WO2005048294A1 - Field emission ultraviolet lamp - Google Patents

Field emission ultraviolet lamp Download PDF

Info

Publication number
WO2005048294A1
WO2005048294A1 PCT/JP2003/014471 JP0314471W WO2005048294A1 WO 2005048294 A1 WO2005048294 A1 WO 2005048294A1 JP 0314471 W JP0314471 W JP 0314471W WO 2005048294 A1 WO2005048294 A1 WO 2005048294A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
conductor
glass substrate
substrate
Prior art date
Application number
PCT/JP2003/014471
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichi Takase
Shinichi Hirabayashi
Original Assignee
Nihon University
Japan Communication Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Japan Communication Inc. filed Critical Nihon University
Priority to AU2003280778A priority Critical patent/AU2003280778A1/en
Priority to PCT/JP2003/014471 priority patent/WO2005048294A1/en
Priority to JP2005510567A priority patent/JPWO2005048294A1/en
Publication of WO2005048294A1 publication Critical patent/WO2005048294A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream

Definitions

  • the present invention relates to a field emission ultraviolet lamp, and more particularly to a flat emission type field emission ultraviolet lamp used for activating a photocatalyst.
  • a mercury lamp or the like has been used as a light source for activating a photocatalyst.
  • the photocatalyst layer is activated.
  • Mercury-free UV lamps are also used because mercury lamps can harm the environment if not properly treated after use.
  • Some fluorescent lamps emit near-ultraviolet light in the wavelength range of 300 to 400 nm when excited by the vacuum ultraviolet light emitted by a rare gas such as xenon.
  • YP0 4 Ce, Ce ( Mg, Ba) AluO ⁇
  • LaP0 4 Ce, BaSi 2 Os: Pb, SrB 4 ⁇ 7: E +, (Ba, Sr, Mg) 3S12O7: Pb 2 +, BaSkOs: Pb 2 +, YP0 4: such as Ce 3 + is used.
  • the ultraviolet-emitting fluorescent lamp disclosed in Patent Document 1 is an ultraviolet-emitting fluorescent lamp suitable for a photocatalyst having an improved near-ultraviolet intensity using an ultraviolet light-emitting substance.
  • a matrix composed of an oxygen compound is doped with a rare earth element involved in luminescence composed of gadolinium and praseodymium, which are luminescence centers, to obtain an ultraviolet light-emitting substance.
  • the inner wall surface of the light-transmissive airtight envelope made of soda glass tube, ultraviolet luminescent material (YB0 3: Gd, Pr, etc.) to form a phosphor layer made of, enclosing the electrodes and xenon gas into the glass tube.
  • the outer surface of the glass tube forms a photocatalyst layer made of Ti0 2 anatase crystal form.
  • a high-frequency voltage is applied to the cold cathode to generate a discharge and xenon emits 172 nm vacuum ultraviolet rays
  • the phosphor layer efficiently emits near ultraviolet rays.
  • the photocatalytic layer exhibits a photocatalytic action by near-ultraviolet light.
  • the ultraviolet discharge tube for a photocatalyst disclosed in Patent Document 2 is an ultraviolet irradiation lamp that can efficiently irradiate ultraviolet light having a wavelength of 300 to 450 nm that activates the photocatalyst.
  • the A fluorescent material that emits ultraviolet light with a wavelength of 450 nm or less that activates the photocatalyst is attached to the outer peripheral surface of an ultraviolet discharge tube made of ultraviolet transmitting glass. Examples of a phosphor that emits ultraviolet light include those disclosed in Patent Document 3.
  • Non-Patent Documents 1 to 3 there are known methods for producing a long-life lamp with good luminous efficiency by forming a carbon film on a cathode of a field emission lamp by a CVD method.
  • a field emission lamp that generates ultraviolet light has not been realized.
  • Patent Document 1 JP 2001-172624 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-167235
  • Patent Document 3 JP-A-10-204430
  • Non-Patent Document 1 A. N. Obraztsov, et al .; “Field emission characteristics oi nanostructured thin film carbon materials", Applied Surface Science 215, (2003) 214-221.
  • Non-Patent Document 2 A. N. Obraztsov, et al .; "CVD growth and field emission properties of nanostructured carbon films", J. Phys. D: Appl. Phys. 33 (2002) 337- ⁇ 62.
  • Non-Patent Document 3 A. N. Obraztsov, et al .; "Chemical vapor deposition of carbon films: in-situ plasma diagnostics", Carbon 41 (2003), 836-839.
  • the conventional ultraviolet lamp has a problem that a long-life planar light-emitting lamp that can be used for activating a photocatalyst cannot be realized, and that miniaturization is difficult.
  • An object of the present invention is to solve the above-mentioned conventional problems and to realize a long-life flat field emission ultraviolet lamp for photocatalytic activation. Disclosure of the invention
  • a field emission ultraviolet lamp is provided with a planar visible light ultraviolet light transmissive cathode-side substrate and a plurality of straight lines arranged in parallel on the cathode-side substrate.
  • a vacuum container for accommodating a cathode-side substrate and an anode-side insulating substrate.
  • a carbon film is formed on the anode side surface of the cathode conductor by a CVD method.
  • FIG. 1 is a perspective view and a partial cross-sectional view of a field emission ultraviolet lamp according to Embodiment 1 of the present invention
  • FIG. 2 is a sectional view of the field emission ultraviolet lamp according to the first embodiment of the present invention
  • FIG. 3 is a plan view of the field emission ultraviolet lamp according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the field emission ultraviolet lamp according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a photocatalyst device according to Embodiment 3 of the present invention.
  • FIG. 6 is a sectional view of a photocatalyst device according to a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • Example 1 of the present invention a plurality of linear cathode conductors each having a graphite oxide film formed on the anode side surface by a CVD method were arranged in parallel on a planar visible-ultraviolet-light-transmissive cathode-side glass substrate. Then, grooves corresponding to the respective cathode conductors are provided on the anode-side glass substrate arranged opposite to the cathode-side glass substrate, the anode conductors are provided in the grooves, and a phosphor or semiconductor that generates ultraviolet light is applied on the anode conductors.
  • This is a field emission ultraviolet lamp in which a cathode side glass substrate and an anode side glass substrate are housed in a vacuum vessel.
  • FIG. 1 is a perspective view and a partial cross-sectional view of a field emission ultraviolet lamp according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the field emission ultraviolet lamp.
  • FIG. 3 is a plan view of the field emission ultraviolet lamp. These are schematic conceptual diagrams, and the ratio of each part is different from the actual one.
  • the cathode-side glass substrate 1 is a flat substrate on the side from which ultraviolet rays are radiated, and transmits visible light to ultraviolet light, that is, transmits light in the range from visible light to ultraviolet light. It is a transparent glass substrate.
  • the anode-side glass substrate 2 is an insulating substrate having a groove.
  • the anode side glass substrate 2 is disposed so as to face the cathode side glass substrate 1.
  • a glass substrate is used as the cathode-side substrate and the anode-side substrate, but the material is not necessarily glass.
  • the cathode-side substrate may be any insulator that is transparent to light in the blue to near-ultraviolet range and is not degraded by ultraviolet rays.
  • the anode-side substrate may be any insulator that does not deteriorate with ultraviolet rays, and for example, a ceramics substrate may be used.
  • the cathode conductor 3 is a linear electrode arranged in parallel on the cathode-side glass substrate 1.
  • the anode conductor 4 is an electrode deposited in the groove.
  • the phosphor 5 is a phosphor or a semiconductor that generates ultraviolet light applied on the anode conductor.
  • the vacuum container 6 is a container for accommodating the cathode-side glass substrate 1 and the anode-side glass substrate 2.
  • the groove 7 is a groove formed in the anode-side glass substrate 2 for providing an anode.
  • the carbon film 8 is a carbon film formed on the cathode conductor by a CVD method in order to enhance the electron emission efficiency.
  • a plurality of linear Ni cathode conductors 3 are arranged in parallel at equal intervals.
  • Fe, Cu, or the like can be used in addition to Ni.
  • the thickness of the cathode conductor 3 is made sufficiently small with respect to the size of the groove 7 so that ultraviolet rays are radiated evenly. You can use a diffuser or a polarizing plate to make the brightness uniform.
  • a carbon film 8 of graphite is formed by a CVD method. What is the thickness of the carbon film 8? > m.
  • Non-patent documents 1 to 3 refer to Non-Patent Documents 1 to 3 for a method of forming a graphite film by the CVD method.
  • Grooves 7 corresponding to the respective cathode conductors 3 are provided on the glass substrate 2 on the anode side.
  • An anode conductor 4 formed by depositing an A1 or ITO film is provided in the groove 7.
  • the thickness of the anode conductor 4 is 1-2 ⁇ m.
  • the anode conductor 4 also functions as a reflector in the case of A1. In order to reflect light in a wide wavelength range, it is effective to use a dielectric multilayer under the transparent electrode.
  • a phosphor 5 which is an ultraviolet light emitting crystal film is formed on the anode conductor 4. To achieve.
  • Ultraviolet light emitter crystal films are formed by applying phosphors or semiconductor crystals that generate ultraviolet light by irradiating an electron beam or the like to form a film. Light can be emitted by electrons emitted when a voltage of V or more is applied. A voltage much lower than that of a conventional ultraviolet lamp is sufficient.
  • the phosphor or semiconductor that generates ultraviolet rays a substance that meets the conditions may be selected from known substances.
  • the distance between the electrodes of the cathode conductor 3 and the anode conductor 4 is about 0.5 to 1.0 mm because the ultraviolet light emitting crystal film has about 0.2 to 0.5 mm. Therefore, the size of the groove 7 is almost the same.
  • the cathode-side glass substrate 1 and the anode-side glass substrate 2 are brought into close contact with each other and housed in a vacuum vessel 6.
  • the cathode-side glass substrate 1 and the anode-side glass substrate 2 can be directly welded together without using the vacuum vessel 6 and sealed in a vacuum.
  • a 1 ⁇ l (r 5 torr overall size from about 10 mm X 10 mm, can greatly up to about lm X lm.
  • a unipolar pulse voltage is applied between the cathode conductor 3 and the anode conductor 4.
  • the voltage is 5 to 500V and the current is about 1mA.
  • the voltage can be as high as 10 kV.
  • the frequency is between 1 and 5 kHz.
  • the pulse width is 3-8 / sec.
  • the discharge starting voltage is 1 V / m.
  • the current density of the cathode is 100 mA / cm 2 (at 10 V / m).
  • the basic configuration of the lighting power supply may be the same as that of the conventional field emission lamp.
  • the lighting power source may be provided separately for one or more sets of the cathode conductor 3 and the anode conductor 4, or may be provided in common for all sets.
  • an ultraviolet lamp and a photocatalyst can be integrally formed.
  • the anode conductor 4 uses A1 or the like to be a reflection plate. In order to increase the amount of light, it is effective to arrange a dielectric multilayer film corresponding to a wide wavelength range below the transparent electrode. If an ITO film is used as the anode conductor 4, a photocatalyst layer can be formed outside the glass substrate 2 on the anode side, and the ultraviolet lamp and the photocatalyst can be integrally formed.
  • the ultraviolet light may be irradiated with an ultraviolet light emitting lamp without a photocatalytic layer.
  • Example 1 of the present invention a field emission ultraviolet lamp was formed on a flat cathode-side glass substrate and a plurality of linear cathodes in which a graphite film was formed on the anode-side surface by a CVD method.
  • Conductors are arranged in parallel, grooves corresponding to each cathode conductor are provided on the anode-side glass substrate facing the cathode-side glass substrate, the anode conductor is provided in the groove, and fluorescent light that generates ultraviolet light on the anode conductor Since the body is applied and the cathode-side glass substrate and the anode-side glass substrate are housed in a vacuum container, a long-life flat ultraviolet lamp for photocatalytic activation can be realized.
