすることを特徴とする製造方法。   Item 13 A method for producing the organic photocatalyst according to Item 5, wherein an n-type organic semiconductor layer and a p-type organic semiconductor layer are laminated on a substrate to form a two-layer structure.

項14 項6に記載の有機光触媒を製造する方法であって、基体上にn型(又はp型)有機半導体層を形成し、その上にn型有機半導体とp型有機半導体を共蒸着して共蒸着層を形成し、その上にp型(又はn型)有機半導体層を形成して三層構造とすることを特徴とする製造方法。   Item 14. A method for producing an organic photocatalyst according to Item 6, wherein an n-type (or p-type) organic semiconductor layer is formed on a substrate, and an n-type organic semiconductor and a p-type organic semiconductor are co-deposited thereon. Forming a co-evaporated layer and forming a p-type (or n-type) organic semiconductor layer thereon to form a three-layer structure.

項15 気相又は水相中の有機物或いは窒素、硫黄又はリンを含む無機物を分解する方法であって、光照射下で項1に記載の有機光触媒を有機物或いは窒素、硫黄又はリンを含む無機物と接触させて分解する方法。   Item 15 A method for decomposing an organic substance in a gas phase or an aqueous phase or an inorganic substance containing nitrogen, sulfur or phosphorus, wherein the organic photocatalyst according to Item 1 is converted into an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation. Decompose by contacting.

項16 項1に記載の有機光触媒及び塗料を含む塗料組成物。   Item 16 A coating composition comprising the organic photocatalyst according to Item 1 and a coating material.

項17 項1に記載の有機光触媒を、有機物或いは窒素、硫黄又はリンを含む無機物を含む被処理水に分散させて、これに光を照射して水を処理する方法。   Item 17 A method of treating water by dispersing the organic photocatalyst of Item 1 in water to be treated containing an organic substance or an inorganic substance containing nitrogen, sulfur, or phosphorus, and irradiating it with light.

項18 さらに、処理後に該有機光触媒をろ過して回収し、再度水処理に供する項17に記載の水処理方法。   Item 18: The water treatment method according to Item 17, wherein the organic photocatalyst is recovered by filtration after the treatment, and again subjected to water treatment.

以下、本発明について詳細に説明する。
I.有機光触媒
本発明の有機光触媒は、p型有機半導体とn型有機半導体とを含む。具体的には、p型有機半導体からなる部分(バルク層)とn型有機半導体からなる部分(バルク層)とが接し合う構造を有している。本発明の有機光触媒は、光照射により、p型有機半導体材料とn型有機半導体材料が接する界面で、単方向性の光誘起電子移動を生じ、これが有機物或いは窒素、硫黄又はリンを含む無機物の分解に用いられる。そのため、この有機光触媒は、気相乃至液相中において光照射下で有機物或いは窒素、硫黄又はリンを含む無機物を分解するために使用する。
Hereinafter, the present invention will be described in detail.
I. Organic Photocatalyst The organic photocatalyst of the present invention includes a p-type organic semiconductor and an n-type organic semiconductor. Specifically, it has a structure in which a portion made of a p-type organic semiconductor (bulk layer) and a portion made of an n-type organic semiconductor (bulk layer) are in contact with each other. The organic photocatalyst of the present invention generates unidirectional photoinduced electron transfer at the interface where the p-type organic semiconductor material and the n-type organic semiconductor material are in contact with light, and this is an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus. Used for decomposition. Therefore, this organic photocatalyst is used for decomposing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation in a gas phase or a liquid phase.

p型有機半導体
p型有機半導体としては、大環状の配位子化合物又はその金属錯体が挙げられる。大環状の配位子化合物とは、不対電子を有する原子を環上に含み、金属の配位子となり得る環状化合物の意であり、また、その金属錯体とは、該大環状配位子と金属原子からなる金属錯体の意味である。不対電子を有する原子としては、例えば、窒素原子、酸素原子が挙げられ、窒素原子が好ましい。金属原子としては、周期律表1〜15族の各金属元素が挙げられ、好ましくは4〜14族の金属元素である。また、金属錯体は、通常、該金属原子と大環状の配位子化合物とが1:1(モル比)からなり、平面4配位の錯体を形成するものであればよい。
Examples of the p-type organic semiconductor include a macrocyclic ligand compound or a metal complex thereof. The macrocyclic ligand compound is a cyclic compound that contains an atom having an unpaired electron on the ring and can be a metal ligand, and the metal complex is the macrocyclic ligand. And a metal complex consisting of metal atoms. As an atom which has an unpaired electron, a nitrogen atom and an oxygen atom are mentioned, for example, A nitrogen atom is preferable. As a metal atom, each metal element of 1-15 group of a periodic table is mentioned, Preferably it is a 4-14 group metal element. In addition, the metal complex may be any metal as long as the metal atom and the macrocyclic ligand compound are 1: 1 (molar ratio) and form a planar four-coordinate complex.

大環状の配位子化合物又はその金属錯体の具体例としては、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体等が挙げられる。   Specific examples of the macrocyclic ligand compound or the metal complex thereof include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, and the like.

フタロシアニン誘導体とは、フタロシアニンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(1A)又は(1B):   A phthalocyanine derivative means a compound having a basic phthalocyanine skeleton. Specifically, for example, the following formula (1A) or (1B):

Figure 0005182665
Figure 0005182665

(式中、M1は、周期律表4〜14族からなる群から選ばれる金属原子又はその金属原子を含む原子団を示し、点線は配位結合を示す)
で表されるフタロシアニン誘導体が挙げられる。
(In the formula, M 1 represents a metal atom selected from the group consisting of groups 4 to 14 of the periodic table or an atomic group containing the metal atom, and a dotted line represents a coordinate bond)
The phthalocyanine derivative represented by these is mentioned.

1で示される周期律表4〜14族の金属原子のうち好ましくは、4族(特に、Ti)、5族(特に、V)、6族(特に、Mo)、7族(特に、Mn)、8族(Fe, Ru, Os)、9族(Co, Rh, Ir)、10族(Ni, Pd, Pt)、11族(特に、Cu)、12族(特に、Zn)、13族(特に、Al)、14族(特に、Pb)が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子(例えば、酸素、シアノ基)が配位したもの(例えば、Ti-O)を意味する。Preferably among the Periodic Table 4-14 metals atom represented by M 1, Group 4 (especially, Ti), Group 5 (in particular, V), Group 6 (in particular, Mo), Group 7 (especially, Mn ), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn), Group 13 (Especially Al) and group 14 (especially Pb). In addition, the atomic group containing the metal atom means a group (for example, Ti—O) in which another ligand (for example, oxygen or cyano group) is coordinated to the metal.

上記のうち、式(1A)で表されるフタロシアニン、又は式(1B)においてM1がTi, Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又はRuであるフタロシアニン誘導体が好ましく、特に有機物或いは窒素、硫黄又はリンを含む無機物の分解に対する光触媒活性の点から(1A)の無金属のフタロシアニンや(1B)の鉄フタロシアニンやコバルトフタロシアニンが好ましい。これらの化合物は、いずれも市販されているか又は当業者が容易に製造することができる。Among the above, phthalocyanine represented by the formula (1A), or M 1 in the formula (1B) is Ti, Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru. Phthalocyanine derivatives are preferable, and (1A) metal-free phthalocyanine, (1B) iron phthalocyanine, and cobalt phthalocyanine are particularly preferable from the viewpoint of photocatalytic activity for decomposition of organic substances or inorganic substances containing nitrogen, sulfur, or phosphorus. These compounds are either commercially available or can be easily produced by those skilled in the art.

ナフタロシアニン誘導体とは、ナフタロシアニンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(2A)又は(2B):   A naphthalocyanine derivative means a compound having a basic skeleton of naphthalocyanine. Specifically, for example, the following formula (2A) or (2B):

Figure 0005182665
Figure 0005182665

(式中、M2は、周期律表4〜14族からなる群から選ばれる金属原子又はその金属原子を含む原子団を示し、点線は配位結合を示す)
で表されるナフタロシアニン誘導体が挙げられる。
(In the formula, M 2 represents a metal atom selected from the group consisting of groups 4 to 14 of the periodic table or an atomic group containing the metal atom, and a dotted line represents a coordinate bond)
The naphthalocyanine derivative represented by these is mentioned.

2で示される周期律表4〜14族の金属原子のうち好ましくは、4族(特に、Ti)、5族(特に、V)、6族(特に、Mo)、7族(特に、Mn)、8族(Fe, Ru, Os)、9族(Co, Rh, Ir)、10族(Ni, Pd, Pt)、11族(特に、Cu)、12族(特に、Zn)、13族(特に、Al)、14族(特に、Pb)が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子(例えば、酸素、シアノ基)が配位したもの(例えば、Ti-O)を意味する。Preferably among the Periodic Table 4-14 metals atom represented by M 2, Group 4 (especially, Ti), Group 5 (in particular, V), Group 6 (in particular, Mo), Group 7 (especially, Mn ), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn), Group 13 (Especially Al) and group 14 (especially Pb). In addition, the atomic group containing the metal atom means a group (for example, Ti—O) in which another ligand (for example, oxygen or cyano group) is coordinated to the metal.

上記のうち、式(2A)表されるナフタロシアニン、又は式(2B)においてM2がTi, Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又はRuであるナフタロシアニン誘導体が好ましく、特に有機物或いは窒素、硫黄又はリンを含む無機物の分解に対する光触媒活性の点から(2A)の無金属のナフタロシアニンや(2B)の鉄ナフタロシアニンやコバルトナフタロシアニンが好ましい。これらの化合物は、いずれも市販されているか又は当業者が容易に製造することができる。Among the above, naphthalocyanine represented by the formula (2A) or M 2 in the formula (2B) is Ti, Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru. Naphthalocyanine derivatives are preferable, and (2A) metal-free naphthalocyanine, (2B) iron naphthalocyanine, and cobalt naphthalocyanine are particularly preferable from the viewpoint of photocatalytic activity for decomposition of organic substances or inorganic substances containing nitrogen, sulfur, or phosphorus. These compounds are either commercially available or can be easily produced by those skilled in the art.

