JP2003053195A - Photocatalyst device consisting of sheet light emitting element as light source - Google Patents

Photocatalyst device consisting of sheet light emitting element as light source

Info

Publication number
JP2003053195A
JP2003053195A JP2001280719A JP2001280719A JP2003053195A JP 2003053195 A JP2003053195 A JP 2003053195A JP 2001280719 A JP2001280719 A JP 2001280719A JP 2001280719 A JP2001280719 A JP 2001280719A JP 2003053195 A JP2003053195 A JP 2003053195A
Authority
JP
Japan
Prior art keywords
photocatalyst
light emitting
light
emitting element
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001280719A
Other languages
Japanese (ja)
Inventor
Tasuke Iwashita
太輔 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001280719A priority Critical patent/JP2003053195A/en
Publication of JP2003053195A publication Critical patent/JP2003053195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexible photocatalyst device which is made smaller in thickness and lighter in weight as compared with the conventional photocatalyst device and widens the selection of a place for installation. SOLUTION: The photocatalyst having a photocatalyst function is used for UV rays or visible light, such as blue light and green light as well and an organic EL light emitting element or inorganic EL light emitting element to emit the visible light, such as the blue light or green light or the extremely thin sheet light emitting element which has the element structure resembling the organic EL element and of which the light emitting layer is polysilane or the like and which emits near UV and UV wavelength bands is utilized as the light source of the photoconductive device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は超薄型大面積発光が可
能である電界発光素子electroluminesc
ence(以後ELと略す)、同じく超薄型大面積発光
が可能である発光層がポリシランなど近紫外・紫外波長
帯を発する発光素子(ここでは、紫外線を発するものも
発光素子のひとつとして扱う)を光源として、紫外線ま
たは青色光や緑色光などの可視光によっても光触媒機能
を有する酸化チタンなどを使用した薄型軽量光触媒装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescent device electroluminescence which is capable of emitting light in an ultra-thin and large area.
ence (hereinafter abbreviated as EL), a light emitting layer that emits light in the near-ultraviolet / ultraviolet wavelength band, such as polysilane, which is also capable of ultra-thin large-area light emission (here, one that emits ultraviolet light is also treated as one of the light-emitting elements) The present invention relates to a thin and light photocatalytic device using, as a light source, titanium oxide or the like having a photocatalytic function even with ultraviolet rays or visible light such as blue light and green light.

【0002】[0002]

【従来の技術】酸化チタンはTiOで表される物質で
あるが、チタンに対して酸素が不足したn型半導体であ
る。酸化チタンのバンドギャップはアナタース形で3.
2eVであり、エネルギー的には約380nmの紫外線
に相当する。酸化チタンにバンドギャップ以上のエネル
ギーが与えられた場合、すなわち380nmよりも短い
紫外線が照射された場合、酸化チタンの価電子帯にある
電子が伝導帯に励起され、酸化チタン内部に電子と正孔
が生成する。これが酸化チタン表面に拡散し、粒子表面
に存在する水や酸素と反応することで・OHや・HO
を生成し、有機物を酸化分解する。これら酸化チタンの
光触媒反応機構を下式に示す。 TiO+hν→h+e+HO→H+・OH(酸化) e+O+H→・HO(酸化) 酸化チタン光触媒作用の最大の特徴はこの反応において
酸化チタンは変化せず、光、水、酸素というクリーンな
エネルギーが供給される限り酸化分解作用は永久的に発
現することである。しかし、その機能を十分に発揮させ
るためには、光触媒反応の発現には光(紫外線)が必要
であり、光触媒反応は酸化チタン粒子表面でのみ起こる
ため、分解対象物との接触が必要である。また対象とす
る有機物には選択性はないが高濃度の対象物には、その
機能を発揮しにくい面もある。光触媒物質としてTiO
、V、ZnO、WOなどの酸化物粒子は、4
10nm以下の紫外線を含む光を照射すると有機物質を
分解するが、特に結晶構造がアナターゼ型のTiO
子はこのような光触媒機能に優れている。光触媒を用い
て脱臭や殺菌を行うことは種々検討され、実用化されて
いるものもある。例えば、WO94/11092号には
室内照明下における光触媒による空気処理方法が開示さ
れている。また特開平7−102678号には、光触媒
を用いた院内感染の防止方法が開示れている。また、光
触媒を用いて、空気中に含まれる窒素酸化物を除去する
方法も知られている(例えば、特開平7−331120
号、特開平8−10576号、特開平8−99020
号)。また、光触媒を用いた水の浄化装置も提案されて
いる(例えば特開平8−47687)。また、光触媒を
用いて排ガス中のダイオキシン類などの大気汚染物質の
分解にも利用されている(日刊工業新聞社、工業材料酸
化チタン光触媒の実用技術最前線7月号、69〜71p
(2001))しかるに、いずれの方法も、酸化チタン
等の、励起光として410nm以下の紫外線を必要とす
る光触媒を使用している。ところが、励起光源となる太
陽光や人工光には、紫外線以外に紫外線より長波長側の
可視光線等も含まれている。しかし、通常の酸化チタン
等からなる光触媒では、可視光線は利用されておらず、
エネルギー変換効率という観点からは、非常に非効率的
であった。ここで、エネルギー変換効率をあげるため青
色光や緑色光といった可視光でも有用な光触媒機能を持
つ酸化チタン系光触媒が開発されている。(特開200
0−157841号または日刊工業新聞社、工業材料酸
化チタン光触媒の実用技術最前線7月号、42〜44p
(2001))。しかし、いずれにせよ、太陽光などが
利用できない場合、光源として、比較的スペースが必要
で重量のある円柱状のガラス管などを用いた紫外線ラン
プや可視光ランプまたはLEDなどを利用しなければな
らなかった。
2. Description of the Related Art Titanium oxide, which is a substance represented by TiO 2 , is an n-type semiconductor in which oxygen is deficient with respect to titanium. The band gap of titanium oxide is anatase type.
It is 2 eV and corresponds in energy to ultraviolet light of about 380 nm. When energy higher than the band gap is applied to titanium oxide, that is, when ultraviolet light shorter than 380 nm is irradiated, electrons in the valence band of titanium oxide are excited to the conduction band, and electrons and holes are generated inside titanium oxide. Is generated. This diffuses on the surface of titanium oxide and reacts with water and oxygen existing on the surface of the particles, resulting in ・ OH and ・ HO 2
Is generated to oxidize and decompose organic substances. The photocatalytic reaction mechanism of these titanium oxides is shown below. TiO 2 + h ν → h + + e h + + H 2 O → H + + · OH (oxidation) e + O 2 + H + → · HO 2 (oxidation) Titanium oxide The greatest feature of this photocatalytic action is titanium oxide. Does not change, and as long as clean energy such as light, water and oxygen is supplied, the oxidative decomposition action is permanently exhibited. However, light (ultraviolet rays) is required for the manifestation of the photocatalytic reaction in order to fully exert its function, and the photocatalytic reaction occurs only on the surface of the titanium oxide particles, so contact with the decomposition target is required. . In addition, although the target organic substance has no selectivity, a high-concentration target substance may have difficulty in exerting its function. TiO as a photocatalytic substance
2 , oxide particles of V 2 O 5 , ZnO, WO 3, etc.
Irradiation with light including ultraviolet rays having a wavelength of 10 nm or less decomposes the organic substance, and TiO 2 particles having anatase type crystal structure are particularly excellent in such a photocatalytic function. Deodorization and sterilization using a photocatalyst have been variously studied and some have been put to practical use. For example, WO94 / 11092 discloses an air treatment method using a photocatalyst under room lighting. Further, JP-A-7-102678 discloses a method for preventing nosocomial infections using a photocatalyst. Further, a method of removing nitrogen oxides contained in air using a photocatalyst is also known (for example, JP-A-7-331120).
JP-A-8-10576 and JP-A-8-99020.
issue). Further, a water purifying device using a photocatalyst has also been proposed (for example, Japanese Patent Laid-Open No. 8-47687). It is also used for decomposing atmospheric pollutants such as dioxins in exhaust gas using photocatalysts (Nikkan Kogyo Shimbun Co., Ltd., Industrial Materials Frontier of Industrial Materials, July issue, 69-71p.
(2001)) However, in each method, a photocatalyst such as titanium oxide which requires ultraviolet rays of 410 nm or less as excitation light is used. However, in addition to ultraviolet rays, visible light having a wavelength longer than ultraviolet rays and the like are also included in sunlight and artificial light that serve as excitation light sources. However, visible light is not used in ordinary photocatalysts such as titanium oxide,
It was very inefficient in terms of energy conversion efficiency. Here, in order to improve energy conversion efficiency, a titanium oxide photocatalyst having a photocatalytic function that is useful even in visible light such as blue light and green light has been developed. (JP-A-200
0-157841 or Nikkan Kogyo Shimbun, Industrial Materials Frontier of Technical Materials for Titanium Dioxide Photocatalyst July issue, 42-44p
(2001)). However, in any case, when sunlight or the like cannot be used, an ultraviolet lamp, a visible light lamp, or an LED using a cylindrical glass tube that requires a relatively large space and is heavy must be used as a light source. There wasn't.