  • Example 2 of the present invention a cathode conductor was provided on almost the entire surface of a flat cathode-side glass substrate, and thereafter, a graphite film was formed by a CVD method, and the visible conductor was placed facing the cathode-side glass substrate.
  • FIG. 4 is a cross-sectional view of a field emission ultraviolet lamp according to Embodiment 2 of the present invention. These are schematic conceptual diagrams, and the ratio of each part is different from the actual one.
  • the cathode-side glass substrate 1 is a planar insulating substrate on the side from which no ultraviolet light is emitted.
  • the anode-side glass substrate 2 is a flat substrate on the side from which ultraviolet rays are emitted, and is a glass substrate that transmits visible light and ultraviolet light, that is, transmits light in a range from visible light to ultraviolet light.
  • the anode-side glass substrate 2 is arranged to face the cathode-side glass substrate 1.
  • the cathode side substrate and the anode side substrate were glass-based. Although a plate is used, the material is not necessarily limited to glass.
  • the cathode conductor 3 is an A1 electrode provided on almost the entire surface of the cathode-side glass substrate 1.
  • the anode conductor 4 is a transparent electrode provided on almost the entire surface of the anode-side glass substrate 2.
  • the phosphor 5 is a phosphor or a semiconductor provided on the anode conductor and generating ultraviolet light.
  • the vacuum container 6 is a container for housing the cathode-side glass substrate 1 and the anode-side glass substrate 2.
  • the carbon film 8 is a carbon film formed on a cathode conductor by a CVD method in order to enhance electron emission efficiency.
  • the cathode conductor 3 is provided on the entire surface of the flat cathode-side glass substrate 1 by vapor deposition or the like.
  • a graphite carbon film 8 is formed by a CVD method.
  • the thickness of the carbon film 8 is 2-3 ⁇ m .
  • the density of the electron emission points of the carbon film 8 on the cathode conductor 3 can be made 107 cm 2 .
  • Non-Patent Documents 1 to 3 for a method of forming a graphiteite film by the CVD method.
  • a transparent conductive film is deposited on almost the entire surface of the anode-side glass substrate 2 to form an anode conductor 4.
  • the thickness of the anode conductor 4 is 1 to 2 m.
  • a phosphor 5 as an ultraviolet light emitting crystal film is formed on the anode conductor 4.
  • the ultraviolet light emitting crystal film is formed by applying a phosphor or semiconductor crystal that generates ultraviolet light to form a film, and emits ultraviolet light by excitation light or an excitation electron beam of 3.0 eV or more. Light can be emitted by applying a voltage of 3.0 V or more using the cathode of the field emission, and a voltage much lower than that of a conventional ultraviolet lamp is sufficient.
  • the distance between the electrodes of the cathode conductor 3 and the anode conductor 4 is about 0.5 to 1. Oram because the ultraviolet light emitting crystal film is about 0.2 to 0.5 mm.
  • the cathode-side glass substrate 1 and the anode-side glass substrate 2 are brought into close contact with each other and housed in a vacuum vessel 6.
  • the cathode-side glass substrate 1 and the anode-side glass substrate 2 may be directly welded to each other without using the vacuum vessel 6, and may be sealed in a vacuum.
  • the overall size is about 10mm x 10mm, but can be as large as about 1m x 1m. If the size is to be increased, bosses or ribs are provided as needed to maintain the gap between the cathode-side glass substrate 1 and the anode-side glass substrate 2.
  • the field emission purple according to the second embodiment of the present invention configured as described above. 3 014471
  • the basic operation of the outside line lamp is the same as in the first embodiment.
  • a voltage is applied between the cathode conductor 3 and the anode conductor 4
  • the cold cathode electron jumps out of the carbon film on the cathode conductor 3 due to field emission, hits the phosphor 5 and generates ultraviolet rays.
  • Light emitted from the phosphor 5 is emitted from the glass substrate 2 on the anode side.
  • Example 2 of the present invention a field emission ultraviolet lamp was formed on almost the entire surface of a flat cathode-side glass substrate, and a cathode conductor having a graphite film formed on the anode-side surface by a CVD method.
  • An anode conductor is provided on almost the entire surface of the anode-side glass substrate disposed opposite to the cathode-side glass substrate, and a phosphor that generates ultraviolet light is provided on the anode conductor, and the cathode-side glass substrate and the anode-side glass substrate are provided.
  • a long-life flat ultraviolet lamp for activating the photocatalyst can be realized.
  • Photocatalysts can be used efficiently even in refrigerators that do not allow sunlight (sunlight), hospitals, homes and restaurants. It can be used for indoor sterilization, deodorization and deodorization, and its reaction rate can be controlled to some extent by changing the intensity of ultraviolet light.
  • Example 3 of the present invention a plurality of linear cathode conductors each having a graphite oxide film formed on the anode side surface by a CVD method were arranged in parallel on a planar visible-light-ultraviolet-transmissive cathode-side glass substrate.
  • a photocatalyst is applied to the outer dimples of the cathode-side glass substrate, and grooves corresponding to the respective cathode conductors are provided on the anode-side glass substrate disposed opposite to the cathode-side glass substrate, and the transparent anode conductor is provided in the groove.
  • This is a photocatalytic device in which an anode conductor is coated with an alumina phosphor that emits ultraviolet light, and a dielectric multilayer film is provided below the anode conductor.
  • FIG. 5 is a sectional view of a photocatalyst device according to a third embodiment of the present invention.
  • a cathode-side glass substrate 1 is a flat substrate on the side from which ultraviolet rays are emitted, and is a glass substrate that transmits light in a range from visible rays to ultraviolet rays.
  • the anode-side glass substrate 2 is an insulating substrate having a groove.
  • the cathode side substrate and the anode The force material using the glass substrate as the side substrate does not necessarily have to be glass.
  • the phosphor 5 is an alumina phosphor applied on the anode conductor and generating ultraviolet rays.
  • alumina phosphor This is a well-known phosphor alumina A1 2 0 3 were mixed such aluminates, simply referred to as alumina phosphor for simplicity here.
  • the optimum alumina phosphor may be selected according to the purpose and conditions such as the excitation voltage and the emission wavelength.
  • the dielectric multilayer film 9 is a film for increasing light reflection efficiency.
  • Photocatalyst 10 is a titania Tio 2 having a deodorant effect by ultraviolet.
  • the dimple portion 11 is a depression for increasing the surface area of the photocatalyst 10.
  • a dimple structure is provided on the upper transparent substrate (cathode-side glass substrate 1).
  • Dielectric multilayer film to reflect light of various wavelengths
  • anode conductor 4 does not necessarily need to use a transparent electrode (ITO).
  • ITO transparent electrode
  • an alumina phosphor layer may be formed on aluminum.
  • the basic operation of the lamp unit of the photocatalyst device according to the third embodiment of the present invention configured as described above is the same as that of the first embodiment.
  • a voltage is applied between the cathode conductor 3 and the anode conductor 4
  • cold cathode electrons fly out of the carbon film on the cathode conductor 3 by field emission, hit the phosphor 5 and generate ultraviolet rays.
  • Ultraviolet light emitted from the phosphor 5 strikes the photocatalyst 10.
  • Ultraviolet light that has exited the phosphor 5 and has passed through the anode conductor 4 is reflected by the dielectric multilayer film 9 and hits the photocatalyst 10.
  • Chitayua Ti0 2 photocatalytic 10 performs like more deodorant effect to ultraviolet radiation.
  • Example 3 of the present invention a plurality of photocatalyst devices were formed by forming a graphite film on the anode-side surface by a CVD method on a planar visible-ultraviolet-light-transmissive cathode-side glass substrate.
  • Example 4 of the present invention a plurality of linear cathode conductors each having a graphite film formed on the anode side surface by a CVD method were arranged in parallel on a flat cathode-side glass substrate to correspond to the cathode conductor.
  • a visible-ultraviolet-light-transmissive anode-side glass substrate is placed facing the cathode-side glass substrate, a transparent anode conductor is provided inside, and an alumina phosphor that generates ultraviolet light is coated on the anode conductor.
  • a photocatalyst device in which a photocatalyst is applied to a dimple portion on the outside of the anode-side glass substrate.
  • FIG. 6 is a sectional view of a photocatalyst device according to a fourth embodiment of the present invention.
  • the cathode side glass substrate 1 is a planar insulating substrate.
  • the anode-side glass substrate 2 is a groove-shaped substrate on the side from which ultraviolet light is emitted, and is a glass substrate that transmits light in a range from visible light to ultraviolet light.
  • a glass substrate is used as the cathode side substrate and the anode side substrate.
  • the force material is not necessarily glass.
  • the cathode-side glass substrate 1 and the anode-side glass substrate 2 are directly welded, evacuated and sealed. Other configurations are the same as those of the third embodiment.
  • the difference from the photocatalyst device of Example 3 is that the direction of the electron beam and the direction of the emitted light are the same. In other words, it is the reverse structure of FIG. In this case, the direct light passes through the transparent electrode, and thus no dielectric multilayer is needed. Since there is light that escapes as much as the structure is simple, the amount of light may be lower than that of the photocatalyst device of the third embodiment.
  • Ga can also be used as the phosphor 5.
  • the peak wavelength of GaN fluorescence is 360 nm. Since GaN is a semiconductor and can be used as it is as an anode, it is not always necessary to use a transparent electrode (ITO) as the anode conductor 4.
  • the basic operation of the photocatalyst device according to the fourth embodiment of the present invention configured as described above is the same as that of the third embodiment.
  • a voltage is applied between the cathode conductor 3 and the anode conductor 4
  • cold cathode electrons fly out of the carbon film on the cathode conductor 3 due to field emission, hit the phosphor 5 and generate ultraviolet rays.
  • Ultraviolet light that has exited the phosphor 5 and passed through the anode conductor 4 hits the photocatalyst 10.
  • Titania Ti0 2 photocatalytic 10 performs deodorant effect by ultraviolet rays.
  • the photocatalyst device was formed by arranging a plurality of linear cathode conductors each having a graphite oxide film formed on the anode-side surface by a CVD method on a flat cathode-side glass substrate in parallel.
  • the anode-side glass substrate with a groove-shaped visible-ultraviolet light transmissivity corresponding to the cathode conductor is arranged opposite to the cathode-side glass substrate, a transparent anode conductor is provided inside, and ultraviolet light is applied on the anode conductor.
  • a flat emission type field emission ultraviolet lamp having a long life and being optimal for activating a photocatalyst can be realized by the above configuration. Due to the miniaturization, the lamp can be installed in various narrow spaces where sunlight cannot reach, and the use of photocatalysts can be expanded.
  • the field emission ultraviolet lamp of the present invention is most suitable as a light source for activating a photocatalyst. It can also be used as a general-purpose ultraviolet light source.
  • the photocatalyst device of the present invention is most suitable for applications such as deodorization and sterilization.