ポルフィリン誘導体とは、ポルフィリンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(3A)又は(3B):   A porphyrin derivative means a compound having a basic skeleton of porphyrin. Specifically, for example, the following formula (3A) or (3B):

Figure 0005182665
Figure 0005182665

(式中、R3は、水素原子、アルキル基、アリール基又はヘテロアリール基、M3は、周期律表4〜14族からなる群から選ばれる金属原子又はその金属原子を含む原子団を示し、点線は配位結合を示す)
で表されるポルフィリン誘導体が挙げられる。
(Wherein R 3 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group, M 3 represents a metal atom selected from the group consisting of groups 4 to 14 of the periodic table or an atomic group containing the metal atom) The dotted line shows the coordination bond)
The porphyrin derivative represented by these is mentioned.

ここで、上記のR3で示されるアルキル基としては、C1−20の直鎖又は分岐鎖のアルキル基が挙げられ、好ましくはC1−10のアルキル基である。具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、sec−ブチル、イソブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチルなどが挙げられる。Here, examples of the alkyl group represented by R 3 include a C 1-20 linear or branched alkyl group, and a C 1-10 alkyl group is preferable. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.

また、上記のR3で示されるアリール基としては、単環又は2環のアリール基が挙げられ、具体的にはフェニル、ナフチル等が挙げられる。Moreover, as an aryl group shown by said R < 3 >, a monocyclic or bicyclic aryl group is mentioned, Specifically, a phenyl, a naphthyl, etc. are mentioned.

また、上記のR3で示されるヘテロアリール基としては、ピリジル、ピラジニル等が挙げられる。In addition, examples of the heteroaryl group represented by R 3 include pyridyl and pyrazinyl.

3で示される周期律表4〜14族の金属原子のうち好ましくは、4族(特に、Ti)、5族(特に、V)、6族(特に、Mo)、7族(特に、Mn)、8族(Fe, Ru, Os)、9族(Co, Rh, Ir)、10族(Ni, Pd, Pt)、11族(特に、Cu)、12族(特に、Zn)、13族(特に、Al)、14族(特に、Pb)が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子(例えば、酸素、シアノ基)が配位したもの(例えば、Ti-O)を意味する。Of the metal atoms of groups 4 to 14 of the periodic table represented by M 3 , group 4 (especially Ti), group 5 (particularly V), group 6 (particularly Mo), group 7 (particularly Mn) are preferred. ), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn), Group 13 (Especially Al) and group 14 (especially Pb). In addition, the atomic group containing the metal atom means a group (for example, Ti—O) in which another ligand (for example, oxygen or cyano group) is coordinated to the metal.

上記のうち、式(3A)で表されるポルフィリン、又は式(3B)においてM3がTi, Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又はRu、R3がフェニル又は水素原子であるポルフィリン誘導体が好ましく、特に有機物或いは窒素、硫黄又はリンを含む無機物の分解に対する光触媒活性の点から(3A)の無金属のポルフィリンや(3B)の鉄ポルフィリンやコバルトポルフィリンが好ましい。これらの化合物は、いずれも市販されているか又は当業者が容易に製造することができる。Among the above, porphyrin represented by the formula (3A), or in the formula (3B), M 3 is Ti, Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru, R A porphyrin derivative in which 3 is phenyl or a hydrogen atom is preferable. In particular, (3A) a metal-free porphyrin or (3B) an iron porphyrin or cobalt porphyrin from the viewpoint of photocatalytic activity for decomposition of an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus. Is preferred. These compounds are either commercially available or can be easily produced by those skilled in the art.

n型有機半導体
また、n型有機半導体としては、多環式芳香族化合物が挙げられる。該多環式芳香族化合物は、一部が飽和していても良い。多環式芳香族化合物とは、少なくとも2個以上の芳香環が縮環した構造を有する化合物、或いは複数の芳香環が不飽和結合(二重結合、三重結合等)を介して結合した構造を有する化合物等を意味する。芳香環としては、ベンゼン環等のほかに、ピロール環、イミダゾール環、ピリジン環、キノキサリン環等の複素芳香環も含まれる(いずれの環も一部が飽和していても良い)。
Examples of n-type organic semiconductors and n-type organic semiconductors include polycyclic aromatic compounds. The polycyclic aromatic compound may be partially saturated. A polycyclic aromatic compound is a compound having a structure in which at least two aromatic rings are condensed, or a structure in which a plurality of aromatic rings are bonded via unsaturated bonds (double bonds, triple bonds, etc.). It means the compound etc. which have. In addition to the benzene ring and the like, the aromatic ring includes a heteroaromatic ring such as a pyrrole ring, an imidazole ring, a pyridine ring, and a quinoxaline ring (all of the rings may be partially saturated).

多環式芳香族化合物には、本発明に悪影響を与えない範囲で、種々の置換基を有していても良い。置換基としては、電子吸引基が挙げられ、具体的にはカルボニル基、スルホン基、スルホキシド基等が挙げられる。   The polycyclic aromatic compound may have various substituents within a range that does not adversely affect the present invention. Examples of the substituent include an electron withdrawing group, and specific examples include a carbonyl group, a sulfone group, and a sulfoxide group.

多環式芳香族化合物の具体例としては、C60、C70、C76、C82、C84などのフラーレン類;カーボンナノチューブ類;電子供与体(フェニレンジアミン、テトラアミノエチレン、トリス(2,2-ビピリジン)ルテニウムなど)をドープした導電性高分子(ポリイミド、ポリフェニレンビニレン、ポリパラフェニレン、ポリピロール等);ペリレン誘導体;ナフタレン誘導体等が挙げられる。中でも、ペリレン誘導体、ナフタレン誘導体、フラーレン類(C60等)等が好ましく採用され、特にペリレン誘導体やフラーレン類(C60等)が好ましい。Specific examples of the polycyclic aromatic compound include fullerenes such as C 60 , C 70 , C 76 , C 82 and C 84 ; carbon nanotubes; electron donors (phenylenediamine, tetraaminoethylene, tris (2, 2-bipyridine) ruthenium etc.) doped conducting polymers (polyimide, polyphenylene vinylene, polyparaphenylene, polypyrrole, etc.); perylene derivatives; naphthalene derivatives. Among these, perylene derivatives, naphthalene derivatives, fullerenes (C 60 and the like) are preferably used, and perylene derivatives and fullerenes (C 60 and the like) are particularly preferable.

ペリレン誘導体とは、ペリレンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(4A)〜(4C):   A perylene derivative means a compound having a basic skeleton of perylene. Specifically, for example, the following formulas (4A) to (4C):

Figure 0005182665
Figure 0005182665

(式中、R1は、アルキル基又はアリール基を示す)
で表されるペリレン誘導体が挙げられる。
(Wherein R 1 represents an alkyl group or an aryl group)
The perylene derivative represented by these is mentioned.

ナフタレン誘導体とは、ナフタレンの基本骨格を有する化合物を意味する。具体的には、例えば、下記式(5A):   A naphthalene derivative means a compound having a basic skeleton of naphthalene. Specifically, for example, the following formula (5A):

Figure 0005182665
Figure 0005182665

(式中、R2は、アルキル基又はアリール基を示す)
で表されるナフタレン誘導体が挙げられる。
(Wherein R 2 represents an alkyl group or an aryl group)
The naphthalene derivative represented by these is mentioned.

ここで、上記のR1又はRで示されるアルキル基としては、C1−20の直鎖又は分岐鎖のアルキル基が挙げられ、好ましくはC1−10のアルキル基である。具体的には、メチル、エチル、n−プロピル、イソプロピル、sec−ブチル、イソブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチルなどが挙げられる。Here, examples of the alkyl group represented by R 1 or R 2 include a C 1-20 linear or branched alkyl group, and a C 1-10 alkyl group is preferable. Specific examples include methyl, ethyl, n-propyl, isopropyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.

また、上記のR1又はRで示されるアリール基としては、単環又は2環のアリール基が挙げられ、具体的にはフェニル、ナフチル等が挙げられる。Moreover, as an aryl group shown by said R < 1 > or R < 2 >, a monocyclic or bicyclic aryl group is mentioned, Specifically, a phenyl, a naphthyl, etc. are mentioned.

有機光触媒
本発明の有機光触媒は、上記のp型有機半導体とn型有機半導体を含むものである。有機光触媒におけるp型有機半導体とn型有機半導体の接合形態は特に限定はないが、光触媒活性(即ち量子収率)の点から、両者の接触面積が増大するように接合させることが好ましい。n型有機半導体とn型有機半導体の接触面積が増大することにより、光照射した場合に、効率的に光誘起電子移動(photo-induced electron transfer)が生じ、有効に光触媒的酸化還元反応が起きるからである。
Organic Photocatalyst The organic photocatalyst of the present invention comprises the above p-type organic semiconductor and n-type organic semiconductor. Although there is no particular limitation on the bonding mode of the p-type organic semiconductor and the n-type organic semiconductor in the organic photocatalyst, it is preferable to bond them so that the contact area between them increases from the viewpoint of photocatalytic activity (ie, quantum yield). When the contact area between the n-type organic semiconductor and the n-type organic semiconductor increases, photo-induced electron transfer occurs efficiently when light is irradiated, and an effective photocatalytic redox reaction occurs. Because.

本発明の有機光触媒の具体的な態様としては、例えば、p型有機半導体とn型有機半導体とが積層した積層(膜)構造が例示される。   Specific examples of the organic photocatalyst of the present invention include a laminated (film) structure in which a p-type organic semiconductor and an n-type organic semiconductor are laminated.