【0003】[0003]

【発明が解決しようとする課題】これにはつぎのような
欠点があった。(イ)太陽光を用いない場合、光触媒装
置の光源として比較的スペースが必要で重量のある円柱
状のガラス管を用いた紫外線ランプや可視光ランプまた
はLEDなどを用いなければならなかったが光源の形状
により光触媒装置を薄型軽量化するという面では限界が
あった。本発明は、これらの欠点を除くためになされた
ものである。
However, this has the following drawbacks. (B) If sunlight is not used, it is necessary to use an ultraviolet lamp, a visible light lamp, or an LED that uses a heavy columnar glass tube as a light source of the photocatalyst device. However, there is a limit in reducing the thickness and weight of the photocatalyst device due to the shape. The present invention has been made to eliminate these drawbacks.

【0004】[0004]

【課題を解決するための手段】青色または緑色などの可
視光を発光する有機EL発光素子や無機EL発光素子ま
たは有機EL素子と似た素子構造を有し発光層がポリシ
ランなどで近紫外・紫外波長帯を発する発光素子は超薄
型大面積発光が可能であり、これらの発光素子を光源と
することで光触媒装置の薄型軽量化が可能なようにし
た。本発明は、以上のような構成をとる超薄型軽量化を
ねらった光触媒装置である。
[Means for Solving the Problems] An organic EL light-emitting element that emits visible light such as blue or green, an inorganic EL light-emitting element, or an element structure similar to an organic EL element is used, and the light-emitting layer is polysilane or the like and near-ultraviolet / ultraviolet light is used. A light emitting element that emits a wavelength band can emit ultra-thin large-area light, and by using these light emitting elements as a light source, it has become possible to reduce the thickness and weight of the photocatalytic device. The present invention is a photocatalyst device having the above-mentioned configuration, which is aimed at ultra-thin weight reduction.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例について説
明する。 (イ)有機EL発光素子を光源とする場合、すでに実用
的な青色発光素子や緑色発光素子が開発されディスプレ
イなどに応用されているため、これを、光触媒装置の光
源として利用すればよい。有機EL発光素子は、蛍光性
有機化合物を含む薄膜を、陰極と陽極とで挟んだ構成を
有し、前記薄膜に電子および正孔(ホール)を注入して
再結合させることにより励起子(エキシトン)を生成さ
せ、このエキシトンが失活する際の光の放出(蛍光・燐
光)を利用して発光させる素子である。この有機EL素
子の特徴は、10V以下の低電圧で100〜10000
0cd/m程度の高輝度の面発光が可能であり、また
蛍光物質の種類を選択することにより青色から赤色まで
の発光が可能なことである。また発光層自身は1μm以
下にすることも可能であり、透明基板を含めても全体の
厚さで2mm以下にすることが可能である。ここで透明
基板に水分やガスを透過しにくい特殊なプラスチックフ
ィルムなどを用いれば紙のように丸められ割れる心配の
ないフレキシブルな有機EL発光素子の作製も可能であ
る(例えば特開2000−268954、特開2000
−260560日本経済新聞、2001年6月22日な
ど)。有機EL発光素子の成膜方法には真空蒸着法を用
いたもの(例えば、青色発光有機EL素子の真空蒸着法
を利用した作製方法として特開平5−17765、特開
平9−53068などがある。)スピンコート法を用い
たもの(例えば、青色発光有機EL素子のスピンコート
法を利用した作製方法として特開平9−111233、
特開平10−324870などがある。)と、印刷技術
を応用しハンコにあたる原版に有機ELを塗布し原版と
基板を密着させる方法を用いたもの(日経産業新聞、2
001年5月17日など)とインクジェット法を用いた
もの(特開平10−153967などがある。)と他に
はキャスティング法、ディッピング法、バーコート法、
ロールコート法などがある。特に、スピンコート法を利
用した作製方法は均一で大面積単色発光が必要な本光触
媒装置の光源に適している。なお、ここで例示した公開
特許以外にも高効率青色発光または高効率緑色発光有機
EL素子が開発されているので、そちらを光源として用
いてもよい。 (ロ)発光層が近紫外・紫外波長帯を発する発光素子を
光源とする場合、少なくとも正孔注入電極、電子注入電
極、及びこれらの電極間に形成された発光層から構成さ
れる発光素子において、発光層がポリシランで形成され
ていることを特徴とする。また、更に上記発光層が、下
記一般式(化1):
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (B) When an organic EL light emitting element is used as a light source, a practical blue light emitting element or green light emitting element has already been developed and applied to a display or the like, and therefore, this may be used as a light source of a photocatalytic device. An organic EL light-emitting device has a structure in which a thin film containing a fluorescent organic compound is sandwiched between a cathode and an anode, and electrons and holes are injected into the thin film to recombine to generate excitons (exciton). ) Is generated and light is emitted by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated. The characteristic of this organic EL element is 100 to 10000 at a low voltage of 10 V or less.
It is possible to perform surface emission with high brightness of about 0 cd / m 2 and to emit light from blue to red by selecting the type of fluorescent substance. Further, the light emitting layer itself can be 1 μm or less, and the total thickness including the transparent substrate can be 2 mm or less. Here, a flexible organic EL light-emitting device can be manufactured without fear of being rolled and broken like paper (for example, Japanese Patent Laid-Open No. 2000-268954; JP 2000
-260560 Nihon Keizai Shimbun, June 22, 2001, etc.). A method for forming a film of an organic EL light emitting element uses a vacuum deposition method (for example, as a manufacturing method using a vacuum deposition method for a blue light emitting organic EL element, there are JP-A-5-17765 and JP-A-9-53068). A method using a spin coating method (for example, as a manufacturing method using a spin coating method for a blue light emitting organic EL device, JP-A-9-111233,
There is JP-A-10-324870. ), And a method of applying organic EL to the original plate corresponding to the stamp by applying printing technology and bringing the original plate and the substrate into close contact with each other (Nikkei Sangyo Shimbun, 2
(May 17, 001, etc.) and those using the inkjet method (Japanese Patent Laid-Open No. 10-153967, etc.) and others such as casting method, dipping method, bar coating method,
There is a roll coat method. In particular, the manufacturing method using the spin coating method is suitable for the light source of the present photocatalytic device, which requires uniform and large-area monochromatic light emission. In addition to the published patents exemplified here, high-efficiency blue light-emitting or high-efficiency green light-emitting organic EL elements have been developed, and thus they may be used as the light source. (B) In the case where a light emitting element whose light emitting layer emits near-ultraviolet / ultraviolet wavelength band is used as a light source, in a light emitting element including at least a hole injecting electrode, an electron injecting electrode, and a light emitting layer formed between these electrodes. The light emitting layer is formed of polysilane. Further, the light emitting layer further has the following general formula (Formula 1):