Abstract

In order to realize a long-lifetime, surface emission type field emission ultraviolet lamp for activating a photocatalyst, a plurality of linear cathode conductors (3) are arranged in parallel on a planar cathode-side glass substrate (1). A graphite carbon film (8) is formed on the anode-side surface of the cathode conductors (3) by CVD. An anode-side glass substrate (2) is arranged oppositely to the cathode-side glass substrate (1), a groove (7) and an anode conductor (5) are provided in association with each cathode conductor (3), and the anode conductor (5) is coated with phosphor (5) generating UV-rays. The cathode side glass substrate (1) and the anode side glass substrate (2) are stored in a vacuum container. Since the plurality of linear cathode conductors (3) formed with the carbon film (8) are arranged in parallel, the emission surfacecan be made planar while prolonging the lifetime of the lamp and a field emission ultraviolet lamp optimal for activating a photocatalyst can be realized.

Description

明 細 書 フィールドエミツション紫外線ランプ 技術分野  Description Field emission UV lamp Technical field
本発明は、 フィールドェミッション紫外線ランプに関し、 特に、 光触媒の活性 化に用いる平面発光型のフィールドエミッション紫外線ランプに関する。 背景技術  The present invention relates to a field emission ultraviolet lamp, and more particularly to a flat emission type field emission ultraviolet lamp used for activating a photocatalyst. Background art
従来、 光触媒の活性化用光源としては、 水銀灯などが使用されている。 水銀灯 から放射された紫外線が光触媒層に照射されると、 光触媒層が活性化される。 水 銀灯は、 使用後に適切に処理しないと環境に害を及ぼすので、 水銀を使用しない 紫外線ランプも利用されている。 キセノンなどの希ガスが放射する真空紫外線に よって励起されて、 300〜 400nmの波長範囲の近紫外線を発光する蛍光ランプが ある。 紫外線を発生する蛍光体には、 YP04: Ce,Ce (Mg,Ba) AluO^ LaP04: Ce、 BaSi2Os: Pb、 SrB47: E +、 (Ba,Sr,Mg) 3S12O7: Pb2 +、 BaSkOs: Pb2+、 YP04: Ce3+など が利用される。 Conventionally, a mercury lamp or the like has been used as a light source for activating a photocatalyst. When the ultraviolet light emitted from the mercury lamp is irradiated on the photocatalyst layer, the photocatalyst layer is activated. Mercury-free UV lamps are also used because mercury lamps can harm the environment if not properly treated after use. Some fluorescent lamps emit near-ultraviolet light in the wavelength range of 300 to 400 nm when excited by the vacuum ultraviolet light emitted by a rare gas such as xenon. A phosphor that generates ultraviolet rays, YP0 4: Ce, Ce ( Mg, Ba) AluO ^ LaP0 4: Ce, BaSi 2 Os: Pb, SrB 4 〇 7: E +, (Ba, Sr, Mg) 3S12O7: Pb 2 +, BaSkOs: Pb 2 +, YP0 4: such as Ce 3 + is used.
従来の紫外線ランプの例を簡単に説明する。 特許文献 1に開示された紫外線発 光蛍光ランプは、 紫外発光物質を使用して近紫外線強度を向上した光触媒に好適 する紫外線発光蛍光ランプである。 酸素化合物からなる母体中に、 発光中心であ るガドリ二ゥムとプラセオジムからなる発光に関与する希土類元素をドープし て、 紫外発光物質とする。 ソーダガラス管からなる透光性気密容器の内壁面に、 紫外発光物質 (YB03: Gd,Pr など) からなる蛍光体層を形成し、 ガラス管内に電 極とキセノンガスを封入する。 ガラス管の外表面には、 アナターゼ結晶型の Ti02 からなる光触媒層を形成する。 冷陰極に高周波電圧を印加して放電を発生させ、 キセノンから 172nm の真空紫外線を放射させると、 蛍光体層は近紫外線を効率 良く放射する。 光触媒層は、 近紫外線により光触媒作用を呈する。 An example of a conventional ultraviolet lamp will be briefly described. The ultraviolet-emitting fluorescent lamp disclosed in Patent Document 1 is an ultraviolet-emitting fluorescent lamp suitable for a photocatalyst having an improved near-ultraviolet intensity using an ultraviolet light-emitting substance. A matrix composed of an oxygen compound is doped with a rare earth element involved in luminescence composed of gadolinium and praseodymium, which are luminescence centers, to obtain an ultraviolet light-emitting substance. The inner wall surface of the light-transmissive airtight envelope made of soda glass tube, ultraviolet luminescent material (YB0 3: Gd, Pr, etc.) to form a phosphor layer made of, enclosing the electrodes and xenon gas into the glass tube. The outer surface of the glass tube forms a photocatalyst layer made of Ti0 2 anatase crystal form. When a high-frequency voltage is applied to the cold cathode to generate a discharge and xenon emits 172 nm vacuum ultraviolet rays, the phosphor layer efficiently emits near ultraviolet rays. The photocatalytic layer exhibits a photocatalytic action by near-ultraviolet light.
特許文献 2に開示された光触媒用紫外線放電管は、 光触媒が活性化される波長 300 〜 450nmの紫外線を効率よく照射することができる紫外線照射ランプであ る。 紫外線透過ガラスからなる紫外線放電管の外周面に、 光触媒を活性化させる 波長が 450nm以下の紫外線を発光する蛍光体を被着したものである。 紫外線を 発光する蛍光体としては、 特許文献 3に開示されたものなどがある。 The ultraviolet discharge tube for a photocatalyst disclosed in Patent Document 2 is an ultraviolet irradiation lamp that can efficiently irradiate ultraviolet light having a wavelength of 300 to 450 nm that activates the photocatalyst. The A fluorescent material that emits ultraviolet light with a wavelength of 450 nm or less that activates the photocatalyst is attached to the outer peripheral surface of an ultraviolet discharge tube made of ultraviolet transmitting glass. Examples of a phosphor that emits ultraviolet light include those disclosed in Patent Document 3.
一方、 フィールドェミ ッションランプの陰極に、 CVD法により炭素皮膜を形 成して、 発光効率のよい長寿命のランプを製造する方法が、 非特許文献 1〜3の ように公知である。 しかし、 紫外線を発生するフィールドェミッションランプは 実現していない。  On the other hand, as disclosed in Non-Patent Documents 1 to 3, there are known methods for producing a long-life lamp with good luminous efficiency by forming a carbon film on a cathode of a field emission lamp by a CVD method. However, a field emission lamp that generates ultraviolet light has not been realized.
(特許文献 1 ) 特開 2001-172624号公報  (Patent Document 1) JP 2001-172624 A
(特許文献 2 ) 特開 2002-167235号公報  (Patent Document 2) Japanese Patent Application Laid-Open No. 2002-167235
(特許文献 3 ) 特開平 10-204430号公報  (Patent Document 3) JP-A-10-204430
(非特許文献 1 ) A. N. Obraztsov, et al.; "Field emission characteristics oi nanostructured thin film carbon materials", Applied Surface Science 215, (2003) 214-221.  (Non-Patent Document 1) A. N. Obraztsov, et al .; "Field emission characteristics oi nanostructured thin film carbon materials", Applied Surface Science 215, (2003) 214-221.
(非特許文献 2 ) A. N. Obraztsov, et al.; "CVD growth and field emission properties of nanostructured carbon films", J. Phys. D: Appl. Phys. 33 (2002) 337-^62.  (Non-Patent Document 2) A. N. Obraztsov, et al .; "CVD growth and field emission properties of nanostructured carbon films", J. Phys. D: Appl. Phys. 33 (2002) 337- ^ 62.
(非特許文献 3 ) A. N. Obraztsov, et al.; "Chemical vapor deposition of carbon films: in-situ plasma diagnostics", Carbon 41 (2003) , 836-839.  (Non-Patent Document 3) A. N. Obraztsov, et al .; "Chemical vapor deposition of carbon films: in-situ plasma diagnostics", Carbon 41 (2003), 836-839.
しかし、 従来の紫外線ランプでは、 光触媒の活性化に利用できる寿命の長い平 面発光ランプを実現できないことや小型化が困難であるといった問題があった。 本発明は、 上記従来の問題を解決して、 光触媒活性化用の長寿命の平面型フィー ルドエミッション紫外線ランプを実現することを目的とする。 発明の開示  However, the conventional ultraviolet lamp has a problem that a long-life planar light-emitting lamp that can be used for activating a photocatalyst cannot be realized, and that miniaturization is difficult. An object of the present invention is to solve the above-mentioned conventional problems and to realize a long-life flat field emission ultraviolet lamp for photocatalytic activation. Disclosure of the invention
上記の課題を解決するために、 本発明では、 フィールドェミッション紫外線ラ ンプを、 平面状の可視光紫外光透過性の陰極側基板と、 陰極側基板上に平行に配 置された複数の直線状の陰極導体と、 陰極側基板に対向して配置され、 各陰極導 体に対応する溝部を有する陽極側絶縁性基板と、 溝部に設けられた陽極導体と、 陽極導体上に塗布された紫外線を発生する蛍光体あるいは半導体と、 陰極側基板 と陽極側絶縁性基板とを収容する真空容器とを具備する構成とした。 また、 陰極 導体の陽極側表面に炭素皮膜を CVD法により形成する。 図面の簡単な説明 In order to solve the above-mentioned problems, in the present invention, a field emission ultraviolet lamp is provided with a planar visible light ultraviolet light transmissive cathode-side substrate and a plurality of straight lines arranged in parallel on the cathode-side substrate. -Shaped cathode conductor, an anode-side insulating substrate disposed opposite to the cathode-side substrate and having a groove corresponding to each cathode conductor, an anode conductor provided in the groove, and ultraviolet light applied on the anode conductor And a vacuum container for accommodating a cathode-side substrate and an anode-side insulating substrate. In addition, a carbon film is formed on the anode side surface of the cathode conductor by a CVD method. Brief Description of Drawings
第 1図は、 本発明の実施例 1におけるフィールドエミッション紫外線ランプの 斜視図と一部断面図、  FIG. 1 is a perspective view and a partial cross-sectional view of a field emission ultraviolet lamp according to Embodiment 1 of the present invention,