積層構造は、例えば、p型有機半導体とn型有機半導体とが積層した二層構造が好ましい。これは、二層構造からなるフィルムそのものでもよいが、基体上にn型有機半導体とp型有機半導体の二層構造を有するものであってもよい。   The stacked structure is preferably, for example, a two-layer structure in which a p-type organic semiconductor and an n-type organic semiconductor are stacked. This may be a film having a two-layer structure itself, or may have a two-layer structure of an n-type organic semiconductor and a p-type organic semiconductor on a substrate.

有機光触媒が二層構造からなるフィルム或いは基体上に二層構造を有するものである場合、各層の厚さは特に限定はないが、例えば、n型有機半導体層の厚さは50〜800 nm程度、好ましくは100〜650 nm程度であり、p型有機半導体層の厚さは20〜500 nm程度、好ましくは30〜350 nm程度である。かかる厚さを採用することにより、光触媒活性が最適となるため好ましい。   When the organic photocatalyst is a film having a two-layer structure or a substrate having a two-layer structure, the thickness of each layer is not particularly limited. For example, the thickness of the n-type organic semiconductor layer is about 50 to 800 nm. The p-type organic semiconductor layer has a thickness of about 20 to 500 nm, preferably about 30 to 350 nm. Adopting such a thickness is preferable because the photocatalytic activity is optimized.

また、積層構造は、n型有機半導体とp型有機半導体とを共蒸着してなる共蒸着層を、p型有機半導体層とn型有機半導体層でサンドイッチした三層構造であっても良い。もちろん、基体上にこの三層構造を有するものであってもよい。   The laminated structure may be a three-layer structure in which a co-evaporated layer formed by co-evaporating an n-type organic semiconductor and a p-type organic semiconductor is sandwiched between the p-type organic semiconductor layer and the n-type organic semiconductor layer. Of course, the substrate may have this three-layer structure.

有機光触媒が三層構造からなるフィルム或いは基体上に三層構造を有するものである場合、各層の厚さは特に限定はないが、例えば、n型有機半導体層の厚さは50〜800 nm程度、好ましくは100〜650 nm程度であり、共蒸着層は、5〜10nm程度であり、p型有機半導体層の厚さは20〜500 nm程度、好ましくは30〜350 nm程度である。かかる厚さを採用することにより、光触媒活性が最適となるため好ましい。   When the organic photocatalyst has a three-layer structure on a film having a three-layer structure or a substrate, the thickness of each layer is not particularly limited. For example, the thickness of the n-type organic semiconductor layer is about 50 to 800 nm. The co-deposition layer is about 5 to 10 nm, and the thickness of the p-type organic semiconductor layer is about 20 to 500 nm, preferably about 30 to 350 nm. Adopting such a thickness is preferable because the photocatalytic activity is optimized.

本発明の有機光触媒には、光触媒の活性を上げるために、必要に応じて遷移金属触媒(例えば、Ag, Cu, Ni, Pd, Pt, Ir触媒等)等を添加しても良い。   In order to increase the activity of the photocatalyst, a transition metal catalyst (for example, Ag, Cu, Ni, Pd, Pt, Ir catalyst, etc.) may be added to the organic photocatalyst of the present invention as necessary.

なお、積層構造が形成される基体は、目的に応じた材質及び形状のものが選択される。   Note that the base material on which the laminated structure is formed is selected from materials and shapes according to the purpose.

さらに、本発明の有機光触媒は、例えば、上記の積層構造からなるフィルムをさらに粉砕、切断した、媒体に分散しやすい粉末状物(粒子、微粒子等)の形態とすることもできる。   Furthermore, the organic photocatalyst of the present invention may be in the form of a powdery product (particles, fine particles, etc.) that is easily dispersed in a medium, for example, by further crushing and cutting the film having the above laminated structure.

上記した有機光触媒(例えば、積層構造を有する基体(担体)、粉末状物等)は、液状媒体(例えば水)中に分散させることができまた濾過等により回収することができる。そのため、それらは、有機物等の被処理物を含有する媒体(例えば水)中に分散させて、光照射による分解処理をおこない、処理後に光触媒のみを濾過等により分離して再度利用できるというメリットがある。   The organic photocatalyst described above (for example, a substrate (carrier) having a laminated structure, a powdered material, etc.) can be dispersed in a liquid medium (for example, water) and can be recovered by filtration or the like. Therefore, they can be dispersed in a medium (for example, water) containing an object to be processed such as an organic substance, decomposed by light irradiation, and after treatment, only the photocatalyst can be separated by filtration or the like and reused. is there.

本発明の有機光触媒は、気相又は液相中において、光照射下、特に自然光、可視光を効率的に吸収して、有機物或いは窒素、硫黄、リン等を含む無機物を分解することができる。本発明の有機光触媒は、触媒効率が高く、自然光に含まれる可視領域の光をエネルギー源として有効に活用できる。さらに、本発明の有機光触媒は、有機化合物であるため加工性、成形性に優れており、しかも水中においても安定であるという特徴を有している。
II.有機光触媒の製造方法
本発明の有機光触媒の製造方法を以下に説明するが、これに限定されるものではない。
The organic photocatalyst of the present invention can decompose organic substances or inorganic substances containing nitrogen, sulfur, phosphorus and the like by absorbing natural light and visible light efficiently in the gas phase or liquid phase under light irradiation. The organic photocatalyst of the present invention has high catalytic efficiency and can effectively use light in the visible region contained in natural light as an energy source. Furthermore, since the organic photocatalyst of the present invention is an organic compound, it has excellent processability and moldability, and is stable in water.
II. Production Method of Organic Photocatalyst The production method of the organic photocatalyst of the present invention will be described below, but is not limited thereto.

p型有機半導体は上記したものが使用でき、典型的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体が挙げられる。より好ましくは、式(1A)、(1B)、(2A)、(2B)、(3A)、(3B)で表される化合物が挙げられる。特に、式(1A)の無金属フタロシアニン、式(1B)の鉄フタロシアニン、又は式(1B)のコバルトフタロシアニンが好ましい。   As the p-type organic semiconductor, those described above can be used, and typical examples include phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives. More preferably, the compound represented by Formula (1A), (1B), (2A), (2B), (3A), (3B) is mentioned. In particular, a metal-free phthalocyanine of the formula (1A), an iron phthalocyanine of the formula (1B), or a cobalt phthalocyanine of the formula (1B) is preferable.

n型有機半導体は上記したものが使用でき、p型有機半導体との間において良好なp−n接合の関係を有しているものが用いられる。n型有機半導体としては典型的には、ペリレン誘導体、ナフタレン誘導体又はフラーレン類が挙げられる。より好ましくは、式(4A)、(4B)、(4C)、(5A)で表される化合物が挙げられる。特に、効率的なキャリア生成の点から、式(4A)で示されるペリレン誘導体(3,4,9,10−ペリレンテトラカルボキシル−ビスベンズイミダゾール)又はフラーレン類(C60等)が好適に用いられる。As the n-type organic semiconductor, those described above can be used, and those having a good pn junction relationship with the p-type organic semiconductor are used. Typical examples of the n-type organic semiconductor include perylene derivatives, naphthalene derivatives, and fullerenes. More preferably, the compound represented by Formula (4A), (4B), (4C), (5A) is mentioned. In particular, from the viewpoint of efficient carrier generation, a perylene derivative (3,4,9,10-perylenetetracarboxyl-bisbenzimidazole) or a fullerene (C 60 or the like) represented by the formula (4A) is preferably used. .

なお、本発明の有機光触媒には、光触媒の活性を上げるために、上記のn型有機半導体及びp型有機半導体に加えて、必要に応じて遷移金属触媒(例えば、Ag, Cu, Ni, Pd, Pt, Ir触媒等)等を添加しても良い。   The organic photocatalyst of the present invention includes a transition metal catalyst (for example, Ag, Cu, Ni, Pd) as necessary in addition to the n-type organic semiconductor and the p-type organic semiconductor in order to increase the activity of the photocatalyst. , Pt, Ir catalyst, etc.) may be added.

本発明の有機光触媒は、n型有機半導体とp型有機半導体とが接触面積を大きくなるようにp−n接合した形態を有し、かかる接合形態を形成できる製造方法であれば特に限定はない。   The organic photocatalyst of the present invention is not particularly limited as long as it has a form in which a n-type organic semiconductor and a p-type organic semiconductor have a pn junction so as to increase the contact area and can form such a junction form. .

例えば、有機光触媒がn型有機半導体とp型有機半導体とが積層した二層構造フィルムである場合、基体上にn型有機半導体とp型有機半導体とを積層して二層構造を形成し、該二層構造フィルムを基体から剥離させることにより製造できる。この場合、基体の材質としては、形成された二層構造フィルムを容易に剥離できるものであれば特に限定はない。例えば、ガラス基板が挙げられる。得られた二層構造フィルムは、そのまま光触媒として用いることもできるが、必要に応じて二層構造フィルムに粘着剤層を設けて基材に貼着したり、粉砕・切断して粉末状にすることも可能である。   For example, when the organic photocatalyst is a two-layer structure film in which an n-type organic semiconductor and a p-type organic semiconductor are stacked, a two-layer structure is formed by stacking an n-type organic semiconductor and a p-type organic semiconductor on a substrate, It can be produced by peeling the two-layer structure film from the substrate. In this case, the material of the substrate is not particularly limited as long as the formed two-layer structure film can be easily peeled off. For example, a glass substrate is mentioned. The obtained two-layer structure film can be used as it is as a photocatalyst, but if necessary, an adhesive layer is provided on the two-layer structure film and attached to the substrate, or pulverized and cut into a powder form. It is also possible.