【化1】 (ただし、式中nは1以上の整数であり、R1、R2は
独立に、アルキル基、アリール基、シクロアルキル基、
又は置換アリール基を示す)で表されるポリシランで形
成されていることを特徴とする。作製方法は有機EL素
子とほぼ同じ方法で作成できる(たとえば特開平9−2
02878など)ので透明基板を含めても全体の厚さで
2mm以下にすることが可能である。ここで透明基板に
水分やガスを透過しにくい特殊なプラスチックフィルム
などを用いれば紙のように丸められ割れる心配のないフ
レキシブルな近紫外・紫外波長帯を発する素子の作製も
可能である。R、Rなどを変化させることにより4
15〜335nmの近紫外・紫外波長帯を発することが
可能であり、光触媒の光源として利用する場合、可視光
でも光触媒機能を有する特殊な酸化チタンを使用しなく
ても、従来から使用されている安価な光触媒用酸化チタ
ンを利用できる。もちろん発光層がポリシラン以外でも
近紫外・紫外波長帯を発することができるものがあれ
ば、そちらを利用してもよい。 (ハ)無機EL発光素子を光源とする場合、基本構成は
正孔注入電極、絶縁層、無機EL発光層、絶縁層、電子
注入電極を積層した発光素子である。絶縁層と発光層の
界面から発光層に注入された電子は、高電界によって発
光層の中で加速され発光中心に衝突する。このとき発光
中心が励起し発光するのである。発光層には例えば青色
発光を得る場合、ZnSにTm(ツリウム)を添加した
もの。また、緑色発光を得る場合、ZnSにTb(テル
ビウム)を添加したものがある。最近、青色発光材料と
してストロンチウムサルファイドに銅を入れたSrS:
Cuで特性の向上が報告された(日刊工業新聞社、TR
IGGER、3月号、21〜23p(1999年))。
青色発光無機EL素子の具体的作製方法として、特開2
000−104059、特開2000−104060な
どに開示されている。無機EL素子は透明基板を含めて
も全体の厚さで2mm以下にすることが可能である。無
機EL素子は特に青色、緑色発光に関して発光効率とい
う点で有機EL素子に劣るが、発光寿命、耐熱性という
点で有機EL素子を超える能力を持っている。もちろ
ん、今後の研究の進展によっては発光効率でも有機EL
素子を超える可能性もあり、その場合は、そちらを光触
媒の光源としてもよい。 (ニ)酸化チタンなどの光触媒を基材に担持する方法と
して、形態別に以下の方法が一般的に行われている。粉
体を利用する場合、無機系の基材に分散し固定化させ
る。または粉体をパルプとともに混合し、抄紙する。ゾ
ルを利用する場合、例えば酸化チタンのとき、すべてア
ナタース形の酸化チタン粒子が解膠・懸濁したゾルであ
り、ゾル自体に造膜性がないため、多孔質な基材に直接
塗布・焼成する、あるいは無機系樹脂と混合し塗布する
ことで酸化チタンなどを基材に均一に固定化させる。ス
ラリーを利用する場合、粉体を希望媒体に分散したもの
である。非常に強力な分散工程を経たことを特徴にして
いる。使用方法はゾルと同様である。コーティング剤を
利用する場合、ほとんど造膜性を有しその膜が透明であ
ることから下地の意匠性を損なうことなく、塗布するだ
けで酸化チタンなどを固定化できる。基材がガラス、金
属などの無機材料の場合、光触媒による基材の劣化が起
こらないことから光触媒コーティング剤の直接塗布が可
能である。さらに耐熱性を有する基材の場合は焼成が可
能である。基材が有機材料の場合、光触媒による基材自
身の劣化が起こるため、アンダーコートが必要である。
基本的には有機材料には耐熱性がなく焼成を行うことが
できないため常温硬化型のコーティング剤が適してい
る。一般的に常温硬化させるより焼成したほうが膜硬度
は強くなる。アンダーコートとしては、無機のコーティ
ング剤が望ましい。コーティング法としてはスプレーコ
ーティング法、ディップコーティング法、スピンコート
法、刷毛塗り法などがある。具体的にはガラスなどへの
担持方法としては特開平10−53439、特開平10
−231146などが示されている。有機高分子などへ
の担持方法として特開平10−16121などが示され
ている。また有機高分子製、ガラス製、金属製のフィル
ム状、板状、管状、繊維状、網状等どのような複雑な形
状にでも担持する方法として特開平9−310039な
どが示されている。また紙に担持する方法として特開平
10−128125などが示されている。なお担持基
材、担持方法は上記にあげた方法だけに限定されるもの
ではない。また、ガラスに対する担持方法として「スパ
ッター」と呼ばれる半導体薄膜製造装置を使い大面積の
ガラスに酸化チタンなどの薄膜を生成することができる
(日刊工業新聞社、工業材料、酸化チタン光触媒の実用
技術最前線7月号、49〜53p(2001)または毎
日新聞2001年7月2日月曜日)。スパッター法は真
空装置の中でイオンを照射することで物質表面に酸化チ
タンの薄膜を形成する手法である。この手法で作った酸
化チタン薄膜には今まで光触媒機能はなかったが、イオ
ン照射の電圧を下げたうえで磁場の強度を上げ、さらに
真空装置の中にガスを注入することで薄膜形成と光触媒
活性を両立させることができる。数メートル四方のガラ
スでも形成は可能である。ガラス表面への付着力も高い
ため、耐久性も高い。以上の方法を用い、(イ)、
(ロ)、(ハ)の発光素子透明基板表面と反射板その他
光触媒を担持させたい基材に紫外線または青色光や緑色
光などの可視光にも光触媒能力を持つ酸化チタンなどの
光触媒物質を担持させる。 (ホ)光触媒装置の組み立てを行う。(イ)、(ロ)、
(ハ)の発光素子の透明基板表面か反射板表面の片方ど
ちらか、または両方に酸化チタンなどの光触媒を担持さ
せる。そして発光素子の透明基板表面と反射板の反射面
を向かい合わせる(図4)。反射板は光触媒を担持でき
れば、とくに基材は問わないが、効率的に光触媒に紫外
線や光を照射するために、反射板は表面が鏡面状の基材
が望ましい。光触媒によって処理したい気体や液体の入
り口と出口を除き、周囲をふさぐ。周囲をふさぐ基材も
光触媒を担持した発光素子または表面が鏡面状の基材が
望ましい(図1)。また、発光素子表面と対面側の反射
板が触れないよう間にスペーサーを入れるか、あらかじ
め発光素子基板表面または反射板表面にスペーサー代わ
りの突起を形成しておいても良い。さらに、光触媒処理
能力向上のためにスペーサー自身にも光触媒を担持させ
るのが望ましい。また、光触媒による処理能力向上のた
めに、反射板を用いず、光触媒を担持した発光素子の発
光面どうしを向かい合わせて、より効率的に光触媒に光
を照射できるようにしてもよい(図3)。さらに、向か
い合った発光素子と反射板の間に、または向かい合った
発光素子どうしの間に、光触媒を担持した基材を単層ま
たは複数層挿入してもよい(図5)(図6)。さらに光
触媒の単位空間あたりの暴露面積増大のために発光素子
表面または反射板表面または間に挿入した基材表面の凹
凸化を行ってもよい(図7)(図8)。劣化することな
く光触媒を担持できれば挿入する基材の材質は問わない
が、光触媒の暴露面積増大のため基材の表面には微細な
凹凸があるもの、または繊維状や網状のものが望まし
い。ただし、反射板を用いる場合、挿入する基材が不透
明だと発光素子からの紫外線や光が反射板まで届かない
ので、この場合、ガラスやプラスチックなどの透明な基
材がよい。同様に、挿入した基材が複数層の場合、基材
が不透明だと基材間に紫外線または可視光が届かないた
め、透明のほうが望ましい。また、短時間で大量の気体
や液体を処理したい場合、今までに述べた、発光素子と
反射板または発光素子どうしを向かい合わせた構造を1
つのユニットとして、このユニットを複数層重ねること
によって大量処理が可能になる(図9)。もともと
(イ)、(ロ)、(ハ)で取り上げた発光素子は通常の
紫外線ランプや可視光ランプと比べ断面が極めて薄いた
め1つのユニット自体も薄い。よって複数層重ねても全
体として、それほど厚くはならない。ここで、光触媒を
担持する発光素子の透明基板に水分やガスを透過しにく
い特殊なプラスチックフィルムなどを用いれば紙のよう
に丸められ割れる心配のないフレキシブルな発光素子が
可能であり前述したように有機EL素子では実際に作製
されている。同様に他の光触媒を担持する基材にも紙の
ように丸められ割れる心配のないプラスチックや金属や
繊維状基材などフレキシブルな基材を使用すれば全体と
して紙のように丸められ割れる心配のないフレキシブル
な光触媒装置が作製可能である。前述したように有機基
材に関しては基材自身が光触媒によって劣化しないよう
アンダーコートなどが必要である。これを用いれば設置
場所の形状にあわせて、光触媒装置を変形させることが
でき設置が容易になる。ここで、発光素子は装置の内側
を向いているので、外部からでは発光素子がきちんと発
光しているのか、または寿命が来て発光していないのか
分からない。また、ポリシランなどを使用した、紫外線
を発する素子などは、はじめから紫外線が発せられてい
るのか分からない。そこで、光触媒装置の一部に中が見
えるよう透明な窓を設け、中の発光状況を外部から視認
できるようにする。または、透明窓部分に蛍光物質を塗
布し、中で発生している紫外線を照射させることによっ
て発光させ、紫外線が発せられているかどうか外部から
視認できるようにする。本発明は以上のような構造で、
使用方法は大気の脱臭、殺菌用または水などの殺菌用な
どの光触媒装置として使用する。
[Chemical 1] (In the formula, n is an integer of 1 or more, and R1 and R2 are independently an alkyl group, an aryl group, a cycloalkyl group,
Or a substituted aryl group). The manufacturing method is almost the same as that of the organic EL element (for example, JP-A-9-2
Therefore, the total thickness can be 2 mm or less including the transparent substrate. Here, if a transparent substrate is formed of a special plastic film that does not easily transmit moisture or gas, it is possible to fabricate a flexible near-ultraviolet / ultraviolet wavelength band-emitting element that does not have the risk of being rolled and broken like paper. 4 by changing R 1 , R 2 etc.
It can emit near-ultraviolet / ultraviolet wavelength band of 15 to 335 nm, and when used as a light source of photocatalyst, it has been used conventionally without using special titanium oxide having a photocatalytic function even in visible light. Inexpensive titanium oxide for photocatalyst can be used. Of course, if the light emitting layer is other than polysilane as long as it can emit near-ultraviolet / ultraviolet wavelength band, that may be used. (C) When an inorganic EL light emitting element is used as a light source, the basic configuration is a light emitting element in which a hole injection electrode, an insulating layer, an inorganic EL light emitting layer, an insulating layer, and an electron injection electrode are laminated. The electrons injected from the interface between the insulating layer and the light emitting layer into the light emitting layer are accelerated in the light emitting layer by the high electric field and collide with the emission center. At this time, the emission center is excited and emits light. For example, in the case of obtaining blue light emission, the light emitting layer is ZnS to which Tm (thulium) is added. To obtain green light emission, there is ZnS to which Tb (terbium) is added. Recently, SrS containing copper in strontium sulfide as a blue light emitting material:
Improvement of properties was reported with Cu (Nikkan Kogyo Shimbun, TR
IGGER, March issue, 21-23p (1999)).
As a specific method for producing a blue light-emitting inorganic EL device, Japanese Patent Application Laid-Open No. 2-212058
000-104059 and Japanese Patent Application Laid-Open No. 2000-104060. The total thickness of the inorganic EL element including the transparent substrate can be 2 mm or less. The inorganic EL element is inferior to the organic EL element in terms of luminous efficiency particularly in terms of blue and green light emission, but has an ability exceeding that of the organic EL element in terms of luminous lifetime and heat resistance. Of course, depending on the progress of research in the future, organic EL may be used in terms of luminous efficiency.
There is a possibility of exceeding the number of elements, and in that case, that may be used as the light source of the photocatalyst. (D) As a method of supporting a photocatalyst such as titanium oxide on a substrate, the following methods are generally performed according to the form. When powder is used, it is dispersed and fixed on an inorganic base material. Alternatively, the powder is mixed with pulp and papermaking is performed. When using a sol, for example, in the case of titanium oxide, it is a sol in which all anatase type titanium oxide particles are peptized / suspended, and since the sol itself has no film-forming property, it is directly applied to a porous substrate and baked. Or by mixing and coating with an inorganic resin, titanium oxide or the like is uniformly immobilized on the substrate. When using a slurry, the powder is dispersed in a desired medium. It is characterized by undergoing a very powerful dispersion process. The method of use is the same as for sol. When a coating agent is used, since it has almost a film-forming property and the film is transparent, titanium oxide or the like can be fixed only by coating without impairing the design of the base. When the base material is an inorganic material such as glass or metal, the photocatalyst coating agent can be directly applied since the base material is not deteriorated by the photocatalyst. Further, in the case of a base material having heat resistance, firing is possible. When the base material is an organic material, the base material itself is deteriorated by a photocatalyst, and thus an undercoat is necessary.
