JP2005158551A - El fiber and photocatalysis reaction container - Google Patents

El fiber and photocatalysis reaction container Download PDF

Info

Publication number
JP2005158551A
JP2005158551A JP2003396743A JP2003396743A JP2005158551A JP 2005158551 A JP2005158551 A JP 2005158551A JP 2003396743 A JP2003396743 A JP 2003396743A JP 2003396743 A JP2003396743 A JP 2003396743A JP 2005158551 A JP2005158551 A JP 2005158551A
Authority
JP
Japan
Prior art keywords
fiber
light
emitting layer
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396743A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003396743A priority Critical patent/JP2005158551A/en
Priority to DE112004002320T priority patent/DE112004002320T5/en
Priority to PCT/JP2004/017677 priority patent/WO2005053363A1/en
Priority to CN200480035279.1A priority patent/CN1887032A/en
Publication of JP2005158551A publication Critical patent/JP2005158551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/611Chalcogenides
    • C09K11/612Chalcogenides with zinc or cadmium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/611Chalcogenides
    • C09K11/613Chalcogenides with alkali or alkakine earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Catalysts (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EL fiber having functions of decomposing and sterilizing organic matters, bacteria or the like and a photocatalysis reaction container using such an EL fiber. <P>SOLUTION: The EL fiber has a function of emitting ultraviolet rays with a wavelength of 400 nm or less or visible light. The fiber comprises an internal electrode positioned at the center in a radius direction, an internal insulating layer formed around it, a light-emitting layer, an external electrode, and a protecting layer formed on an outermost surface in a cross-section structure, and emits light by impression of an alternate current electric field between the electrodes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機物や細菌等の分解や殺菌機能を有するELファイバー及びかかるELファイバーを用いた光触媒反応容器に関する。   The present invention relates to an EL fiber having a function of decomposing and sterilizing organic substances and bacteria, and a photocatalytic reaction vessel using such an EL fiber.

近年の環境問題から、有害物質や細菌・ウイルスなどを分解、殺菌する光触媒材料が注目されている。代表的な光触媒はTiOであるが、これは一般には波長が400nm以下の紫外線により光触媒機能を発揮する材料であるため、紫外線の含有量が少ない太陽光線ではほとんど触媒効果を発揮することができない。
波長が400nmを超える可視光線でも作用する光触媒材料も開発されている。これは、結晶系がアナターゼ型のTiOにN、S、Mn、Fe、Co、Zn、Cu等をドーピングしたもので、可視光線の吸収を高くしたものであるが、ほとんどの材料は、可視光線でも光触媒機能が作用するようになるものの、紫外線とアナターゼ型TiOの組み合わせに比べて、性能は1/100程度まで低下してしまう。例外的にイオウ元素をドーピングしたもののみ、大きな性能低下がないと報告されている。(非特許文献1参照)
Due to environmental problems in recent years, photocatalytic materials that decompose and sterilize harmful substances, bacteria, viruses, and the like are attracting attention. A typical photocatalyst is TiO 2 , but since this is a material that generally exhibits a photocatalytic function with ultraviolet light having a wavelength of 400 nm or less, it can hardly exhibit a catalytic effect with sunlight with a low ultraviolet content. .
A photocatalytic material that also works with visible light having a wavelength exceeding 400 nm has been developed. This is a crystal system in which N, S, Mn, Fe, Co, Zn, Cu, or the like is doped into anatase type TiO 2 , which increases the absorption of visible light, but most materials are visible. Although the photocatalytic function is activated even with light, the performance is reduced to about 1/100 compared with the combination of ultraviolet rays and anatase TiO 2 . Only exceptionally doped with elemental sulfur has been reported to have no significant performance degradation. (See Non-Patent Document 1)

しかしながら、いずれにしてもこれらの光触媒を作用させるには、別途水銀ランプなどの外部光源を使用する必要があり、反応容器のコンパクト化を阻害し、かつ有害物質である水銀を使う必要があった。最近では、水銀ランプの代わりに、紫外線を発光する発光ダイオード(LED)を光源にする場合も出てきている。   However, in any case, in order to make these photocatalysts act, it is necessary to use an external light source such as a mercury lamp separately, which obstructs the compactness of the reaction vessel and requires the use of mercury, which is a harmful substance. . Recently, a light emitting diode (LED) that emits ultraviolet rays is used as a light source instead of a mercury lamp.

一方、エレクトロルミネッセンスによって発光するELファイバーと呼ばれる発光ファイバーが知られている。図1 にその概念構造を示す。1は内部電極、2は内部絶縁層、3は発光層、4は外部絶縁体、5は外部電極、6は保護層である。4の外部絶縁体は不要の場合もある。両電極間に交流電圧を印加することにより、絶縁体層を通して発光層中をホットエレクトロンと呼ばれるエネルギー状態の高い電子が移動し、これが発光層中の半導体粒子または半導体粒子中に添加された特定のイオンを励起することにより発光が生じる。エレクトロルミネッセンスによって発光するファイバーであることからELファイバーと呼ばれる。一般に市販されているELファイバーは緑や青色の可視光発光ファイバーのみであり、各種イルミネーション等に使用されている。(非特許文献2参照)
2003年電気化学秋季大会、講演要旨集、電気化学会、322頁 Plastics,Rubber and Composites Progessing and Applications 1998.Vol.27,No.3,160〜165頁
On the other hand, a light emitting fiber called an EL fiber that emits light by electroluminescence is known. Figure 1 shows the conceptual structure. 1 is an internal electrode, 2 is an internal insulating layer, 3 is a light emitting layer, 4 is an external insulator, 5 is an external electrode, and 6 is a protective layer. The external insulator 4 may be unnecessary. By applying an alternating voltage between the two electrodes, electrons in a high energy state called hot electrons move through the insulator layer in the light emitting layer, and this is a semiconductor particle in the light emitting layer or a specific particle added to the semiconductor particle. Luminescence occurs when the ions are excited. It is called an EL fiber because it is a fiber that emits light by electroluminescence. In general, commercially available EL fibers are only green and blue visible light emitting fibers, and are used for various illuminations. (See Non-Patent Document 2)
2003 Electrochemical Fall Conference, Abstracts of the Lecture, Electrochemical Society, 322 pages Plastics, Rubber and Compositions Proposing and Applications 1998. Vol. 27, no. 3,160-165 pages

光触媒反応は、粒子の表面でのみ生じる反応であるため、粒子表面に均一に紫外線を照射する必要がある。しかし、
(1)対象物が気体の場合、光触媒であるTiO粒子を反応容器内に浮遊させる必要があるので特別な装置が必要になる。液体の場合、液体内に分散させる必要があるが、この場合、光触媒粒子の交換時に回収することにコストがかかる。
(2)紫外線は大気中で吸収されやすいため、光源を近づける必要があり、大きな反応容器には適用しにくい。特に、対象物が濁った液体の場合は紫外線の減衰が激しく、外部光源方式は適用できない、などの問題がある。
本発明は、前述のELファイバーを独自の発想により改良し、上記の問題を解決して、有機物や細菌等の分解や殺菌機能を付与できることを見出したものである。
Since the photocatalytic reaction is a reaction that occurs only on the particle surface, it is necessary to uniformly irradiate the particle surface with ultraviolet rays. But,
(1) When the object is a gas, it is necessary to float TiO 2 particles, which are photocatalysts, in the reaction vessel, so a special device is required. In the case of a liquid, it is necessary to disperse the liquid in the liquid.
(2) Since ultraviolet rays are easily absorbed in the atmosphere, it is necessary to bring the light source closer, and it is difficult to apply to large reaction vessels. In particular, when the object is a turbid liquid, there is a problem that the attenuation of ultraviolet rays is severe and the external light source method cannot be applied.
The present invention has been found that the above-mentioned EL fiber can be improved by an original idea to solve the above-mentioned problems, and to provide a function of decomposing and sterilizing organic substances and bacteria.