或いは、初めから特定の基体上に、直接n型(又はp型)有機半導体とp型(又はn型)有機半導体とを積層して、基体上に有機光触媒層を設けることもできる。この場合、基体の材質としては、本発明の有機光触媒を積層できるものであれば良く、例えば、セラミックス(シリカ、アルミナ、ジルコニア等)、金属、合金、木材、活性炭、軽石、コンクリート、紙、繊維、濾紙等が挙げられる。なお、基体の形状は、用途に応じたものであればよい。   Alternatively, an organic photocatalyst layer can be provided on a base by directly laminating an n-type (or p-type) organic semiconductor and a p-type (or n-type) organic semiconductor on a specific base from the beginning. In this case, the base material may be any material as long as the organic photocatalyst of the present invention can be laminated. For example, ceramics (silica, alumina, zirconia, etc.), metal, alloy, wood, activated carbon, pumice, concrete, paper, fiber And filter paper. In addition, the shape of the substrate may be any depending on the application.

n型有機半導体及びp型有機半導体を基体に積層する方法は、公知の方法を採用することができ、例えば、真空蒸着法、スパッタリング法、電気化学的被覆(電析)、塗布等の方法が挙げられる。中でも、ペリレン誘導体/フタロシアニン誘導体系に関しては、均一な被覆膜が得られる点から、真空蒸着法が好ましい。   As a method of laminating an n-type organic semiconductor and a p-type organic semiconductor on a substrate, a known method can be adopted. For example, a method such as a vacuum deposition method, a sputtering method, an electrochemical coating (electrodeposition), or a coating method can be used. Can be mentioned. Among these, with respect to the perylene derivative / phthalocyanine derivative system, the vacuum deposition method is preferable because a uniform coating film can be obtained.

有機半導体が二層構造の場合、各層の膜厚は特に限定はないが、前述した範囲に適宜設定することが好ましい。即ち、p型有機半導体層の厚さは20〜500 nm程度、好ましくは30〜350 nm程度であり、n型有機半導体層の厚さは50〜800 nm程度、好ましくは100〜650 nm程度である。   When the organic semiconductor has a two-layer structure, the thickness of each layer is not particularly limited, but is preferably set appropriately in the above-described range. That is, the thickness of the p-type organic semiconductor layer is about 20 to 500 nm, preferably about 30 to 350 nm, and the thickness of the n-type organic semiconductor layer is about 50 to 800 nm, preferably about 100 to 650 nm. is there.

また、有機半導体が三層構造の場合、基体上にp型(又はn型)有機半導体層を形成し、その上にp型有機半導体とn型有機半導体とからなる共蒸着層を形成し、さらにその上にn型(又はp型)有機半導体層を積層してなる、基体上に三層構造を有する有機光触媒としてもよい。さらには、該基体上から三層構造フィルムを剥離して三層構造フィルムを形成できる。なお、積層方法は、上記の方法を採用でき、共蒸着層も公知の方法を用いて形成できる。   When the organic semiconductor has a three-layer structure, a p-type (or n-type) organic semiconductor layer is formed on the substrate, and a co-deposition layer composed of the p-type organic semiconductor and the n-type organic semiconductor is formed thereon. Furthermore, it is good also as an organic photocatalyst which laminates | stacks an n-type (or p-type) organic-semiconductor layer on it, and has a three-layer structure on a base | substrate. Furthermore, the three-layer structure film can be formed by peeling the three-layer structure film from the substrate. In addition, said lamination | stacking method can be employ | adopted for a lamination | stacking method, and a co-deposition layer can also be formed using a well-known method.

有機半導体が三層構造の場合、各層の膜厚は特に限定はないが、前述した範囲に適宜設定することが好ましい。即ち、n型有機半導体層の厚さは50〜800 nm程度、好ましくは100〜650 nm程度であり、共蒸着層は5〜10nm程度であり、p型有機半導体層の厚さは20〜500 nm程度、好ましくは30〜350 nm程度である。   When the organic semiconductor has a three-layer structure, the thickness of each layer is not particularly limited, but is preferably set appropriately in the above-described range. That is, the thickness of the n-type organic semiconductor layer is about 50 to 800 nm, preferably about 100 to 650 nm, the co-deposited layer is about 5 to 10 nm, and the thickness of the p-type organic semiconductor layer is 20 to 500 nm. About nm, preferably about 30 to 350 nm.

さらに、積層構造に加えて、さらに外層の上に、電解析出法、懸濁液のキャスト法等を用いて、遷移金属触媒(例えば、Ni, Pd, Pt, Ag, Ir触媒等、好ましくはAg又はIrO2触媒)を担持したものであってもよい。担持される遷移金属触媒は、外層を完全に被覆する必要はなく分散担持されていればよい。遷移金属触媒の平均粒径は5〜800nm程度(好ましくは10〜100nm程度)の微粒子状態であればよい。
III.光触媒作用及び用途
本発明の有機光触媒は、光照射下、気相又は水相中に含まれる有機物或いは窒素、硫黄又はリンを含む無機物等の分解対象物と接触することにより、分解することができる。
Furthermore, in addition to the laminated structure, further on the outer layer, using an electrolytic deposition method, a suspension casting method, etc., a transition metal catalyst (for example, Ni, Pd, Pt, Ag, Ir catalyst, etc., preferably (Ag or IrO 2 catalyst) may be supported. The transition metal catalyst to be supported need not be completely covered with the outer layer, and may be dispersed and supported. The average particle diameter of the transition metal catalyst may be fine particles having a particle size of about 5 to 800 nm (preferably about 10 to 100 nm).
III. Photocatalytic action and use The organic photocatalyst of the present invention can be decomposed by contacting with an organic substance contained in a gas phase or an aqueous phase or an inorganic substance containing nitrogen, sulfur or phosphorus under light irradiation. .

本発明の有機光触媒で使用する光は、広範な波長を有する光(波長220〜1200nm程度)を用いることができる。その光源としては、例えば、自然光(太陽光)、蛍光灯、ハロゲンランプ、高圧水銀灯、低圧水銀灯、ブラックライト、エキシマレーザ、重水素ランプ、キセノンランプ、Hg-Zn-Pbランプ等から選ばれる1種類の光源または波長域の異なる2種類の光源を用いることができる。とりわけ、本発明の有機光触媒は、自然光(波長300〜800nm)、特に可視光(波長が400nm以上、特に400〜750nm程度)を利用できる点で極めて実用的である。無機光触媒として用いられる酸化チタンでは、屋内では紫外光源が必要であったことを考慮すると、極めて有意義である。   The light used in the organic photocatalyst of the present invention can be light having a wide range of wavelengths (wavelength of about 220 to 1200 nm). As the light source, for example, one type selected from natural light (sunlight), fluorescent lamp, halogen lamp, high pressure mercury lamp, low pressure mercury lamp, black light, excimer laser, deuterium lamp, xenon lamp, Hg-Zn-Pb lamp, etc. Or two types of light sources having different wavelength ranges can be used. In particular, the organic photocatalyst of the present invention is extremely practical in that it can use natural light (wavelength of 300 to 800 nm), particularly visible light (wavelength of 400 nm or more, particularly about 400 to 750 nm). Titanium oxide used as an inorganic photocatalyst is extremely meaningful considering that an ultraviolet light source is necessary indoors.

また、本発明の有機光触媒は、光照射のみにより有機物或いは窒素、硫黄又はリンを含む無機物を効率的に分解することができる。この点において、電気化学的にバイアスを印加しながら、光触媒に光照射して有機物等を分解処理する方法(例えば、ChemPhysChem 2004, 5, 716-720)とは、一線を画するものである。電気化学的な分解方法では、例えば、触媒表面における酸化分解で生じるマイナス電荷(電子)は電極を通して除かれるが、本発明の有機光触媒では、該電子は処理媒体中に存在する酸素により受容されて除去されると考えられる。そのため、気相又は液相(水相)中に酸素が高濃度に存在する場合に、より効率的に分解反応が進行する。例えば、気相中では酸素濃度が20体積%、さらに25体積%以上とすることが好ましい。また、液相(例えば、水)中では空気や酸素含有気体を供給(バブリング等)したり、液相を撹拌しながら反応させるのが好ましい。   Moreover, the organic photocatalyst of this invention can decompose | disassemble organic substance or the inorganic substance containing nitrogen, sulfur, or phosphorus only by light irradiation efficiently. In this regard, the method of decomposing organic matter by irradiating the photocatalyst with light while applying an electrochemical bias (for example, ChemPhysChem 2004, 5, 716-720) is a clear line. In the electrochemical decomposition method, for example, negative charges (electrons) generated by oxidative decomposition on the catalyst surface are removed through the electrodes. In the organic photocatalyst of the present invention, the electrons are received by oxygen present in the processing medium. It is considered to be removed. Therefore, the decomposition reaction proceeds more efficiently when oxygen is present in a high concentration in the gas phase or liquid phase (water phase). For example, in the gas phase, the oxygen concentration is preferably 20% by volume, more preferably 25% by volume or more. Moreover, in the liquid phase (for example, water), it is preferable to supply air (oxygen-containing gas) (bubbling or the like) or to react the liquid phase while stirring.

気相中乃至水相中における分解対象物としては、悪臭原因物質、粉塵、微生物、ウィルス、シックハウス症候群の原因物質(ホルムアルデヒド等)、臭い成分(たばこ臭、ペット臭等)、有害物質(ダイオキシン、PCB等)、農薬、エチレンガス、窒素化合物(アンモニア、NOx等)、硫黄化合物(メルカプタン、スルフィド等)や、リン化合物(有機リン等)が挙げられる。   Substances to be decomposed in the gas phase or in the water phase include malodorous substances, dust, microorganisms, viruses, sick house syndrome causative substances (formaldehyde, etc.), odor components (cigarette odor, pet odor, etc.), toxic substances (dioxins, PCB, etc.), agricultural chemicals, ethylene gas, nitrogen compounds (ammonia, NOx, etc.), sulfur compounds (mercaptan, sulfide, etc.), and phosphorus compounds (organic phosphorus, etc.).