Basically, since an organic material has no heat resistance and cannot be fired, a room temperature curing type coating agent is suitable. Generally, the film hardness is stronger when baked than when it is cured at room temperature. An inorganic coating agent is desirable as the undercoat. Examples of the coating method include a spray coating method, a dip coating method, a spin coating method and a brush coating method. Specifically, as a supporting method on glass or the like, JP-A-10-53439 and JP-A-10-53439 are used.
231146 and the like are shown. Japanese Patent Application Laid-Open No. 10-16121 and the like are disclosed as a method for supporting an organic polymer. Further, Japanese Patent Laid-Open No. 9-310039 discloses a method for supporting any complicated shape such as an organic polymer, glass or metal film, plate, tube, fiber or net. Further, Japanese Patent Laid-Open No. 10-128125 and the like are shown as a method of carrying the paper. The supporting base material and supporting method are not limited to the above-mentioned methods. In addition, a thin film of titanium oxide or the like can be formed on a large area of glass by using a semiconductor thin film manufacturing apparatus called "sputtering" as a supporting method for glass (the Nikkan Kogyo Shimbun Co., Ltd., industrial materials, practical technology of titanium oxide photocatalyst). Front issue July issue, 49-53p (2001) or Mainichi Shimbun Monday, July 2, 2001). The sputter method is a method of forming a thin film of titanium oxide on the surface of a material by irradiating ions in a vacuum device. The titanium oxide thin film made by this method had no photocatalytic function until now, but by lowering the voltage of ion irradiation, increasing the strength of the magnetic field, and further injecting gas into the vacuum device, thin film formation and photocatalysis It is possible to achieve both activities. It is possible to form even a glass of several meters square. It has high adhesion to the glass surface, so it has high durability. Using the above method, (a),
(B), (c) Light-emitting element Transparent substrate surface and reflector plate or other substrate on which the photocatalyst is to be supported carries a photocatalytic substance such as titanium oxide, which has photocatalytic ability for ultraviolet light or visible light such as blue light or green light. Let (E) Assemble the photocatalyst device. (A), (b),
A photocatalyst such as titanium oxide is supported on either or both of the transparent substrate surface and the reflector surface of the light emitting device of (C). Then, the transparent substrate surface of the light emitting element and the reflecting surface of the reflecting plate are opposed to each other (FIG. 4). The base material is not particularly limited as long as the reflection plate can carry the photocatalyst, but in order to efficiently irradiate the photocatalyst with ultraviolet rays or light, the reflection plate is preferably a base material having a mirror surface. Block the surroundings, except for the inlet and outlet of the gas or liquid that you want to treat with a photocatalyst. It is desirable that the base material that closes the periphery is a light emitting element carrying a photocatalyst or a base material having a mirror-like surface (FIG. 1). Further, a spacer may be inserted between the surface of the light emitting element and the reflecting plate on the opposite side so as not to come into contact with each other, or a protrusion as a spacer may be formed in advance on the surface of the light emitting element substrate or the surface of the reflecting plate. Further, it is desirable to support the photocatalyst on the spacer itself in order to improve the photocatalytic treatment capacity. Further, in order to improve the processing capacity of the photocatalyst, the light emitting surface of the light emitting element carrying the photocatalyst may be opposed to each other without using a reflector so that the photocatalyst can be irradiated with light more efficiently (FIG. 3). ). Furthermore, a single layer or a plurality of layers of the photocatalyst-supported substrate may be inserted between the light emitting elements and the reflectors facing each other or between the light emitting elements facing each other (FIG. 5) (FIG. 6). Further, in order to increase the exposed area of the photocatalyst per unit space, the surface of the light emitting device or the surface of the reflector or the surface of the base material inserted therebetween may be roughened (FIG. 7) (FIG. 8). The material of the substrate to be inserted is not limited as long as it can support the photocatalyst without deterioration, but it is desirable that the surface of the substrate has fine irregularities, or fibrous or net-like one, because the exposed area of the photocatalyst increases. However, when a reflecting plate is used, if the substrate to be inserted is opaque, ultraviolet rays and light from the light emitting element cannot reach the reflecting plate. In this case, therefore, a transparent substrate such as glass or plastic is preferable. Similarly, in the case where the inserted substrate has a plurality of layers, if the substrate is opaque, ultraviolet rays or visible light does not reach between the substrates, so that the substrate is preferably transparent. In addition, if you want to process a large amount of gas or liquid in a short time, you can use the above-mentioned structure in which the light emitting element and the reflector or the light emitting element face each other.
As one unit, stacking multiple layers of this unit enables mass processing (Fig. 9). Since the light-emitting elements originally taken up in (a), (b), and (c) have an extremely thin cross section as compared with ordinary ultraviolet lamps and visible light lamps, one unit itself is thin. Therefore, even if a plurality of layers are stacked, the overall thickness does not become so thick. Here, if a transparent plastic of the light emitting element carrying the photocatalyst is made of a special plastic film that does not easily permeate moisture or gas, it is possible to make a flexible light emitting element that is not rolled and cracked like paper, as described above. The organic EL element is actually manufactured. Similarly, if a flexible base material such as plastic, metal, or fibrous base material is used for other photocatalyst-supporting base materials, there is no risk of rolling and breaking like paper, as a whole. It is possible to manufacture a flexible photocatalytic device that does not have a flexible structure. As described above, the organic base material needs an undercoat so that the base material itself is not deteriorated by the photocatalyst. If this is used, the photocatalyst device can be deformed according to the shape of the installation place, and the installation becomes easy. Here, since the light emitting element faces the inside of the device, it is unknown from the outside whether the light emitting element is emitting light properly or whether the light emitting element has reached the end of its life and not emitting light. In addition, it is not known from the beginning that an element such as polysilane that emits ultraviolet rays emits ultraviolet rays. Therefore, a transparent window is provided in a part of the photocatalyst device so that the inside can be seen so that the light emission state inside can be visually recognized from the outside. Alternatively, a fluorescent material is applied to the transparent window portion, and the ultraviolet rays generated therein are irradiated to emit light, so that whether the ultraviolet rays are emitted or not can be visually recognized from the outside. The present invention has the above structure,
It is used as a photocatalytic device for deodorization of the atmosphere, sterilization, or sterilization of water.