本発明の第一は、主として紫外線発光機能を持つELファイバーであり、波長が400nm以下の紫外線または可視光線発光機能を持つELファイバーであって、ファイバーの断面構造が、半径方向の中心に位置する内部電極と、その周囲に形成された内部絶縁層、発光層、外部電極、及び最表面に形成された保護層からなり、電極間への交流電界印加により発光するELファイバーである。これは、発光層を構成する蛍光体粒子が紫外線を発光するものから構成される。細菌やウイルスなどは紫外線で直接分解や殺菌できる場合がある。特に、254nmの紫外線は細菌やウイルスのDNAを直接破壊するため広く殺菌ランプとして用いられているため、254nmの紫外線を発光するELファイバーは直接殺菌ランプの代替となる。   The first aspect of the present invention is an EL fiber mainly having an ultraviolet light emission function, which is an EL fiber having an ultraviolet light or visible light emission function with a wavelength of 400 nm or less, and the cross-sectional structure of the fiber is located at the center in the radial direction. The EL fiber includes an internal electrode, an internal insulating layer formed around the internal electrode, a light emitting layer, an external electrode, and a protective layer formed on the outermost surface, and emits light when an alternating electric field is applied between the electrodes. This is comprised from what the fluorescent substance particle which comprises a light emitting layer light-emits an ultraviolet-ray. Bacteria and viruses may be directly decomposed and sterilized by ultraviolet rays. In particular, 254 nm ultraviolet rays are widely used as sterilization lamps because they directly destroy bacterial and viral DNA, and EL fibers that emit 254 nm ultraviolet rays are an alternative to direct sterilization lamps.

本発明の第二は、紫外線または可視光線発光機能を持つELファイバーであり、波長が550nm以下の紫外線または可視光線発光機能を持つELファイバーであって、ファイバーの断面構造が、半径方向の中心に位置する内部電極と、その周囲に形成された内部絶縁層、発光層、外部電極、保護層、および最表面に形成された光触媒機能を持つ粒子層または薄膜からなり、電極間への交流電界印加により発光するELファイバーである。すなわち、ELファイバーと光触媒が一体化したものである。
これは、発光する可視光線または紫外線を光触媒に照射し、光触媒作用により有機物や細菌、ウイルスなどの分解・殺菌を行うものであり、紫外線のみを発光する第一の発明よりも用途が広い。
本発明は、又、上記ELファイバーを用いた光触媒反応容器、さらには、ELファイバーと光触媒繊維を交互に組合せた構造を有する光触媒反応容器である。
The second of the present invention is an EL fiber having an ultraviolet or visible light emitting function, and an EL fiber having an ultraviolet or visible light emitting function with a wavelength of 550 nm or less, and the cross-sectional structure of the fiber is at the center in the radial direction. Consists of an internal electrode, an internal insulating layer formed around it, a light emitting layer, an external electrode, a protective layer, and a particle layer or thin film having a photocatalytic function formed on the outermost surface, and an alternating electric field is applied between the electrodes. EL fiber that emits light. That is, the EL fiber and the photocatalyst are integrated.
This is a method in which visible light or ultraviolet light that is emitted is irradiated onto a photocatalyst to decompose and sterilize organic matter, bacteria, viruses, etc. by photocatalytic action, and has a wider application than the first invention that emits only ultraviolet light.
The present invention is also a photocatalytic reaction vessel using the EL fiber, and further a photocatalytic reaction vessel having a structure in which EL fibers and photocatalytic fibers are alternately combined.

図1は本発明を適用するELファイバーであって、1の内部電極は普通の金属でよく、銅線が用いられる。内部絶縁層2は、発光層3に均一に交流電界を印加するためのものであり、通常はシアノレジン等の誘電体樹脂単体を用いるか、あるいは、誘電体樹脂とBaTiO等の高誘電率のセラミックス粉末の混合物が用いられる。厚さは数十μmである。外部電極5は、発光層3から放射される紫外線または可視光線が透過しなければならないので、インジウム−スズ系の酸化物(ITO)等の透明導電膜が用いられるか、あるいはNiCr合金などを0.1μm以下に薄くしたものが候補となる。 FIG. 1 shows an EL fiber to which the present invention is applied. One internal electrode may be an ordinary metal, and a copper wire is used. The internal insulating layer 2 is for applying an alternating electric field uniformly to the light emitting layer 3, and usually a dielectric resin such as cyanoresin is used alone, or a dielectric resin and a high dielectric constant such as BaTiO 3 are used. A mixture of ceramic powders is used. The thickness is several tens of μm. Since the external electrode 5 must transmit ultraviolet rays or visible rays radiated from the light emitting layer 3, a transparent conductive film such as an indium-tin oxide (ITO) is used, or a NiCr alloy or the like is used. Candidates are thinned to 1 μm or less.

6は保護層であり、発光層3や外部電極5を湿気等の外部環境因子から保護するためのもので、やはり内部から放射される光が透過しなければならない。光が可視光線の場合は通常の透明樹脂でかまわないが、紫外線の場合、紫外線の透過に優れる樹脂を使う必要がある。例えば、三菱レイヨン製のアクリライトがある。また、保護層6自体が光触媒機能を持つ材料であっても構わない。例えば、緻密なTiOをスパッタリングでコーティングする等が考えられる。 Reference numeral 6 denotes a protective layer for protecting the light emitting layer 3 and the external electrode 5 from external environmental factors such as moisture, and the light emitted from the inside must pass therethrough. When the light is visible light, a normal transparent resin may be used. However, when the light is ultraviolet light, it is necessary to use a resin excellent in ultraviolet light transmission. For example, there is acrylite manufactured by Mitsubishi Rayon. Further, the protective layer 6 itself may be a material having a photocatalytic function. For example, it is possible to coat dense TiO 2 by sputtering.

発光層3については、通常のELファイバーでは蛍光体粒子が誘電体樹脂中に分散されたものからなり、厚さは数十μmである。本発明においても、波長が400nmを超える可視光線を放射するものでは通常のELファイバーと同じでかまわない。しかし、それより短い波長に対しては、誘電体樹脂を使うと長期間の使用により樹脂が劣化する場合があるので、樹脂の代わりに誘電体セラミックスを用いるほうが好ましい。誘電体セラミックスとしては、誘電率の高いBaTiO、SrTiO、PbTiO等様々な材料が考えられる。すなわち、誘電体セラミックス中に蛍光体粒子が分散された一種のコアシェル構造の層となる。 The light emitting layer 3 is made of a normal EL fiber in which phosphor particles are dispersed in a dielectric resin and has a thickness of several tens of μm. Also in the present invention, a material that emits visible light having a wavelength exceeding 400 nm may be the same as a normal EL fiber. However, for shorter wavelengths, the use of a dielectric resin may degrade the resin due to long-term use, so it is preferable to use dielectric ceramics instead of the resin. As dielectric ceramics, various materials such as BaTiO 3 , SrTiO 3 , and PbTiO 3 having a high dielectric constant are conceivable. That is, it becomes a kind of core-shell structure layer in which phosphor particles are dispersed in dielectric ceramics.