第 2図は、 本発明の実施例 1におけるフィールドェミッション紫外線ランプの 断面図、  FIG. 2 is a sectional view of the field emission ultraviolet lamp according to the first embodiment of the present invention,
第 3図は、 本発明の実施例 1におけるフィールドエミッション紫外線ランプの 平面図、  FIG. 3 is a plan view of the field emission ultraviolet lamp according to the first embodiment of the present invention,
第 4図は、 本発明の実施例 2におけるフィールドエミッション紫外線ランプの 断面図、  FIG. 4 is a cross-sectional view of the field emission ultraviolet lamp according to the second embodiment of the present invention,
第 5図は、 本発明の実施例 3における光触媒装置の断面図、  FIG. 5 is a cross-sectional view of a photocatalyst device according to Embodiment 3 of the present invention,
第 6図は、 本発明の実施例 4における光触媒装置の断面図である。 発明を実施するための最良の形態  FIG. 6 is a sectional view of a photocatalyst device according to a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施するための最良の形態について、 第 1図〜第 6図を参照し ながら詳細に説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS. 1 to 6.
(実施例 1 )  (Example 1)
本発明の実施例 1は、 平面状の可視光紫外光透過性の陰極側ガラス基板上に、 陽極側表面にグラフアイト皮膜を CVD法により形成した複数の直線状の陰極導 体を平行に配置し、 陰極側ガラス基板に対向して配置した陽極側ガラス基板に、 各陰極導体に対応する溝部を設け、 溝部に陽極導体を設け、 陽極導体上に紫外線 を発生する蛍光体あるいは半導体を塗布し、 陰極側ガラス基板と陽極側ガラス基 板とを真空容器に収容したフィールドエミッション紫外線ランプである。  In Example 1 of the present invention, a plurality of linear cathode conductors each having a graphite oxide film formed on the anode side surface by a CVD method were arranged in parallel on a planar visible-ultraviolet-light-transmissive cathode-side glass substrate. Then, grooves corresponding to the respective cathode conductors are provided on the anode-side glass substrate arranged opposite to the cathode-side glass substrate, the anode conductors are provided in the grooves, and a phosphor or semiconductor that generates ultraviolet light is applied on the anode conductors. This is a field emission ultraviolet lamp in which a cathode side glass substrate and an anode side glass substrate are housed in a vacuum vessel.
本発明の実施例 1におけるフィールドェミッション紫外線ランプの構成と製法 を説明する。 第 1図は、 本発明の実施例 1におけるフィールドェミッション紫外 線ランプの斜視図と一部断面図である。 第 2図は、 フィールドェミッション紫外 線ランプの断面図である。 第 3図は、 フィールドェミッション紫外線ランプの平 面図である。 これらは模式的な概念図であり、 各部の比率などは、 実際とは異な る。 第 1図〜第 3図において、 陰極側ガラス基板 1は、 紫外線が放射される側にあ る平面状の基板であり、 可視光紫外光透過性すなわち可視光線から紫外線にわた る領域の光を透過するガラス基板である。 陽極側ガラス基板 2は、 溝部を有する 絶縁性基板である。 陽極側ガラス基板 2を、 陰極側ガラス基板 1に対向して配置 する。実施例 1では、陰極側基板と陽極側基板としてガラス基板を用いているが、 材質は必ずしもガラスでなくてもよい。 陰極側基板は、 光触媒の活性化に適する 青から近紫外線の範囲の光に対して透明で、 紫外線で劣化しない絶縁体であれば よい。 陽極側基板は、 紫外線で劣化しない絶縁体であればよく、 例えばセラミツ クス基板を用いることもできる。 The configuration and manufacturing method of the field emission ultraviolet lamp according to the first embodiment of the present invention will be described. FIG. 1 is a perspective view and a partial cross-sectional view of a field emission ultraviolet lamp according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the field emission ultraviolet lamp. FIG. 3 is a plan view of the field emission ultraviolet lamp. These are schematic conceptual diagrams, and the ratio of each part is different from the actual one. In FIGS. 1 to 3, the cathode-side glass substrate 1 is a flat substrate on the side from which ultraviolet rays are radiated, and transmits visible light to ultraviolet light, that is, transmits light in the range from visible light to ultraviolet light. It is a transparent glass substrate. The anode-side glass substrate 2 is an insulating substrate having a groove. The anode side glass substrate 2 is disposed so as to face the cathode side glass substrate 1. In the first embodiment, a glass substrate is used as the cathode-side substrate and the anode-side substrate, but the material is not necessarily glass. The cathode-side substrate may be any insulator that is transparent to light in the blue to near-ultraviolet range and is not degraded by ultraviolet rays. The anode-side substrate may be any insulator that does not deteriorate with ultraviolet rays, and for example, a ceramics substrate may be used.
陰極導体 3は、陰極側ガラス基板 1上に平行に配列された直線状の電極である。 陽極導体 4は、 溝部に蒸着された電極である。 蛍光体 5は、 陽極導体上に塗布さ れた紫外線を発生する蛍光体あるいは半導体である。 真空容器 6は、 陰極側ガラ ス基板 1と陽極側ガラス基板 2とを収容する容器である。 溝部 7は、 陽極を設け るために陽極側ガラス基板 2に形成された溝である。 炭素皮膜 8は、 電子放出効 率を高めるために、 陰極導体上に CVD法により形成された炭素皮膜である。 平面状の陰極側ガラス基板 1上に、 複数の直線状の Niの陰極導体 3を平行に 等間隔で配列する。 陰極導体 3は、 Niの他に Feや Cu等を使うこともできる。 陰極導体 3の太さを、 溝部 7のサイズに対して十分細くして、 紫外線がむら無く 放射されるようにする。 輝度を一様にするために、 散光板や偏光板を使ってもよ レ、。 陰極導体 3の陽極側表面には、 グラフアイ トの炭素皮膜 8を CVD法により 形成する。 炭素皮膜 8の厚さは、 2〜? > mである。 CVD法の条件を適切に制 御することで、 陰極導体 3上の炭素皮膜 8の電子放出点の密度を、 107/cm2 にす ることができる。 CVD法によりグラフアイ ト皮膜を形成する方法については、 非特許文献 1〜 3などを参照されたい。 The cathode conductor 3 is a linear electrode arranged in parallel on the cathode-side glass substrate 1. The anode conductor 4 is an electrode deposited in the groove. The phosphor 5 is a phosphor or a semiconductor that generates ultraviolet light applied on the anode conductor. The vacuum container 6 is a container for accommodating the cathode-side glass substrate 1 and the anode-side glass substrate 2. The groove 7 is a groove formed in the anode-side glass substrate 2 for providing an anode. The carbon film 8 is a carbon film formed on the cathode conductor by a CVD method in order to enhance the electron emission efficiency. On a flat cathode-side glass substrate 1, a plurality of linear Ni cathode conductors 3 are arranged in parallel at equal intervals. For the cathode conductor 3, Fe, Cu, or the like can be used in addition to Ni. The thickness of the cathode conductor 3 is made sufficiently small with respect to the size of the groove 7 so that ultraviolet rays are radiated evenly. You can use a diffuser or a polarizing plate to make the brightness uniform. On the anode side surface of the cathode conductor 3, a carbon film 8 of graphite is formed by a CVD method. What is the thickness of the carbon film 8? > m. By appropriately controlling the conditions of the CVD method, the density of the electron emission points of the carbon film 8 on the cathode conductor 3 can be made 10 7 / cm 2 . For non-patent documents 1 to 3, refer to Non-Patent Documents 1 to 3 for a method of forming a graphite film by the CVD method.
各陰極導体 3に対応する溝部 7を、陽極側ガラス基板 2に設ける。溝部 7に、 A1 または ITO皮膜を蒸着して形成した陽極導体 4を設ける。 陽極導体 4の厚さは 1〜2 μ mである。 陽極導体 4は、 A1の場合は反射板の役目も兼ねている。 広 い波長領域の光を反射させるためには、 透明電極の下に誘電体多層膜を用いると 効果的である。 陽極導体 4上に、 紫外線発光体結晶フィルムである蛍光体 5を形 成する。 紫外線発光体結晶フィルムは、 電子線などを照射することにより紫外線 を発生する蛍光体や半導体の結晶を塗布してフィルム状に形成したものであり、 フィールドエミツションのカソードを使用して、 3.0V以上の電圧を印加するこ とにより放出される電子で発光可能であり、 従来の紫外線ランプより、 はるかに 低い電圧で十分である。 紫外線を発生する蛍光体や半導体としては、 周知のもの から条件に適合するものを選択すればよい。 Grooves 7 corresponding to the respective cathode conductors 3 are provided on the glass substrate 2 on the anode side. An anode conductor 4 formed by depositing an A1 or ITO film is provided in the groove 7. The thickness of the anode conductor 4 is 1-2 μm. The anode conductor 4 also functions as a reflector in the case of A1. In order to reflect light in a wide wavelength range, it is effective to use a dielectric multilayer under the transparent electrode. On the anode conductor 4, a phosphor 5 which is an ultraviolet light emitting crystal film is formed. To achieve. Ultraviolet light emitter crystal films are formed by applying phosphors or semiconductor crystals that generate ultraviolet light by irradiating an electron beam or the like to form a film. Light can be emitted by electrons emitted when a voltage of V or more is applied. A voltage much lower than that of a conventional ultraviolet lamp is sufficient. As the phosphor or semiconductor that generates ultraviolet rays, a substance that meets the conditions may be selected from known substances.
陰極導体 3と陽極導体 4との電極間距離は、 紫外線発光体結晶フィルムが 0.2 〜 0.5mmほどあるので、 0.5〜 1.0mm程度とする。 したがって、 溝部 7のサイズ もこれと同程度となる。 陰極側ガラス基板 1と陽極側ガラス基板 2とを密着させ て、 真空容器 6に収容する。 真空容器 6を使わず、 陰極側ガラス基板 1と陽極側 ガラス基板 2とを直接溶着して、真空にして封じてもょレ、。真空度は 10 -1〜 l(r5torr である。 全体の大きさは、 約 10mm X 10mm程度から、 約 l m X l m程度まで大 きくできる。 The distance between the electrodes of the cathode conductor 3 and the anode conductor 4 is about 0.5 to 1.0 mm because the ultraviolet light emitting crystal film has about 0.2 to 0.5 mm. Therefore, the size of the groove 7 is almost the same. The cathode-side glass substrate 1 and the anode-side glass substrate 2 are brought into close contact with each other and housed in a vacuum vessel 6. The cathode-side glass substrate 1 and the anode-side glass substrate 2 can be directly welded together without using the vacuum vessel 6 and sealed in a vacuum. The degree of vacuum 10 -. A 1 ~ l (r 5 torr overall size from about 10 mm X 10 mm, can greatly up to about lm X lm.