【0006】[0006]

【発明の効果】これには次のような効果がある。 (イ)本光触媒装置に用いる光源は超薄型大面積発光が
可能であり、これにより光触媒装置自体を薄型軽量化す
ること可能である。よって本光触媒装置は従来の光触媒
装置に比べスペースを取らず、設置場所を選ばず、ま
た、持ち運び、設置などが容易である。 (ロ)有機EL発光素子および類似の素子構造を有する
発光層がポリシランなど近紫外・紫外波長帯を発する発
光素子において、透明基板に水分やガスを透過しにくい
特殊なプラスチックフィルムなどを用いれば紙のように
丸められ割れる心配のないフレキシブルな光触媒装置の
作製が可能である。 (ハ)本光触媒装置は検出窓からの発光状態を視認する
ことにより発光素子の寿命がきたことが一目で分かるの
で交換時期を知ることが容易である。 本発明は、これらの効果をもたらすものである。本出願
にかかる発明の思想に沿うものであれば、実施形態は本
明細書の実施例やその他の具体的形状に限定されるもの
ではない。
This has the following effects. (A) The light source used in this photocatalyst device can emit ultra-thin large-area light, and thus the photocatalyst device itself can be made thin and lightweight. Therefore, the present photocatalyst device takes up less space than conventional photocatalyst devices, can be installed anywhere, and is easy to carry and install. (B) In a light emitting element whose organic EL light emitting element or a light emitting layer having a similar element structure emits near-ultraviolet / ultraviolet wavelength bands such as polysilane, paper is used if a special plastic film or the like that does not easily transmit moisture or gas is used for the transparent substrate. It is possible to fabricate a flexible photocatalyst device that does not have to be rolled and cracked as described above. (C) In this photocatalyst device, the life of the light emitting element can be seen at a glance by visually recognizing the light emission state from the detection window, so that it is easy to know the replacement time. The present invention brings about these effects. The embodiments are not limited to the examples of the present specification and other specific shapes as long as they are in accordance with the idea of the invention according to the present application.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構造の斜視図である。FIG. 1 is a perspective view of a basic structure of the present invention.

【図2】本発明の処理気体または処理液体などの入り口
側から見た断面図である。
FIG. 2 is a cross-sectional view of the processing gas or processing liquid of the present invention as seen from the inlet side.

【図3】本発明において発光素子を向かい合わせにした
場合の側面から見た断面図である。
FIG. 3 is a cross-sectional view seen from the side when the light emitting elements are faced to each other in the present invention.

【図4】本発明において発光素子と反射板を向かい合わ
せにした場合の側面から見た断面図である。
FIG. 4 is a cross-sectional view seen from the side when the light emitting device and the reflection plate are opposed to each other in the present invention.

【図5】本発明において発光素子を向かい合わせにし
て、間に光触媒を担持した基材を挿入した場合の側面か
ら見た断面図である。
FIG. 5 is a cross-sectional view seen from the side when the light emitting elements are faced to each other and the base material carrying the photocatalyst is inserted therebetween in the present invention.

【図6】本発明において発光素子と反射板を向かい合わ
せにして、間に光触媒を担持した基材を挿入した場合の
側面から見た断面図である。
FIG. 6 is a cross-sectional view seen from the side when a light-emitting element and a reflection plate are faced to each other and a base material carrying a photocatalyst is inserted therebetween in the present invention.

【図7】本発明において表面を凹凸にした発光素子を向
かい合わせにして、間に表面を凹凸にして光触媒を担持
した基材を挿入した場合の側面から見た断面図である。
FIG. 7 is a cross-sectional view seen from the side when a light-emitting element having an uneven surface is faced to each other and a base material having an uneven surface is inserted to insert a base material carrying a photocatalyst in the present invention.

【図8】本発明において表面を凹凸にした発光素子と反
射板を向かい合わせにして、間に表面を凹凸にして光触
媒を担持した基材を挿入した場合の側面から見た断面図
である。
FIG. 8 is a cross-sectional view as seen from the side when a light emitting element having an uneven surface and a reflecting plate are faced to each other and a base material having an uneven surface is inserted and a substrate carrying a photocatalyst is inserted therebetween in the present invention.

【図9】本発明において図3、図4、図5、図6、図
7、図8で示したような光触媒装置を複数個積層して処
理能力を高めた場合の側面から見た断面図である。
FIG. 9 is a cross-sectional view seen from the side when a plurality of photocatalyst devices as shown in FIGS. 3, 4, 5, 6, 7, and 8 are stacked in the present invention to enhance the processing capacity. Is.

【符号の説明】[Explanation of symbols]

1 光触媒 2 スペーサー 3 透明基板も含んだ可視光または紫外線を発する面状
素子で一部は反射板のときもある 4 透明基板 5 可視光または紫外線を発する面状素子 6 反射板 7 光触媒支持基材 8 可視光または紫外線を発する面状素子の寿命確認用
DESCRIPTION OF SYMBOLS 1 Photocatalyst 2 Spacer 3 A planar element that emits visible light or ultraviolet rays including a transparent substrate and part of which may be a reflector 4 Transparent substrate 5 A planar element 6 that emits visible light or ultraviolet rays 6 Reflector 7 Photocatalyst supporting substrate 8 Lifetime confirmation window for planar elements that emit visible light or ultraviolet rays

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】有機EL発光素子または無機EL発光素子
を光源とする酸化チタンなどを使用した光触媒装置。
1. A photocatalytic device using titanium oxide or the like, which uses an organic EL light emitting element or an inorganic EL light emitting element as a light source.
【請求項2】発光層がポリシランなど近紫外・紫外波長
帯を発する発光素子を光源とする酸化チタンなどを使用
した光触媒装置。
2. A photocatalyst device using titanium oxide or the like as a light source of a light emitting element that emits near-ultraviolet / ultraviolet wavelength bands such as polysilane in the light emitting layer.
【請求項3】有機EL発光素子または無機EL発光素子
または発光層がポリシランなど近紫外・紫外波長帯を発
する発光素子の発光面と反射板の反射面を向かい合わ
せ、(図4)発光素子表面か反射板表面の片方どちら
か、または両方に酸化チタンなどの光触媒を担持した光
触媒装置。
3. An organic EL light emitting element, an inorganic EL light emitting element, or a light emitting layer of a light emitting element which emits near-ultraviolet / ultraviolet wavelength band such as polysilane and a reflecting surface of a reflecting plate face each other (FIG. 4). A photocatalytic device in which a photocatalyst such as titanium oxide is carried on one or both of the surfaces of the reflector.
【請求項4】有機EL発光素子または無機EL発光素子
または発光層がポリシランなど近紫外・紫外波長帯を発
する発光素子において2つの発光素子の発光面を互いに
向かい合わせ、(図3)発光素子表面の片方または両方
に酸化チタンなどの光触媒を担持した光触媒装置。
4. An organic EL light emitting device, an inorganic EL light emitting device, or a light emitting device in which a light emitting layer emits near-ultraviolet / ultraviolet wavelength bands such as polysilane. The light emitting surfaces of the two light emitting devices are opposed to each other (FIG. 3). A photocatalyst device in which a photocatalyst such as titanium oxide is carried on one or both sides.
【請求項5】請求項3または請求項4の構造を有する光
触媒において向かい合った発光素子と反射板の間、また
は向かい合った発光素子どうしの間に、酸化チタンなど
の光触媒を担持した透明ガラスまたはガラス繊維または
金属または無機物または基材自身が光触媒によって劣化
しないようアンダーコートして光触媒を担持した樹脂ま
たは樹脂繊維を単層または複数層、挿入した光触媒装置
(図5)(図6)。
5. A transparent glass or glass fiber carrying a photocatalyst such as titanium oxide between the light-emitting element and the reflecting plate facing each other in the photocatalyst having the structure according to claim 3 or 4, or between the light-emitting elements facing each other, or A photocatalyst device (Fig. 5) (Fig. 6) in which a single layer or a plurality of layers of resin or resin fiber carrying a photocatalyst undercoated so that a metal or an inorganic substance or a substrate itself is not deteriorated by the photocatalyst.
【請求項6】請求項1、請求項2、請求項3、請求項
4、請求5の構造を有する光触媒装置において、これを
1つのユニットとして、そのユニットを複数個重ね合わ
せ触媒処理能力を高めた光触媒装置(図9)。
6. A photocatalyst device having a structure according to claim 1, claim 2, claim 3, claim 4, claim 5, wherein a plurality of such units are stacked to enhance the catalyst treatment capacity. Photocatalytic device (Fig. 9).
【請求項7】請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6の構造を有する光触媒装置にお
いて発光素子の基板、または光触媒を担持する基材に折
り曲げ可能なフレキシブルな樹脂やガラスや金属や無機
物などを用いることによって設置場所に合わせて、また
は設置者の好みに応じて自由に形状を変化させることの
できる光触媒装置。
7. A photocatalyst device having a structure according to claim 1, claim 2, claim 3, claim 4, claim 5 or claim 6, which can be folded into a substrate of a light emitting element or a base material carrying a photocatalyst. A photocatalytic device that can be freely changed in shape according to the installation location or according to the preference of the installer by using flexible resin, glass, metal, or inorganic material.
【請求項8】請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6、請求項7の構造を有する光触
媒装置において、さまざまな基材に対して、基材表面を
凹凸化させてから光触媒を担持し光触媒機能を持つ表面
面積密度を増加させ光触媒処理能力を向上させた光触媒
装置(図7)(図8)。
8. A photocatalyst device having the structure according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, and claim 7, wherein a base material is used for various base materials. A photocatalyst device (FIG. 7) (FIG. 8) in which the surface area density having a photocatalytic function is increased by roughening the surface and then carrying a photocatalyst to improve the photocatalytic treatment ability.
【請求項9】有機EL発光素子または無機EL発光素子
または発光層がポリシランなど近紫外・紫外波長帯を発
する発光素子を光源とする酸化チタンなどを使用した光
触媒装置において発光面の一部が外部から視認できるよ
うにするか、近紫外・紫外線の一部を外部に取りだしこ
れを蛍光体にあてることによって発光素子の寿命がきた
ことが一目で分かるようにした光触媒装置(図1の
8)。
9. A photocatalytic device using an organic EL light emitting element, an inorganic EL light emitting element, or a titanium oxide as a light source of a light emitting element whose emission layer emits near-ultraviolet / ultraviolet wavelength bands such as polysilane. A photocatalyst device (8 in Fig. 1) that makes it possible to see at a glance that the life of the light-emitting element has been extended by making it visible from the outside or by taking out part of the near-ultraviolet / ultraviolet light and applying it to a phosphor.
【請求項10】請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6、請求項7、請求項8の構造を
有する光触媒装置において酸化チタンなど光触媒を担持
した基材どうしが触れ合わず、隙間を処理物が通過でき
るよう、スペーサーを入れた光触媒装置またはスペーサ
ー自身にも光触媒機能を持たせ、処理能力を高めた光触
媒装置。
10. A photocatalyst having a structure according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, or claim 8 carrying a photocatalyst such as titanium oxide. A photocatalytic device with spacers or a photocatalytic device with spacers that have a photocatalytic function so that the processed materials can pass through the gaps without the base materials touching each other.
JP2001280719A 2001-08-13 2001-08-13 Photocatalyst device consisting of sheet light emitting element as light source Pending JP2003053195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280719A JP2003053195A (en) 2001-08-13 2001-08-13 Photocatalyst device consisting of sheet light emitting element as light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280719A JP2003053195A (en) 2001-08-13 2001-08-13 Photocatalyst device consisting of sheet light emitting element as light source