また、本発明の有機光触媒は、p型有機半導体とn型有機半導体のいずれも有機物から構成されるため加工乃至成形性に優れている。無機光触媒の酸化チタンでは加工性乃至成形性に難があったが、本発明の有機光触媒では、この様な問題は解消される。そのため、酸化チタンの用途を越える極めて広範な用途に用いられる。   Further, the organic photocatalyst of the present invention is excellent in processing or moldability because both the p-type organic semiconductor and the n-type organic semiconductor are composed of an organic substance. Although titanium oxide as an inorganic photocatalyst has difficulty in workability or moldability, the organic photocatalyst of the present invention solves such a problem. Therefore, it is used for a very wide range of applications that exceed the applications of titanium oxide.

本発明の有機光触媒は、上記気相中乃至水相中における分解対象物をろ過し分解する、各種フィルターの表面素材として用いることができる。本発明の有機光触媒をフィルター基体に固着する方法は、上記した真空蒸着法、スパッタリング法、電気化学的被覆(電析)、塗布等の方法を用いればよい。   The organic photocatalyst of the present invention can be used as a surface material of various filters that filter and decompose the decomposition target in the gas phase or aqueous phase. As a method for fixing the organic photocatalyst of the present invention to the filter substrate, a method such as the above-described vacuum deposition method, sputtering method, electrochemical coating (electrodeposition), coating or the like may be used.

また、本発明の有機光触媒は、有機物或いは窒素、硫黄又はリンを含む無機物を含む被処理水に分散させて、光照射による分解処理をおこない、さらに、処理後に該有機光触媒をろ過して分離回収し、再度水処理に供することができる。   In addition, the organic photocatalyst of the present invention is dispersed in water to be treated containing an organic substance or an inorganic substance containing nitrogen, sulfur or phosphorus, subjected to a decomposition treatment by light irradiation, and further filtered and separated and recovered after the treatment. And can be subjected to water treatment again.

また、本発明の有機光触媒は塗料に混入させて、光触媒活性を有する塗料組成物とすることができる。該塗料組成物では、塗料に対し有機光触媒の親和性が高いため、均一な触媒の分散が可能となる。   Moreover, the organic photocatalyst of this invention can be mixed in a coating material, and can be set as the coating composition which has photocatalytic activity. In the coating composition, since the organic photocatalyst has a high affinity for the coating, it is possible to uniformly disperse the catalyst.

本発明の有機光触媒は水に対しても安定であるため、上記分解対象物を含む水の処理も効率的に実施できる。例えば、該粉末を被処理水に分散させて光を照射して水を処理し、処理後は該粉末をろ過して処理水を得、該粉末は簡便に回収できる。なお、水相(被処理水)としては、例えば、工業用循環水、工業用排水、産業用排水、上水、下水、土壌及び地下水、池、プール、生活排水、農薬残存廃液、風呂、貯水タンク、湖水、ダムなどが挙げられる。これらの水相は、pH、硬度等は特に限定はなく、効率的に処理が可能である。特に、pH7〜11程度とするのが好ましい。   Since the organic photocatalyst of the present invention is stable against water, the water containing the decomposition target can also be efficiently treated. For example, the powder is dispersed in water to be treated, and light is irradiated to treat the water. After the treatment, the powder is filtered to obtain treated water, and the powder can be easily recovered. The water phase (treated water) includes, for example, industrial circulating water, industrial wastewater, industrial wastewater, clean water, sewage, soil and groundwater, ponds, pools, domestic wastewater, residual agricultural chemicals, baths, water storage Examples include tanks, lakes, and dams. These aqueous phases are not particularly limited in pH, hardness and the like, and can be treated efficiently. In particular, the pH is preferably about 7 to 11.

本発明のp型有機半導体とn型有機半導体酸化チタンからなる有機光触媒は、可視光照射による有機物等の分解に対して高い触媒活性を有している。特に、本発明の有機光触媒は、可視光全域の光エネルギーを利用できる光触媒であり、特に太陽光(自然光)を充分に利用できる点において非常に有効な光触媒である。   The organic photocatalyst comprising the p-type organic semiconductor and the n-type organic semiconductor titanium oxide of the present invention has a high catalytic activity against the decomposition of organic substances and the like by visible light irradiation. In particular, the organic photocatalyst of the present invention is a photocatalyst that can use light energy in the entire visible light region, and is particularly effective in that sunlight (natural light) can be sufficiently used.

本発明の有機光触媒は、無機の光触媒と異なり、p型有機半導体とn型有機半導体を積層させるだけで得られ、成形加工が極めて容易であるため、実用性が高い。   Unlike the inorganic photocatalyst, the organic photocatalyst of the present invention is obtained by simply laminating a p-type organic semiconductor and an n-type organic semiconductor, and has a very high practicality because it is extremely easy to mold.

有機材料は一般に酸化分解しやすいが、本発明の有機光触媒は気相又は液相中において安定に機能する。もちろん、屋外だけでなく室内でも利用可能である。   Although organic materials are generally easily oxidatively decomposed, the organic photocatalyst of the present invention functions stably in the gas phase or liquid phase. Of course, it can be used indoors as well as outdoors.

実施例1及び2で使用する有機光触媒を用いた光触媒反応用の試験セルの模式図である。It is a schematic diagram of the test cell for photocatalytic reactions using the organic photocatalyst used in Example 1 and 2. 比較例1で使用する有機光触媒を用いた光触媒反応用の試験セルの模式図である。3 is a schematic diagram of a test cell for a photocatalytic reaction using an organic photocatalyst used in Comparative Example 1. FIG. 実施例1及び2、比較例1の光触媒反応における反応時間(分)とメチレンブルー濃度(μM)との関係を示すグラフである。4 is a graph showing the relationship between the reaction time (minutes) and the methylene blue concentration (μM) in the photocatalytic reactions of Examples 1 and 2 and Comparative Example 1. 実施例3及び4、比較例2〜4の光触媒反応における反応時間(分)とメチレンブルー濃度(μM)との関係を示すグラフである。It is a graph which shows the relationship between the reaction time (minute) and the methylene blue density | concentration (micromol) in the photocatalytic reaction of Examples 3 and 4 and Comparative Examples 2-4.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.

実施例1(可視光照射時における有機光触媒の活性評価)
(1)有機光触媒材料として、n型半導体である3,4,9,10−ペリレンテトラカルボキシル−ビスベンズイミダゾール(以下「PV」と表記する)及びp型半導体である無金属フタロシアニン(以下「H2Pc」と表記する)を用いた。本発明においては、それぞれ昇華精製したものを用いた。
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った。まず、ガラス基板上にPVを220nmの厚さで、次いで、PV上にH2Pcを70nmの厚さで積層した。
(3)実験装置の構成・方法は以下の通りに行った。まず、図1に示すような試験セルを作製した。円筒状の試験漕としては、丸本ストルアス社製マルチフォーム(内径40mm、高さ30mm (code: EFOPY, No:40300046))を用いた。ガラス板の上にポリプロピレンシートを敷いたものをセルの底部とした。円筒状の試験漕部とポリプロピレンシート間を密閉するために、その接触部分にシリコングリース(高真空用、耐薬品性を有するもの)を塗布した。(参考:光触媒製品フォーラム編、光触媒製品における湿式分解性能試験方法(2004年5月28日改訂))
(4)メチレンブルー三水和物はJIS K 8897に規定された特級試薬を、精製水は第14日本薬局方基準に適合したものを用いた。フレッシュなメチレンブルー水溶液(10μmol/l)を作製し、水酸化ナトリウムあるいは水酸化カリウムを用いてpH10に調整した。上記(2)で作製した二重層フィルムはメチレンブルー水溶液を用いてガラス基板から剥離させて、試験漕の上部に静置した。この時の有機光触媒の有効面積は約12.5 cm2であり、試験漕には35mlのメチレンブルー水溶液が満たされた。円筒状試験セルの上部はカットオフフィルター(L-42、HOYA製、5×5cm2)で閉じた。
(5)有機光触媒反応は、ハロゲンランプ(日本ピーアイ社製)を光源として、約60 mWcm-2の強度の可視光(波長:400〜750nm)を3時間照射して行った。この時、試験セルの上部から光照射を施した。反応開始後から180分経過した時点で、メチレンブルー水溶液の可視吸収スペクトルを測定し、その分解量を定量した。尚、可視吸収スペクトルの測定には、島津製作所製 MultiSpec-1500を用い、分光光度計用測定セルは樹脂製で光路長10mmのもので、波長域600〜700nmの光の透過率が80%以上のものを用いた。
(6)上記(5)の結果、メチレンブルーの分解の進行により、吸光度の減少が観察された。180分後におけるメチレンブルー水溶液の濃度は約0.5μmol/l減少し、初期濃度の約5%分解が起こったことが確認された。結果を図3に示す。
Example 1 (Evaluation of activity of organic photocatalyst during visible light irradiation)
(1) As organic photocatalytic materials, 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (hereinafter referred to as “PV”) which is an n-type semiconductor and metal-free phthalocyanine (hereinafter referred to as “H” which is a p-type semiconductor). 2 Pc ”). In the present invention, those purified by sublimation were used.
(2) Preparation of the double layer film used as an organic photocatalyst element was performed by the vacuum evaporation method. First, PV was laminated on a glass substrate with a thickness of 220 nm, and then H 2 Pc was laminated on the PV with a thickness of 70 nm.
(3) The configuration and method of the experimental apparatus were as follows. First, a test cell as shown in FIG. 1 was produced. As a cylindrical test rod, a multifoam made by Marumoto Struers (inner diameter 40 mm, height 30 mm (code: EFOPY, No: 40300046)) was used. The bottom of the cell was made by laying a polypropylene sheet on a glass plate. In order to seal between the cylindrical test rod and the polypropylene sheet, silicon grease (for high vacuum and chemical resistance) was applied to the contact portion. (Reference: Photocatalyst Product Forum, wet decomposition performance test method for photocatalyst products (revised on May 28, 2004))
(4) Methylene blue trihydrate was a special grade reagent stipulated in JIS K 8897, and purified water conforming to the 14th Japanese Pharmacopoeia standard was used. A fresh methylene blue aqueous solution (10 μmol / l) was prepared and adjusted to pH 10 using sodium hydroxide or potassium hydroxide. The double layer film produced in the above (2) was peeled off from the glass substrate using a methylene blue aqueous solution and allowed to stand on the top of the test bowl. The effective area of the organic photocatalyst at this time was about 12.5 cm 2 , and the test bowl was filled with 35 ml of methylene blue aqueous solution. The upper part of the cylindrical test cell was closed with a cut-off filter (L-42, manufactured by HOYA, 5 × 5 cm 2 ).
(5) The organic photocatalytic reaction was performed by irradiating visible light (wavelength: 400 to 750 nm) having an intensity of about 60 mWcm −3 for 3 hours using a halogen lamp (manufactured by Nihon PI Corporation) as a light source. At this time, light irradiation was performed from the upper part of the test cell. When 180 minutes passed from the start of the reaction, the visible absorption spectrum of the methylene blue aqueous solution was measured, and the amount of decomposition was quantified. The visible absorption spectrum is measured using Shimadzu MultiSpec-1500, the spectrophotometer measurement cell is made of resin and has an optical path length of 10 mm, and the transmittance of light in the wavelength range of 600 to 700 nm is 80% or more. The thing of was used.
(6) As a result of the above (5), a decrease in absorbance was observed as the decomposition of methylene blue progressed. After 180 minutes, the concentration of the methylene blue aqueous solution decreased by about 0.5 μmol / l, confirming that about 5% decomposition of the initial concentration occurred. The results are shown in FIG.