上記のように構成された本発明の実施例 1におけるフィールドエミツション紫 外線ランプの動作を説明する。 陰極導体 3と陽極導体 4との間に単極性のパルス 電圧を印加する。 電圧は 5〜 500Vで、 電流は約 1 mAである。 電圧は、 10 k V 程度まで高くすることも可能である。 周波数は 1〜5 kHzである。 パルス幅は、 3〜8 / secである。 放電開始電圧は、 1 V/ mである。 陰極の電流密度は、 lOOmA/cm2 (lOV/ mのとき) である。 点灯用電源の基本的構成は、 従来のフィ ールドエミッションランプ用のものと同じでよい。 点灯用電源は、 陰極導体 3と 陽極導体 4の 1組あるいは複数組ごとに別々に設けてもよいし、 全ての組に共通 に 1つにしてもよレヽ。 The operation of the field emission ultraviolet lamp according to the first embodiment of the present invention configured as described above will be described. A unipolar pulse voltage is applied between the cathode conductor 3 and the anode conductor 4. The voltage is 5 to 500V and the current is about 1mA. The voltage can be as high as 10 kV. The frequency is between 1 and 5 kHz. The pulse width is 3-8 / sec. The discharge starting voltage is 1 V / m. The current density of the cathode is 100 mA / cm 2 (at 10 V / m). The basic configuration of the lighting power supply may be the same as that of the conventional field emission lamp. The lighting power source may be provided separately for one or more sets of the cathode conductor 3 and the anode conductor 4, or may be provided in common for all sets.
陰極導体 3と陽極導体 4との間に電圧を印加すると、 陰極導体 3上の炭素皮膜 から電界放出により冷陰極電子が飛び出し、 蛍光体 5に当たり、 紫外線を発生す る。 蛍光体 5から出た光は、 陰極側ガラス基板 1から直接出射するとともに、 陽 極導体 4や導体下部の誘電体多層膜で反射されて陰極側ガラス基板 1から出射す る。 輝度は、 約 20万 cd/m2である。 発光効率は約 30 %である。 ランプの寿命は 約 5万時間である。 このようにして、 発光面を平面状にしながら、 フィールドェ ミッシヨン紫外線ランプの寿命を長くできる。 陰極側ガラス基板 1の外側に光触媒層を形成して、 紫外線ランプと光触媒を一 体に構成することができる。 この場合は、 陽極導体 4は、 反射板となる A1 など を用いる。 光量を増加させるためには、 広い波長領域に対応する誘電体多層膜を 透明電極の下に配置すると効果的である。 陽極導体 4として ITO皮膜を用いれ ば、 陽極側ガラス基板 2の外側に光触媒層を形成して、 紫外線ランプと光触媒を 一体に構成することができる。 ランプのいずれの面から紫外線を出す場合も、 ラ ンプと別体の面に光触媒が塗布されている場合は、 光触媒層のない紫外線発光ラ ンプで紫外線を照射すればよい。 When a voltage is applied between the cathode conductor 3 and the anode conductor 4, cold cathode electrons fly out of the carbon film on the cathode conductor 3 due to field emission, hit the phosphor 5 and generate ultraviolet rays. The light emitted from the phosphor 5 is emitted directly from the cathode-side glass substrate 1 and is emitted from the cathode-side glass substrate 1 after being reflected by the anode conductor 4 and the dielectric multilayer film below the conductor. Brightness is about 200,000 cd / m 2. The luminous efficiency is about 30%. The lamp life is about 50,000 hours. In this way, the life of the field emission ultraviolet lamp can be extended while the light emitting surface is made flat. By forming a photocatalyst layer on the outside of the cathode-side glass substrate 1, an ultraviolet lamp and a photocatalyst can be integrally formed. In this case, the anode conductor 4 uses A1 or the like to be a reflection plate. In order to increase the amount of light, it is effective to arrange a dielectric multilayer film corresponding to a wide wavelength range below the transparent electrode. If an ITO film is used as the anode conductor 4, a photocatalyst layer can be formed outside the glass substrate 2 on the anode side, and the ultraviolet lamp and the photocatalyst can be integrally formed. Irrespective of whether ultraviolet light is emitted from any surface of the lamp, if a photocatalyst is applied to a surface separate from the lamp, the ultraviolet light may be irradiated with an ultraviolet light emitting lamp without a photocatalytic layer.
上記のように、 本発明の実施例 1では、 フィールドェミッション紫外線ランプ を、 平面状の陰極側ガラス基板上に、 陽極側表面にグラフアイ ト皮膜を CVD法 により形成した複数の直線状の陰極導体を平行に配置し、 陰極側ガラス基板に対 向して配置した陽極側ガラス基板に、 各陰極導体に対応する溝部を設け、 溝部に 陽極導体を設け、 陽極導体上に紫外線を発生する蛍光体を塗布し、 陰極側ガラス 基板と陽極側ガラス基板とを真空容器に収容する構成としたので、 光触媒活性化 用の長寿命平面紫外線ランプを実現できる。  As described above, in Example 1 of the present invention, a field emission ultraviolet lamp was formed on a flat cathode-side glass substrate and a plurality of linear cathodes in which a graphite film was formed on the anode-side surface by a CVD method. Conductors are arranged in parallel, grooves corresponding to each cathode conductor are provided on the anode-side glass substrate facing the cathode-side glass substrate, the anode conductor is provided in the groove, and fluorescent light that generates ultraviolet light on the anode conductor Since the body is applied and the cathode-side glass substrate and the anode-side glass substrate are housed in a vacuum container, a long-life flat ultraviolet lamp for photocatalytic activation can be realized.
(実施例 2 )  (Example 2)
本発明の実施例 2は、 平面状の陰極側ガラス基板上のほぼ全面に陰極導体を設 け、 その後、 グラフアイト皮膜を CVD法により形成し、 陰極側ガラス基板に対 向して配置した可視光紫外光透過性の陽極側ガラス基板上のほぼ全面に陽極導体 を設け、 陽極導体上に紫外線を発生する蛍光体を設け、 陰極側ガラス基板と陽極 側ガラス基板とを真空容器に収容したフィールドエミツション紫外線ランプであ る。  In Example 2 of the present invention, a cathode conductor was provided on almost the entire surface of a flat cathode-side glass substrate, and thereafter, a graphite film was formed by a CVD method, and the visible conductor was placed facing the cathode-side glass substrate. A field in which an anode conductor is provided on almost the entire surface of the anode-side glass substrate that transmits light and ultraviolet light, a phosphor that generates ultraviolet light is provided on the anode conductor, and the cathode-side glass substrate and the anode-side glass substrate are housed in a vacuum container. It is an emission UV lamp.
第 4図は、 本発明の実施例 2におけるフィールドエミッション紫外線ランプの 断面図である。 これらは模式的な概念図であり、 各部の比率などは、 実際とは異 なる。 第 4図において、 陰極側ガラス基板 1は、 紫外線が放射されない側の平面 状の絶縁性基板である。 陽極側ガラス基板 2は、 紫外線が放射される側にある平 面状の基板であり、 可視光紫外光透過性すなわち可視光線から紫外線にわたる領 域の光を透過するガラス基板である。 陽極側ガラス基板 2を、 陰極側ガラス基板 1に対向して配置する。 実施例 2では、 陰極側基板と陽極側基板としてガラス基 板を用いているが、 材質は必ずしもガラスでなくてもよい。 FIG. 4 is a cross-sectional view of a field emission ultraviolet lamp according to Embodiment 2 of the present invention. These are schematic conceptual diagrams, and the ratio of each part is different from the actual one. In FIG. 4, the cathode-side glass substrate 1 is a planar insulating substrate on the side from which no ultraviolet light is emitted. The anode-side glass substrate 2 is a flat substrate on the side from which ultraviolet rays are emitted, and is a glass substrate that transmits visible light and ultraviolet light, that is, transmits light in a range from visible light to ultraviolet light. The anode-side glass substrate 2 is arranged to face the cathode-side glass substrate 1. In Example 2, the cathode side substrate and the anode side substrate were glass-based. Although a plate is used, the material is not necessarily limited to glass.
陰極導体 3は、陰極側ガラス基板 1上のほぼ全面に設けられた A1電極である。 陽極導体 4は、 陽極側ガラス基板 2上のほぼ全面に設けられた透明電極である。 蛍光体 5は、 陽極導体上に設けられた紫外線を発生する蛍光体または半導体であ る。 真空容器 6は、 陰極側ガラス基板 1と陽極側ガラス基板 2とを収容する容器 である。 炭素皮膜 8は、 電子放出効率を高めるために、 陰極導体上に CVD法に より形成された炭素皮膜である。  The cathode conductor 3 is an A1 electrode provided on almost the entire surface of the cathode-side glass substrate 1. The anode conductor 4 is a transparent electrode provided on almost the entire surface of the anode-side glass substrate 2. The phosphor 5 is a phosphor or a semiconductor provided on the anode conductor and generating ultraviolet light. The vacuum container 6 is a container for housing the cathode-side glass substrate 1 and the anode-side glass substrate 2. The carbon film 8 is a carbon film formed on a cathode conductor by a CVD method in order to enhance electron emission efficiency.
平面状の陰極側ガラス基板 1上のほぼ全面に、 A1の陰極導体 3を蒸着法など. により設ける。 陰極導体 3の陽極側表面には、 グラフアイトの炭素皮膜 8を CVD 法により形成する。 炭素皮膜 8の厚さは、 2〜3 μ mである。 CVD法の条件を 適切に制御することで、陰極導体 3上の炭素皮膜 8の電子放出点の密度を、 107cm2 にすることができる。 CVD法によりグラフアイ ト皮膜を形成する方法について は、 非特許文献 1〜3などを参照されたい。 Almost the cathode conductor 3 is provided on the entire surface of the flat cathode-side glass substrate 1 by vapor deposition or the like. On the anode-side surface of the cathode conductor 3, a graphite carbon film 8 is formed by a CVD method. The thickness of the carbon film 8 is 2-3 μm . By appropriately controlling the conditions of the CVD method, the density of the electron emission points of the carbon film 8 on the cathode conductor 3 can be made 107 cm 2 . For non-patent documents 1 to 3, refer to Non-Patent Documents 1 to 3 for a method of forming a graphiteite film by the CVD method.
陽極側ガラス基板 2上のほぼ全面に透明導電性皮膜を蒸着して、 陽極導体 4を 形成する。 陽極導体 4の厚さは 1〜2 mである。 陽極導体 4上に、 紫外線発 光体結晶フィルムである蛍光体 5を形成する。 紫外線発光体結晶フィルムは、 紫 外線を発生する蛍光体や半導体の結晶を塗布してフィルム状に形成したものであ り、 3.0eV以上の励起光または励起電子線で紫外線を発光する。 フィールドエミ ッションのカソードを使用して、 3.0V以上の電圧を印加することにより発光可 能であり、 従来の紫外線ランプよりはるかに低い電圧で十分である。  A transparent conductive film is deposited on almost the entire surface of the anode-side glass substrate 2 to form an anode conductor 4. The thickness of the anode conductor 4 is 1 to 2 m. On the anode conductor 4, a phosphor 5 as an ultraviolet light emitting crystal film is formed. The ultraviolet light emitting crystal film is formed by applying a phosphor or semiconductor crystal that generates ultraviolet light to form a film, and emits ultraviolet light by excitation light or an excitation electron beam of 3.0 eV or more. Light can be emitted by applying a voltage of 3.0 V or more using the cathode of the field emission, and a voltage much lower than that of a conventional ultraviolet lamp is sufficient.
陰極導体 3と陽極導体 4との電極間距離は、 紫外線発光体結晶フィルムが 0.2 〜 0.5mmほどあるので、 0.5〜 1.Oram程度とする。 陰極側ガラス基板 1と陽極側 ガラス基板 2とを密着させて、 真空容器 6に収容する。 真空容器 6を使わず、 陰 極側ガラス基板 1と陽極側ガラス基板 2とを直接溶着して、 真空にして封じても よい。 真空度は 10 -1〜 10-5torrである。 全体の大きさは、 約 10mm X 10mm程度で あるが、 約 1 m X 1 m程度まで大きくできる。 サイズを大きくする場合は、 必要 に応じて、 陰極側ガラス基板 1と陽極側ガラス基板 2との間隔を維持するための ボスまたはリブを設ける。 The distance between the electrodes of the cathode conductor 3 and the anode conductor 4 is about 0.5 to 1. Oram because the ultraviolet light emitting crystal film is about 0.2 to 0.5 mm. The cathode-side glass substrate 1 and the anode-side glass substrate 2 are brought into close contact with each other and housed in a vacuum vessel 6. The cathode-side glass substrate 1 and the anode-side glass substrate 2 may be directly welded to each other without using the vacuum vessel 6, and may be sealed in a vacuum. Degree of vacuum 10 - a 1 ~ 10- 5 torr. The overall size is about 10mm x 10mm, but can be as large as about 1m x 1m. If the size is to be increased, bosses or ribs are provided as needed to maintain the gap between the cathode-side glass substrate 1 and the anode-side glass substrate 2.
上記のように構成された本発明の実施例 2におけるフィールドエミッシヨン紫 3 014471 外線ランプの基本的動作は、 実施例 1と同じである。 陰極導体 3と陽極導体 4と の間に電圧を印加すると、 陰極導体 3上の炭素皮膜から電界放出により冷陰極電 子が飛び出し、 蛍光体 5に当たり、 紫外線を発生する。 蛍光体 5から出た光は、 陽極側ガラス基板 2から出射する。 The field emission purple according to the second embodiment of the present invention configured as described above. 3 014471 The basic operation of the outside line lamp is the same as in the first embodiment. When a voltage is applied between the cathode conductor 3 and the anode conductor 4, the cold cathode electron jumps out of the carbon film on the cathode conductor 3 due to field emission, hits the phosphor 5 and generates ultraviolet rays. Light emitted from the phosphor 5 is emitted from the glass substrate 2 on the anode side.
上記のように、 本発明の実施例 2では、 フィールドエミツション紫外線ランプ を、 平面状の陰極側ガラス基板上のほぼ全面に、 陽極側表面にグラフアイ ト皮膜 を CVD法により形成した陰極導体を設け、 陰極側ガラス基板に対向して配置し た陽極側ガラス基板上のほぼ全面に陽極導体を設け、 陽極導体上に紫外線を発生 する蛍光体を設け、 陰極側ガラス基板と陽極側ガラス基板とを真空容器に収容す る構成としたので、 光触媒活性化用の長寿命平面紫外線ランプを実現できる。 従来の紫外線発光ランプは、 ガスを用いた発光を利用するものに限られていた ので、 平面発光体は実現できなかったが、 本発明のような平面発光体を作ること により、 光触媒の使用できる場所や応用範囲を広げることができる。 例えば、 光 As described above, in Example 2 of the present invention, a field emission ultraviolet lamp was formed on almost the entire surface of a flat cathode-side glass substrate, and a cathode conductor having a graphite film formed on the anode-side surface by a CVD method. An anode conductor is provided on almost the entire surface of the anode-side glass substrate disposed opposite to the cathode-side glass substrate, and a phosphor that generates ultraviolet light is provided on the anode conductor, and the cathode-side glass substrate and the anode-side glass substrate are provided. And a long-life flat ultraviolet lamp for activating the photocatalyst can be realized. Conventional ultraviolet light-emitting lamps were limited to those using light emission using gas, so that a flat light emitter could not be realized.However, by making a flat light emitter like the present invention, a photocatalyst can be used. The place and the range of application can be expanded. For example, light
(太陽光) の入らない冷蔵庫の中や、 病院や家庭やレストランなどでも、 光触媒 を効率的に利用できるようになる。こうした屋内の殺菌や消臭や脱臭に利用でき、 その反応の速度を、 紫外線の強さを変えることで、 ある程度コントロールするこ とができる。 Photocatalysts can be used efficiently even in refrigerators that do not allow sunlight (sunlight), hospitals, homes and restaurants. It can be used for indoor sterilization, deodorization and deodorization, and its reaction rate can be controlled to some extent by changing the intensity of ultraviolet light.
(実施例 3 )  (Example 3)
本発明の実施例 3は、 平面状の可視光紫外光透過性の陰極側ガラス基板上に、 陽極側表面にグラフアイト皮膜を CVD法により形成した複数の直線状の陰極導 体を平行に配置するとともに、 陰極側ガラス基板の外側のディンプル部に光触媒 を塗布し、 陰極側ガラス基板に対向して配置した陽極側ガラス基板に、 各陰極導 体に対応する溝部を設け、 溝部に透明陽極導体を設け、 陽極導体上に紫外線を発 生するアルミナ蛍光体を塗布し、 陽極導体下に誘電体多層膜を設けた光触媒装置 である。  In Example 3 of the present invention, a plurality of linear cathode conductors each having a graphite oxide film formed on the anode side surface by a CVD method were arranged in parallel on a planar visible-light-ultraviolet-transmissive cathode-side glass substrate. At the same time, a photocatalyst is applied to the outer dimples of the cathode-side glass substrate, and grooves corresponding to the respective cathode conductors are provided on the anode-side glass substrate disposed opposite to the cathode-side glass substrate, and the transparent anode conductor is provided in the groove. This is a photocatalytic device in which an anode conductor is coated with an alumina phosphor that emits ultraviolet light, and a dielectric multilayer film is provided below the anode conductor.
第 5図は、 本発明の実施例 3における光触媒装置の断面図である。 第 5図にお いて、陰極側ガラス基板 1は、紫外線が放射される側にある平面状の基板であり、 可視光線から紫外線にわたる領域の光を透過するガラス基板である。 陽極側ガラ ス基板 2は、 溝部を有する絶縁性基板である。 実施例 3では、 陰極側基板と陽極 側基板としてガラス基板を用いている力 材質は必ずしもガラスでなくてもよい。 蛍光体 5は、 陽極導体上に塗布された紫外線を発生するアルミナ蛍光体である。 これは、 アルミナ A1203 にアルミン酸塩などを混合した周知の蛍光体であるが、 ここでは簡単のために単にアルミナ蛍光体と呼ぶことにする。 励起電圧と発光波 長などの目的と条件に応じて、 最適のアルミナ蛍光体を選択すればよい。 蛍光体FIG. 5 is a sectional view of a photocatalyst device according to a third embodiment of the present invention. In FIG. 5, a cathode-side glass substrate 1 is a flat substrate on the side from which ultraviolet rays are emitted, and is a glass substrate that transmits light in a range from visible rays to ultraviolet rays. The anode-side glass substrate 2 is an insulating substrate having a groove. In Example 3, the cathode side substrate and the anode The force material using the glass substrate as the side substrate does not necessarily have to be glass. The phosphor 5 is an alumina phosphor applied on the anode conductor and generating ultraviolet rays. This is a well-known phosphor alumina A1 2 0 3 were mixed such aluminates, simply referred to as alumina phosphor for simplicity here. The optimum alumina phosphor may be selected according to the purpose and conditions such as the excitation voltage and the emission wavelength. Phosphor
5は、 電子線で励起されて紫外線の蛍光を発生する GaNなどの半導体でもよい。 誘電体多層膜 9は、 光の反射効率を高めるための膜である。 光触媒 10 は、 紫 外線による消臭作用などを有するチタニア Tio2である。 ディンプル部 11は、 光 触媒 10 の表面積を広くするための窪みである。 陰極側ガラス基板 1と陽極側ガ ラス基板 2とを直接溶着して、 真空にして封じる。 その他の構成は、 実施例 1と 同様である。 5 may be a semiconductor such as GaN which emits ultraviolet fluorescence when excited by an electron beam. The dielectric multilayer film 9 is a film for increasing light reflection efficiency. Photocatalyst 10 is a titania Tio 2 having a deodorant effect by ultraviolet. The dimple portion 11 is a depression for increasing the surface area of the photocatalyst 10. Cathode-side glass substrate 1 and anode-side glass substrate 2 are directly welded and sealed in a vacuum. Other configurations are the same as in the first embodiment.
光触媒物質の表面積を増やすために、 上部透明基板 (陰極側ガラス基板 1 ) に ディンプル構造を設けている。 色々な波長の光を反射させるため、 誘電体多層膜 To increase the surface area of the photocatalytic substance, a dimple structure is provided on the upper transparent substrate (cathode-side glass substrate 1). Dielectric multilayer film to reflect light of various wavelengths
9を、 透明陽極電極 (陽極導体 4 ) の下に配置している。 陽極導体 4には、 必ず しも透明電極 (ITO) を使用しなくてもよい。 陽極導体 4としてアルミニウムを 用いて、 アルミニウムの上にアルミナ蛍光体層を形成してもよい。 9 is placed under the transparent anode electrode (anode conductor 4). The anode conductor 4 does not necessarily need to use a transparent electrode (ITO). By using aluminum as the anode conductor 4, an alumina phosphor layer may be formed on aluminum.
上記のように構成された本発明の実施例 3における光触媒装置のランプ部の基 本的動作は、 実施例 1と同じである。 陰極導体 3と陽極導体 4との間に電圧を印 加すると、 陰極導体 3上の炭素皮膜から電界放出により冷陰極電子が飛び出し、 蛍光体 5に当たり、 紫外線を発生する。 蛍光体 5から出た紫外線は、 光触媒 10 に当たる。 蛍光体 5から出て陽極導体 4を透過した紫外線は、 誘電体多層膜 9に より反射されて、 光触媒 10に当たる。 光触媒 10のチタユア Ti02は、 紫外線に より消臭作用などを行う。 The basic operation of the lamp unit of the photocatalyst device according to the third embodiment of the present invention configured as described above is the same as that of the first embodiment. When a voltage is applied between the cathode conductor 3 and the anode conductor 4, cold cathode electrons fly out of the carbon film on the cathode conductor 3 by field emission, hit the phosphor 5 and generate ultraviolet rays. Ultraviolet light emitted from the phosphor 5 strikes the photocatalyst 10. Ultraviolet light that has exited the phosphor 5 and has passed through the anode conductor 4 is reflected by the dielectric multilayer film 9 and hits the photocatalyst 10. Chitayua Ti0 2 photocatalytic 10 performs like more deodorant effect to ultraviolet radiation.
上記のように、 本発明の実施例 3では、 光触媒装置を、 平面状の可視光紫外光 透過性の陰極側ガラス基板上に、 陽極側表面にグラフアイト皮膜を CVD法によ り形成した複数の直線状の陰極導体を平行に配置するとともに、 陰極側ガラス基 板の外側のディンプル部に光触媒を塗布し、 陰極側ガラス基板に対向して配置し た陽極側ガラス基板に、 各陰極導体に対応する溝部を設け、 溝部に透明陽極導体 を設け、 陽極導体上に紫外線を発生するアルミナ蛍光体を塗布し、 陽極導体下に 誘電体多層膜を設けた構成としたので、 長寿命の薄い平面状光触媒装置を実現で きる。 As described above, in Example 3 of the present invention, a plurality of photocatalyst devices were formed by forming a graphite film on the anode-side surface by a CVD method on a planar visible-ultraviolet-light-transmissive cathode-side glass substrate. In addition to arranging the linear cathode conductors in parallel with each other, applying a photocatalyst to the dimples on the outside of the cathode-side glass substrate, and placing each cathode conductor on the anode-side glass substrate arranged opposite to the cathode-side glass substrate Provide a corresponding groove, provide a transparent anode conductor in the groove, apply an alumina phosphor that generates ultraviolet light on the anode conductor, and under the anode conductor Since the configuration is such that a dielectric multilayer film is provided, a long-life thin planar photocatalyst device can be realized.
(実施例 4 )  (Example 4)
本発明の実施例 4は、 平面状の陰極側ガラス基板上に、 陽極側表面にグラファ ィト皮膜を CVD法により形成した複数の直線状の陰極導体を平行に配置し、 陰 極導体に対応する溝型形状の可視光紫外光透過性の陽極側ガラス基板を、 陰極側 ガラス基板に対向して配置し、 内側に透明陽極導体を設け、 陽極導体上に紫外線 を発生するアルミナ蛍光体を塗布し、 陽極側ガラス基板の外側のディンプル部に 光触媒を塗布した光触媒装置である。  In Example 4 of the present invention, a plurality of linear cathode conductors each having a graphite film formed on the anode side surface by a CVD method were arranged in parallel on a flat cathode-side glass substrate to correspond to the cathode conductor. A visible-ultraviolet-light-transmissive anode-side glass substrate is placed facing the cathode-side glass substrate, a transparent anode conductor is provided inside, and an alumina phosphor that generates ultraviolet light is coated on the anode conductor Then, a photocatalyst device in which a photocatalyst is applied to a dimple portion on the outside of the anode-side glass substrate.
第 6図は、 本発明の実施例 4における光触媒装置の断面図である。 第 6図にお いて、 陰極側ガラス基板 1は、 平面状の絶縁性基板である。 陽極側ガラス基板 2 は、 紫外線が放射される側にある溝型形状の基板であり、 可視光線から紫外線に わたる領域の光を透過するガラス基板である。 実施例 4では、 陰極側基板と陽極 側基板としてガラス基板を用いている力 材質は必ずしもガラスでなくてもよい。 陰極側ガラス基板 1と陽極側ガラス基板 2とを直接溶着して、真空にして封じる。 その他の構成は、 実施例 3と同様である。  FIG. 6 is a sectional view of a photocatalyst device according to a fourth embodiment of the present invention. In FIG. 6, the cathode side glass substrate 1 is a planar insulating substrate. The anode-side glass substrate 2 is a groove-shaped substrate on the side from which ultraviolet light is emitted, and is a glass substrate that transmits light in a range from visible light to ultraviolet light. In the fourth embodiment, a glass substrate is used as the cathode side substrate and the anode side substrate. The force material is not necessarily glass. The cathode-side glass substrate 1 and the anode-side glass substrate 2 are directly welded, evacuated and sealed. Other configurations are the same as those of the third embodiment.
実施例 3の光触媒装置と大きく異なるのは、 電子線の方向と放射される光の方 向が同じである点である。 つまり、 第 5図の逆構造である。 この場合、 直接光が 透明電極を通って抜けていくので、 誘電体多層膜は必要ない。 構造が簡単である 分、 逃げる光があるので、 光量は実施例 3の光触媒装置に比べて落ちる可能性が ある。 蛍光体 5として Ga を利用することもできる。 GaN の蛍光のピーク波長 は 360nmである。 GaN は半導体であり、 そのまま陽極として使用できるので、 陽極導体 4として必ずしも透明電極 (ITO) を使用しなくてもよい。  The difference from the photocatalyst device of Example 3 is that the direction of the electron beam and the direction of the emitted light are the same. In other words, it is the reverse structure of FIG. In this case, the direct light passes through the transparent electrode, and thus no dielectric multilayer is needed. Since there is light that escapes as much as the structure is simple, the amount of light may be lower than that of the photocatalyst device of the third embodiment. Ga can also be used as the phosphor 5. The peak wavelength of GaN fluorescence is 360 nm. Since GaN is a semiconductor and can be used as it is as an anode, it is not always necessary to use a transparent electrode (ITO) as the anode conductor 4.
上記のように構成された本発明の実施例 4における光触媒装置の基本的動作 は、実施例 3と同じである。陰極導体 3と陽極導体 4との間に電圧を印加すると、 陰極導体 3上の炭素皮膜から電界放出により冷陰極電子が飛び出し、 蛍光体 5に 当たり、 紫外線を発生する。 蛍光体 5から出て陽極導体 4を透過した紫外線は、 光触媒 10に当たる。 光触媒 10のチタニア Ti02は、 紫外線により消臭作用など を行う。 上記のように、 本発明の実施例 4では、 光触媒装置を、 平面状の陰極側ガラス 基板上に、 陽極側表面にグラフアイト皮膜を CVD法により形成した複数の直線 状の陰極導体を平行に配置し、 陰極導体に対応する溝型形状の可視紫外光透過性 の陽極側ガラス基板を、 陰極側ガラス基板に対向して配置し、 内側に透明陽極導 体を設け、 陽極導体上に紫外線を発生するアルミナ蛍光体を塗布し、 陽極側ガラ ス基板の外側のディンプル部に光触媒を塗布した構成としたので、 長寿命の薄い 平面状光触媒装置を実現できる。 産業上の利用可能性 The basic operation of the photocatalyst device according to the fourth embodiment of the present invention configured as described above is the same as that of the third embodiment. When a voltage is applied between the cathode conductor 3 and the anode conductor 4, cold cathode electrons fly out of the carbon film on the cathode conductor 3 due to field emission, hit the phosphor 5 and generate ultraviolet rays. Ultraviolet light that has exited the phosphor 5 and passed through the anode conductor 4 hits the photocatalyst 10. Titania Ti0 2 photocatalytic 10 performs deodorant effect by ultraviolet rays. As described above, in Example 4 of the present invention, the photocatalyst device was formed by arranging a plurality of linear cathode conductors each having a graphite oxide film formed on the anode-side surface by a CVD method on a flat cathode-side glass substrate in parallel. The anode-side glass substrate with a groove-shaped visible-ultraviolet light transmissivity corresponding to the cathode conductor is arranged opposite to the cathode-side glass substrate, a transparent anode conductor is provided inside, and ultraviolet light is applied on the anode conductor. Since the generated alumina phosphor is applied and the photocatalyst is applied to the outer dimple portion of the glass substrate on the anode side, a flat photocatalyst device having a long life and a short life can be realized. Industrial applicability
本発明では、 上記のように構成したことにより、 光触媒の活性化用に最適な寿 命の長い平面発光型のフィールドエミッシヨン紫外線ランプを実現できる。 小型 化されたことにより、 太陽光の届かない様々な狭小スペースに本ランプを導入す ることができ、 光触媒の用途を広げることができる。  According to the present invention, a flat emission type field emission ultraviolet lamp having a long life and being optimal for activating a photocatalyst can be realized by the above configuration. Due to the miniaturization, the lamp can be installed in various narrow spaces where sunlight cannot reach, and the use of photocatalysts can be expanded.
本発明のフィールドエミッシヨン紫外線ランプは、 光触媒の活性化用光源とし て最適である。 また、 汎用の紫外線光源としても利用できる。 本発明の光触媒装 置は、 消臭用や殺菌用などの用途に最適である。  The field emission ultraviolet lamp of the present invention is most suitable as a light source for activating a photocatalyst. It can also be used as a general-purpose ultraviolet light source. The photocatalyst device of the present invention is most suitable for applications such as deodorization and sterilization.