Publications (1)

Publication Number Publication Date
JP2003053195A true JP2003053195A (en) 2003-02-25

Family

ID=19104664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280719A Pending JP2003053195A (en) 2001-08-13 2001-08-13 Photocatalyst device consisting of sheet light emitting element as light source

Country Status (1)

Country Link
JP (1) JP2003053195A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006969A1 (en) * 2002-07-11 2004-01-22 Sumitomo Electric Industries, Ltd. Porous semiconductor and process for producing the same
EP1772187A1 (en) * 2004-06-15 2007-04-11 Sumitomo Electric Industries, Ltd. Normal radiation device, filter using the same, optically assisted ceramic filter
JP2010119996A (en) * 2008-11-21 2010-06-03 Osaka Univ Visible light responsive photocatalyst composite
EP2803707A1 (en) * 2012-01-10 2014-11-19 Mitsubishi Chemical Corporation Coating composition, porous film, light-scattering film, and organic electroluminescent element
JP2017221896A (en) * 2016-06-15 2017-12-21 東芝ライテック株式会社 Photocatalyst device
CN112426769A (en) * 2020-10-16 2021-03-02 苏州兔妈妈环保科技有限公司 Filtering element for filtering raw water and purification method
CN112439239A (en) * 2020-10-16 2021-03-05 苏州兔妈妈环保科技有限公司 Filter element for filtering liquid and purification method
KR102266699B1 (en) * 2020-12-28 2021-06-18 방승섭 Photocatalytic sterilizatio module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006969A1 (en) * 2002-07-11 2004-01-22 Sumitomo Electric Industries, Ltd. Porous semiconductor and process for producing the same
US7468529B2 (en) 2002-07-11 2008-12-23 Sumitomo Electric Industries, Ltd. Porous UV-emitting semiconductor on porous substrate as sterilizing filter made by filtering suspended semiconductor particles
EP1772187A1 (en) * 2004-06-15 2007-04-11 Sumitomo Electric Industries, Ltd. Normal radiation device, filter using the same, optically assisted ceramic filter
EP1772187A4 (en) * 2004-06-15 2013-10-16 Sumitomo Electric Industries Normal radiation device, filter using the same, optically assisted ceramic filter
JP2010119996A (en) * 2008-11-21 2010-06-03 Osaka Univ Visible light responsive photocatalyst composite
EP2803707A1 (en) * 2012-01-10 2014-11-19 Mitsubishi Chemical Corporation Coating composition, porous film, light-scattering film, and organic electroluminescent element
EP2803707A4 (en) * 2012-01-10 2014-11-26 Mitsubishi Chem Corp Coating composition, porous film, light-scattering film, and organic electroluminescent element
JP2017221896A (en) * 2016-06-15 2017-12-21 東芝ライテック株式会社 Photocatalyst device
CN112426769A (en) * 2020-10-16 2021-03-02 苏州兔妈妈环保科技有限公司 Filtering element for filtering raw water and purification method
CN112439239A (en) * 2020-10-16 2021-03-05 苏州兔妈妈环保科技有限公司 Filter element for filtering liquid and purification method
KR102266699B1 (en) * 2020-12-28 2021-06-18 방승섭 Photocatalytic sterilizatio module
WO2022145927A1 (en) * 2020-12-28 2022-07-07 방승섭 Photocatalytic sterilization module

Similar Documents

Publication Publication Date Title
US7767158B2 (en) Surface light-emitting device, filtering device using same, and optically assisted ceramic filter
US20090252654A1 (en) Air cleaner
US20070181508A1 (en) Photocatalytic fluid purification systems and methods for purifying a fluid
EP1843401A1 (en) Surface emitting device
US20040024108A1 (en) Light-responsive material and manufacture method of the same
JP2003053195A (en) Photocatalyst device consisting of sheet light emitting element as light source
US11766632B2 (en) Glass or aluminum structure air filter using photocatalyst precoat and manufacturing method therefor
JP2001328201A (en) Photocatalyst, method for manufacturing the same, coating solution for substrate layer of photocatalyst, coating solution for photocatalyst film, and functional body
US20230234032A1 (en) Filter medium for air and water purification and disinfection
JP2003200043A (en) Apparatus for decomposing organic substance by using organic or inorganic el element
JPH09173865A (en) Photocatalyst, lamp and lighting appliance
KR100355667B1 (en) photocatalytic purifier for LED
JP2005158551A (en) El fiber and photocatalysis reaction container
CN1513586A (en) Indoor lighting lamp type photo catelytic air purifier
CN209680108U (en) One kind having accumulation of energy photoelectrocatalysis type air cleaning laminated film
JP2015073978A (en) Photocatalyst carrier
US20070126341A1 (en) El fiber and photocatalyst reaction vessel
CN1607035A (en) Method for processing waste gas treating ultraviolet lamp and waste gas treating method
JP2006297319A (en) Deodorant product
JP2004179157A (en) Light emitting element, light emitting element manufacturing method, and plasma display panel manufacturing method
CN109529954A (en) One kind having accumulation of energy photoelectrocatalysis type air cleaning laminated film and preparation method
JP2000135416A (en) Air purifying device
JP3772388B2 (en) Photocatalyst, incandescent bulb, discharge lamp and lighting fixture
JPH09225302A (en) Photocatalyst and illumination equipment
WO2005048294A1 (en) Field emission ultraviolet lamp