実施例2(可視光照射時における有機光触媒の活性評価)
(1)有機光触媒材料として、n型半導体であるPV及びp型半導体である鉄フタロシアニン(以下「FePc」と表記する)を用いた。本発明においては、それぞれ昇華精製したものを用いた。
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った。まず、ガラス基板上にPVを130nmの厚さで、次いで、PV上にFePcを70nmの厚さで積層した。
(3)実験装置の構成・方法は、実施例1の(3)〜(5)と同様とした。
(4)実験の結果、メチレンブルーの分解の進行により、吸光度の減少が観察された。180分後におけるメチレンブルー水溶液の濃度は約1.2μmol/l減少し、初期濃度の約12%分解が起こったことが確認された。
Example 2 (Evaluation of activity of organic photocatalyst during visible light irradiation)
(1) PV as an n-type semiconductor and iron phthalocyanine (hereinafter referred to as “FePc”) as a p-type semiconductor were used as organic photocatalytic materials. In the present invention, those purified by sublimation were used.
(2) Preparation of the double layer film used as an organic photocatalyst element was performed by the vacuum evaporation method. First, PV was laminated on a glass substrate with a thickness of 130 nm, and then FePc was laminated on the PV with a thickness of 70 nm.
(3) The configuration and method of the experimental apparatus were the same as (3) to (5) of Example 1.
(4) As a result of the experiment, a decrease in absorbance was observed as methylene blue was decomposed. After 180 minutes, the concentration of the methylene blue aqueous solution decreased by about 1.2 μmol / l, confirming that about 12% decomposition of the initial concentration occurred.

一方で、有機光触媒を用いないこと以外は実施例1と同じ条件で実験したところ、光照射下でもメチレンブルーの分解が確認されなかった。   On the other hand, when an experiment was performed under the same conditions as in Example 1 except that no organic photocatalyst was used, no decomposition of methylene blue was confirmed even under light irradiation.

実施例1及び2の結果から、広範な可視光を吸収する有機光触媒を用いて、メチレンブルーの分解反応が起こることがわかった。結果を図3に示す。   From the results of Examples 1 and 2, it was found that the decomposition reaction of methylene blue occurred using an organic photocatalyst that absorbs a wide range of visible light. The results are shown in FIG.

比較例1(可視光照射時における酸化チタン光触媒の活性評価)
(1)酸化チタン光触媒を用いて、実施例1及び2に準じた方法でメチレンブルーの分解試験を行った。
(2)酸化チタン光触媒として、光触媒標準サンプル(50SQC、光触媒研究所社製)を用いた。これは酸化チタン光触媒がガラス板に被覆されたもので、酸化チタンの厚さが0.5μm、ガラス板のサイズが50 mm×50 mm×(厚さ)1.8mmであるものを使用した。
(3)酸化チタンはその表面にメチレンブルーを吸着する性質を有するため、その表面をメチレンブルーで飽和吸着させた。用いた試薬及び水は実施例1及び2と同様である。pH10に調製した20μmol/lのメチレンブルー水溶液を用いて、図2に示すような試験セル中で酸化チタン表面への吸着を行った。12時間吸着後、液を取り出して、吸光度を測定したところ、メチレンブルー水溶液の濃度が低下していたので、さらに12時間、20μmol/lのメチレンブルー水溶液を用いて吸着を実行した。この時のメチレンブルー水溶液の濃度が10μmol/l以上であったので、この表面にメチレンブルーを飽和吸着した酸化チタンを光触媒反応に用いた。
(4)図2に示すような試験セルを用いて、光触媒反応を行った。試験漕としては、丸本ストルアス社製マルチフォーム(内径40mm、高さ30mm (code: EFOPY, No:40300046))を用いた。試験セルはpH10に調整されたフレッシュなメチレンブルー水溶液(10μmol/l、35ml)で満たした。
(5)光触媒反応は、ハロゲンランプ(日本ピーアイ社製)を光源として、約60 mWcm-2の強度の可視光(波長:400〜750nm)を3時間照射して行った。この時、試験セルの下部から光照射を施した。反応開始後から20分、40分、60分、80分、100分、120分、140分、160分、180分それぞれ経過した時点で、メチレンブルー水溶液の可視吸収スペクトルを測定し、その分解量を定量した。尚、可視吸収スペクトル測定装置と測定用セルは実施例1及び2と同様である。
(6)上記(5)の結果、メチレンブルーの分解の進行は認められなかった。
Comparative Example 1 (Activity evaluation of titanium oxide photocatalyst during irradiation with visible light)
(1) Using a titanium oxide photocatalyst, a methylene blue decomposition test was performed by the method according to Examples 1 and 2.
(2) As a titanium oxide photocatalyst, a photocatalyst standard sample (50SQC, manufactured by Photocatalyst Laboratory Inc.) was used. This was obtained by coating a titanium oxide photocatalyst on a glass plate, and a titanium oxide having a thickness of 0.5 μm and a glass plate size of 50 mm × 50 mm × (thickness) 1.8 mm was used.
(3) Since titanium oxide has the property of adsorbing methylene blue on its surface, the surface was saturated and adsorbed with methylene blue. The reagents and water used were the same as in Examples 1 and 2. Adsorption onto the titanium oxide surface was performed in a test cell as shown in FIG. 2 using a 20 μmol / l methylene blue aqueous solution adjusted to pH 10. After adsorbing for 12 hours, the liquid was taken out and the absorbance was measured. As a result, the concentration of the methylene blue aqueous solution was lowered. Therefore, the adsorption was carried out for another 12 hours using a 20 μmol / l methylene blue aqueous solution. Since the concentration of the methylene blue aqueous solution at this time was 10 μmol / l or more, titanium oxide having methylene blue saturated and adsorbed on the surface was used for the photocatalytic reaction.
(4) A photocatalytic reaction was carried out using a test cell as shown in FIG. A multifoam made by Marumoto Struers (inner diameter 40 mm, height 30 mm (code: EFOPY, No: 40300046)) was used as a test rod. The test cell was filled with a fresh aqueous methylene blue solution adjusted to pH 10 (10 μmol / l, 35 ml).
(5) The photocatalytic reaction was performed by irradiating visible light (wavelength: 400 to 750 nm) having an intensity of about 60 mWcm −3 for 3 hours using a halogen lamp (manufactured by Nippon P - I Co., Ltd.) as a light source. At this time, light irradiation was performed from the lower part of the test cell. At the time when 20 minutes, 40 minutes, 60 minutes, 80 minutes, 100 minutes, 120 minutes, 140 minutes, 160 minutes, and 180 minutes have elapsed since the start of the reaction, the visible absorption spectrum of the methylene blue aqueous solution was measured, and the amount of decomposition was determined. Quantified. The visible absorption spectrum measuring apparatus and the measurement cell are the same as in Examples 1 and 2.
(6) As a result of the above (5), no progress of decomposition of methylene blue was observed.

また、酸化チタン光触媒を用いないこと以外は比較例1と同じ条件で実験したところ、可視光照射下でもメチレンブルーの分解が確認されなかった。 Moreover, when it experimented on the same conditions as the comparative example 1 except not using a titanium oxide photocatalyst, decomposition | disassembly of methylene blue was not confirmed even under visible light irradiation.

実施例1及び2と比較例1の結果から、有機二重層フィルムが広範な可視光応答性を有する光触媒であることがわかり、可視光を有効に利用できる点で、従来の酸化チタンよりも優れた光触媒であることが確認された。結果を図3に示す。   From the results of Examples 1 and 2 and Comparative Example 1, it can be seen that the organic double layer film is a photocatalyst having a wide range of visible light responsiveness, and is superior to conventional titanium oxide in that it can effectively use visible light. The photocatalyst was confirmed. The results are shown in FIG.