Claims

請 求 の 範 囲 The scope of the claims
1 . 平面状の可視光紫外光透過性の陰極側基板と、 前記陰極側基板上に平行に配 置された複数の直線状の陰極導体と、 前記陰極側基板に対向して配置され、 前記 各陰極導体に対応する溝部を有する陽極側絶縁性基板と、 前記溝部に設けられた 陽極導体と、 前記陽極導体上に塗布された紫外線を発生する蛍光体あるいは半導 体と、 前記陰極側基板と前記陽極側絶縁性基板とを収容する真空容器とを具備す ることを特徴とするフィールドエミッション紫外線ランプ。 1. a planar visible light-ultraviolet light-transmissive cathode-side substrate, a plurality of linear cathode conductors disposed in parallel on the cathode-side substrate, and opposed to the cathode-side substrate; An anode-side insulating substrate having a groove corresponding to each cathode conductor; an anode conductor provided in the groove; a phosphor or a semiconductor applied to the anode conductor that generates ultraviolet light; and the cathode-side substrate. And a vacuum vessel containing the anode-side insulating substrate and a field emission ultraviolet lamp.
2 . 平面状の陰極側絶縁性基板と、 前記陰極側基板上のほぼ全面に設けられた陰 極導体と、 前記陰極側基板に対向して配置された可視光紫外光透過性の陽極側基 板と、 前記陽極側基板上のほぼ全面に設けられた可視光紫外光透過性の陽極導体 と、 前記陽極導体上に設けられ紫外線を発生する蛍光体あるいは半導体と、 前記 陰極側絶縁性基板と前記陽極側基板とを収容する真空容器とを具備することを特 徴とするフィールドエミッション紫外線ランプ。  2. A flat cathode-side insulating substrate, a cathode conductor provided on almost the entire surface of the cathode-side substrate, and a visible-ultraviolet-light-transmissive anode-side substrate disposed to face the cathode-side substrate. A plate, a visible-ultraviolet-light-transmissive anode conductor provided on substantially the entire surface of the anode-side substrate, a phosphor or semiconductor provided on the anode conductor, and generating ultraviolet light, and the cathode-side insulating substrate. A field emission ultraviolet lamp, comprising: a vacuum container that houses the anode-side substrate.
3 . 前記陰極導体の陽極側表面に炭素皮膜を形成したことを特徴とする請求項 1 または 2記載のフィールドエミツション紫外線ランプ。 3. The field emission ultraviolet lamp according to claim 1, wherein a carbon film is formed on the anode-side surface of the cathode conductor.
4請求項 3記載のフィールドエミツション紫外線ランプを製造する製造方法にお いて、 前記陰極導体の陽極側表面に炭素皮膜を C V D法により形成することを特 徴とするフィールドエミッシヨン紫外線ランプの製造方法。  4. The method for manufacturing a field emission ultraviolet lamp according to claim 3, wherein a carbon film is formed on the anode-side surface of the cathode conductor by a CVD method. Method.
5 . 平面状の可視光紫外光透過性の陰極側基板と、 前記陰極側基板の外側のディ ンプル部に塗布された光触媒と、 前記陰極側基板の内側に平行に配置された複数 の直線状の陰極導体と、 前記陰極側基板に対向して配置され、 前記各陰極導体に 対応する溝部を有する陽極側絶縁性基板と、 前記溝部に設けられた誘電体多層膜 と、 前記誘電体多層膜上に設けられた陽極導体と、 前記陽極導体上に塗布された 紫外線を発生する蛍光体あるいは半導体とを具備することを特徴とする光触媒装 5. A planar visible-ultraviolet light-transmissive cathode-side substrate, a photocatalyst applied to a dimple portion outside the cathode-side substrate, and a plurality of straight lines arranged in parallel inside the cathode-side substrate A cathode conductor, an anode-side insulating substrate disposed to face the cathode-side substrate and having a groove corresponding to each of the cathode conductors, a dielectric multilayer film provided in the groove, and the dielectric multilayer film A photocatalyst device comprising: an anode conductor provided thereon; and a phosphor or semiconductor that generates ultraviolet light and is applied on the anode conductor.
6 . 平面状の陰極側絶縁性基板と、 前記陰極側絶縁性基板の内側に平行に配置さ れた複数の直線状の陰極導体と、 前記陰極導体に対向して配置された溝型形状の 可視光紫外光透過性の陽極側基板と、 前記陽極側基板の外側のディンプル部に塗 布された光触媒と、 前記陽極側基板の内側に設けられた透明陽極導体と、 前記透 明陽極導体上に塗布された紫外線を発生する蛍光体あるいは半導体とを具備する ことを特徴とする光触媒装置。 6. A flat cathode-side insulating substrate, a plurality of linear cathode conductors arranged in parallel inside the cathode-side insulating substrate, and a groove-shaped shape arranged opposite to the cathode conductor. The anode-side substrate, which is transparent to visible light and ultraviolet light, is coated on the dimple portion outside the anode-side substrate. A photocatalyst device comprising: a coated photocatalyst; a transparent anode conductor provided inside the anode-side substrate; and a fluorescent substance or semiconductor applied to the transparent anode conductor to generate ultraviolet light. .
PCT/JP2003/014471 2003-11-13 2003-11-13 Field emission ultraviolet lamp WO2005048294A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003280778A AU2003280778A1 (en) 2003-11-13 2003-11-13 Field emission ultraviolet lamp
PCT/JP2003/014471 WO2005048294A1 (en) 2003-11-13 2003-11-13 Field emission ultraviolet lamp
JP2005510567A JPWO2005048294A1 (en) 2003-11-13 2003-11-13 Field emission UV lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014471 WO2005048294A1 (en) 2003-11-13 2003-11-13 Field emission ultraviolet lamp

Publications (1)

Publication Number Publication Date
WO2005048294A1 true WO2005048294A1 (en) 2005-05-26

Family

ID=34587056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014471 WO2005048294A1 (en) 2003-11-13 2003-11-13 Field emission ultraviolet lamp

Country Status (3)

Country Link
JP (1) JPWO2005048294A1 (en)
AU (1) AU2003280778A1 (en)
WO (1) WO2005048294A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2441618A (en) * 2006-08-09 2008-03-12 Tatung Co Flat field emission illumination module
JP2008210542A (en) * 2007-02-23 2008-09-11 Dialight Japan Co Ltd Field emission type tubular backlight
EP2058833A3 (en) * 2007-11-09 2011-10-05 Fuji Jukogyo Kabushiki Kaisha Light-emitting apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231731A (en) * 1993-02-08 1994-08-19 Mitsubishi Electric Corp Plate type light source and manufacture thereof
JPH0927298A (en) * 1995-07-10 1997-01-28 Hitachi Ltd Flat light source
WO1997007531A1 (en) * 1995-08-14 1997-02-27 E.I. Du Pont De Nemours And Company Fluorescent lamp
JPH10106490A (en) * 1996-09-26 1998-04-24 Toshiba Lighting & Technol Corp Ultraviolet lamp, lighting device and ultraviolet ray irradiation device
EP1061555A1 (en) * 1999-06-18 2000-12-20 Iljin Nanotech Co., Ltd. White light source using carbon nanotubes and fabrication method thereof
JP2002033080A (en) * 2000-07-14 2002-01-31 Futaba Corp Ultraviolet ray source
EP1187161A2 (en) * 2000-09-01 2002-03-13 Canon Kabushiki Kaisha Electron-emitting device, electron-emitting apparatus, image display apparatus, and light-emitting apparatus
EP1246262A2 (en) * 2001-03-27 2002-10-02 Ngk Insulators, Ltd. Light-emitting element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231731A (en) * 1993-02-08 1994-08-19 Mitsubishi Electric Corp Plate type light source and manufacture thereof
JPH0927298A (en) * 1995-07-10 1997-01-28 Hitachi Ltd Flat light source
WO1997007531A1 (en) * 1995-08-14 1997-02-27 E.I. Du Pont De Nemours And Company Fluorescent lamp
JPH10106490A (en) * 1996-09-26 1998-04-24 Toshiba Lighting & Technol Corp Ultraviolet lamp, lighting device and ultraviolet ray irradiation device
EP1061555A1 (en) * 1999-06-18 2000-12-20 Iljin Nanotech Co., Ltd. White light source using carbon nanotubes and fabrication method thereof
JP2002033080A (en) * 2000-07-14 2002-01-31 Futaba Corp Ultraviolet ray source
EP1187161A2 (en) * 2000-09-01 2002-03-13 Canon Kabushiki Kaisha Electron-emitting device, electron-emitting apparatus, image display apparatus, and light-emitting apparatus
EP1246262A2 (en) * 2001-03-27 2002-10-02 Ngk Insulators, Ltd. Light-emitting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2441618A (en) * 2006-08-09 2008-03-12 Tatung Co Flat field emission illumination module
JP2008210542A (en) * 2007-02-23 2008-09-11 Dialight Japan Co Ltd Field emission type tubular backlight
EP2058833A3 (en) * 2007-11-09 2011-10-05 Fuji Jukogyo Kabushiki Kaisha Light-emitting apparatus

Also Published As

Publication number Publication date
AU2003280778A8 (en) 2005-06-06
JPWO2005048294A1 (en) 2007-06-14
AU2003280778A1 (en) 2004-06-06

Similar Documents

Publication Publication Date Title
US7298077B2 (en) Device for generating UV radiation
JP3152505B2 (en) High pressure glow discharge lamp
CN1160258C (en) Device combined with UV-C gas discharge lamp for sterilization water
JP5569987B2 (en) Ultraviolet light emitting material and ultraviolet light source
US10692713B2 (en) Field emission light source adapted to emit UV light
JP2005524195A (en) Cathode light source device
US20030071571A1 (en) Ultraviolet light source driven by capillary discharge plasma and method for surface treatment using the same
JP5137391B2 (en) Dielectric barrier discharge lamp
WO2005048294A1 (en) Field emission ultraviolet lamp
JP2006294494A (en) Fluorescent lamp
JP2003135581A (en) Ultraviolet light emitter
JP2009238415A (en) Deep ultraviolet phosphor thin film, and lamp using deep ultraviolet phosphor thin film
RU2274924C1 (en) Cathodoluminescence light source (alternatives)
CN108194844B (en) Deep ultraviolet light source for exciting fluorescent powder by electron beam
JP2013098015A (en) Ultraviolet irradiation device
JPH06310096A (en) Low-pressure mercury vapor lamp device
JP2006287028A (en) Laser luminescence structure
JP2000067813A (en) Fluorescent lamp and light source using it
TWI440065B (en) Ultraviolet discharge lamp
JPH0992225A (en) Dielectric barrier discharge lamp
WO2005059949A1 (en) Field emission spot light source lamp
JPH10154488A (en) Fluorescent lamp for photolysis catalyst and cleaning apparatus
JP2008210633A (en) Fluorescent lamp and yellow light source device using the same
JP2003197150A (en) Ultraviolet emission discharge tube
JP2012064381A (en) Fluorescent lamp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005510567

Country of ref document: JP