最も重要であるのは蛍光体である。本発明品のように、誘電体樹脂と組み合わせてエレクトロルミネッセンスにより高効率で発光する蛍光体材料としては、ZnS系材料がよく知られており、一般のELファイバー用蛍光体としても用いられている。(非特許文献2参照)   The most important is the phosphor. As a phosphor material that emits light with high efficiency by electroluminescence in combination with a dielectric resin as in the present invention, a ZnS-based material is well known and is also used as a phosphor for general EL fibers. . (See Non-Patent Document 2)

図2に示すように、ZnSには第二添加元素としてClやAlがドーピングされる。これらの添加元素は、ZnSの導電帯下にドナー準位を形成する。一方、第一添加元素としてCuやAg等がドーピングされる。こららの元素はZnSの荷電子帯上にアクセプタ準位を形成する。ZnS中に電子線や紫外線などのエネルギーが照射されると、荷電子帯の電子が導電帯に一旦励起された後、ドナー準位に捕捉される。一方、荷電子帯に新たに生成した正孔はアクセプタ準位に捕捉される。発光は、ドナー準位にある電子がアクセプタ準位にある正孔と再結合することにより生じる。これは、ドナー−アクセプタ(DA)発光と呼ばれるタイプの発光であり、極めて高い発光効率が得られる発光機構である。(1)式に示すように、発光波長は、基本的にドナー準位とアクセプタ準位のエネルギー差により決まり、これが大きいほど短波長の発光となる。すなわち、発光のエネルギーhνは、
hν=Eg−(E+E)−e/(4πεεr) (1)
ここで、EはZnSのバンドギャップエネルギー、E はドナーの束縛エネルギー、EAはアクセプタの束縛エネルギー、eは素電荷量、ε は真空の誘電率、εは比静電誘電率、rはドナーとアクセプタの距離である。
As shown in FIG. 2, ZnS is doped with Cl or Al as the second additive element. These additive elements form a donor level under the conduction band of ZnS. On the other hand, Cu, Ag, or the like is doped as the first additive element. These elements form acceptor levels on the ZnS valence band. When energy such as an electron beam or ultraviolet light is irradiated into ZnS, electrons in the valence band are once excited to the conduction band and then trapped in the donor level. On the other hand, holes newly generated in the valence band are trapped in the acceptor level. Light emission occurs when electrons in the donor level recombine with holes in the acceptor level. This is a type of light emission called donor-acceptor (DA) light emission, which is a light emission mechanism that provides extremely high light emission efficiency. As shown in the equation (1), the emission wavelength is basically determined by the energy difference between the donor level and the acceptor level, and the larger this is, the shorter the wavelength is emitted. That is, the emission energy hν is
hν = Eg- (E D + E A) -e 2 / (4πε 0 ε r r) (1)
Here, E g is the band gap energy of ZnS, E D is the donor of binding energy, EA is binding energy, e is elementary charge amount of the acceptor, epsilon 0 is the vacuum dielectric constant, epsilon r is the ratio electrostatic permittivity, r is the distance between the donor and the acceptor.

このような発光機構を持つZnS系蛍光体に関しては、ZnS:Ag、Clは青色蛍光体、ZnS:Cu、Alは緑色蛍光体として実用化されているので、波長が450〜550nm程度の可視光線を発光させるためには、これらの蛍光体を用いればよい。   Regarding ZnS-based phosphors having such a light emission mechanism, ZnS: Ag and Cl are practically used as blue phosphors, and ZnS: Cu and Al are practically used as green phosphors. Therefore, visible light having a wavelength of about 450 to 550 nm is used. In order to emit light, these phosphors may be used.

(1)式から、発光波長は主として半導体材料のバンドギャップとドナー、及びアクセプタ準位で決まることが分かる。すなわち、発光波長を短波長にするためには、(1)Eを大きく、(2)E を小さく、(3)E を小さくすることが必要となるが、このうち、E は約0.1eVでドーピングする元素により大きくは変化しない。また、E は、Agドーピングで0.7eVであるので、発光波長を短波長化するためには、実質的にはE を大きくすることが最も重要である。アクセプタ準位を形成する添加元素としては、Cu、Ag、Au、Li、Na、N、As、P、Sb等がある。ドナー準位を形成する添加元素としてはCl、Al、I、F、Br等がある。 From equation (1), it can be seen that the emission wavelength is mainly determined by the band gap of the semiconductor material, the donor, and the acceptor level. That is, to the emission wavelength to the short wavelength, (1) the large E g, (2) E small D, but it is necessary to reduce the (3) E A, these, E D is It does not change greatly depending on the element doped at about 0.1 eV. Also, E A, so is 0.7eV with Ag doping, in order to shorten the wavelength of the emission wavelength is substantially it is most important to increase the E g. Examples of additive elements that form acceptor levels include Cu, Ag, Au, Li, Na, N, As, P, and Sb. Examples of additive elements that form donor levels include Cl, Al, I, F, and Br.

バンドギャップエネルギー(E)を大きくする方法としては、主として2つの方法が考えられる。一つは、母材半導体をZnS(E=3.7eV)よりもバンドギャップの大きな第二成分の半導体とZnSとの混晶とすることである。第二成分の半導体としては、ZnSと同じII−VI族の化合物半導体があり、MgSe(E=4.0eV)やBeSe(E=4.7eV)等のセレン化物でも構わないが同じ硫化物を選択する方が製法上作製しやすい。例えば、MgSはEg=5.1eV、CaS=4.4eV、SrS=4.3eVであり好ましい。このほか、BaSやBeSも候補であるが、MgSが最も好ましい。 There are mainly two methods for increasing the band gap energy (E g ). One is to use a mixed crystal of ZnS and the second component semiconductor having a larger band gap than ZnS (E g = 3.7 eV) as the base material semiconductor. As the second component semiconductor, there is the same II-VI compound semiconductor as ZnS, and it may be a selenide such as MgSe (E g = 4.0 eV) or BeSe (E g = 4.7 eV), but the same sulfide. It is easier to make a product by selecting the product. For example, MgS is preferable because Eg = 5.1 eV, CaS = 4.4 eV, and SrS = 4.3 eV. In addition, BaS and BeS are also candidates, but MgS is most preferable.

バンドギャップを大きくするもう一つの方法は、ZnS粒子の大きさをナノサイズまで小さくすることである。粒径低下により量子サイズ効果が発現してバンドギャップは大きくなる。もちろん、上記した混晶の粒径を低下させてもかまわない。この場合は、ZnS単体を用いるよりも粒径は大きくても構わないことになる。量子サイズ効果が発現する粒径はEやEにより変わる。 Another way to increase the bandgap is to reduce the size of the ZnS particles to nanosize. As the particle size decreases, the quantum size effect appears and the band gap increases. Of course, the particle size of the mixed crystal may be reduced. In this case, the particle size may be larger than that using ZnS alone. The particle size quantum size effect appears varies by E g and E A.

ZnS−20mol%MgSでは粒径に関わらず発光波長は400nm以下になる。このようにMgS量が多いと粒径の制限は無くなる傾向にあるが、MgS量が多くなると発光効率は逆に低下する場合もある。これは他の第二成分半導体についても同様である。その意味では、粒径は10nm以下が目安となる。   With ZnS-20 mol% MgS, the emission wavelength is 400 nm or less regardless of the particle diameter. As described above, when the amount of MgS is large, there is a tendency that the restriction on the particle diameter is eliminated. However, when the amount of MgS is large, the light emission efficiency may be decreased. The same applies to other second component semiconductors. In that sense, the standard particle size is 10 nm or less.

これらのZnS系蛍光体以外にも、紫外線発光する材料としては、Y:Gd、Si−Y−O−N:Gd、ZnF:Gdなど、Gdイオンをドーピングした材料やGaN、ZnO等も候補である。 In addition to these ZnS-based phosphors, materials that emit ultraviolet light include materials doped with Gd ions, such as Y 2 O 3 : Gd, Si—Y—O—N: Gd, and ZnF 2 : Gd, and GaN, ZnO. Etc. are also candidates.

光触媒材料としては、波長が400nm以下の紫外線または可視光線を使う場合は、通常用いられるアナターゼ、ルチル、あるいはブロッカイト型のTiOで構わない。400nmを超える可視光線では、TiOにN、S、Mn、Fe、Co、Zn、Cuの少なくとも一種の元素をドーピングすることにより、可視光感応型光触媒として用いることができる。最も好ましいのはSをドーピングしたもので、光触媒活性が最も高い。 As the photocatalytic material, when using ultraviolet rays or visible rays having a wavelength of 400 nm or less, anatase, rutile, or broccite type TiO 2 that is usually used may be used. For visible light exceeding 400 nm, TiO 2 can be used as a visible light sensitive photocatalyst by doping at least one element of N, S, Mn, Fe, Co, Zn, and Cu. The most preferable is doped with S, which has the highest photocatalytic activity.

上記発明品は、紫外線を直接放射するか、あるいは光触媒機能を発揮することができるコンパクトな光源となるため、外部光源が届かない狭隘部中の流体や、濁度の高い液体を始めとする処理対象物中に設置することにより、効率のよい分解・殺菌装置ができる。   The above-mentioned invention is a compact light source that directly emits ultraviolet light or can exhibit a photocatalytic function, so treatments such as fluids in narrow areas where external light sources do not reach and liquids with high turbidity By installing in the object, an efficient decomposition / sterilization apparatus can be achieved.

本発明品は、交流電圧印加等により紫外線を発光させることができるファイバーである。本発明品を汚濁流体中に設置して作動させることにより、紫外線ランプや紫外線LEDなどの外部紫外線光源を用いなくても光触媒反応を効率よく起こすことができる。特に、外部光源では処理できない紫外線の吸収が激しい汚濁流体の場合でも効率よく光触媒反応を起こすことができるようになる。   The product of the present invention is a fiber that can emit ultraviolet rays by applying an alternating voltage or the like. By installing and operating the product of the present invention in a contaminated fluid, a photocatalytic reaction can be efficiently caused without using an external ultraviolet light source such as an ultraviolet lamp or an ultraviolet LED. In particular, a photocatalytic reaction can be efficiently caused even in the case of a polluted fluid that absorbs ultraviolet rays that cannot be processed by an external light source.

本発明品を用いた光触媒反応容器は、有機物の分解・細菌等の殺菌が可能なため、大気中の汚染物質となるNOx、SOx、COガス、ディーゼルパティキュレート、花粉、埃、ダニ等の分解除去、下水中に含まれる有機化合物の分解除去、一般の細菌、ウイルス等の殺菌光源、化学プラントで発生する有害ガスの分解、臭い成分の分解、超純水製造装置における殺菌光源等、様々な分野に応用できる。   The photocatalytic reaction vessel using the product of the present invention is capable of decomposing organic matter and sterilizing bacteria, etc., and therefore decomposing NOx, SOx, CO gas, diesel particulates, pollen, dust, mites, etc., which are pollutants in the atmosphere. Various removal and removal of organic compounds in sewage, sterilization light source for general bacteria and viruses, decomposition of harmful gases generated in chemical plants, decomposition of odorous components, sterilization light source in ultrapure water production equipment, etc. Applicable to fields.

また、セラミックフィルタ、光触媒シート、光触媒織布などと組み合わせることもできる。例えば、予め光触媒を担持させたセラミックスハニカムフィルタのセル内に本発明品を設置することで、セラミックフィルタの分離機能と光触媒機能の両方の機能をもたせることもできる。本発明品を光触媒織布中に編み込むように設置するなどの方法もある。これにより、自動車排ガス処理用ハニカム材、空気清浄機用フィルター、下水濾過フィルター、各種浄水器、温泉の殺菌、防虫剤にも応用可能である。   Moreover, it can also combine with a ceramic filter, a photocatalyst sheet, a photocatalyst woven fabric, etc. For example, by installing the product of the present invention in a cell of a ceramic honeycomb filter in which a photocatalyst is previously supported, it is possible to provide both functions of a ceramic filter separation function and a photocatalytic function. There is also a method of installing the product of the present invention so as to be knitted into a photocatalyst woven fabric. Thereby, it can be applied to a honeycomb material for automobile exhaust gas treatment, an air purifier filter, a sewage filter, various water purifiers, hot spring sterilizers and insect repellents.

以下に実施例によって本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples.

直径0.1mm、長さ1mのCu線を芯電極として用いた。
下記粉末を用意した。
(絶縁層形成)
BaTiO:平均粒径0.5μm
樹脂:信越化学製(商品名:シアノレジン)
(蛍光体)
ZnS:Cu、Cl粉末 平均粒径0.5μm(市販)
ZnS:Ag、Cl粉末 平均粒径0.5μm(市販)
ZnS:Ag、Cl粉末 平均粒径3〜15nm
市販のZnS:Ag、Cl粉末(平均粒径0.5μm)を遊星ボールミル装置(ボール径は50μm)を用いて、Ar中、加速度150Gで各種時間粉砕して得た。
(光触媒)
アナターゼ型TiO 平均粒径0.05μm(市販)
TiO:S 平均粒径0.05μm
チオウレア(CHS)粉末とTi(OCをエタノール中で混合し、白色のスラリー状になるまで減圧濃縮した。その後、600℃で2hr大気中で焼成して粉末を得た。Sのドーピング量は、酸素に対して2at%とした。
A Cu wire having a diameter of 0.1 mm and a length of 1 m was used as a core electrode.
The following powder was prepared.
(Insulating layer formation)
BaTiO 3 : Average particle diameter of 0.5 μm
Resin: manufactured by Shin-Etsu Chemical (trade name: Cyano Resin)
(Phosphor)
ZnS: Cu, Cl powder Average particle size 0.5 μm (commercially available)
ZnS: Ag, Cl powder Average particle size of 0.5 μm (commercially available)
ZnS: Ag, Cl powder Average particle size 3-15 nm
Commercially available ZnS: Ag, Cl powder (average particle size 0.5 μm) was obtained by pulverizing for various times at an acceleration of 150 G in Ar using a planetary ball mill apparatus (ball diameter is 50 μm).
(photocatalyst)
Anatase TiO 2 average particle size 0.05μm (commercially available)
TiO 2 : S Average particle size 0.05 μm
Thiourea (CH 4 N 2 S) powder and Ti (OC 3 H 7 ) 4 were mixed in ethanol and concentrated under reduced pressure until a white slurry was formed. Then, it baked in the atmosphere at 600 degreeC for 2 hours, and obtained the powder. The doping amount of S was 2 at% with respect to oxygen.

(a)絶縁層の形成
樹脂をシクロヘキサノンに30vol%になるように分散して溶解させた。この溶液にBaTiO粉末を分散した(30vol%)ものをCu線に塗布し、回転ローラーで厚さ30μmに制御して、120℃で1hr乾燥させて絶縁層を形成した。
(b)発光層の形成
樹脂をシクロヘキサノンに30vol%になるように分散して溶解させたものを準備した。この溶液に蛍光体粉末をArガス中で分散処理した(30vol%)ものを(a)の絶縁層表面に塗布し、回転ローラーで厚さ40μmに制御して、120℃で10hr乾燥させて発光層を形成した。
(c)外部電極の形成
スパッタリング装置に設置し、発光層表面にITO電極を130℃で0.2μmコーティングした。
(d)保護層の形成
紫外線透過樹脂であるアクリライトの溶融体を塗布し、回転ローラーで厚さ100μmコーティングした。
(e)光触媒層の形成
光触媒粒子をアルコールに分散させた液を用意し、このELファイバーを浸漬後、引き上げてELファイバー表面にTiO粒子をコーティングした。
(A) Formation of insulating layer The resin was dispersed and dissolved in cyclohexanone so as to be 30 vol%. A solution obtained by dispersing BaTiO 3 powder (30 vol%) in this solution was applied to a Cu wire, controlled to a thickness of 30 μm with a rotating roller, and dried at 120 ° C. for 1 hr to form an insulating layer.
(B) Formation of light-emitting layer A resin was prepared by dispersing and dissolving resin in cyclohexanone so as to be 30 vol%. This solution was obtained by dispersing phosphor powder in Ar gas (30 vol%) on the surface of the insulating layer (a), controlling the thickness to 40 μm with a rotating roller, and drying at 120 ° C. for 10 hours to emit light. A layer was formed.
(C) Formation of external electrode It installed in the sputtering apparatus and the ITO electrode was coated by 0.2 micrometer at 130 degreeC on the light emitting layer surface.
(D) Formation of Protective Layer A melt of acrylite, which is an ultraviolet transmitting resin, was applied and coated with a rotating roller to a thickness of 100 μm.
(E) Formation of photocatalyst layer A liquid in which photocatalyst particles were dispersed in alcohol was prepared. After dipping this EL fiber, it was lifted to coat the surface of the EL fiber with TiO 2 particles.

(f)評価
(1)発光効率
光触媒層をコーティング前のELファイバーの芯電極とITO電極間に150V、400Hzの交流電界を印加した。発光の輝度を輝度計または紫外線照度計で測定し、投入電力から発光効率を計算した。
(2)光触媒反応実験
TiOコーティングした長さ1mのELファイバーを500本束ねた後、直径50cm、長さ1mの反応容器内に設置した。図3のように容器の片方から濃度100ppmのトリクロロエチレンを含む水を導入し、別の出口から排出しながら循環させた。水を意図的に着色するために、予め墨汁液を水の5%添加して濁度の高い液体とした。この時、全ての芯電極とITO電極間に150V、400Hzの交流電界を印加した。トリクロロエチレンが完全に分解するまでの時間を測定した。
(F) Evaluation (1) Luminous efficiency An AC electric field of 150 V and 400 Hz was applied between the core electrode and the ITO electrode of the EL fiber before coating the photocatalyst layer. Luminance of luminescence was measured with a luminance meter or ultraviolet illuminance meter, and luminous efficiency was calculated from input power.
(2) Photocatalytic reaction experiment After bundled 500 pieces of 1 m long EL fibers coated with TiO 2 , they were placed in a reaction vessel having a diameter of 50 cm and a length of 1 m. As shown in FIG. 3, water containing 100 ppm of trichlorethylene was introduced from one side of the container and circulated while being discharged from another outlet. In order to intentionally color the water, a 5% ink ink was added in advance to obtain a highly turbid liquid. At this time, an AC electric field of 150 V and 400 Hz was applied between all the core electrodes and the ITO electrodes. The time until trichloroethylene was completely decomposed was measured.

比較として、市販の紫外線発光するLED(発光波長360nm、出力50mW)を、60°間隔で並べたもの(図4)、および、水銀ランプ(発光波長254nm、出力100mW)を60°間隔で、90mmピッチで並べたもの(図5)を作製し、上記のアナターゼ型TiO粒子100gを反応容器中の液体に分散させ、容器の外から紫外線を照射して分解までの時間を測定した。 As a comparison, commercially available LEDs (light emission wavelength 360 nm, output 50 mW) arranged at intervals of 60 ° (FIG. 4) and mercury lamps (light emission wavelength 254 nm, output 100 mW) at 60 ° intervals, 90 mm. A sample arranged in pitch (FIG. 5) was prepared, and 100 g of the anatase TiO 2 particles were dispersed in the liquid in the reaction vessel, and ultraviolet rays were irradiated from the outside of the vessel to measure the time until decomposition.

結果を表1に示す。

Figure 2005158551
The results are shown in Table 1.
Figure 2005158551

外部光源方式では、最大100hrまで行ったが、トリクロロエチレンは完全に分解できなかった。これは、液体の透明度が低く、紫外線が容器内部まで十分に侵入しないため、光触媒が十分に作用しないためと考えられる。
一方、本発明品を用いると分解が起こった。波長が400nmを超える可視光線でも、光触媒としてTiO:Sを用いると分解できる。また、紫外線を用い、さらに紫外線波長が短いほど分解能力は高かった。これは、短波長ほど光触媒を十分に励起できるためと考えられる。
In the external light source method, the process was performed up to 100 hr, but trichlorethylene could not be completely decomposed. This is presumably because the photocatalyst does not function sufficiently because the transparency of the liquid is low and ultraviolet rays do not sufficiently penetrate into the container.
On the other hand, when the product of the present invention was used, decomposition occurred. Even visible light having a wavelength exceeding 400 nm can be decomposed by using TiO 2 : S as a photocatalyst. Moreover, the decomposition ability was higher as ultraviolet rays were used and the ultraviolet wavelength was shorter. This is probably because the shorter the wavelength, the more the photocatalyst can be excited.

直径0.1mm、長さ1mのCu線を芯電極として用いた。
下記粉末を用意した。
(絶縁層形成)
Ba(OCH
Ti(OC
(蛍光体)
ZnS−MgS:Ag、Cl粉末 平均粒径3〜15nm
市販のZnS:Ag、Cl粉末(平均粒径0.5μm)にMgS粉末(平均粒径0.5μm)を所定量混合し、遊星ボールミル装置(ボール径は40μm)を用いて、Ar中、加速度144Gで各種時間粉砕して得た。
A Cu wire having a diameter of 0.1 mm and a length of 1 m was used as a core electrode.
The following powder was prepared.
(Insulating layer formation)
Ba (OCH 3 ) 2
Ti (OC 2 H 5 ) 4
(Phosphor)
ZnS-MgS: Ag, Cl powder Average particle size 3-15 nm
Commercially available ZnS: Ag, Cl powder (average particle size 0.5 μm) and MgS powder (average particle size 0.5 μm) are mixed in a predetermined amount, and a planetary ball mill device (ball diameter is 40 μm) is used to accelerate acceleration in Ar. It was obtained by grinding with 144G for various times.

(a)絶縁層の形成
Ba(OCHとTi(OCのアルコール溶液をそれぞれ蒸発させてCVD反応器に導入した。一方、別系統から酸素を導入し、温度900℃、圧力0.04MPaで2hr反応させて、Cu芯電極表面にBaTiOを厚さ20μmコーティングした。
(b)発光層の形成
Arガス中で、Ba(OCHとTi(OCの等モルに混合したアルコール溶液(濃度0.2mol/l)中に蛍光体粉末を分散させた溶液中に絶縁層形成後の試料を浸漬して引き上げ、大気中900℃で30分焼成した。これを30回繰り返し、蛍光体粒子がBaTiO中に分散した発光層を厚さ20μm形成した。
(A) Formation of insulating layer Each of the alcohol solutions of Ba (OCH 3 ) 2 and Ti (OC 2 H 5 ) 4 was evaporated and introduced into a CVD reactor. On the other hand, oxygen was introduced from another system and reacted for 2 hours at a temperature of 900 ° C. and a pressure of 0.04 MPa, and the Cu core electrode surface was coated with BaTiO 3 to a thickness of 20 μm.
(B) Formation of light-emitting layer In Ar gas, phosphor powder was dispersed in an alcohol solution (concentration 0.2 mol / l) mixed with equimolar amounts of Ba (OCH 3 ) 2 and Ti (OC 2 H 5 ) 4. The sample after the formation of the insulating layer was immersed in the solution and pulled up and baked at 900 ° C. for 30 minutes in the air. This was repeated 30 times to form a light emitting layer having a thickness of 20 μm in which phosphor particles were dispersed in BaTiO 3 .

(c)外部電極の形成
スパッタリング装置に設置し、発光層表面にITO電極を530℃で0.2μmコーティングした。
(d)光触媒を兼ねる保護層の形成
スパッタリング法により、600℃でアナターゼ型TiO又はSを酸素に対して2at%ドーピングしたTiO:Sをそれぞれを厚さ5μm形成して保護層とした。
(C) Formation of external electrode It installed in the sputtering device and the ITO electrode was coated by 0.2 micrometer at 530 degreeC on the light emitting layer surface.
(D) Formation of protective layer also serving as photocatalyst TiO 2 : S doped with 2 at% of anatase-type TiO 2 or S with respect to oxygen at 600 ° C. was formed at a thickness of 5 μm by sputtering to form a protective layer.

(f)評価
(1)発光効率
光触媒層をコーティング前のELファイバーの芯電極とITO電極間に200V、300Hzの交流電界を印加した。発光の輝度を輝度計または紫外線照度計で測定し、投入電力から発光効率を計算した。
(2)光触媒反応実験
長さ1mのELファイバーを500本束ねた後、直径50cm、長さ1mの反応容器内に設置した。図2のように容器の片方から濃度180ppmのアセトアルデヒドを含む水を導入し、別の出口から排出しながら循環させた。水を意図的に着色するために、予め墨汁液を水の10%添加して濁度の高い液体とした。この時、全ての芯電極とITO電極間に200V、300Hzの交流電界を印加した。アセトアルデヒドが完全に分解するまでの時間を測定した。
(F) Evaluation (1) Luminous efficiency An AC electric field of 200 V and 300 Hz was applied between the core electrode of the EL fiber and the ITO electrode before coating the photocatalyst layer. Luminance of luminescence was measured with a luminance meter or ultraviolet illuminance meter, and luminous efficiency was calculated from input power.
(2) Photocatalytic reaction experiment After bundling 500 EL fibers having a length of 1 m, they were placed in a reaction vessel having a diameter of 50 cm and a length of 1 m. As shown in FIG. 2, water containing acetaldehyde having a concentration of 180 ppm was introduced from one side of the container and circulated while being discharged from another outlet. In order to color the water intentionally, the ink solution was added in advance with 10% of water to obtain a highly turbid liquid. At this time, an AC electric field of 200 V and 300 Hz was applied between all the core electrodes and the ITO electrodes. The time until acetaldehyde was completely decomposed was measured.

結果を表2に示す。

Figure 2005158551
蛍光体をZnS−MgS混晶系とすることにより、発光波長はより短くなり、分解速度も向上した。絶縁層や発光層中の誘電体を高誘電率のBaTiOにすることにより、高い発光効率が得られた。
保護層としてTiOを用いても光触媒機能が発揮できた。 The results are shown in Table 2.
Figure 2005158551
By making the phosphor a ZnS-MgS mixed crystal system, the emission wavelength was shortened and the decomposition rate was improved. High luminous efficiency was obtained by making the dielectric in the insulating layer and the light emitting layer BaTiO 3 having a high dielectric constant.
Even when TiO 2 was used as the protective layer, the photocatalytic function could be exhibited.

実施例1のELファイバーを、3mmピッチで二次元朱子織りにして、500mm×500mmサイズの織布を作製した。図6(a)は平面図、図6(b)は断面図を示す。
光触媒繊維からなる織布(宇部興産製)を500mm×500mmに裁断したものを用意した。
ELファイバー織布と光触媒織布を交互に重ねて各50層積層して、光触媒デバイスを作製した。
The EL fiber of Example 1 was made into a two-dimensional satin weave at a pitch of 3 mm to produce a woven fabric of 500 mm × 500 mm size. 6A is a plan view, and FIG. 6B is a cross-sectional view.
A woven fabric made of photocatalytic fibers (manufactured by Ube Industries) was cut into 500 mm × 500 mm.
50 layers of EL fiber woven fabric and photocatalyst woven fabric were alternately stacked to prepare a photocatalytic device.

これを、図7の容器(500mm×500mmの断面積を持つ厚さ70mmの反応容器)内に設置した。ダイオキシンの一種である2,3’,4,4’,5−Pc−CBを水に溶解させて、濃度が100pg/lの溶液を30l調製した。この時、水を意図的に着色するために、予め墨汁液を水の10%添加して濃度の高い液体としたものを調製した。
これを流速2.5l/minで循環させながら、電極間に200V、500Hzの交流電界を印加した。ダイオキシンが完全に分解するまでの時間を最大で100hrまで測定した。
This was placed in the container of FIG. 7 (a reaction container having a cross-sectional area of 500 mm × 500 mm and a thickness of 70 mm). 2,3 ′, 4,4 ′, 5-Pc-CB, which is a kind of dioxin, was dissolved in water to prepare 30 l of a solution having a concentration of 100 pg / l. At this time, in order to intentionally color the water, a liquid having a high concentration was prepared by adding 10% of ink in advance.
An AC electric field of 200 V and 500 Hz was applied between the electrodes while circulating this at a flow rate of 2.5 l / min. The time until dioxin was completely decomposed was measured up to 100 hr.

比較として,光触媒織布のみを50層重ねたものを同じ容器内に設置し、容器の外に設置した市販の紫外線発光するLED(発光波長360nm、出力50mW)を35mmピッチで並べたもの(図9)、および、水銀ランプ(発光波長254nm、出力100mW)を35mmピッチで並べたもの(図8)を作製し、容器の外から照射して分解までの時間を測定した。
結果を表3に示す。
For comparison, a stack of 50 layers of only photocatalyst woven fabrics is placed in the same container, and commercially available LEDs (light emission wavelength 360 nm, output 50 mW) placed outside the container are arranged at a pitch of 35 mm (Fig. 9) and a mercury lamp (emission wavelength: 254 nm, output: 100 mW) arranged at a pitch of 35 mm (FIG. 8) were prepared, and the time until decomposition was measured by irradiation from the outside of the container.
The results are shown in Table 3.

Figure 2005158551
Figure 2005158551

本発明品は,外部光源方式よりも分解時間が短かった。特に高濁度の液を処理した場合にその差が大きかった。これは,外部光源方式では、放射された光が汚濁源によって吸収されてしまうためと考えられる。濁度が低い場合も本発明品が分解までの時間が短かった。これは、光触媒織布を積層した場合、外部電源方式では、内部の織布まで均一に光が到達しないためと考えられる。一方、本発明品は,光触媒織布の近傍に光源が存在するために、積層数にかかわらず全ての光触媒織布が均一に働くためと考えられる。   The product of the present invention has a shorter decomposition time than the external light source method. The difference was particularly large when a highly turbid liquid was processed. This is probably because the emitted light is absorbed by the pollution source in the external light source system. Even when the turbidity was low, the time until the product of the present invention was decomposed was short. This is considered to be because when the photocatalytic woven fabric is laminated, light does not reach the internal woven fabric uniformly in the external power supply system. On the other hand, in the product of the present invention, since the light source exists in the vicinity of the photocatalyst woven fabric, all the photocatalyst woven fabrics work uniformly regardless of the number of layers.

本発明品は、交流電圧印加等により紫外線を発光させることができるファイバーである。本発明品を汚濁流体中に設置して作動させることにより、紫外線ランプや紫外線LEDなどの外部紫外線光源を用いなくても光触媒反応を効率よく起こすことができる。特に、外部光源では処理できない紫外線の吸収が激しい汚濁流体の場合でも効率よく光触媒反応を起こすことができるようになる。   The product of the present invention is a fiber that can emit ultraviolet rays by applying an alternating voltage or the like. By installing and operating the product of the present invention in a contaminated fluid, a photocatalytic reaction can be efficiently caused without using an external ultraviolet light source such as an ultraviolet lamp or an ultraviolet LED. In particular, a photocatalytic reaction can be efficiently caused even in the case of a polluted fluid that absorbs ultraviolet rays that cannot be processed by an external light source.

本発明を適用できるELファイバーの概念図を示す。The conceptual diagram of EL fiber which can apply this invention is shown. ZnS系蛍光体の発光機構の説明図である。It is explanatory drawing of the light emission mechanism of ZnS type fluorescent substance. 光触媒反応試験の説明図である。It is explanatory drawing of a photocatalytic reaction test. 市販の紫外線発光するLEDを60°間隔で並べた例の説明図である。It is explanatory drawing of the example which arranged LED which sells commercially available ultraviolet light at 60 degree intervals. 水銀ランプを60°間隔で並べた例の説明図である。It is explanatory drawing of the example which arranged the mercury lamp at intervals of 60 degrees. 実施例1のELファイバーで作製した織布の平面図(a)と断面図(b)を示す。The top view (a) and sectional drawing (b) of the woven fabric produced with the EL fiber of Example 1 are shown. 実施例3の説明図である。10 is an explanatory diagram of Example 3. FIG. 実施例3との比較例の説明図である。It is explanatory drawing of the comparative example with Example 3. FIG. 同じく実施例3との他の比較例の説明図である。Similarly, it is explanatory drawing of the other comparative example with Example 3. FIG.

符号の説明Explanation of symbols

1 内部電極
2 内部絶縁層
3 発光層
4 外部絶縁体
5 外部電極
6 保護層
DESCRIPTION OF SYMBOLS 1 Internal electrode 2 Internal insulating layer 3 Light emitting layer 4 External insulator 5 External electrode 6 Protective layer

Claims (14)

波長が400nm以下の紫外線または可視光線発光機能を持つELファイバーであって、ファイバーの断面構造が、半径方向の中心に位置する内部電極と、その周囲に形成された内部絶縁層、発光層、外部電極、及び最表面に形成された保護層からなり、電極間への交流電界印加により発光することを特徴とするELファイバー。   An EL fiber with a UV or visible light emission function with a wavelength of 400 nm or less, and the cross-sectional structure of the fiber is an internal electrode located at the center in the radial direction, and an internal insulating layer, a light emitting layer, and an external layer formed around it. An EL fiber comprising an electrode and a protective layer formed on the outermost surface, and emits light when an alternating electric field is applied between the electrodes. 発光層と外部電極間に外部絶縁層が形成された請求項1記載のELファイバー。   2. The EL fiber according to claim 1, wherein an external insulating layer is formed between the light emitting layer and the external electrode. 波長が550nm以下の紫外線または可視光線発光機能を持つELファイバーであって、ファイバーの断面構造が、半径方向の中心に位置する内部電極と、その周囲に形成された内部絶縁層、発光層、外部電極、保護層、及び最表面に形成された光触媒機能を持つ材料の粒子層または薄膜からなり、電極間への交流電界印加により発光することを特徴とするELファイバー。   An EL fiber with a UV or visible light emission function with a wavelength of 550 nm or less, where the cross-sectional structure of the fiber is an internal electrode located at the center in the radial direction, and an internal insulating layer, a light emitting layer, and an external layer formed around it. An EL fiber comprising an electrode, a protective layer, and a particle layer or thin film of a material having a photocatalytic function formed on the outermost surface, and emits light when an alternating electric field is applied between the electrodes. 発光層と外部電極間に外部絶縁層が形成された請求項3記載のELファイバー。   The EL fiber according to claim 3, wherein an external insulating layer is formed between the light emitting layer and the external electrode. 保護層自体が光触媒機能を持つ材料である請求項3又は4記載のELファイバー。   The EL fiber according to claim 3 or 4, wherein the protective layer itself is a material having a photocatalytic function. 光触媒機能を持つ材料が、TiO2及び/又はTiO2にN、S、Mn、Fe、Co、Zn、Cuの少なくとも一種の元素がドーピングされたものである請求項3〜5のいずれか一項に記載のELファイバー。 The material having a photocatalytic function is obtained by doping TiO 2 and / or TiO 2 with at least one element of N, S, Mn, Fe, Co, Zn, and Cu. EL fiber described in 1. 発光層が、可視光線または紫外線発光機能を持つ蛍光体粒子を誘電体樹脂または誘電体セラミックスの少なくとも一種を含むマトリックス中に分散した構造を持つ請求項1〜4のいずれか一項に記載のELファイバー。   The EL according to any one of claims 1 to 4, wherein the light-emitting layer has a structure in which phosphor particles having a visible light or ultraviolet light emission function are dispersed in a matrix containing at least one of a dielectric resin or a dielectric ceramic. Fiber. 発光層を構成する蛍光体が、ZnSを第一の主成分とし、第二成分としてII−VI族化合物半導体を一部含む、または含まない半導体中に、アクセプタ準位を形成する第一添加元素と、ドナー準位を形成する第二添加元素を含むことを特徴とする請求項1〜4のいずれか一項に記載のELファイバー。   The first additive element in which the phosphor constituting the light emitting layer has an acceptor level in a semiconductor containing ZnS as a first main component and partly or not including a II-VI group compound semiconductor as a second component The EL fiber according to claim 1, further comprising a second additive element that forms a donor level. 第一添加元素がCu、Ag、Au、Li、Na、N、As、P、Sbの少なくとも一種であり、第二添加元素がCl、Al、I、F、Brの少なくとも一種である請求項8記載のELファイバー。   9. The first additive element is at least one of Cu, Ag, Au, Li, Na, N, As, P, and Sb, and the second additive element is at least one of Cl, Al, I, F, and Br. EL fiber as described. 第一添加元素がAgである請求項8記載のELファイバー。   The EL fiber according to claim 8, wherein the first additive element is Ag. 第二成分の半導体がMgS、CaS、SrS、BeS、BaSの少なくとも一種を含む請求項8記載のELファイバー。   The EL fiber according to claim 8, wherein the second component semiconductor contains at least one of MgS, CaS, SrS, BeS, and BaS. 発光層を構成する蛍光体の平均粒径が10nm以下である請求項1〜4のいずれか一項に記載のELファイバー。   The EL fiber according to any one of claims 1 to 4, wherein an average particle diameter of the phosphor constituting the light emitting layer is 10 nm or less. 請求項1〜4のいずれか一項に記載のELファイバーを用いた光触媒反応容器。   A photocatalytic reaction vessel using the EL fiber according to any one of claims 1 to 4. 請求項1〜4のいずれか一項に記載のELファイバーと、光触媒繊維を交互に組合せた構造を有する光触媒反応容器。
A photocatalytic reaction vessel having a structure in which the EL fiber according to any one of claims 1 to 4 and the photocatalytic fiber are alternately combined.
JP2003396743A 2003-11-27 2003-11-27 El fiber and photocatalysis reaction container Pending JP2005158551A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003396743A JP2005158551A (en) 2003-11-27 2003-11-27 El fiber and photocatalysis reaction container
DE112004002320T DE112004002320T5 (en) 2003-11-27 2004-11-22 EL fiber and photocatalytic reaction vessel
PCT/JP2004/017677 WO2005053363A1 (en) 2003-11-27 2004-11-22 El fiber and photocatalyst reaction vessel
CN200480035279.1A CN1887032A (en) 2003-11-27 2004-11-22 El fiber and photocatalyst reaction vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396743A JP2005158551A (en) 2003-11-27 2003-11-27 El fiber and photocatalysis reaction container

Publications (1)

Publication Number Publication Date
JP2005158551A true JP2005158551A (en) 2005-06-16

Family

ID=34631520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396743A Pending JP2005158551A (en) 2003-11-27 2003-11-27 El fiber and photocatalysis reaction container

Country Status (4)

Country Link
JP (1) JP2005158551A (en)
CN (1) CN1887032A (en)
DE (1) DE112004002320T5 (en)
WO (1) WO2005053363A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (en) * 2005-11-29 2007-06-14 Shinshu Univ Photocatalyst fiber and liquid cleaning apparatus using the same
JP2008010408A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
JP2015510668A (en) * 2012-01-30 2015-04-09 メルク パテント ゲーエムベーハー Nanocrystals on fiber
JP2020035891A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424465A (en) * 2011-10-24 2012-04-25 哈尔滨工程大学 Method for synergistically degrading phenol wastewater through electrocatalytic oxidation and electric-Fenton technology
IT201700017986A1 (en) * 2017-02-17 2018-08-17 Roberto Benedini SYSTEM FOR DISINFECTION AND SANITATION OF ENVIRONMENTS.
WO2018149980A1 (en) * 2017-02-17 2018-08-23 Roberto Benedini System for disinfecting and sanitizing environments
CH717554A2 (en) * 2020-06-19 2021-12-30 Admajora Sa Filter element for the purification and disinfection of air and water.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235376A (en) * 1994-02-22 1995-09-05 Yazaki Corp Wire form electroluminescent element and its manufacture
JPH07335382A (en) * 1994-06-14 1995-12-22 Sharp Corp Thin film el element
JPH10141044A (en) * 1996-11-01 1998-05-26 Hoya Corp Photocatalyst filter device and filtering method
JPH10262789A (en) * 1997-03-26 1998-10-06 Toto Ltd Mirror and transparent member with layer containing photocatalyst on the surface
WO2000063317A2 (en) * 1999-04-20 2000-10-26 Honeywell Specialty Chemicals Seelze Gmbh Inorganic illuminants made of finest grains
JP4051852B2 (en) * 2000-03-23 2008-02-27 コニカミノルタホールディングス株式会社 Inorganic semiconductors with organic EL elements or LEDs, deodorization, antibacterial, antifungal and antifouling devices
JP4626099B2 (en) * 2000-07-17 2011-02-02 株式会社豊田中央研究所 Photocatalyst
JP2002085533A (en) * 2000-09-13 2002-03-26 Mitsubishi Paper Mills Ltd Composite filter
US6562260B2 (en) * 2000-12-18 2003-05-13 Osram Sylvania Inc. Recovery of electroluminescsent phosphor from encapsulated material
JP2002231151A (en) * 2001-01-30 2002-08-16 Hitachi Ltd Image display device
JP2003249373A (en) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd Electroluminescence element and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144328A (en) * 2005-11-29 2007-06-14 Shinshu Univ Photocatalyst fiber and liquid cleaning apparatus using the same
JP2008010408A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
JP2015510668A (en) * 2012-01-30 2015-04-09 メルク パテント ゲーエムベーハー Nanocrystals on fiber
JP2020035891A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device
US11043610B2 (en) 2018-08-30 2021-06-22 Nichia Corporation Light-emitting device
US11626536B2 (en) 2018-08-30 2023-04-11 Nichia Corporation Light-emitting device

Also Published As

Publication number Publication date
CN1887032A (en) 2006-12-27
DE112004002320T5 (en) 2006-09-28
WO2005053363A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US7767158B2 (en) Surface light-emitting device, filtering device using same, and optically assisted ceramic filter
JP6170601B2 (en) Transparent photocatalytic coating
US20140076404A1 (en) Ir-activated photoelectric systems
US20090252654A1 (en) Air cleaner
WO2013001444A1 (en) Luminescent material particles comprising a coating and lighting unit comprising such luminescent material
CN104437548A (en) Visible light photocatalytic film and preparation method thereof and lighting lamp with visible light photocatalytic film
EP1843401A1 (en) Surface emitting device
Thi Mai Tho et al. Mechanism of Visible‐Light Photocatalytic Mineralization of Indigo Carmine Using ZnBi2O4‐Bi2S3 Composites
US20040024108A1 (en) Light-responsive material and manufacture method of the same
JP2005158551A (en) El fiber and photocatalysis reaction container
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
US20070126341A1 (en) El fiber and photocatalyst reaction vessel
US20100129267A1 (en) Air cleaning device
US20090263298A1 (en) Photocatalyst device
JP2005120117A (en) Phosphor, and porous body and filter obtained using the same
KR100355667B1 (en) photocatalytic purifier for LED
JP2007063301A (en) Phosphor for el
JP2003200043A (en) Apparatus for decomposing organic substance by using organic or inorganic el element
CN109529954B (en) Energy-storage photoelectrocatalysis type air purification composite film and preparation method thereof
JP2003053195A (en) Photocatalyst device consisting of sheet light emitting element as light source
CN209680108U (en) One kind having accumulation of energy photoelectrocatalysis type air cleaning laminated film
JP2005026275A (en) Porous semiconductor device and its manufacturing method
US9821296B2 (en) Photocatalytic compositions and methods for their preparation and use
JP2005161267A (en) Porous luminescent material, filter and cleaning apparatus
JPH0938192A (en) Air cleaner