実施例3(可視光照射時における有機光触媒の活性評価)
(1)有機光触媒材料として、n型半導体である3,4,9,10−ペリレンテトラカルボキシル−ビスベンズイミダゾール(PV)及びp型半導体である無金属フタロシアニン(H2Pc)を用いた。本発明においては、それぞれ昇華精製したものを用いた。
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った。まず、ガラス基板上にPVを200nmの厚さで、次いで、PV上にH2Pcを120nmの厚さで積層した。
(3)実験装置の構成・方法は以下の通りに行った。まず、ガラスセル(1 cm x 1 cm x 5 cm)の内部に所定濃度のメチレンブルー水溶液を満たした。
(4)メチレンブルー三水和物はJIS K 8897に規定された特級試薬を、精製水は第14日本薬局方基準に適合したものを用いた。フレッシュなメチレンブルー水溶液(10μmol/l)を作製し、水酸化ナトリウム用いてpH10に調整した。上記(2)で作製した光触媒担持基板をセルの側面に触媒面が内側となるように静置した。この時の有機光触媒の面積は約5 cm2であり、試験漕には5mlのメチレンブルー水溶液が満たされた。上部は開口状態であり大気と触れている。セル底部にはマグネティックスターラで攪拌されている。
(5)有機光触媒反応は、ハロゲンランプ(日本ピーアイ社製、100 mWcm-2)を光源として可視光(波長:400〜750nm)3時間照射して行った。この時、試験セルの側部から光照射を施した。照射面積は1cm2である。反応中、直角方向から1μWcm-2の白色光を照射して、その透過量からメチレンブルー水溶液の可視吸収スペクトルを測定し、その分解量を定量した。尚、可視吸収スペクトルの測定には、大塚電子製 MPCD-7000を用いた。
(6)上記(5)の結果、メチレンブルーの分解の進行により、吸光度の大幅な減少が観察された。結果を図4に示す。
Example 3 (Activity evaluation of organic photocatalyst during irradiation with visible light)
(1) As organic photocatalyst materials, n-type semiconductor 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (PV) and p-type semiconductor metal-free phthalocyanine (H 2 Pc) were used. In the present invention, those purified by sublimation were used.
(2) Preparation of the double layer film used as an organic photocatalyst element was performed by the vacuum evaporation method. First, PV was laminated with a thickness of 200 nm on a glass substrate, and then H 2 Pc was laminated with a thickness of 120 nm on the PV.
(3) The configuration and method of the experimental apparatus were as follows. First, a glass cell (1 cm × 1 cm × 5 cm) was filled with a predetermined concentration of methylene blue aqueous solution.
(4) Methylene blue trihydrate was a special grade reagent stipulated in JIS K 8897, and purified water conforming to the 14th Japanese Pharmacopoeia standard was used. A fresh methylene blue aqueous solution (10 μmol / l) was prepared and adjusted to pH 10 with sodium hydroxide. The photocatalyst carrying substrate prepared in the above (2) was placed on the side surface of the cell so that the catalyst surface was inside. At this time, the area of the organic photocatalyst was about 5 cm 2 , and the test bowl was filled with 5 ml of methylene blue aqueous solution. The upper part is open and in contact with the atmosphere. The bottom of the cell is stirred with a magnetic stirrer.
(5) The organic photocatalytic reaction was performed by irradiating visible light (wavelength: 400 to 750 nm) for 3 hours using a halogen lamp (manufactured by Nihon PI Corporation, 100 mWcm −2 ) as a light source. At this time, light irradiation was performed from the side of the test cell. The irradiation area is 1 cm 2 . During the reaction, white light of 1 μWcm −2 was irradiated from the right-angle direction, and the visible absorption spectrum of the methylene blue aqueous solution was measured from the transmission amount, and the decomposition amount was quantified. For measurement of the visible absorption spectrum, MPCD-7000 manufactured by Otsuka Electronics was used.
(6) As a result of the above (5), a significant decrease in absorbance was observed with the progress of the decomposition of methylene blue. The results are shown in FIG.

実施例4(可視光照射時における有機光触媒の活性評価)
(1)有機光触媒材料として、n型半導体であるPV及びp型半導体であるFePcを用いた。本発明においては、それぞれ昇華精製したものを用いた。
(2)有機光触媒素子として用いる二重層フィルムの作製は、真空蒸着法により行った。まず、ガラス基板上にPVを200nmの厚さで、次いで、PV上にFePcを50nmの厚さで積層した。FePcに関しては溶液よりキャストする方法も採った。
(3)実験装置の構成・方法は、実施例3の(3)〜(5)と同様とした。
(4)実験の結果、メチレンブルーの分解の進行により、吸光度の大幅な減少が観察された。結果を図4に示す。
Example 4 (Activity evaluation of organic photocatalyst during irradiation with visible light)
(1) PV as an n-type semiconductor and FePc as a p-type semiconductor were used as organic photocatalytic materials. In the present invention, those purified by sublimation were used.
(2) Preparation of the double layer film used as an organic photocatalyst element was performed by the vacuum evaporation method. First, PV was laminated with a thickness of 200 nm on a glass substrate, and then FePc was laminated with a thickness of 50 nm on the PV. For FePc, a method of casting from a solution was also employed.
(3) The configuration and method of the experimental apparatus were the same as (3) to (5) of Example 3.
(4) As a result of the experiment, a significant decrease in absorbance was observed as methylene blue was decomposed. The results are shown in FIG.

比較例2(触媒なし可視光照射時におけるブランク試験)
有機光触媒を用いないこと以外は、実施例3と同様にして可視光を照射した。実験の結果、光照射によりメチレンブルーの吸光度が徐々に減少することが分かった。結果を図4に示す。これは、光照射により、メチレンブルーが溶存酸素等と反応して分解したと考えられる。
Comparative example 2 (blank test at the time of visible light irradiation without a catalyst)
Visible light was irradiated in the same manner as in Example 3 except that no organic photocatalyst was used. As a result of the experiment, it was found that the absorbance of methylene blue gradually decreased by light irradiation. The results are shown in FIG. This is considered that methylene blue reacted with dissolved oxygen and decomposed by light irradiation.

比較例3(触媒なし光照射なしにおけるブランク試験)
有機光触媒を用いないこと及び光照射しないこと(暗室にて試験したこと)以外は、実施例3と同様とした。実験の結果、メチレンブルーの吸光度は全く変化せず分解は起きなかった。結果を図4に示す。
Comparative Example 3 (blank test without catalyst without light irradiation)
Example 3 was the same as Example 3 except that no organic photocatalyst was used and no light was irradiated (tested in a dark room). As a result of the experiment, the absorbance of methylene blue did not change at all and no decomposition occurred. The results are shown in FIG.

比較例4(可視光照射時におけるPVの活性評価)
(1)有機光触媒材料として、昇華精製したPVのみを用いた。
(2)有機光触媒素子として、真空蒸着法により、ガラス基板上にPVを200nmの厚さで蒸着した。
(3)実験装置の構成・方法は、実施例3の(3)〜(5)と同様とした。
(4)実験の結果、メチレンブルーの分解は進行するが、吸光度の減少は比較例2のブランク試験と同等であり、PVのみではほとんど光触媒反応が進行していないことが分かった。結果を図4に示す。
Comparative Example 4 (PV activity evaluation during visible light irradiation)
(1) As an organic photocatalyst material, only sublimated and purified PV was used.
(2) As an organic photocatalyst element, PV was vapor-deposited with a thickness of 200 nm on a glass substrate by a vacuum vapor deposition method.
(3) The configuration and method of the experimental apparatus were the same as (3) to (5) of Example 3.
(4) As a result of the experiment, although the decomposition of methylene blue progressed, the decrease in absorbance was equivalent to that of the blank test of Comparative Example 2, and it was found that the photocatalytic reaction hardly proceeded with PV alone. The results are shown in FIG.

Claims (12)

フタロシアニン誘導体のp型有機半導体とペリレン誘導体のn型有機半導体とが積層した有機光触媒であって、電気化学的なバイアスを印加せずに光照射下で有機物或いは窒素、硫黄又はリンを含む無機物を分解するために使用する有機光触媒。 An organic photocatalyst in which a p-type organic semiconductor of a phthalocyanine derivative and an n-type organic semiconductor of a perylene derivative are laminated, and an organic substance or an inorganic substance containing nitrogen, sulfur, or phosphorus under light irradiation without applying an electrochemical bias. Organic photocatalyst used to decompose. p型有機半導体層及びn型有機半導体層が積層した二層構造を有する請求項1に記載の有機光触媒。  The organic photocatalyst according to claim 1, having a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated. p型有機半導体層の厚さが20〜500 nmであり、n型有機半導体層の厚さが50〜800 nmである請求項1に記載の有機光触媒。  The organic photocatalyst according to claim 1, wherein the thickness of the p-type organic semiconductor layer is 20 to 500 nm, and the thickness of the n-type organic semiconductor layer is 50 to 800 nm. p型有機半導体層とn型有機半導体層の間に、p型有機半導体とn型有機半導体との共蒸着層を含む三層構造を有する請求項1に記載の有機光触媒。  The organic photocatalyst according to claim 1, wherein the organic photocatalyst has a three-layer structure including a co-deposited layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer. 基体上に、p型有機半導体層及びn型有機半導体層が積層した二層構造を有する請求項1に記載の有機光触媒。  The organic photocatalyst according to claim 1, having a two-layer structure in which a p-type organic semiconductor layer and an n-type organic semiconductor layer are laminated on a substrate. 基体上に、p型有機半導体層とn型有機半導体層の間にp型有機半導体とn型有機半導体との共蒸着層を含む三層構造を有する請求項1に記載の有機光触媒。  2. The organic photocatalyst according to claim 1, wherein the organic photocatalyst has a three-layer structure including a co-deposited layer of a p-type organic semiconductor and an n-type organic semiconductor between the p-type organic semiconductor layer and the n-type organic semiconductor layer on the substrate. 請求項5に記載の有機光触媒を製造する方法であって、基体上にn型有機半導体層とp型有機半導体層とを積層して二層構造とすることを特徴とする製造方法。  6. A method for producing an organic photocatalyst according to claim 5, wherein an n-type organic semiconductor layer and a p-type organic semiconductor layer are laminated on a substrate to form a two-layer structure. 請求項6に記載の有機光触媒を製造する方法であって、基体上にn型(又はp型)有機半導体層を形成し、その上にn型有機半導体とp型有機半導体を共蒸着して共蒸着層を形成し、その上にp型(又はn型)有機半導体層を形成して三層構造とすることを特徴とする製造方法。  A method for producing an organic photocatalyst according to claim 6, wherein an n-type (or p-type) organic semiconductor layer is formed on a substrate, and an n-type organic semiconductor and a p-type organic semiconductor are co-deposited thereon. A manufacturing method characterized by forming a co-deposition layer and forming a p-type (or n-type) organic semiconductor layer thereon to form a three-layer structure. 気相又は水相中の有機物或いは窒素、硫黄又はリンを含む無機物を分解する方法であって、電気化学的なバイアスを印加せずに光照射下で請求項1に記載の有機光触媒を有機物或いは窒素、硫黄又はリンを含む無機物と接触させて分解する方法。  A method for decomposing an organic substance in a gas phase or an aqueous phase or an inorganic substance containing nitrogen, sulfur or phosphorus, wherein the organic photocatalyst according to claim 1 is converted into an organic substance or an organic substance under light irradiation without applying an electrochemical bias. A method of decomposing by contacting with an inorganic substance containing nitrogen, sulfur or phosphorus. 請求項1に記載の有機光触媒及び塗料を含む塗料組成物。  A paint composition comprising the organic photocatalyst according to claim 1 and a paint. 請求項1に記載の有機光触媒を、有機物或いは窒素、硫黄又はリンを含む無機物を含む被処理水に分散させて、電気化学的なバイアスを印加せずにこれに光を照射して水を処理する方法。  The organic photocatalyst according to claim 1 is dispersed in water to be treated containing an organic substance or an inorganic substance containing nitrogen, sulfur, or phosphorus, and the water is treated by irradiating light without applying an electrochemical bias. how to. さらに、処理後に該有機光触媒をろ過して回収し、再度水処理に供する請求項11に記載の水処理方法。Furthermore, the water treatment method of Claim 11 which filters and collect | recovers this organic photocatalyst after a process, and uses for water treatment again.
JP2007514770A 2005-04-26 2006-04-26 Organic photocatalyst Expired - Fee Related JP5182665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514770A JP5182665B2 (en) 2005-04-26 2006-04-26 Organic photocatalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005127338 2005-04-26
JP2005127338 2005-04-26
PCT/JP2006/308748 WO2006115271A1 (en) 2005-04-26 2006-04-26 Organic photocatalyst
JP2007514770A JP5182665B2 (en) 2005-04-26 2006-04-26 Organic photocatalyst

Publications (2)

Publication Number Publication Date
JPWO2006115271A1 JPWO2006115271A1 (en) 2008-12-18
JP5182665B2 true JP5182665B2 (en) 2013-04-17

Family

ID=37214884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514770A Expired - Fee Related JP5182665B2 (en) 2005-04-26 2006-04-26 Organic photocatalyst

Country Status (2)

Country Link
JP (1) JP5182665B2 (en)
WO (1) WO2006115271A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962958B2 (en) * 2007-07-27 2012-06-27 国立大学法人弘前大学 Visible light responsive photocatalyst
JP5544691B2 (en) * 2008-08-05 2014-07-09 国立大学法人弘前大学 Method for producing organic photocatalytic film
JP5424594B2 (en) * 2008-08-19 2014-02-26 国立大学法人弘前大学 Reaction cell for organic photoresponsive element
JP4974995B2 (en) * 2008-10-10 2012-07-11 日鉄鉱業株式会社 Method for removing polysulfide ions from basic aqueous solutions
JP5605601B2 (en) * 2008-11-21 2014-10-15 国立大学法人弘前大学 Visible light responsive photocatalyst complex
CN103449563B (en) * 2013-09-06 2015-06-17 广西大学 Method for removing organic matter under synergy of visible light photoelectric catalysis and three-dimensional electrode/electro-fenton
CN104694153B (en) * 2013-12-05 2016-08-17 中国科学院大连化学物理研究所 Cage fullerenes is the fuel oil photooxidation processing method of photosensitizer
CN105268479B (en) * 2015-11-10 2017-09-05 安徽理工大学 The preparation method of high efficiency photocatalyst based on iron and Phen
CN109158111B (en) * 2018-10-03 2022-04-26 佛山霖诺环保科技有限公司 Preparation method of nano carbon-based supported manganese-cobalt bimetallic formaldehyde catalyst
KR102636596B1 (en) * 2019-01-31 2024-02-13 주식회사 엘지화학 Antibacterial polymer coating composition and antibacterial polymer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033265A (en) * 1998-07-17 2000-02-02 Chisso Corp Selective oxidation photocatalyst for olefin and aromatic carbon compound, and production of oxygen- containing compound using the same
JP2001347162A (en) * 2000-06-07 2001-12-18 Sharp Corp Photocatalytic material with thin titanium dioxide film
WO2005063393A1 (en) * 2003-12-26 2005-07-14 Kansai Technology Licensing Organization Co., Ltd. Method for electrolyzing water using organic photocatalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033265A (en) * 1998-07-17 2000-02-02 Chisso Corp Selective oxidation photocatalyst for olefin and aromatic carbon compound, and production of oxygen- containing compound using the same
JP2001347162A (en) * 2000-06-07 2001-12-18 Sharp Corp Photocatalytic material with thin titanium dioxide film
WO2005063393A1 (en) * 2003-12-26 2005-07-14 Kansai Technology Licensing Organization Co., Ltd. Method for electrolyzing water using organic photocatalyst

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012029587; 阿部敏之他: '広範な可視光に応答する有機光触媒' エレクトロオーガニックケミストリー討論会講演要旨集 vol.28th, 2004, p.98-99 *
JPN6012064631; 阿部敏之他: 'ペリレン誘導体/無金属フタロシアニン有機二重層の湿式系光アノード特性' 日本化学会講演予稿集 vol.85th, No.1, 20050311, p.415 *
JPN6012064634; 阿部敏之他: 'ペリレン誘導体/フタロシアニン有機二重層で構成される新規な湿式系光アノード' 化学系学協会連合東北地方大会プログラム及び講演予稿集 , 2004, p.128 *
JPN6012064636; 阿部敏之他: 'ペリレン誘導体/フタロシアニン二重層で構成される有機光触媒' 高分子学会予稿集 vol.53, No.2, Disk 1, 2004, p.2Pf106 *

Also Published As

Publication number Publication date
WO2006115271A1 (en) 2006-11-02
JPWO2006115271A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5182665B2 (en) Organic photocatalyst
Li et al. High-efficiency ultrathin porous phosphorus-doped graphitic carbon nitride nanosheet photocatalyst for energy production and environmental remediation
Xing et al. POM-incorporated ZnIn2S4 Z-scheme dual-functional photocatalysts for cooperative benzyl alcohol oxidation and H2 evolution in aqueous solution
Koe et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane
Zhou et al. Rational design of carbon-doped carbon nitride/Bi12O17Cl2 composites: a promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline
Wang et al. Ag-bridged Z-scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights
Chen et al. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr (VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism
Deng et al. Visible-light-driven photocatalytic degradation of organic water pollutants promoted by sulfite addition
Mak et al. Heterogenization of homogeneous photocatalysts utilizing synthetic and natural support materials
Abazari et al. Instantaneous sonophotocatalytic degradation of tetracycline over NU-1000@ ZnIn2S4 core–shell nanorods as a robust and eco-friendly catalyst
Hu et al. Biomimetic O2-carrying and highly in-situ H2O2 generation using Ti3C2 MXene/MIL-100 (Fe) hybrid via Fe-Protoporphyrin bridging for photo-fenton synergistic degradation of thiacloprid
Salimi et al. Photocatalytic degradation of cefixime with MIL-125 (Ti)-mixed linker decorated by g-C3N4 under solar driven light irradiation
Chowdhury et al. Dye-sensitized photocatalyst: A breakthrough in green energy and environmental detoxification
Bathla et al. Recent progress in bimetallic nanostructure impregnated metal-organic framework for photodegradation of organic pollutants
Pattanaik et al. TiO2 photocatalysis: progress from fundamentals to modification technology
Deng et al. Confining Metal‐Organic Framework in the Pore of Covalent Organic Framework: A Microscale Z‐Scheme System for Boosting Photocatalytic Performance
JP4962958B2 (en) Visible light responsive photocatalyst
Guo et al. Fabrication of a Z-scheme heterojunction polyhedral-shaped BiOIO3/MIL-53 (Fe) photocatalyst for enhancing gaseous Hg0 removal
Salgado et al. Photocatalysis and photodegradation of pollutants
Zhong et al. Origin of the enhanced photocatalytic activity of graphitic carbon nitride nanocomposites and the effects of water constituents
Nguyen et al. Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation
Luo et al. Fabrication of TiO2/CdS heterostructure by soluble solid-state titanium-oxo-clusters for fast photocatalytic degradation of tetracycline
Singh et al. Highly functionalized photo-activated metal–organic frameworks for dye degradation: Recent advancements
Gupta et al. Encapsulation-led adsorption of neutral dyes and complete photodegradation of cationic dyes and antipsychotic drugs by lanthanide-based macrocycles
Eroglu et al. Black Phosphorus Quantum Dots/Carbon Nitride-Reduced Graphene Oxide Ternary Heterojunction as a Multifunctional Metal-Free Photocatalyst for Photooxidation Reactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5182665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees