JP5604310B2 - 波力エネルギープラント - Google Patents

波力エネルギープラント Download PDF

Info

Publication number
JP5604310B2
JP5604310B2 JP2010547589A JP2010547589A JP5604310B2 JP 5604310 B2 JP5604310 B2 JP 5604310B2 JP 2010547589 A JP2010547589 A JP 2010547589A JP 2010547589 A JP2010547589 A JP 2010547589A JP 5604310 B2 JP5604310 B2 JP 5604310B2
Authority
JP
Japan
Prior art keywords
generator
counterweight
drive shaft
buoy
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010547589A
Other languages
English (en)
Other versions
JP2011512488A (ja
Inventor
サイデンマーク,ミカエル
Original Assignee
オーシャン・ハーベスティング・テクノロジーズ・エイビイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0800395A external-priority patent/SE532074C2/sv
Application filed by オーシャン・ハーベスティング・テクノロジーズ・エイビイ filed Critical オーシャン・ハーベスティング・テクノロジーズ・エイビイ
Publication of JP2011512488A publication Critical patent/JP2011512488A/ja
Application granted granted Critical
Publication of JP5604310B2 publication Critical patent/JP5604310B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/181Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation
    • F03B13/1815Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation with an up-and-down movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/60Motors or generators having rotating armatures and rotating excitation field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/18Air and water being simultaneously used as working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Description

(関連出願)
本出願は、2008年2月20日出願のスウェーデン国特許出願第0800395−6号、および2008年10月10日出願のスウェーデン国特許出願第0802165−1号の優先権および利益を主張し、その教示全体は参照により本明細書に組み込まれている。
(技術分野)
本発明は、水波の動きから電気エネルギーを抽出するための波力発電プラント、物体内の程度の差はあるが周期的な動きなどの、程度の差はあるが間歇的な機械的エネルギーから電気エネルギーを抽出する方法、およびそのような程度の差はあるが間歇的な機械的エネルギーが利用できるとき使用すべき発電プラント用の変速機に関する。
波力は、大洋の波の中のエネルギー密度が非常に高く(風の中のエネルギー密度よりほぼ1000倍高く)、これによってその容量に対して小さな波力エネルギー変換器が可能になるので、コスト効率が高くなる大きな潜在可能性を有する。さらに、波力エネルギーは、波が長時間にわたる風によって作られ、次いで風がやんだ後もうねりとして続くので、例えば風力より予測可能である。これは結果として波の平均エネルギー容量のゆっくりした変動になり、それは波力エネルギー変換器が全体的な電力配電ネットワークに接続されるときのシステムの利点を与える。
この潜在可能性にもかかわらず、何故今日競争力のある解決策がほとんど存在しないのかという理由は、波力エネルギーは使いこなすのが難しいからである。大洋は高い材料応力を伴う過酷な環境である。嵐の天候では、このエネルギー・レベルは通常より100倍高くなる可能性がある。波の動きは揺動であり、波から波へ決して中止しない高さ、長さおよび時間(速度)の変動を伴い、これが波力発電プラントによって吸収されるエネルギーに大きな変動を与える。直接駆動される動作に対して、すなわち波力発電プラントの発電機が波の瞬間的な動きに従って駆動されるとき、これは結果として発電プラントの低い稼働率になる、すなわちいわゆる利用率は低い値をとる。発電機の出力は、波周期毎にゼロとトップレベルの間を2回移動する。このトップレベルも、波から波へ極めて強く変化する可能性がある。全体的な電力配電ネットワークには、供給される電力および電圧の両方で比較的安定なレベルが必要であり、これは結果として、この種の波力エネルギー変換器用の電気制御システムが、発電の後でそれらのレベルをより一様にしなければならないことになる。また、この一様でないレベルは結果として、トップ出力レベルの適切な取り扱いを得るために、波力発電プラントの電気システム全体のコストの高い過大な容量になる。
波力を競争力のあるものにするため、波力発電プラントは、より高い利用率が得られるように発電機に対する推進力を均一化すると同時に、効率的に波力エネルギーを吸収できることが必要である。また、システムの複雑性が低く、構成部品の効率的な使用も必要である。波力発電プラントの構造体も嵐に耐え、修理間隔を長くできる、かつ容易にアクセス可能な磨耗部品を含む構造によって達成することができる長寿命と、低い運転コストと補修コストとを有しなければならない。
波力技術は長期間開発されてきたが、今まで上記で説明した必要な特性を組み合わせることができた波力発電プラントの方法または設計に到達できていない。
水波のエネルギーを捕捉するためにしばしば使用される方法は、水の垂直の動きを使用することである。そのような技術を使用する設備は、ときには「ポイント・アブソーバー(point absorber)」と呼ばれる。垂直の動きを使用する1つの方法は、底部基礎およびアンカー・ホイール(anchor wheel)を有するブイを組み込むことである。この底部基礎は、海床にしっかりと位置決めされ、大洋表面、すなわち波の動きに追従するブイに結合される。表面が上昇し、それによってブイが持ち上げるとき、推進力が作り出され、それが基礎とブイの間に結合されるドライブシャフトによって、あるいはブイのところのまたは基礎内の軸受内に軸支されるアンカー・ホイール上を動き、反対側の端部のところで基礎またはブイにそれぞれ結合されるワイヤーまたはチェインによって回転の動きに変換される。この推進力は、波高がより高くなるとき、波の動きの速度が増加するために増加する。そのようなホイールが使用される場合は、アンカー・ホイールの回転の方向および速度は、波の垂直の方向および動き速度に直接依存する。しかしこれは、電気エネルギーを発生させるために従来型の発電機をアンカー・ホイールに連結するためには最適ではない。
波力発電プラントが従来型の回転発電機を効率的に駆動させるためには、波のこの垂直の動きを一方向性の回転移動に変換しなければならず、変速機に結合される発電機の回転速度を安定させなければならない。上記で説明したように、海底またはフレーム構造体内に固定され、ブイ内に軸支されるアンカー・ホイールに沿って、またはアンカー・ホイール上を動くドライブシャフト、ワイヤーまたはチェインを使用するデバイスでは、この問題点は次の方法で解決することができる。ブイが波によって持ち上げられるとき、アンカー・ホイール上に推進力が作り出される。その後直ぐに波が落下するとき、逆転止め機構が係脱され、アンカー・ホイールがカウンターウエイトによって戻される。その結果、推進駆動は波の上昇中のみ動作状態であり、波が沈むとき完全に停止し、これは満足すべき状態ではない。アンカー・ホイールによって駆動される発電機が、波が沈むときもカウンターウエイトによって同じ方向に駆動されるように、この回転方向を逆転させる試みが行われてきた。発電機の回転方向を逆転させることも試みられてきた。しかし、機械的変速機または発電機の回転方向を波周期毎に2回変更させることは、結果的に激しい機械的磨耗になる。回転方向を変速機によって一方向性にすることができるとしても、回転速度は垂直の動きの速度に追従し、これは発電機からの電気出力が波の動きの速度に従って変動することを生じさせる。発電機の質量が休みなく交互に加速され、減速されるので、これは低い利用率と高い減衰効果を与える。機械的変速機を使用して推進力および発電機の回転速度を一定にするために、ブイの間に位相シフトが存在する複数のブイを協働させることができる。しかし、これは波周期にわたりブイが均一に分布される場合にのみ最適に働き、波の長さおよび速度が常に変動するので、これはめったに起きない。また、この変速機システムはより複雑になり、したがって油圧機構がこの型式のシステムにしばしば使用される。しかし、油圧デバイスは結果として大きな変速機損失を有する複雑なシステムになる。上記で説明したこの型式の波力発電プラントは、フランス国特許出願公開第2869368号に開示され、それは浮遊プラットフォームまたはブイを備える。線がブイのところのプーリー上を動き、線の一端は底部に取り付けられ、もう一端はカウンターウエイトを担持する。プーリーの回転は発電機に伝達される。この回転速度および発電機からの電気出力は、波の動きに従って変動する。同様な波力発電プラントが米国特許第4,242,593号に開示され、それはブイ内のホイールまたはプーリーをブイが上昇しているときのみ駆動する。発電機を駆動するために使用するのに適するように、ブイ内のホイールまたはプーリーの回転速度をギア・アップするためのギアボックスが設けられている。米国特許第5,889,336号および特開平11−6472号に、一端部のところで底部基礎端部に取り付けられ、そのもう1つの端部のところにカウンターウエイトを有するチェインを含む同様な波力エネルギー・プラントが開示されている。このチェインはブイ内のチェイン・プーリー上を移動する。このチェイン・プーリーは、発電機が常に同じ方向に回転するように構成される直接的に作動する変速機を介して発電機に結合される。回転速度はブイの垂直の動きの速度によって変わる。
いくらか異なる型式の波力設備が米国特許第4,241,579号に開示される。ドライブシャフトが水表面と底部の間を上昇させられ、沈ませられるように搭載される。多数のブイがワイヤーによってカウンターウエイトに結合され、線はそれぞれのブイが時のみ駆動するための共通のドライブシャフトの周りを移動する。英国特許出願公開第2062113号には、それぞれがブイとカウンターウエイト/底部基礎/追加のブイを備え、一方向連結器を介して共通のドライブシャフト上に作用する複数の異なる駆動機構を含む波力エネルギー変換器が開示される。フランス国特許出願公開第2339071号ではブイが使用され、それはチェインの一端に結合され、そのチェインによって水表面上に配置されるドライブシャフトを回転させるように駆動する。このチェインのもう1つの端部は、水表面の上にやはり配置されるカウンターウエイトを担持する。ドライブシャフトへのこの結合は一方向性方式のものであり、いくつかのそのようなブイによってチェインを介してこのドライブシャフトを駆動することができる。
国際特許出願公開第WO2005/054668号には、線の一端部に取り付けられたブイを含む波力エネルギー・プラントが開示される。この線のもう1つの端部は、海底に配置されるドラムの周りに程度の差はあるが巻き上げられる。このドラムは、戻りばねおよび発電機に結合され、ブイの上昇する動きおよび沈む動きの両方で発電機を駆動する。国際特許出願公開第WO03/058054号による波力エネルギー・プラントでは、ブイは、その下端部が底部基礎に結合される線のための巻きドラムとして作用する。戻りばね、ギア・アップ機構および発電機はドラムの内側に配置される。この発電機は、ブイの上昇する動きおよび沈む動きの両方で駆動される。
フランス国特許出願公開第2869368号 米国特許第4242593号 米国特許第5889336号 特開平11−6472号 米国特許第4241579号 英国特許出願公開第2062113号 フランス国特許出願公開第2339071号 国際公開第WO2005/054668号 国際特許出願公開第WO03/058054号
効率的な波力エネルギー・プラントを提供することが本発明の1つの目的である
波力エネルギー・プラントでは、水域における水波から水波の動きの或る部分ではエネルギーが発電機を駆動するために吸収される。しかし、吸収されたエネルギーの一部は、水波の動きの他の部分において発電機を駆動するために、適切な機械的な方法で一時的に蓄積ないし貯蔵される。それによって、発電機を駆動する推進力の長期にわたる均等化がここに達成することができる。エネルギーの一時的な機械的な蓄積のために、適切な物体の、位置エネルギーの変動などの位置エネルギーの変化を使用することができる。例えば、この位置エネルギーの変化は、弾性力または重力に基づくことができる。後者の場合、水表面から変動する距離のところに配置され、ここでは重力を間接的に使用する浮遊物体すなわち水より低い密度を有する物体を使用することができる。エネルギーの蓄積のために使用されるこの物体は、同じ場合に別法として、重力をより直接的な方式で使用するカウンターウエイト、すなわち水より高い密度を有する物体であることができる。これらの場合には、この物体は、線、ワイヤーまたはチェインなどのある細長い手段に結合することができ、それが柔軟性がある場合、カウンターウエイト・ドラムの周りに程度の差はあるが巻くことができる。このカウンターウエイト・ドラムは、ブイのところで、または水域の底部に配置されるまたは底部に取り付けられる静止したラックまたはフレームのところで軸支することができる。このカウンターウエイト・ドラムは、1つの場合には発電機の回転部分に機械的に結合することができ、この物体の重量または浮力は、別の細長い手段、やはりここでは例えば線、ワイヤーまたはチェインに結合されるドライブシャフトの回転方向と比較して反対の相対的な回転方向に回転するようにカウンターウエイト・ドラムを連続的に駆動するために使用される。
このドライブシャフトは、一方向性の回転用にのみ機械的に構成され、例えば水表面の上昇する動きまたは沈む(下降する)動き動きによって、より具体的には水表面に浮遊するブイすなわち水より低い密度の物体の交互に上昇・下降し、及び/又は、交互に前後にする傾動する移動によって駆動され、または別法として波の中ないし水の中の揺動移動またはそれらの組み合わせの他の形態によって駆動される。この発電機は、上記で述べた場合には、ドライブシャフトとカウンターウエイト・ドラムの間の変速機経路内に機械的に結合される。発電機内の部品間の発電機の空隙を越える電磁気結合は、発電機の回転速度に対して制限されるトルク、すなわちカウンターウエイト・ドラムおよび発電機の電気負荷によって供給される機械的トルクしか与えない。ドライブシャフトが発電機の回転速度より速く回転しているとき、カウンターウエイト・ドラムは第1の回転方向に回転させられ、これがカウンターウエイトを巻き上げさせ、それによって位置エネルギーを蓄積する。ドライブシャフトが発電機の回転速度より遅く回転しているとき、あるいは未だ静止しているとき、カウンターウエイト・ドラムは第2の回転方向に回転し、これがカウンターウエイトを降下させ、それによって位置エネルギーを放出する。
弾性力を使用するエネルギー蓄積デバイスとして、エネルギーがばねの中の張力、あるいは一般的に弾性エネルギーとして蓄積される弾性ないし弾力性のある機構を使用することができる。そのような弾性デバイスは、異なる場合では、ガス圧力としてエネルギーを蓄積するための容器を備えることができる。次いでこの容器は、スクロール・ポンプなどの組み合わされた圧縮機ないしガス・ポンプと空圧モータに結合することができる。このデバイスは、発電機の部品のうちの1つに直接結合される1つの移動部品を有することができる。
そのような波力エネルギー・プラントでは、比較的一様なレベルで連続的に電気を発生させるように発電機を駆動できるように、エネルギー貯蔵デバイスとも呼ばれるエネルギー蓄積デバイスと、適切な連結器とを使用して水波の運動エネルギーの均等化を効率的な方法で達成することが可能になる。
一般に、程度の差はあるが周期的な動きなどの、水域の水の移動を使用する波力エネルギー・プラント、ないしその最も一般的な形態である発電プラントは、以下のものを備えることができる。
−何らかの方法で水域における水の移動によって移動するように、水域にまたは水域中に配置されるブイまたは他のデバイス。次いでこのブイまたは他のデバイスは、水の中の移動のために、それ自体1つの方向の移動と第1の方向と異なる別の方向の移動との間を交互する移動を得るように構成され、配置される。水の中のこの移動は、水の中の波の移動または水の表面のところの波の移動、交互する移動、すなわち水の中でまたは水の表面のところで、前後に交互する移動、あるいは水域の水の中の一般に1つの方向の移動と別の方向の移動の間を交互する移動を含むことができる。水域の水の表面のところを浮遊するブイの場合は、これは水表面の上下移動のとき、このブイが交互に上昇・下降し、及び/又は、交互に前後に揺動ないし傾動することを意味することができる。したがって一般に、このブイは水より低い平均密度を有する。水域にまたは水域中内に配置される他のデバイスは例えば、水の移動に追従するように設計される水と同じ密度または水より高い密度を有する物体、あるいは水波が移動するとき起きる水内の圧力差に起因して交互に圧縮され、膨張させられるデバイスを備えることができる。
−波力発電プラントのある部分に回転可能に軸支されるドライブシャフト。異なる設計では、それはこのブイまたは他のデバイスのところで軸支することができる。別法として、それは水域の底部に固定して取り付けられるデバイスのところに、または一般に水域内の水の移動に対して対抗するように配置される比較的大きな嵩または重量を有する物体などのあるデバイスに、回転できるように軸支することができる。
−ドライブシャフトが搭載される場所に応じて、水域内の水の移動に対抗するように配置されるデバイス、例えば水域の底部のところの固定点または比較的大きな嵩または重量を有する物体に、またはブイに、一方が結合され、もう一方がドライブシャフトにそれぞれ結合される、第1の細長い手段。この第1の細長い手段は、線、ワイヤーないしチェインなどの柔軟性のある手段であり得るが、例えばラック・ギア・セグメントを備える場合、それは固くすることもできる。
−ドライブシャフトに結合され、互いに対して回転可能な2つの部品を備える発電機であって、第1の部品および第2の部品はしばしばそれぞれローターおよびステーターと呼ばれる。この2つの回転可能な部品の間に空隙が存在する。
−上記で説明した、エネルギーの一時的な機械的貯蔵のための蓄積デバイス。
第1の細長い手段とドライブシャフトの間の結合が、水表面の実質的に第1の移動に対して、またはブイもしくは同様なデバイスの第1の移動に対して、一方向にのみドライブシャフトを回転させ、それによって発電機の前記2つの部品を第1の方向に互いに対して回転させ、電気を発生させ、同時に蓄積デバイスにエネルギーも供給するように駆動するように、このブイまたは同様なデバイスは配置され、このブイまたは他のデバイスと、第1の細長い手段と、波移動に対抗するように配置されるデバイスと、ドライブシャフトとエネルギー蓄積デバイスとは互いに結合される。したがって、ドライブシャフトの回転からのエネルギーはここでは、部分的に発電機から供給される電気のエネルギーに、部分的にエネルギー蓄積デバイスに貯蔵されるエネルギーに変換される。この第1の移動はブイに対して、水表面の上または下に行く移動のうちのいずれか1つによってブイが設定される移動であり得る。
このエネルギー蓄積デバイスは、ブイまたは同様なデバイスの第1の移動と実質的に異なる実質的に第2の移動に対して、発電機の前記2つの部品が互いに対して同じ第1の回転方向に回転するように駆動するように構成される。この第2の移動はブイに対して、ブイが上および下に行く移動の第2番目によって設定され、したがって水表面の上および下に行く移動のうちの前記いずれかの移動と実質的に異なるそれらの移動であることができる。
ブイまたは他の物体のこの第1の移動は、ブイまたは他のデバイスが行う第2の移動の方向と主として反対である方向に起きることができる。したがってこの第1の移動は、平行移動すなわち例えば上下の移動として、あるいは回転の動きすなわち角度的な動きとして、または組み合わされた平行と回転の移動のいずれかとして、前方方向に起きることができ、一方第2の移動は後方方向に起きる。
ドライブシャフトは、例えば機械的歯車を介して、発電機の第1の部品に機械的に結合することができる。電磁気結合が、少なくともこれらの部品が互いに対して移動しているとき、発電機の第1の部品と第2の部品の間の空隙を越えて従来型の方式で存在する。エネルギー蓄積デバイスは、1つの特別な実施形態では、発電機の第2の部品に機械的に結合することができる。
発電機の第1の部品と第2の部品の間の空隙を越える電磁気結合を介したエネルギー蓄積デバイスのドライブシャフトへの結合は、ドライブシャフトが回転しているとき、第1の細長い手段とドライブシャフトの間の結合、およびそれによって発電機の第1の部品を駆動していることによって、ドライブシャフトの回転に対抗する推進力を与える。次いで、上記で述べた特別な実施形態では、発電機の第2の部品は、空隙を越える電磁気結合および発電機の第1の部品を介したドライブシャフトへ連結に起因して、第1の方向に回転することができ、第1の細長い手段とドライブシャフトの間の連結を介したドライブシャフトに作用する推進力が、この対抗する推進力を超えるとき、発電機の第2の部品に対するエネルギー蓄積デバイスの機械的連結に起因して、エネルギーがエネルギー蓄積デバイス内に蓄積される。同時に、発電機のこの第1の部品および第2の部品は互いに対して同じ第1の方向に回転する。さらに、発電機のこの第2の部品は、第1の細長い手段とドライブシャフトの間の連結を介したドライブシャフトに作用する推進力が、この対抗する推進力を超えないとき、実質的に同じ第1の方向に回転するようにエネルギー蓄積デバイスによって駆動される。ここで、発電機のこの第1の部品および第2の部品は、この場合でも、互いに対して同じ第1の方向に回転し続けるようにされる。
上記で述べてきたように、ドライブシャフトを発電機の第1の部品に連結するために機械的歯車を配置することができる。次いでこのドライブシャフトは、機械的歯車の入力側に適切に結合され、発電機の第1の部品は、機械的歯車の第1の出力側に機械的に結合される。この場合、発電機の第2の部品は、エネルギー蓄積デバイスが機械的歯車の第1の出力側と異なる第2の出力側に結合される場合は、ブイに固定して取り付けることができる。機械的歯車は、1つの入力シャフトを有する1つの入力側と、出力側のうちの1つが出力シャフトを備え、別の出力側が機械的歯車のハウジングないし筐体を備える2つの出力側を備えると一般に見なすことができ、波力エネルギー・プラントにこの変速機のみが含まれる以下の論議も参照されたい。例えば遊星歯車については、この入力側は、遊星歯車キャリアに結合されるシャフトを備えることができ、2つの出力側は、太陽歯車と遊星歯車の第2のシャフトまたはハウジングに結合することができるリング歯車に結合されるシャフトに対応する。
ブイを含む場合は、このブイはエアー・ポケットとして機能し、その中にドライブシャフトの少なくとも主要な部品ならびにそのようなものが設けられ、それらの間を連結する場合は、巻きドラムなどの他の回転部品が搭載される空間を備えることができる。そのようなエアー・ポケットは、その底部のところで水表面によって境界が定められ、そのもう1つの側がブイの異なる表面である、空気で満たされた空間であることができる。その場合は、このエアー・ポケットは、ブイの底部表面の凹部によって形成することができる。
一実施形態では、このエネルギー蓄積デバイスは、錘として配置され、ブイまたは他のデバイスの前記第1の移動に対してやはり上向きに移動し、それによって位置エネルギーを増加させるためのカウンターウエイトを備えることができる。次いでブイまたは他のデバイスと、第1の細長い手段と、ドライブシャフトと、カウンターウエイトの互いに対する連結は、ブイまたは他のデバイスの移動の前記第2の移動に対して、カウンターウエイトが下向きに移動し、それによって発電機の部品が互いに対して第1の回転方向に回転するように駆動するように適切に構成される。ブイの場合にはこれは、ブイが上向きに移動しているときの第1の移動に対して、カウンターウエイトも、例えばブイが次いで垂直に移動する垂直の距離より大きなある距離上向きに移動していることを意味することができる。
同じ実施形態で、このエネルギー蓄積デバイスは、ドライブシャフトに回転的に搭載されるカウンターウエイト・ドラムと、カウンターウエイト・ドラムを回転させるためにカウンターウエイトの移動を連結するための第2の細長い手段とを備えることができる。この第2の細長い手段は柔軟性であることができ、すなわちその下端部のところにカウンターウエイトが取り付けられ、その上側端部のところで程度の差はあるがカウンターウエイト・ドラムの周りに巻かれる線、ワイヤーないしチェインなどの柔軟性のある手段であることができる。さらに、発電機の第2の部品がその第1の部品に対して回転しており、同時にこの回転に対抗するトルクを与えるとき発電機が電流を発生させるように、ドライブシャフトを発電機の第1の部品が回転するように駆動させるように結合させ、カウンターウエイト・ドラムを第1の場合では発電機の第2の部品を回転させるように連結することができる。これによって、発電機の第1の部品および第2の部品は、互いに対して同じ第1の方向で常に回転するようにすることができる。
第2の場合では、機械的歯車をドライブシャフトと発電機の第1の部品の間に結合させることができる。この場合、ドライブシャフトは機械的歯車の入力側に結合され、発電機の第2の部品はブイまたは他のデバイスに固く取り付けられ、カウンターウエイト・ドラムは機械的歯車の第1の出力側と異なる第2の出力が出て行く側に機械的に連結される。このドライブシャフトはこれによって、ブイまたは他のデバイスの前記第1の移動に対して、発電機の第1の部品を回転させ、かつカウンターウエイトをドライブシャフトに対して持ち上げるようにカウンターウエイト・ドラムを回転させるように、歯車の両方の出力側に推進力を供給することができる。カウンターウエイト・ドラムは、ブイまたは他のデバイスの前記第2の移動に対して、ギアボックスの第2の出力側へのその連結を介して発電機の第1の部品を回転させるための推進力を供給することができる。
さらに、カウンターウエイトおよびカウンターウエイト・ドラムを含む場合には、発電機からカウンターウエイト・ドラムまで延び、それに部分的に巻かれる発電機の電気接続のための電気ケーブルを設けることができ、この電気ケーブルはそこから第1の細長い手段に沿って摺動可能であり、細長い手段に固く結合される非浮遊可能部品まで延び、したがって、この摺動部品はカウンターウエイトの下の一定の距離のところに維持することができ、その電気ケーブルは電気負荷にさらに接続されるように摺動可能な部品から水表面まで延びる。これによって電気ケーブルを第1の細長い手段ともつれさせることなく、水波の方向が変化するときなどに波力エネルギー変換器が水平面内で回転できるようになる。
アンカー・ドラムをドライブシャフト周りの一方向性の回転のために搭載することができ、さらにブイまたは他のデバイスの移動の第1の移動に対してアンカー・ドラムを回転させ、それによってドライブシャフトも回転させるように第1の長楕円形の機関に連結することができる。この第1の細長い手段は柔軟性であることができ、すなわち一端部で程度の差はあるがアンカー・ドラムの周りに巻かれる、線、ワイヤーないしチェインなどの柔軟性のある手段であることができる。この柔軟性のある機関が張力の掛かった状態に維持されるように、ブイまたは他のデバイスの第2の移動に対してアンカー・ドラムを回転させる機構を設けることができる。これによってそれは、波力エネルギー・プラントが水表面に沿って離れて移動することにも対抗することができる。この機構は、例えばエネルギー蓄積デバイスとアンカー・ドラムの間の機械的連結器を備えることができ、あるいは電気モータを備えることができる。
ドライブシャフト周りの一方向性の回転のみ可能にするアンカー・ドラム用の軸受によって同時に、アンカー・ドラムが反対方向に回転するとき、ドライブシャフトを上記で述べたただ1つの方向である反対方向に回転するように駆動するのが可能になる。この軸受は、この場合はアンカー・ドラムがドライブシャフトに作用する推進力を制限しまたは係脱させるための連結器を備えることができる。
発電機の第1の部品と第2の部品の間の回転速度を適合させるように構成される、発電機の電気負荷を制御するための制御システムを設けることができる。エネルギー蓄積デバイスがカウンターウエイトまたは浮遊物体を備える場合には、この電気負荷の制御は、カウンターウエイトまたは浮遊物体の垂直の速度をそれぞれ適合させるためにも使用することができ、それによってカウンターウエイトまたは浮遊物体がそれぞれ適合されたまたは適切な垂直範囲内でのみ移動することも可能になる。この制御システムは、カウンターウエイトまたは浮遊物体それぞれの質量慣性によって生じるトルクの変動を発電機の第1の部品と第2の部品の間の回転速度を調整することによって、補償するようにも構成することができる。これによって発電機が連続の、一様な電力を供給できることを達成することができる。
この波力エネルギー変換器は1つまたは複数の次の特徴および利点を有することができる。
1.上記の説明によるエネルギーの蓄積は、水波のエネルギーを均等化し、それによって一様のレベルで電気を発生させるために使用することができ、これによって発電機および関連する電力電子回路および接続網の利用率が高く、電力システムの複雑性が低くなる。
2.より小さな波での不足を補償するために、大きな波からの過剰なエネルギーを経時的に蓄積し使用することができ、これは高い利用率に寄与する。
3.非常に大きな波の状態中でさえ、最大電力を維持できながら、水波からのエネルギーの吸収を制限することができる。これは高い利用率に寄与するが、それは非常に簡単、効率的な嵐保護システムとしても働き、その場合この波力エネルギー・プラントは波と調和して休みなく働き、それが変換する容量を有する量のエネルギーのみ吸収する。
4.発電機の回転速度をドライブシャフトの平均回転速度に適合させ得ることによって、発電機の電気出力を制御することができる。これはこの波力エネルギー・プラントが現行の波候に対して一様な電力レベルを供給できることをもたらす。
5.この波力エネルギー・プラントは、高度にスケールアップ可能であり、その容量および電力を発生させるパターンは、最高のコスト効率のために特定の波候に対して最適にすることができる。
6.この波力エネルギー・プラントは、高い効率を有する完全に機械的な変速機を有し、それは簡単な方法で揺動する波移動を一方向性の回転に変換し、回転ローターを有する標準の発電機によく適合する。
7.この構造体は例えば、大洋の環境に対してよく試験された安価な材料である、コンクリートで主として作ることができる。
8.底部基礎とブイの間の線の巻きに影響を及ぼすように構成され、波力エネルギー・プラントの水平な位置を維持するのに必要な力を調整するのも可能にする、電子的に調整可能な摺動クラッチを使用することができる。そのような摺動クラッチは、ここでは錘と呼ばれる同様な構造体でしばしば使用されるカウンターウエイトの機能と置き換えることができ、かつそれを高めることができる。
9.ドライブシャフトに機械的に結合されるアンカー・ドラムを、波移動に従って第2の細長い手段を程度の差はあるが巻くために使用することができる。アンカー線の数回転をアンカー・ドラムの周りに巻くことができ、したがってそれは、この設備が取り扱うことができる波高さに対して技術的な制約を有さない。このブイは、どのような終点位置にも到達せずに、全ての波サイズに対して調和した方式で水表面に追従し、このことは、変化する波高さにかかわらず波力エネルギー・プラントが波力エネルギーを非常に効率的に吸収できることに寄与し、同時に嵐の状態中の構造体上の歪が最小限になる。
10.発電機が外部電源から電気のエネルギーを供給され、電気モータとして作用する場合、線の制御された巻きを実施するために、アンカー・ドラムを移動するように制御できる機械的連結器を設けることができる。これによってこの波力エネルギー・プラントに、その設備設置場所に曳航される前に海岸でそれを組み立てることができる特性を授与することができる。
11.この設置は、最小限の手動支援で行うことができる。手動で接続しなければならないのは主として電気ケーブルのみであり、それはボートから水表面のところで行うことができる。第2の細長い手段に結合される底部基礎、およびカウンターウエイトは、設備設置場所への輸送中はブイに取り付けられ、次いでそれらは機械的な連結/ロック・デバイスの制御によって開放することができる。
12.この波力エネルギー変換器は、異なる設置深さに対して適切になるように容易に設計することができる。
13.ギアボックスを発電機の回転速度を増加させるために使用することができ、これによって、より小さな、より資源効率の高い高速度の発電機の使用が可能になる。そのようなギアボックスは、このギアボックスをカウンターウエイト・ドラムに結合させることによって、発電機の第2の部品すなわちステーターを、ブイに永久的に固定することも可能になり、このことは電気の接続と発電機の封入を単純化し、構造体内の回転する質量を減少させることができる。
上記で説明したように、繰り返される上向きおよび下向きの移動および/または2つの異なる方向での傾動移動などの、程度の差はあるが物体の周期的な移動から電気のエネルギーを抽出する方法は、一般に次のステップを含むことができる。
−物体の第1の移動に対してこれらの移動が、発電機の2つの部品を互いに対して第1の方向に回転させ、それによって電流を発生させ、同時にエネルギー蓄積デバイスに機械的エネルギーを供給するように駆動することができるステップ。
−この第1の移動と実質的に異なる、物体の第2の移動に対して、このエネルギー蓄積デバイスが、発電機の2つの部品を互いに対して同じ第1の方向に回転させ、それによって物体の第1の移動中のものと同じ極性を有する電流を発生させるように駆動することができるステップ。
上記で説明したように、この波力エネルギー変換器に使用される変速機は、ドライブシャフトが変化する方向および/または変動する速度および/またはトルクを伴って間歇的に駆動される、電力発生の他の場合に独立して使用することができる。一般にその場合この変速機は、駆動されるように構成され、必要な場合ある適切なデバイスによって常に1つの回転方向に回転するようにすることができるドライブシャフトを備える。さらに、ドライブシャフトに連結される発電機が設けられ、この発電機は互いに対して回転できる2つの部品と、エネルギー蓄積デバイスとを備える。このドライブシャフトは、発電機の2つの部品を互いに対して第1の方向に回転するように駆動し、それによって電流を発生させる。エネルギー蓄積デバイスは、ドライブシャフトがその回転によってエネルギー蓄積デバイスにもエネルギーを供給できるように、かつエネルギー蓄積デバイスが後でその貯蔵ないし蓄積されたエネルギーを、発電機の部品を互いに対して同じ第1の方向に回転するように駆動するのを協働するために供給することができるように、ドライブシャフトおよび発電機に連結される。それによって、ドライブシャフトの回転速度および/またはトルクが発電機の部品を維持された回転速度で駆動するのに不十分なとき、同じ極性を有する電流を発生させることができる。
この変速機内で、ドライブシャフトを発電機の部品のうちの第1の部品に機械的に結合することができる。従来どおり少なくともそれらの互いに対する移動中、この発電機内に第1の部品と第2の部品の間の空隙を越える電磁気結合が存在し、この結合がこの2つの部品の間にあるトルクを与える。エネルギー蓄積デバイスは、第1の場合では発電機内に含まれる第2の部品に機械的に連結される。
さらに上記で説明したように、変速機ギアボックス例えば遊星ギアボックス内で、ドライブシャフトがギアボックスの入力側または一般にギアボックスの第1の回転部品に機械的に結合されるように、ドライブシャフトと発電機の間が結合される。次いでギアボックスの出力側または一般にギアボックスの第2の回転部品は、変動する回転速度および/またはトルクを伴って1つ回転方向に回転するように外側から駆動されるように配置される。発電機の2つの部品のうちの1つは、ギアボックスの別の出力側、一般にギアボックスの第3の回転部品に機械的に連結され、エネルギー蓄積デバイスは発電機の第2の部品に機械的に連結される。次いでギアボックスのこの第1の回転部品および第2の回転部品は例えば、これらの部品のうちの他の1つが静止しているかまたは駆動されていないとき、これらの部品のそれぞれがそれ自体で達成することができる回転速度より高い回転速度で回転するように、ギアボックスの第3の回転部品を駆動するように協働することができる。
このギアボックスはどの場合でも次の機能を有すべきである。
−第1の回転部品が外側から駆動されるとき、第2の回転部品および第3の回転部品も回転するようにされること。
−第1の回転部品が回転していないとき、第2の回転部品を回転させるように第3の回転部品が駆動できること。
この第1の回転部品、第2の回転部品および第3の回転部品は、同じ幾何学的回転軸の周りを回転するように配置する、すなわち同軸に搭載することもできる。
本発明の追加の目的および利点は以下の説明に記載され、部分的にこの説明から明らかになり、あるいは本発明の実施によって確認することができる。本発明の目的および利点は、添付の特許請求の範囲に特に指摘される方法、工程、手段および組み合わせを使用して理解し、得ることができる。
本発明の新規な特徴は特に添付の特許請求の範囲に記載されるが、機構および内容の両方、およびその上記の特徴および他の特徴についての本発明の完全な理解は、添付の図面を参照して行われる本明細書で以下に示す非限定的な実施形態の次の詳細な説明を考慮することから得ることができ、本発明はそれらからよりよく理解されるであろう。
4つの別個の波力エネルギー・プラントを備える波力設備の概略イメージである。 カウンターウエイトを含む波力エネルギー変換器の側面図である。 図2aの波力エネルギー・プラントの正面図である。 動力伝導機構の代替の懸架装置を有する波力エネルギー・プラントの断面図である。 図2cの波力エネルギー・プラントの異なる断面図である。 図2cによる、ステアリング・フィンと、アンカー・ドラムと、カウンターウエイト・ドラムとを含むブイのみを備える下からの図である。 空気ポンプも示す、図2cの波力エネルギー・プラントの下からの図である。 フレームに搭載される波力エネルギー変換器用の動力伝導機構の上面図である。 図2aの波力エネルギー・プラント内に巻きドラムと、ドライブシャフトと、発電機とを含む動力伝導機構の正面図である。 発電機の部品が概略的に示され、エネルギー蓄積デバイスとして螺旋ばねが使用される図3aと同様な図である。 特別に設計された巻き表面を有する巻きドラムの正面図である。 静止ステーターを有する発電機を備える動力伝導機構の概略図である。 2つのカウンターウエイトを相互接続するためのフレームを含む波力エネルギー・プラントの正面図である。 2つのカウンターウエイトを相互接続するための図3eのフレームの上面図である。 特別に設計された電気ケーブル接続を有する図2aの波力エネルギー・プラントの正面図である。 アンカー・ドラムとシャフトのところに配置されるその連結器の詳細図である。 連結器の異なる設計に対する図5aと同様な図である。 さらに別の代替の方式で設計された連結器を有するアンカー・ドラムの概略図である。 スリッパー・クラッチの係合および係脱のための制御規則を示す線図である。 係合された状態の爪クラッチの概略図である。 係脱された状態の爪クラッチの概略図である。 アンカー・ドラムおよびカウンターウエイト・ドラムの間の戻り送りのための機械的連結器の詳細図である。 カウンターウエイトを含む別法として設計された波力エネルギー・プラントの正面図である。 カウンターウエイトの代わりにブイを含む別法として設計された波力エネルギー変換器の正面図である。 水表面の上に配置されるカウンターウエイトを含む、さらに別の別法として設計された波力エネルギー変換器の正面図である。 弾性手段内に吊り下げられた錘との協働によるドライブシャフトの代替の駆動動作を有する波力エネルギー・プラントの正面図である。 風力と波力が組み合わされたエネルギー・プラントの正面図である。 図8aの風力と波力が組み合わされたエネルギー・プラントの側面図である。 図8bの風力と波力が組み合わされたエネルギー・プラントに含まれる動力伝導機構の詳細図である。 同じ種類の変速機が使用される風力発電プラントの正面図である。 図8dの風力発電プラントの側面図である。 空圧エネルギー蓄積デバイスを有する図8eの風力発電プラントの詳細図である。 弾性手段として設計されたエネルギー蓄積デバイスを有する波力エネルギー・プラントの正面図である。 図9aの弾性手段の代替の結合を示す図である。 エネルギー蓄積デバイスと戻り送り機構を含む波力エネルギー・プラントの概略正面図である。 エネルギー蓄積を得るために発電機の空隙を越えて伝達されるトルクを使用する波力エネルギー・プラント変換器の図10aと同様な図である。 図11aは、波力エネルギー・プラント内の発電機を駆動するための、以前の知られているデバイスの概略図であり、 図11bは、図11aと同様であるが、やはり回転しているステーターを有する発電機を駆動するために異なって設計されたデバイスの概略図であり、 図11cは、図11bのデバイスの異なる側からの図であり、 図11dは、静止ステーターを有する発電機を駆動するために異なる方式の設計で配置されるデバイスの図11bと同様な概略図であり、 図11eは、図11dのデバイスの異なる側からの図である。 遊星歯車の構造および機能を示す、2つの側からの図である。 遊星歯車の構造および機能を示す、2つの側からの図である。 可変機械歯車(CVT/CVET)の構造を示す概略図である。 可変機械歯車(CVT/CVET)の構造を示す概略図である。 動力伝導機構内で発電機と連結される遊星歯車および可変歯車の図である。 線の案内のためのステアリング・ローラーを有する動力伝導機構の正面図である。 図13aの動力伝導機構の側面図である。 図13aの動力伝導機構の底面図である。 ブイに搭載されるただ1つの発電機を含む動力伝導機構の底面図である。 発電機のステーターがカウンターウエイト・ドラムと一緒に回転するただ1つの発電機と、1つカウンターウエイトと、アンカー線用の代替の案内機構とを含む動力伝導機構の代替の設計を有する波力エネルギー・プラントの正面図である。 図15aの波力エネルギー・プラントの側面図である。 異なる型式の分割されたアンカー線を有する図15aの波力エネルギー・プラントの正面図である。 図15cの波力エネルギー・プラントの側面図である。 図15aの波力エネルギー変換器の動力伝導機構の底面図である。 図15eと同様であるが、発電機のステーターがブイに固く取り付けられた動力伝導機構を含む底面図である。 機械的構成部品がより大きな範囲で封入される、図15fと同様な動力伝導機構の底面図である。 図15gの動力伝導機構の正面図である。 動力伝導機構内の戻り送り機構が電気モータによって駆動される、図15gと同様な図である。 発電機の負荷を使用してカウンターウエイトの変動する加速および減速を補償するための制御規則を示す線図である。 CVTを使用してカウンターウエイトの変動する加速および減速を補償するための制御規則を示す線図である。 戻り送り機構の摺動クラッチを使用してカウンターウエイトの変動する加速および減速を補償するための制御規則を示す線図である。
図1に、水域の水表面6のところの波の移動、例えば大洋の水の移動からエネルギーを抽出するための波力設備を示す。この波力設備は、それぞれが水表面のところに配置され例えばその上に浮遊し、より高い程度またはより低い程度まで波の移動に追従するブイまたは浮遊物体3を含む1つまたは複数の波力エネルギー・プラント1を備える。水表面6の上向きおよび下向きの移動の中で、このブイは交互に上昇若しくは下降する、及び/または、交互に前後に傾動するようにされる。それによって、図示の場合では底部に固く取り付けられる部品、例えば底部上に着実にそれを維持するのに十分大きな質量を有することができる底部基礎5などの、水域の底部8に対して、推進力を作り出さすことができる。必要な場合、この底部基礎は勿論何らかの方法で底部に取り付けることができ、その場合それは図示しない低い質量を有する単純な締結デバイスを備えることができる。図2aおよび2bを見ればより良く分かるように、このブイ3および底部基礎−別法として底部締結デバイス−は、アンカー線7、例えば鋼ワイヤーによって互いに結合される。代替案としてこの推進力は、ブイに吊り下げられた錘に対してなど、ある種の移動可能物体に対して作り出すことができる、図7d参照。
図示の実施形態では、このアンカー線7は一端部のところで基礎5に取り付けられ、その反対側の端部のところで動力伝導機構2に取り付けられ、動力伝導機構内に含まれる第1の巻きドラム、すなわちアンカー・ドラム9の周りに程度の差はあるが巻かれ、この巻きドラムはドライブシャフト11の周りを回転するように搭載される。このドライブシャフト11は、ブイ3のところに適切な方式で軸支される。図2aおよび2bに示すように、このブイはその底部側に下向きに突起するステー13を備えることができ、このステーはフレームを構成すると言うことができ、そこに、例えばその2つの端部に、ドライブシャフト11が軸支される。これらの図に示す実施形態では、このドライブシャフト上に、第2の巻きドラム、すなわち線17がその上側端部のところに部分的に巻かれるカウンターウエイト・ドラム15も存在する。このカウンターウエイト線7は、その下端部にカウンターウエイト19を担持する。図示の実施形態では、カウンターウエイト用の線がその上に巻かれるカウンターウエイト・ドラムの円筒状の表面は、その上に底部基礎5からのアンカー線7が巻かれるアンカー・ドラム9の円筒状の表面より大きな直径を有する。この最初に述べた直径は、後者の直径より例えば2:1から3:1の程度の大きさの関係など、かなり大きくすることができるが、そうしなければならない訳ではない。この巻きドラムは、適切なときは同じ直径も有することができる。
図2aおよび2bに示すようにブイ3の下に搭載される動力伝導機構2を有する代わりに、この動力伝導機構は、図2c、2dおよび2eに示すようにブイ内の凹部、すなわち動力伝導機構室20内に搭載することができる。その場合は、このドライブシャフト11は、ブイの実質的に中央の位置に搭載することができる。ステー13は、動力伝導機構室20の壁に取り付けることができる。
したがって、このアンカー線7およびカウンターウエイト19は、以前の知られた構造のように互いに直接結合されない。以前の知られた構造では、図11aの原理図を参照、ブイ3の推進力の半分が波の上昇中にアンカー・ドラム9’上を動くアンカー線7によって蓄積され、したがって電流を発生させるための発電機21は、その後波が沈むときも駆動され得る。後者の場合では、発電機は反対方向に駆動されるか、あるいは図示しない機械的または油圧的な変速機の解決策で回転移動が整流されるかのどちらかである。しかし、両方の場合とも発電機21が波の瞬間的な垂直の移動に従って直接駆動されることが残る。
図11bおよび11cから明らかであるように、この発電機は代わりにカウンターウエイト19とアンカー・ドラム9の間で駆動されるように結合することができ、したがって、これらの図に示されていない従来方式で搭載される発電機の、発電機の空隙の1つの側の内側の回転する部品、すなわちローターに通常対応する例えば発電機の第1の部品がアンカー・ドラムに機械的に結合され、これらの図に示されていない従来方式で搭載される発電機の、空隙のもう1つの側の発電機の外側静止部品、すなわちステーターに通常対応する発電機の第2の部品が、この部品も回転できるようにカウンターウエイトの移動に機械的に結合される。これによって発電機21は、その第1の部品とその第2の部品の間の相対的な回転方向を維持した状態で2つの側から駆動することができる。波およびブイ3が上昇するとき、アンカー・ドラム9を介してドライブシャフトの周りを動き、そのもう1つの端部のところで底部8、例えば基礎5にアンカー留めされるアンカー線7によってドライブシャフト11が前方に回転する。このカウンターウエイト19は、弾力性のある抵抗力を作り出し、それによってカウンターウエイト・ドラム15とドライブシャフト11の間に一様なトルクを与えるように使用され、そのような方式でそれが発電機の第1の部品および第2の部品を互いに対して駆動する。そのような駆動動作を達成するための他の方法、例えば以下で説明するような一定の力を供給するためのガス圧力またはばねを使用することも可能である。
図11a、11b、および11cで、矢印111は波力エネルギーの吸収を示す。この吸収レベルは、波の瞬間的な移動および移動方向に従って変動する。ドライブシャフト11がアンカー・ドラム9によって前方に向かって回転するとき、発電機21もこの回転に追従し、したがって、カウンターウエイト線17が発電機の第2の部品の一部分であるまたは第2の部品に固く取り付けられたカウンターウエイト・ドラム15の周りに巻かれ始め、矢印113参照、したがって、カウンターウエイトが上向きに移動する。これによって、トルクが発電機に現れるのと同時に位置エネルギーがカウンターウエイト内に貯蔵される(トルク=カウンターウエイトの重量×重力の加速度(すなわちカウンターウエイトに作用する引力)×カウンターウエイト・ドラムの半径)。このトルクが、発電機の第2の部品をドライブシャフト11に機械的に結合される第1の部品に対して回転を開始するようにさせ、したがって、カウンターウエイト線17がカウンターウエイト・ドラム15から巻き戻され始め、これによってカウンターウエイト19に蓄積された位置エネルギーが電気に変換される、矢印115参照。発電機部品が互いに対してより速く回転するほど、より多くの電力が発生し、したがって、より高い対抗する力も発電機21内に得られる、すなわち発電機の2つの部品の間の電磁気結合がより強くなる。カウンターウエイト19がある速度に達するとき、カウンターウエイトからの引っ張り力は発電機内の対抗する力と等しくなり、これは結果として発電機の回転速度と発電機からの電気出力が平衡状態で安定化することになる。
発電機21を結合させ、駆動するこの方式は、この発電機が以前に可能であったものと比較してずっとより効率的に使用され得るので、大きな利点を与えることができる。発電機部品間のこの同じ相対的な回転方向は常に維持され、発生する電力は実質的に一様なレベルに維持され、これは発電機によって発生する電圧の最小限の引き続く電気的な処置しか必要でなくなる。発電機のこの構成は、発電機および変速機に対する推進力が制限されるので、嵐の安全の観点からの利点も与えることができる。
次にこの変速機ユニット2およびその機能の設計を、特に図2a、2bおよび3aを参照してより詳しく説明する。
波の移動中、ブイ3と底部基礎/底部締結デバイスとの間の距離は変化する。水表面6が上昇するとき、アンカー線7との連結のためにアンカー・ドラム9が第1の方向に回転し、次いでドライブシャフト11にロックされ、それによってドライブシャフト11がアンカー・ドラムによって回転させられる。ブイのところの水表面が沈むとき、シャフト・ステー13内の逆転止め機構53によってドライブシャフトは反対方向に後ろ向きに回転するのがロックされる、図5aおよび5b参照。ブイ3のところの水レベル6が沈むとき、アンカー・ドラムを後ろ向きに、第2の反対方向に回転させ、かつアンカー線を緊張した状態に維持するために、以下で説明するように何らかの種類の性質の戻り送り機構が必要である。このドライブシャフト11は順に発電機21に結合される。ドライブシャフトと発電機の間の連結は固定することができ、または図示のように、例えば発電機の回転速度をギア・アップする固定した歯の関係または固定した歯車比を有する機械的歯車23を備えることができる。これによって互いに対して回転可能な、発電機の部品、ここでは簡単化のためにローターおよびステーターと呼ばれるもののうちの1つ、例えば内側発電機ローター21’が第1の方向に回転する、図3aと比較されたい。発電機のもう1つの回転可能な部品、例えば外側ステーター21’’は、カウンターウエイト・ドラム15に固く搭載される。これらの発電機部品は、空隙21’’’によって分離されている。
ドライブシャフト11の前向きの送り中に、カウンターウエイト線17がカウンターウエイト・ドラム15の周りに巻かれているために、ドライブシャフト11に作用する比較的一定の推進力または比較的一定のトルクが実現され、それが発電機21のローター21’とステーター21’’の間の結合を介して発電機を回転させ、電流を発生させるように駆動する。アンカー・ドラム9からのトルクが、発電機のローターとステーターが互いに対して回転するとき発電機のローターとステーターの間の空隙を越える電磁気結合に由来する対抗するトルクを超えるとき、より多くのカウンターウエイト線17がカウンターウエイト・ドラム15の周りに巻かれ、このより高いトルクに対応する過剰のエネルギーがそれに応じてカウンターウエイト19の持ち上げ内に蓄積される。その後、ブイ3が減速した速度で上昇を開始し、その後直ぐに水表面6が沈むときにブイ3が沈むとき、第1の回転方向のドライブシャフト11およびローター21’の回転速度もまた減少する。アンカー・ドラム9からのトルクが上記の論議による発電機21内の対抗するトルクより低くなるとき、カウンターウエイト線17は増加した速度でカウンターウエイト・ドラムから巻き戻され始め、遂にはドライブシャフト・ステー13内の逆転止め機構53によってドライブシャフトが対向する方向での回転が阻止され、図5aおよび5b参照、カウンターウエイト・ドラムの後ろ向きの回転速度は、発電機とカウンターウエイト19の間の平衡状態によって安定化される。したがって、カウンターウエイト内に蓄積されたこの位置エネルギーは、やはりこの位相で、前の位相におけるようなそれ相応に一様なトルクで発電機21を駆動し続ける。
上記で述べてきたように、波力エネルギーは波の上昇中、ブイ3と底部基礎/底部締結デバイス3の間に生じる牽引力から吸収される。このブイ3は、波の移動に追従し、それによってその上にアンカー・ドラム9が搭載されるドライブシャフト11を、底部基礎に対して上向きに移動させる。回転移動が生じ、それが変速機を駆動する。波のこの垂直移動は回転移動に変換され、次いでその速度は発電機21を駆動するのに適切になるようにギア・アップすることができる。抽出できるエネルギーの量を決めるのは波の垂直の移動の速度である。より大きな波、より早い垂直の移動から、より多いエネルギーを吸収することができる。波の中のエネルギーと異なり、この移動の垂直速度は波高さの二乗で増加せず、より直線のパターンに追従する。しかし波がより大きくなるほど、ブイ3を減衰させる効果を有する影響がより少なくなり、これが結果として、波高さが低いレベルから波がより高くなる直線パターンに向かって横ばいになるまで増加するとき、ブイの垂直の移動および推進力が急速に増加することになる。
アンカー・ドラム9は適切な方式でドライブシャフト11に機械的に結合される。そのような機械的連結器は次の2つの機能を含むことができる。
1.波の上昇中、アンカー・ドラム9は、ドライブシャフトがアンカー・ドラムの回転移動と一緒に回転するように、ドライブシャフト11に引っ掛かるべきである。波が沈むとき、アンカー・ドラムが逆方向に回転できるように、ドライブシャフト11はアンカー・ドラムを係脱させることが可能であるべきである。さらにドライブシャフト11は、波が沈むときその回転方向を変更することを阻止されるべきである。このようにすると、波および推進力が上昇するときはいつでもドライブシャフトはアンカー・ドラムによって前向きに同じ回転方向に送られ、それによって波の動きから吸収される推進力を整流する。これによって発電機を単一の回転方向に駆動するのが可能になる。
2.波力エネルギーの吸収は摺動クラッチ55の使用によって制限することができ、それが結果として過負荷保護として働くことができる、図5a、5bおよび5c参照。そのような摺動クラッチによって、蓄積レベルがその上限に到達するとき、すなわちカウンターウエイト19がカウンターウエイト・ドラム15およびブイ3に近接し、カウンターウエイト・ドラム15およびブイ3を損傷させるリスクなしに、より多くのカウンターウエイト線17をカウンターウエイト・ドラム15の周りに巻くことができないとき、波の上昇中アンカー・ドラム9をドライブシャフト11に対して摺動させることによって、波の移動からのエネルギーの吸収を完全に係脱することも可能になる。この摺動クラッチは、変速機が受けるトルクを制限するためにも使用することができる。波が沈むとき、ブイ3およびカウンターウエイト19は減速され、これが増加したg−力、したがって変速機内の増加したトルクを与える。波が向きを変え再び上昇するとき、このg−力は前向きに回転し始めているアンカー・ドラム9によってさらに増加し、ブイが波によって持ち上げられるのと同時にカウンターウエイトをブイに対して持ち上げる。高すぎる負荷に対して摺動クラッチは摺動し、それによって加速をいくらか減少させ、これが順に変速機が受けるトルクも減少させる。
これらの機能を与えるアンカー・ドラム9とドライブシャフト11の間の機械的連結器は、異なる方式で設計することができる。そのような連結器は、以下で説明するような1つまたは複数の逆転止め機構と摺動クラッチを備えることができる。
したがってドライブシャフト11のアンカー・ドラムへの連結のための、フリーホイール機構または逆転止め機構51を設けることができる(図5a参照)。それは本明細書ではアンカー・ドラムの逆転止め機構と呼ばれる。この場合は、非分割のドライブシャフトがアンカー・ドラムを貫通する。アンカー・ドラムのこの逆転止め機構51は、ドライブシャフトの周りに搭載される一方向軸受のように設計することができる。ブイ3が上昇するとき、アンカー・ドラム9およびドライブシャフト11は、この戻り阻止機構51を使用してドライブシャフトに引っ掛かるアンカー・ドラムを経由して、上記のように第1の回転方向に回転する。ブイ3が沈むときアンカー・ドラム9内のこの戻り阻止機構は開放され、以下で説明するように、アンカー線7を巻き上げるためにアンカー・ドラム9を逆転させる、すなわち反対方向に回転させることができ、その間ドライブシャフト11は、本明細書ではシャフト・ステー戻り阻止機構53と呼ばれる、ドライブシャフトとステー13の間で作用する別の戻り阻止機構53によって反対回転方向に回転するのが阻止される。
この戻り阻止機構は、ドライブシャフト11用のステー軸受54のところにまたはステー軸受54の中に配置することができる。このようにすると、ドライブシャフトはブイ3が上昇するときはいつでも常に第1の回転方向に回転し、決して反対方向に回転することができない。
エネルギー吸収を制限するために、ドライブシャフト11をアンカー・ドラム9から係脱させるための代替方法は、アンカー・ドラムとドライブシャフトの間で伝達されるトルクがゼロのとき、係合と係脱の両方を行うことである。この場合は爪連結器55''を摺動クラッチの代わりに使用することができる、図5eおよび5f参照。カウンターウエイト19が上限を超えたとき、トルクがゼロに減少するや否やこの爪連結器は係脱される、図5f参照。この爪連結器は、いくつかの波周期後である可能性がある、カウンターウエイトがあるより低い制限値に到達したとき、かつトルクが再びゼロになるとき再度係合される、図5e参照。上記のようなこの上限は、極端な波が来るときでさえ、カウンターウエイト19がカウンターウエイト・ドラム15に到達しないように十分な安全余裕を与えなければならない。この方法に伴う利点には、この係脱機構が伝達されるより高いトルクを処理することができ、移行中のみの低いエネルギー消費量であり、係脱による機械的磨耗が最小限であることが含まれる。この欠点は、より長いカウンターウエイト線17が必要であり、これがいくつかの場合に制限になることである。
この変速機ユニット2は、そのように必要とされる場合、アンカー・ドラム9がドライブシャフト11に作用する推進力を第1の回転方向でも係脱できるように設計することができる。これは以下で説明するように、アンカー・ドラムの制御可能な戻り阻止機構51または好ましくはアンカー・ドラム用の摺動クラッチ55の使用で達成することができる。その場合は、ドライブシャフト11駆動は、エネルギーの蓄積がその最大蓄積レベルに到達するとき、すなわちアンカー・ドラム15および/またはブイ9を損傷させるリスクなしにカウンターウエイト19をどのようにしてもより高く巻き上げることができないときに、係脱させることができる。次いでブイ3が沈み始める時、波が再び上昇を始めるときにアンカー・ドラム9がドライブシャフト11を新たに駆動するように、ドライブシャフトの駆動のこの係脱は終了する。波力エネルギー変換器のエネルギー吸収はこれによって制限され、波力エネルギー変換器がその最大容量、すなわち定格電力に達するレベルを平均波高さが超えるとき、変速機および発電機21の過負荷を防止することができる。
エネルギー吸収はこれによって一時的に係脱されるけれども、カウンターウエイト内に貯蔵される位置エネルギーを使用できる限り最大電気出力を発生させるように発電機を駆動することができる。波の平均エネルギー・レベルが十分高くなるや否や、最大電気出力を維持することができると同時に、発電機21および変速機23上の負荷はこれによって制限することができる。
このアンカー・ドラム9の摺動クラッチ55は、図5aに概略的に示すように、アンカー・ドラムの戻り阻止機構51とアンカー・ドラムの間に搭載することができる。アンカー・ドラムとドライブシャフト11の間で摺動クラッチによって伝達されるトルクは、何らかの適切な電気信号に従って制御可能であり得ることが好ましく、これによってシステム内の最大エネルギー吸収レベルを調整できる。
代替の設計では、アンカー・ドラム51の機械的戻り阻止機構は存在しない、図5b参照。この場合も、この非分割のドライブシャフト11はアンカー・ドラム9を通過する。その代わりにアンカー・ドラムの摺動クラッチ55が戻り阻止機構として使用される。この摺動クラッチは、その連結側のうちの1つによってドライブシャフト11の周りに搭載され、もう1つの連結側によってアンカー・ドラム9に搭載される。摺動クラッチ55内のトルク伝達は、戻り阻止機構の機能も与えるように制御される。
さらに別の代替の設計では、機械的戻り阻止機構なしの分離した摺動クラッチ55’が存在する、図5c参照。このドライブシャフト11はこの場合分割され、アンカー・ドラム9はドライブシャフトの第1の部品11’にしっかりと取り付けられる。ドライブシャフトの第1の部品11’とその第2の部品11’’の間で、アンカー・ドラム側に摺動クラッチ55’が存在する。シャフトの第1の部品11’は、アンカー・ドラムと摺動クラッチの間で軸受54’のところで内側ステー13’に対して軸受内に軸支される。上記のように、この摺動クラッチ55’は戻り阻止機構として使用され、そのトルク伝達は、摺動クラッチがアンカー・ドラム9内に封入されるときと同じ方式で制御される。
摺動クラッチ55、55’が戻り阻止機構として使用されるとき、それは図5dに視覚化するように制御することができる。その場合それは、最大限のトルクの伝達とトルクの全くない間を交互する。波が上昇している間にアンカー・ドラム9は前向きに回転し、次いで波が沈んでいるとき、以下で説明する戻り送り機構によって後ろ向きに送られる。したがって、トルク伝達のこの交互の反復は、アンカー・ドラムの回転方向が向きを変えるとき起きる。
アンカー・ドラム9の回転およびカウンターウエイト・ドラム15の回転は、発電機21を介した電磁気結合を用いるのに加えて、機械的連結器、すなわち上記で述べた戻り送り機構を介しても連結することができる。これは特に、カウンターウエイト・ドラムからアンカー・ドラムに伝達されるべきトルクのレベルを制御するために使用される、ここでは戻り送り摺動クラッチと呼ばれる第2の摺動クラッチ25を使用して達成することができる、図6参照。このトルクのレベルも、調整可能または操縦可能である。このトルクは、アンカー・ドラム9を逆転させるために使用することができ、それによってブイ3が沈む間、底部基礎5までのアンカー線7が緊張した状態で維持されるのを確実にする。このトルクは、水表面6のところの潮流および風のために海床基礎から離れたブイの漂流に対抗するためにも使用することができる。
この戻り送り摺動クラッチ25は、図示のようにドライブシャフト11が中で軸受内に軸支されるステー13のうちの1つに搭載することができる。ギアホイール27、29が、巻上げドラム9および15それぞれの縁部31、33に対して動き、これらの縁部はその場合対応する方式で歯切りすることができる。ギアホイール27および29は摺動クラッチ25の入力シャフトおよび出力シャフトに結合され、各巻上げドラムのところのギアホイール31、33それぞれに対するそれらのサイズは、浮遊物体3が最も早く沈むとき、アンカー線7を緊張した状態に維持するのに十分に速くアンカー線7を巻き上げるようにアンカー・ドラム9の回転速度が十分高くなるように、十分高い歯車比を与えるようになされている。図示の設計では、このギアホイール27、29は、軸受内に同軸で軸支され、そのように要求されるとき、所望の大きさのトルクがカウンターウエイト・ドラム15とアンカー・ドラム9の間で伝達できるように、制御可能な力で互いに対して圧されている戻り送り摺動クラッチ25内の2つのクラッチ・ディスク57に直接結合される。アンカー・ドラム用の1つの代替の戻り送り機構は、図15iに示すような対応する方式で電気モータを使用することである。
ドライブシャフト11を発電機21に結合する歯車23は、発電機内により高い回転速度が得られるようにドライブシャフトのステップ・アップした回転速度を与えることができ、それによって高速度発電機の使用が可能になる。発電機からの電気出力はそのローター21’およびそのステーター21’’の質量と発電機の回転速度に比例するので、これは極めて高く重要なことである。これより先、この歯車23は一般に、例えば入力段として配置される遊星歯車35などの固定した歯車比を有する歯車を備えることができる可変歯車であることができ、あるいは可変歯車を備えることができる、図12参照。次いでこの遊星歯車の出て行くシャフトは可変歯車37(CVT)の入力シャフトに結合され、可変歯車37の出力シャフトは発電機のローター21’のような、発電機の部品の第1の部品に結合される。発電機ステーター21’’、およびこれらの歯車のケーシングは互いに、かつカウンターウエイト・ドラム15に固定され、ドライブシャフト11の周りを1ユニットとして自由に回転することができる。ドライブシャフト11と発電機の第1の部品21’の間の歯車比は、この場合は遊星歯車35の歯車比と可変歯車37の歯車比の積によって与えられる。
発電機21が取り扱うことができる最大回転速度は、発電機の選択によって決まる。発電機の公称回転速度に対する適切な範囲は、波力エネルギー変換器1が寸法設定されるその最大容量に応じて、約1500から3000rpmである。そのような回転速度まで発電機をギア・アップするために、100から200倍の大きさの歯車比が必要であり、この歯車比はアンカー・ドラムの半径と最大限の電力が到達すべき場合のブイの中間の動き速度によっても決まる。回転速度がステップ・アップされるとき、歯車23に非常に高い入力トルクをもたらすトルクも同時に同じ歯車比でステップダウンする。高い歯車比は高い変速機損失を生じさせる可能性がある。上記のような遊星歯車35は、高い固定した歯車比を与え、非常に高い入力トルクをうまく取り扱うことができ、良好な効率を有する。歯車37の可変歯車段は、発電機の回転速度を実際の中間波高さに適合させるために使用することができる。そのような可変歯車は、例えば無段可変ギアボックスまたは油圧ギアボックスであることができる。
別法として、この変速機ユニット2は、水表面6の上昇からのエネルギーを例えば弾性的に貯蔵されるエネルギーとして蓄積するための他の機構で設計することができる。その場合どのようなカウンターウエイトも必要なく、その代わりにばね、通常はコイルばね69で置き換えることができる、図3b参照。次いでそのようなコイルばねの内側端部はステー13に搭載され、一方その外側端部は歯車23のケーシングに搭載され、それによって発電機21と、その第2の部品に連結される。エネルギーは、以下で説明するようにガス圧力としても蓄積することもできる。
今まで説明した設計では、対応する図に示すように、1つの単一のアンカー・ドラム9とアンカー・ドラムの両側に配置される2つのカウンターウエイト・ドラム15が存在することができる。1つの歯車ユニット23と1つの発電機21が、各カウンターウエイト・ドラムに含まれる。したがって、1つのカウンターウエイト・ドラム15は、ドライブシャフト11のどちら側の端部にも結合される、すなわちドライブシャフトは2つのカウンターウエイト・ドラムの間に搭載され、ドライブシャフトはステーないしフレーム13内の軸受内に軸支される。
この2つのカウンターウエイト・ドラム15の移動はリンク・シャフト58を使用して同期させることができ、このリンク・シャフトは、ステー部品13内で軸受内に軸支され、その両端部のところにカウンターウエイト・フランジ33の歯付き縁部と同調するギアホイール29を有する、図2f参照。この発電機21の配置は独立であるが、カウンターウエイトとアンカー・ドラムの間の距離が両方の配置で同じになるように、カウンターウエイト19は同じ水平レベル上に維持しなければならない。そうでない場合は、波力エネルギー変換器1の重心が変位する可能性があり、したがって電力ユニットが波に対して誤った方式で回転し、結果としては波とブイ3の間で劣化した捕捉割合を伴う可能性がある。図示の設計では、このリンク・シャフト58は、カウンターウエイト・ドラム15からアンカー・ドラム9への戻り送り機構を実現するためにも使用される。このためにそれは、図6に示す戻り送り機構に対するのと同様な方式でアンカー・ドラムフランジ33のうちに1つにあるリング歯車と同調するギアホイール27も有する。
2つのカウンターウエイト・ドラム15の動きは、ステー部品13内で軸受内に軸支され両端にカウンターウエイト・ドラムのフランジ33の歯車リングと同調するギアホイール29を有するリンク・シャフト58のお蔭で同期させることができる、図2f参照。この発電機21の配置は独立であるが、カウンターウエイトとアンカー・ドラムの間の距離が両方の配置で同じになるように、カウンターウエイト19は同じ水平レベル上に維持しなければならない。他の場合では、波力エネルギー変換器1の重心が変位する可能性があり、したがって、波力エネルギー変換器が波に向かって不正確に回転し、結果として波とブイの間の減少する動力伝達を伴う可能性がある。提示される設計では、このリンク・シャフト58は、カウンターウエイト・ドラム15からアンカー・ドラム9への戻り送り機構を実現するためにも使用される。この目的のためにそれは、図6に提示される戻り送り機構に対するのと同様な方式でアンカー・ドラムのフランジ33のうちに1つにある歯車リングと同調する、ギアホイール27も有する。
リンク・シャフト58は、カウンターウエイト・ドラム15の回転の動きをしっかりと結合できるようにワンピースで作られているので、戻り送り機構のために別の型式の摺動クラッチを使用しなければならない。戻り送り機構25’のこの摺動クラッチはこの場合、アンカー・ドラム9のフランジ31と同調するより大きなギアホイール27とギアホイールが固定して搭載される貫通リンク・シャフト58の間に配置される。図に示すような同調するギアホイールを使用して駆動する代わりに、例えばベルト駆動ないしチェイン駆動を使用することができる。
図2a〜2bによる設計では、ステー13はブイ3の下側から突起する2つのステー部品を含み、それらのそれぞれは、ドライブシャフト11用の戻り阻止機構53を有する軸受54を含む、図5aと5bも比較されたい。ドライブシャフトに沿って中央に配置されるアンカー・ドラム9とこれの両側に配置される、付属する歯車23と発電機21とを有するカウンターウエイト・ドラム15とを有する変速機ユニット2のそのような設計は、ブイに対称的な重量負荷を与え、ドライブシャフト11の一端部に結合される付属する発電機とカウンターウエイト19を有するただ1つのカウンターウエイト・ドラムが使用される場合と比較して、水内の潮流に起因するより対称的な負荷も与える。
アンカー・ドラム9と、ドライブシャフト11と、カウンターウエイト・ドラム15と、歯車機構23と、発電機21とを有するこの変速機ユニット2は、代替案として図2gに示すように、機械本体内に、またはドライブシャフト・フレーム141内に担持することができる。この機械本体は、取り囲むフレーム形状の部分143と、このフレーム部分の長い、両側の間を走り、上記で説明したステーまたはステー部品13に対応する多数のシャフト・ステー145とを含む。変速機ユニットのシャフトは、シャフト・ステー内で軸受内に軸支される。シャフト・ステーの数は、異なる設計代替案により決まる。このフレーム141はブイに固定される。
遊星歯車35が使用される場合は、いくらか異なる設計が可能である。遊星歯車は遊星キャリア161によって構成され、多数の遊星歯車163がリング歯車165の内側の軌道内で、かつ太陽歯車167の周りで軸受内に軸支され、遊星歯車はギアホイールと係合している、図12a参照。遊星キャリアが回転し、外側ホイール、すなわちリング歯車が固定されているとき、この遊星保持器は内側ホイール、すなわち太陽歯車が回転するように駆動し、これが回転速度をステップ・アップさせる。別法として遊星保持器161が固定した位置に保持されたまま太陽歯車167をリング歯車165の回転によって駆動することができ、これも回転速度をステップ・アップさせる。上記のように、遊星歯車35および発電機21を例えばカウンターウエイト・ドラム15の内側に直接配置するように、かつ遊星歯車のリング歯車165と発電機21’’の両方がカウンターウエイト・ドラムに固定されるように、これを利用することができる、例えば図2bを比較されたい。
別法として、リング歯車165がカウンターウエイト・ドラムに固定された状態で、遊星歯車35のみをカウンターウエイト・ドラム15の内側に配置することができる。次いで発電機ステーター21’’は、フレーム141についてのように代わりにブイ3に固定される、図2gおよび図3dも参照。ドライブシャフト11は軸受内に軸支され、カウンターウエイト・ドラムの入口および出口のところ両方で自由に回転することができる。カウンターウエイト19によって与えられるシャフト負荷は、ドライブシャフト・フレーム141内のシャフト・ステー145によって担持されるドライブシャフトによって受け入れられる。それによってこの遊星歯車35は低いシャフト負荷を入手する。このシステム機能は同じままであるが、そのような設計は電気接続および発電機21の封入を簡単にし、修理および補修時のアクセスも簡単にすることができる。この場合ステーター21’’は回転する必要がないので、質量内の強制割当量、すなわち合計角度モーメントも減少させることができ、これはかなり重要である可能性がある。他の型式のギアボックスも同様な方式で使用することができ、例えばケーシングないしギアボックスのカバーがカウンターウエイト・ドラム15と固定される。この場合、遊星歯車のリング歯車は、ギアボックスのハウスないしケーシングに相当する。
遊星歯車の歯車比は、遊星歯車と太陽歯車の間の歯の数の相違によって与えられる。図12aに、1つの歯車段を有する遊星歯車を示すが、追加の歯車段を組み込むことも可能である。その場合これは、2つ以上の遊星歯車が互いに固定されるリング歯車と連結される原理に従うことができる。比較的低い変速機損失を与える3段までが一般的に使用される。全ての段は通常5と10の間の歯車比で選択され、これが3段で300までの歯車比を与える。波力エネルギー変換器1がより高い電力を目指して寸法設定されるほど、アンカー線7はより大きな寸法のところでより大きな直径が必要なので、アンカー・ドラム9はより大きな直径を有する必要がある。アンカー・ドラムの増加する直径は、波の垂直の動きに対するより低い回転速度につながり、これは、より大きな容量を有する波力エネルギー変換器が、発電機21内の対応する回転速度を達成するためにより高い歯車比を必要とすることにつながる。
図11bおよび11cにおけるのと同じ方式で図11dおよび11eに、ブイ3に固定されたステーターを有する発電機に対してどのように発電機21の駆動を達成することができるかを概略的に示す。
このブイ3は、垂直に動くのとは別の波の動きのときにも、完全に静かな海のときの水平な位置の周りで、常にその角度の向きを変化させる。その場合は、ドライブシャフト11は休みなく横向きに揺れ、それが、アンカー線7および(複数の)カウンターウエイト線がアンカー・ドラム9および(複数の)カウンターウエイト・ドラム15の上で互いに対して摺動し、擦らせる可能性がある。その場合は、それぞれの線が通常の方式で巻き上げられるのを引き受ける軌道案内機構を使用することができる。1つの可能性は、ドラム9、15の円筒状巻上げ表面上の螺旋形の溝39、41、43、45を使用することである、図3c参照。2つのカウンターウエイト・ドラムが利用されるとき、波力エネルギー変換器1上の、カウンターウエイト19およびアンカー線7に関する推進力に起因する対称的な負荷をある程度維持するように、それらの螺旋形の溝の方向を逆にする、すなわち螺旋形の溝39、41のうちの1つは右巻きであり、一方他の螺旋形の溝43、45は左巻きにすることができる。線の外形に追従する形状を有する39、41、43および45による螺旋形の溝は、それぞれの線と巻上げドラムの間の接触表面が増加するので線の寿命の長さも相当に増加させることができる。
ただ1本のアンカー線7が使用される場合は、程度の差はあるが線が巻き上げられ、巻き戻されるとき、この線がアンカー・ドラム9に影響を与える点は、軸に沿って移動する。2つのカウンターウエイト・ドラム15を有する場合でより対称的な負荷を達成するために、このアンカー線7’が螺旋形の溝41のところでアンカー・ドラムの片側から動き、海床基礎5まで下がり、海床基礎5に対して軸受内に軸支されるプーリー40を介してアンカー・ドラムのもう1つの側まで螺旋形の溝43を介して再度戻って上がるように、アンカー線7’をループにすることができる。その場合は、このアンカー線はその両端部で、逆方向の螺旋形の溝を有するアンカー・ドラム巻上げ表面上に、螺旋形の溝41および43を有する2つのセグメント内に程度の差はあるが巻き上げられる。波力エネルギー変換器の下にある距離で配置されるY−連結器によってこのアンカー線を分割することも可能である、図15aおよび以下の説明を参照。
以下で説明するように、中央に配置されるカウンターウエイト・ドラム15のどちらの側にも2つのアンカー・ドラム9v、9hを配置することができる。その場合は、それぞれの線7、17のための螺旋形の溝は、図3cに示すものに対応した方法で配置することができる。その場合は、カウンターウエイト・ドラムは反対方向を有する螺旋形の溝を有する2つのセグメントを有することができるが、これは図示しない。
巻上げドラム9、15上の螺旋形の溝の代替または補完として、それぞれの巻上げドラムの周りにカウンターウエイト線17およびアンカー線7の両方を案内するための、案内ローラー171を使用することができる、図13a、13bおよび13c参照。この案内ローラーは、ドラムと歩調を合わせて回転するねじ切りされたロッド173によって駆動される。それぞれのカウンターウエイト・ドラム15用のこのねじ切りされたロッドは、カウンターウエイト線17が互いに反対方向に案内されるように、図13aを見れば分かるように反対方向のねじ山を有し、このことは波力エネルギー変換器の重心が中央にあるままにするために重要である。
2つのねじ切りされたロッド171が巻上げドラム9、15それぞれのために使用され、これらの2つは、ベルト・ホイールないしチェイン・ホイール177を回転させる共通の歯付きのベルトないしチェイン175によって回転させられる。案内ローラー171の案内端部は端部部片179に結合され、ねじ切りされたロッドがそこを通過し、それが案内ローラーをねじ切りされたロッドに沿って案内する。この案内ローラーは、端部部片のところで軸受内に軸支され、摩擦および磨耗を最小限にするためにそれぞれ線7、17と一緒に回転することができる。ねじ切りされたロッド173の両端部は、ドライブシャフト・ステー141のところで軸受内に軸支される。
安全な巻上げを達成するためのさらに別の代替案は、漁業産業で知られているように、図示しないトロール・ドラムを使用することである。
2つのカウンターウエイトが使用される場合で、カウンターウエイト19、およびそれらの線17が互いにもつれるリスクを最小にするために、それらを互いから物理的に隔てて保持する、適切な剛体の機械構造体によって一緒に機械的に結合することができる。例えばカウンターウエイトフレーム151を使用することができる、図3eおよび3f参照。このカウンターウエイトフレームは、それがアンカー線7を擦らず、アンカー線7とのもつれも防止するように、例えば図3fによる長方形の、正方形のまたはひし形の形状を有する、あるいは図示しない丸い曲線などの閉じた曲線の形状を有する形状にすることができる。
ブイ3は、長楕円形であり得るプレートの形状を一般に有することができる。その場合は、そのような長楕円形のプレートは、ほとんどの場合それがそのより長い端部を波方向に向けるように、都合のよい方法で位置決めすることができる。ブイ3の幅は、ブイがより大きな中間の波長のところでより長い幅を有するように、海表面のところの波の平均波長に適合させることができる。波方向に対するブイの位置を安定させるために異なる方法を使用することができる。基礎5の上の中央に向かう牽引力と組み合わせた、波を介した水粒子の回転する動きを、ブイ3の下側にフィンを導入することによって利用することができる、図2dおよび2e参照。さらにこのブイの形状は適応させることができる。ドライブシャフト11は、図2aおよび2bに示すようにブイの下で中央に、プレート長さが出て行く方向と平行に配置する代わりに、波に向かう方向で少し変位させることができる。
図2c、2dおよび2eに示すように変速機ユニット2をブイ3の内側に搭載するために、このブイは、変速機ユニットを保持することができるようなサイズを有さなければならない。側面からドライブシャフト11と平行に見ると、この場合このブイは、楕円の形態の、すなわち全体的に楕円の円筒の形状を有することができる。それは水表面6に対する比較的大きな断面積を有することができ、と同時に完全に長方形の断面積と比較してより少ない水抵抗で波方向に対して引っ張ることができるようになる。このブイ3は、波方向から見てその後部部分に、波方向に対してブイを真直ぐにステアリングするのに寄与することができる1つまたは複数のフィン4を有することができる。
この設計では変速機ユニット2は、変速機ユニット・スペース20内に搭載することができ、それによって変速機ユニットを全体的にまたは部分的に乾燥した状態にすることができ、それによって成長物および腐蝕から保護することができ、より簡単な、より安価な密封解決策も使用することができる、図2c、2d、2eおよび2f参照。変速機ユニット・スペース20が乾燥した状態にされるとき、それはその浮力によってブイ3の浮力にも寄与する。この変速機ユニット・スペースはこの目的のために頂部でカバーないし修理ハッチ121によって密封することができ、したがって、変速機ユニット・スペースはエアー・ポケットを構成する。変速機ユニット・スペース20の排水を行い、維持するために空気ポンプ123を使用することができる。この空気ポンプは、例えばベルト125を介してリンク・シャフト58によって駆動され、水レベルを押し下げる空気を変速機ユニット・スペース内にポンプ輸送することができ、したがって、変速機ユニット2は乾燥した状態にされ、所望のエアー・ポケットが形成される。この空気ポンプは、ドライブシャフト11が軸受内に軸支されるシャフトフレーム145のうちの1つのところに搭載することができる。この空気ポンプ123は別法として、図示しない電気モータによって駆動することができる。
波力エネルギー変換器が動作を開始するとき、変速機ユニット2の上のこの修理ハッチ121が閉じられ、変速機ユニット・スペース20内の水レベルは、空気ポンプ123が発生させる空気圧力によって押し下げられる。外側の水レベルは、海床基礎5と波の間の推進力とカウンターウエイト19およびブイ3の慣性質量モーメントに対応して波周期中に変動する。修理に際しては、先ず最初にアンカー・ドラム9が結合を外され、次いで水レベルが上昇するように変速機ユニット・スペース内の圧力が外側の空気圧力にされ、その後修理ハッチ121を開け、修理を実施することができる。正しい寸法設定を有し、基礎5からの推進力が結合を外されるとき、この水レベルはドライブシャフト11の丁度下にレベルを合わせることができ、したがって、密閉部および空気ポンプ123は決して水表面6の下に行かない。
より大きな修理に際しては、図15g、15hおよび15iに示すような構成部品を含むドライブシャフト・フレーム141全体を外に持ち上げて出し、交換ユニットと交換することができる。この交換が行われる間、カウンターウエイト19はブイ3の下につなぐことができる。波力エネルギー変換器の変速機と、発電機と、電子機器の修理は次いで陸上で行うことができる。
変速機ユニット2およびドライブシャフト11がブイ3内で中央に配置されるこの設計では、ブイの角度変調はより効率的に使用することができる。このブイは水表面に追従し、それは波の谷と頂上のところで角度変調を与える。波が上昇するとき、このドライブシャフト11は回転し、次いでシャフト・ステー145が係脱され、したがって、ブイ3が駆動部に影響を与えずに波の水位線に伴って後ろ向きに回転できる。波が下向きに方向を変えるとき、このドライブシャフトはシャフト・ステーに対してロックされ、それが波の角度変調に追従するブイに同調してドライブシャフトを前向きに回転させる。これは順にカウンターウエイト・ドラム15を前向きの方向に回転させ、上に行く方向での垂直の動き中にと同じ方法で、エネルギーをカウンターウエイト19内に蓄積するように作用する。アンカー・ドラム9がより大きな直径を有するほど、このシステムは垂直の動きに対してより低い入力回転速度を得るが、一方角度変調からの回転速度はアンカー・ドラムの直径に関わりなく同じである。この波力エネルギー変換器1は、この方式で垂直の動きからの推進力に対して角度変調からの高められた効果を達成するように、より大きなアンカー・ドラム9で寸法設定することができるが、その場合はドライブシャフト11がシャフト・ステー145に対してロックされるとき、カウンターウエイト19からブイ3に伝達される同じペースで増加するトルクに耐えるのに十分大きな幅も持たなければならない。
波力エネルギー変換器1の機能は、特にカウンターウエイトのスパン・レベルを制御し、現行の波候に対して可能な限り均等化された電力レベルを達成するように変動する加速および減速に対して補償する、図示しないコンピュータ化された制御システムによって有利に制御される。この制御システムは、アンカー・ドラムの摺動クラッチ55、55’および戻り送りの摺動クラッチ25、25’内のトルク伝達と、図示しないロック機構の制御と、輸送および修理の際のドライブシャフト・フレーム141内へのカウンターウエイト19および海床基礎5のつなぎの制御と、さらにシステム機能および波データの記録とを制御するためにも使用することができる。この制御システムは、発電機21によって連続的に充電される、図示しない蓄電池からエネルギーが供給される。
この制御システムは、カウンターウエイト・スパン・レベルを制御し、図示しないセンサを使用して波力エネルギー変換器1の機能性、特に回転可能な部品の回転角度/速度と、発電機21の電気出力と、ブイ3の移動とに対する機能性を監視する。
この制御システムは、カウンターウエイト・ドラム15内に搭載され、システムに重力方向またはシャフト・ステー13に対してそれがどの角度のところにあるかを連続的に告げる、図示しないセンサからのデータを分析することによってカウンターウエイト・スパン・レベルを制御することができる。この制御システムは、このお蔭でカウンターウエイトの回転の数を計算することによってカウンターウエイト19の位置および方向転換点、および正確にそれが方向転換するところを追跡することができる。それぞれの個々の波周期に対するこの方向転換点は記録される。アルゴリズムが時間周期中の方向転換点を分析することによって、カウンターウエイト・スパンが上向きにまたは下向きに漂流する傾向を有するかどうか計算する。カウンターウエイト・スパンが上向きに漂流している場合は、このカウンターウエイト19はより速いペースで下降させることができ、それが発電機21からより高い電気出力が発生することにつながり、逆の場合も同様である。この時間周期の長さは、蓄積容量、すなわちカウンターウエイト線17の長さから決定される。より高い容量ほど、より長い時間周期を計算に使用でき、これによって発電機の電気出力の調整がより小さくなる。
図示しない2つのセンサが、発電機21の電気出力および回転速度を測定する。これらの値は、発電機上のトルクレベルを示すように制御システムによって再計算される。この制御システムは、このトルク値をカウンターウエイト19のg−力を補償するために使用し、このg−力は、ドライブシャフト11の回転速度の変動と組み合わされたブイ3の動きに起因して生じる、質量慣性モーメントと、加速力および水抵抗による影響とに起因して変動する。谷のところで、カウンターウエイト19は増加したg−力を与える、重力の方向から離れる方向に加速され、頂点のところで、カウンターウエイト19はより低いg−力を与える、重力の方向に戻る方向に加速される。発電機21に負荷を掛けるこの変動するトルクに従ってカウンターウエイトの落下速度を調節することによって、電力レベルを安定化させることができる。
この検討から分かるように、カウンターウエイトの19の方向転換点がカウンターウエイトの終了位置まで漂流しないように、カウンターウエイトの落下速度、すなわちカウンターウエイト・ドラム15の中間の回転速度は、ドライブシャフト11の回転速度に対してバランスさせなければならない。中間の方向転換点が下向きに移動するとき、カウンターウエイトの落下速度は減少させなければならず、これが発電機21からの電気出力の減少につながり、逆の場合も同様である。カウンターウエイトの落下速度およびそれによってカウンターウエイト・スパン・レベルを調節することによって、発電機からの電気出力を現行の波候内の平均エネルギー・レベルに対して可能な限り一様に維持することができる。
カウンターウエイト・スパン・レベルの調節は、異なる方式で達成することができる。発電機上の電気負荷の調節がおそらく、最も簡単で、最もコスト効率が高いが、以下で説明するように他の可能性も存在する。
発電機21内の機械的抵抗は、発電機の極上に置かれる電気負荷によって変わる。電気負荷が増加するとき、発電機内の空隙21’’を越える電磁気結合が増加し、それによって発電機内の機械的抵抗が増加し、それによって発電機とカウンターウエイトの間の平衡状態はより低い回転速度に移動させられ、逆の場合も同様であるので、カウンターウエイト19をよりゆっくり落下させる、図16aの線図に示す調節規則を参照されたい。発電機の出力は回転速度とトルクの積であるので電力レベルは一様になり、その間に回転速度はg−力および入力トルクに対して反対方向に変化する。これは、発電機のトップ回転速度が一般に公称回転速度より高いことに起因して動作する。この発電機は、公称より少なくとも50%より高いトップ回転速度をうまく取り扱うべきである。
一定の電気負荷のところで平衡状態が存在するようになる、すなわち前に説明したように、カウンターウエイト19によって与えられる推進力と等しく高い機械抵抗を発電機21に与える発電機21の回転速度が存在するようになる。発電機に入ってくる機械的トルクを調節することによって、平衡状態が変位され、それによって回転速度が変位され、そこに平衡状態が存在するようになる。この入力トルクは、歯車23を構成するまたは歯車23に含まれる、いわゆる可変歯車比を有する歯車箱37、すなわちCVT(「無断変速機(Continuous Variable Transmission)」)で調整することができる。より低い歯車比はより高いトルクおよびより低い回転速度を与え、それが互いを釣り合わせるが、より高いトルクも発電機21とカウンターウエイト19の間により高い回転速度で起きる平衡状態を作り出し、それがカウンターウエイトの落下速度を増加させ、逆の場合も同様である、線図16bに示す調節規則を比較されたい。CVTの1つの型式は、図12c、12dに概略的に示すような位置合わせされた入力−出力シャフトを有するCVET(「無段電子変速機(Continuous Variable Electronic Transmission)」)であるにすぎない。これらの図は、製造者がその機械的設計に関する詳細を明らかにするのを望まないので、象徴的なものであるにすぎない。通常無段変速機歯車箱は、制限されたトルクと比較的低い最大歯車比しかうまく取り扱わない。入ってくるトルクを最小にし、歯車比を増加させるために、図12cに示すように遊星歯車35を無段変速機の前に連結することができる。
上記によればアンカー線7を緊張した状態に維持するために使用できるカウンターウエイト・ドラム15とアンカー・ドラム9の間の戻り送り摺動クラッチ25、25’は、同時にカウンターウエイト19によって与えられるトルクを減少させるために使用することができ、それは発電機21とカウンターウエイト19の平衡状態を可変歯車が行うのと同じ方式で変位させる、図16cの線図に示す調節規則を参照し、図16bの線図も比較されたい。戻り送り機構の摺動クラッチ25、25’が完全に係脱されとき、発電機の最大出力およびカウンターウエイトの最大速度に到達し、したがって、カウンターウエイトからの最大トルクが発電機に負荷を加える。中間の波高さが沈むとき、この戻り送り摺動クラッチ内のトルクが増加し、それが発電機21上のトルクを低下させ、これによってカウンターウエイトの落下速度が低下する。摺動クラッチとして例えば磁性粒子クラッチを使用することができ、これは低い回転速度で低い熱損失を与える。このトルクは、電流がより高くなるほど伝達されるトルクがより高くなり、それによってより高いブレーキ作用になるように、供給電流のレベルを使用して非常に正確に調節することができる。
図示しない円錐形状のカウンターウエイト・ドラムを使用することよって、カウンターウエイト・ドラム周りのカウンターウエイト線17の接触点の半径を、カウンターウエイト19がより高く巻き上げられるとき増加させることができる。カウンターウエイトがより高く持ち上げられると、この半径およびそれによってトルクが増加し、それによって発電機21をより速く回転させる。この方法で、カウンターウエイト19の落下速度および発電機の電気出力は中間の波高さの増加に伴って増加する。カウンターウエイトのスパンの調節のためのこの原理は、自己調節であり、したがって他の方法のように制御システムによって調節する必要はないが、カウンターウエイトのg−力またはカウンターウエイトが駆動パッケージに影響を与える力、すなわち主としてカウンターウエイト線内の推進力の変動を補償する能力を欠いている。
自動化された設置のために波力エネルギー変換器1を設計することが可能である。その場合に開始位置は対応する線7、17が完全に巻き上げられた状態で、海床基礎5とカウンターウエイト19がステー13の部品に、またはフレーム141につながれる点である。この波力エネルギー変換器が電気配電ネットワークに接続され、制御システムが起動する。アンカー・ドラムの戻り阻止機構のための係脱機構が制御システムからの制御信号に従ってロック位置に置かれ、したがって、(複数の)カウンターウエイトがそのトップ位置にあるにも関わらず、アンカー・ドラム7は、結合を外すことができない。図示の設計ではこれは、アンカー・ドラム51の戻り阻止機構の周りに搭載される摺動クラッチ55が、海床基礎の全重量を担持するのに十分な、最大力またはトルク伝達力に置かれることを意味する。戻り送り機構のこの摺動クラッチ25は係脱させることができる。
次いでこの制御システムは、カウンターウエイト19および海床基礎5を保持する図示しない連結装置を緩め、それによって海床基礎は海床の底部8に向かって落下し始める。次いでアンカー・ドラムの線7が巻き戻され、ドライブシャフト11が回転し始め、(複数の)発電機21を駆動し始める。制御システムが最大電力を目指して調節し、それによって海床基礎の5の落下速度が、発生させられる電力によって、可能な限り減速させられる。さらに、設置が行われる現場の水深を測定する、図示しない音響測深器がブイ3の上に好ましくは装備される。アンカー・ドラム9は、(複数の)カウンターウエイト・ドラム15上に搭載されるものと同じ種類の図示しないセンサを装備し、制御システムはこの方法でアンカー・ドラムから巻き戻された対応するアンカー線7がどれくらいであるかを測定することができる。この制御システムは、これらの値を使用して海床基礎5が底部8に近づき始めるときを計算することができる。衝撃力を減少させるために、海床基礎の落下速度が戻り送り摺動クラッチ25を使用して減速させられる。海床基礎5が底部8に到達するとき、ドライブシャフト11は回転を停止し、その代わりに(複数の)カウンターウエイト19が落下し始め、(複数の)発電機21を駆動し続ける。ドライブシャフトに対するアンカー・ドラム9の回転のための係脱機構が作動させられ、したがって、アンカー・ドラムがドライブシャフトに対して一方向に回転できるようになる。図示の設計ではこれは、アンカー・ドラム内の摺動クラッチ55が通常のモードに置かれることを意味し、それは摺動クラッチによって伝達される力が海床基礎5を持ち上げるのに不十分な力になるように減少させられることを意味する。それによってこの制御システムは、動作モードに置かれる。
発電機21の外部電気接続は、発電機ステーター21’’がカウンターウエイト・ドラム15の内側に搭載されるときでも、スリップ・リング、ブッシュおよび同様なものを使用せずに行うことができる。この発電機ステーター21’’は、従来の方式で回転時に中に電力が誘起され、カウンターウエイト線17と平行に、但しアンカー・ドラム9により近接してカウンターウエイト・ドラム上に部分的に巻き上げられる電気ケーブル41に接続される電気巻線含む、図4参照。この電気ケーブルは、カウンターウエイト・ドラム15から下に、アンカー線7に沿って移動できる移動可能なコネクタ43まで延びる。このコネクタのところで電気ケーブル41は、例えば特別なコネクタ・ブイ45まで延びるさらに別の電気ケーブル45に接続される。これによってこの波力エネルギー変換器1は、線およびケーブルが互いに絡まることなく、波が方向を変更するとき回転するようにうまく取り扱うことができる。
第1の電気ケーブル41がカウンターウエイト19と同じドラム上に巻かれるので、このコネクタ43はアンカー線15に沿って主としていつも同じ距離でカウンターウエイトの下を摺動するであろう。これによってカウンターウエイトと電気ケーブル41、45が互いに近接するのを回避することができる。
エネルギー蓄積のための代替の方式では、このエネルギーは1つまたは複数のタンク内にガス圧力として吸収することができる。そのような波力エネルギー変換器1を図9aに概略的に示す。ここではアンカー・ドラム9は、戻り阻止機構53を介してドライブシャフト11に結合することのみ必要である、図5aおよび5bのシャフト・ステー13内の戻り阻止機構と比較されたい。どのようなステーも必要なく、その代わりにこのドライブシャフトは、カウンターウエイト・ドラム15と取って代わり、この場合は遊星歯車35などの固定された歯車機構、発電機21および圧縮機/ガス・ポンプ73などを同封することができる発電機ハウジングないし発電機ケーシング71内に直接、軸受内に軸支することができる。このケーシングは、図に示すようにブイの下側などでブイ3に固定され、または上記による変速機ユニット・スペース20が変速機ユニット2を搭載するために使用される場合は、ブイ内でやはり中央に配置される。圧縮機/ガス・ポンプ73からガスパイプ75が、好ましくはブイのところにまたはブイ内に配置されるガスタンク77まで走る。このガスタンクは、超過圧力弁79および空圧モータ81にも接続される。このモータの出て行くシャフト85のところに、アンカー・ドラム9のフランジ31上の歯と共に作用するギアホイール87が配置される。
この圧縮機/ガス・ポンプ73は、いわゆるスクロール・ポンプであることができ、その場合それは、発電機21のステーター21’’と固定して結合される移動可能な部品89と、ハウジング71に固定された1つの部品91を有する。ドライブシャフトの戻り阻止機構53は、ここではハウジングに対して作用する。
この設計では、ドライブシャフト11が上昇するブイ3によって回転させられるとき、スクロール・ポンプ73によってガス圧力がガスタンク77内に蓄積される。このガス圧力は、蓄積されたエネルギーに対応する。ガス圧力の増加と同調して、ドライブシャフトの回転に対して対抗する力も増加する。ドライブシャフト11のより速い中間回転速度を生じさせるより高い波は、その結果より高いガス圧力を蓄積させ、それによって発電機ローター21’とステーター21’’の間により高い対抗するトルクを与える。したがって、この制御システムは、均等化は空圧圧力内の慣性を介して起きるので、動作を能動的に制御したり最適化する必要はない。エネルギー蓄積が蓄積される空圧圧力によって起きるので、超過圧力弁79を、アンカー・ドラム9とドライブシャフト11の間の摺動クラッチ53の代わりに、場合によっては使用することができる。しかしながら摺動クラッチは、それが剪断歪に対して保護するという利点を有する。ブイ3が沈んでいるときのように、アンカー・ドラム9がアンカー線7へのその連結によって回転しないとき、その代わりにアンカー・ドラムはアンカー線を伸ばすように後ろ向きに回転し、それによって空圧モータ81が回転し、アンカー・ドラムのフランジ31に作用するギアホイール87を駆動する。
ガス戻り圧力の使用を伴う場合でさえ、発電機ステーター21’’をブイ3に固定し、その代わりに圧縮機73を遊星歯車35のリング歯車165に結合させることが可能である、図9b参照。この場合は、発電機のステーターは発電機ハウジング71に固定される。発電機シャーシー91も発電機ハウジングに固定され、一方では圧縮機73の歯車95は、そのドライブシャフト93上で、図示のように直接のまたは歯付きベルト/チェインを介してのいずれかで、遊星歯車のリング歯車に結合される。このリング歯車は、入ってくるドライブシャフト11の周りを自由に回転する。
変速機ユニット2のこの設計は次の利点を有することができる。
−スリング・クラッチがアンカー・ドラム9または戻り送り機構内に必要でない。
−より高い波は、より高いガス圧力と発電機21のより高いトルクになるので、カウンターウエイトが必要でなく、それによって調節しなければならないg−力およびカウンターウエイト・スパンが存在しなくなる。
−カウンターウエイトおよび線、外部電気ケーブル、加速の影響、重心等に伴う起こり得る問題点を完全に減少させ、ないし低下させることができる。
−カウンターウエイトを使用しない場合には、より低い可動重量を与え、それによって海床基礎5もより小さく、すなわちより小さな質量で作ることができる。ブイ3の持ち上げる力も同じくらい大きく減少させることができる。
−より浅い設置深さをうまく取り扱う。
−アンカー・ドラムのみを大洋水に曝す必要があり、一方他の構成部品は封入することができる。
−歯車機構および発電機用のハウジングを、カウンターウエイト・ドラムが使用される、前に説明した設計でのものより小さな直径で作ることができる。
上記で説明してきたのと同じ種類の変速機ユニット2を、図7a、7bおよび7cから明らかになるような、波力エネルギー変換器の他の設計に使用することができる。海床基礎の代わりにここでは、海床8に締結される海床締結デバイス61、63が存在する。これらの海床締結デバイスは、海床から上向きに伸びるフレームないし柱のような形状であり、変速機ユニット内のドライブシャフト11は、このフレーム内の、またはこの柱のところの軸受内に軸支される。図7aおよび7bでは、水表面6の下に完全に配置され、海床から上に伸びる2つの垂直の柱が使用され、変速機ユニット内のドライブシャフト11は、これらの柱に対して軸受内に軸支される。図7aおよび7bによる設計では、このアンカー線7はブイに固定される。図7bでは、変速機ユニットが水域の底部に極めて近接して搭載されるので、カウンターウエイトはその代わりに浮遊物体19’のような形状にされる。図7cによるフレームは、ブイ3の側面のところで底部8から水表面6の上に上向きに伸びる2つの垂直の柱を含む。これらの柱は頂部のところで水平の梁64によって結合され、この水平の梁はブイの上に配置され、そこから上記のステー13と同様なステー部品が下向きに突起する。変速機ユニット内のドライブシャフト11は、これらのステー部品内で軸受内に軸支される。図7cによる設計では、水表面およびブイが上昇するときのみエネルギーが波から吸収される他の設計と対照的に、水表面6およびブイ3が沈むときのみ波からエネルギーが吸収されることを特に認めることができる。これによってこのブイは、カウンターウエイト19の重量より大きな重量が与えられなければならず、依然として水表面6に浮かんだままでいることができるように、十分な体積/浮力が与えられなければならない。これは図7cに、ブイ3がバラスト5’’に固定されていることによって示されている。この設計では、カウンターウエイト19の線17は、波が沈むときカウンターウエイト・ドラム15の周りに巻き上げられ、これが動きのスパンおよびg−力の変動を著しく減少させる。正しい寸法設定と周期的な波によって、このカウンターウエイトは原理的に静止して保持される。このカウンターウエイトを水表面6の上に維持することも可能であり、それはカウンターウエイトの質量に対してより高い推進力を与える。この設計は、既に基礎が存在する場所、例えば風力発電プラントのところ、カウンターウエイトおよびその線17がマストの内側を走ることができる場所、または石油プラットフォームのところに特に適している。
2つのアンカー・ドラム9v、9hの間で中央に配置されるカウンターウエイト・ドラム15を有する、図15aによる変速機ユニット215を有する波力エネルギー変換器1の代替の設計を図7dに示す。この変形形態では、ドライブシャフト11は錘ないし荷重211によって駆動され、これは例えばばねまたは空気ばねを含むことができる弾性機関213内で、ブイ3の下に垂れ下がる。錘のところにアンカー線も固定される。この錘211は、ブイ3と比較して、または一般に波力エネルギー変換器の他の部品に対して、相当な質量を有することができる。ドライブシャフトの前向きの駆動は、ブイ3と錘211の間の共同作用を介して起きる。波頂点が移動した後でブイが沈むとき、このブイも下向きに移動する。次いでブイが減速し次の谷で方向を変えるとき、錘211はその慣性に起因して第1の下向きに移動し続け、それが弾性機関213を伸張させ、引き伸ばし、かつアンカー・ドラム9vおよび9hが回転し、順繰りにドライブシャフトを回転するように駆動させるように、アンカー線17を巻き戻す。この弾性機関が引き伸ばされるとき錘211上のそれらの牽引力が増加し、したがって、錘211の下向きに進行中の動きが徐々に停止する。その後、弾性機関からの力が非常に大きくなるので、錘は上向きに移動するであろう。これは結果的にブイの3の上昇移動のときに起きる。次いでブイ3が次の頂点で再び向きを変えるように減速するとき、錘はその質量慣性モーメントに起因して上向きに移動し続ける。次いで弾性機関213は一緒に引っ張られ、それによって錘211上のそれらの牽引力は減少し、したがって、それは重力によって最早バランスしなくなり、これが錘に影響を及ぼす。同時にアンカー・ドラム9は戻ることができ、ドライブシャフト11の次の駆動のためにアンカー線7を緊張させる。次いで錘は徐々に減速して停止し、その後再び下向きに移動し始める。
カウンターウエイト7は、錘211内の貫通孔を貫通して、波の動きに対する位相シフトを伴って移動し、波の動きのときにその垂直の動きを減少させ、加速および減速の大きさを減少させるカウンターウエイト19まで走り、したがって、発電機21に負荷を掛けるトルクが少し一様になり、それによって回転速度の必要な調節がより少なくなる。そのような設計は例えば、ドライブシャフトを駆動するための、底部8に固定されるアンカー線7を使用するのが困難である可能性のある、深い水深のところで有利である可能性がある。
波力エネルギー変換器が風力発電プラントに搭載される一設計では、同じギアボックスおよび発電機を使用できるように、タービン翼からの変速機を波からの駆動と一体化することが可能である、図8a、8bおよび8c参照。この変速機は、以下で説明する図15a、15bおよび15eに示すものと比較して最も近いものであることができる。図15fによる固定されたステーターを有する変速機の型は、同様な方法でも使用することができるが、これは本明細書ではこれ以上説明しない。主な相違点は、発電機のステーターに対する遊星歯車25の搭載である。この設計では遊星歯車の機能は、風力発電プラントのローターが遊星歯車キャリア161を回転させ、一方バラスト5’’を有するブイ3が遊星歯車のリング歯車165を駆動させることによって、風の動きおよび波の動きからの駆動を組み合わせることである、図12aおよび12bも参照。この方法で、それぞれ風の動きと波の動きから得られる回転およびトルクが互いに加えられ一緒に太陽歯車167を駆動することができる。遊星キャリアまたはリング歯車のどちらも後ろ向きに回転できず、これは遊星キャリアについてはシャフト・ステー13内の戻りロック機構53によって行うことができ、リング歯車については戻りロック機構と同様な機能を有するスリッパー・クラッチ201によって行うことができる。このスリッパー・クラッチ201は、アンカー・ドラムのスリッパー・クラッチと同等な機能を有するが、図5bおよびその説明を参照、この設計ではそれはシャフト・ステー13と遊星歯車35の間に配置され、それが風の動きおよび波の動きの両方に対するトルクおよびエネルギー吸収を1つの同じスリッパー・クラッチで、制限することを可能にする。
発電機21は、他の設計について説明したものと同じ均等化能力を与える、結合されたカウンターウエイト19を有するカウンターウエイト・ドラム15内に単独で搭載される。アンカー・ドラムの戻り送りも、対応する方式でアンカー・ドラム9vおよび9hに連結されるリンク・シャフト58へのリング歯車29および歯付きバンド/チェイン175を介して、カウンターウエイト・ドラム15から同じ方式で行われる。ブイ3と組み合わせたアンカー・ドラム9vおよび9hの直径とバラスト5’’の重量とが、遊星歯車のリング歯車165上に置かれるトルクとリング歯車がどのような回転速度を得るかを決める。これらのパラメータは、風力タービンからのトルクと発電機のサイズが釣り合うように選択される。風および波の駆動から得られるトルクが、カウンターウエイト19によって与えられる対抗するトルクより高い限り、風の動きおよび波の動きの両方からのエネルギーをカウンターウエイト19内に蓄積することができる。風力発電プラントのローター204からのトルクが風力に依存して変わり、一方波の駆動からのトルクは一定であるので、無段変速機ギアボックスを図12eに示すのと同じ方式で遊星歯車の前に搭載することが必要である可能性があるが、この設計ではこの無段変速機ギアボックスは、現行の風力を求めて風の駆動からのトルクを波の駆動からのトルクに対して調整する。風力発電プラントのタワー207がブイ3によって損傷されるのを防止するために、ブイを風力発電プラントのタワーに沿って案内するための、図示しないある種のスレッジ機構が使用される。ギアボックスの破壊は、今日の風力発電プラントに対する大きな問題点である。波力エネルギー変換器の変速機を風力発電プラントにも、トルクおよびエネルギー吸収を制限するその能力を利用するために波の駆動なしで使用することができる。この場合は、図3dで説明したものと同じ型式の変速機設計を使用することができるが、アンカー・ドラム9は含まない。風力発電プラントのローターは、図8dおよび8eに示すようにドライブシャフト11に直接結合される。カウンターウエイトは、風力発電プラントのタワー207の内側を動くことができる。風力発電プラントに使用されるとき、図8fに示すようにカウンターウエイトの代わりにガス戻り圧力も使用することができる。この変速機設計を、図9bを参照してより詳細に説明する。その場合、このカウンターウエイトは省くことができ、したがってその質量慣性モーメントは何の影響も有さず、これは1つの利点になり得る。
上記で説明した設計では、発電機21のローターとステーターの間の電磁気結合がほとんどの場合に利用されるが、一方他の場合では、発電機の連続駆動を達成するために、特別な方式で設計される変速機が使用される。エネルギー蓄積および戻り送りを異なる方式で行うことができる。一般に、波力エネルギー変換器1は、図10aを見れば分かるような構成部品を含むことができる。変速機ユニット2内に含まれるアンカー・ドラム9は、適切な方法でブイ3とブイよりもより固定された位置を有すると見なすことができ、底部例えば底部締結デバイス5’によって構成することもできる、図10bも参照、物体8’との両方に機械的に連結され、これらの2つの機械的連結7’’、7’’’のうちの少なくとも1つが、通常、線ないしワイヤーであるが特別な場合に剛体のシャフトを使用することができる柔軟性のある機関などの、長楕円形の機関を含む。アンカー・ドラムは、ブイに対して下、内側、上などの適切な方式で配置することができる。それは、矢印101、102によって示すように2つの方向に回転することができる。このアンカー・ドラム9は、ドライブシャフト11をその回転のときに1つの方向に駆動し、その場合ドライブシャフト11は矢印103によって示す1つの方向にしか回転できない。このドライブシャフトは発電機21に機械的に連結され、この連結は23’のところに象徴的に示されている。この連結器および/または発電機は、ドライブシャフト11の回転のときに回転のエネルギーの一部がエネルギー蓄積デバイス105内に蓄積される方式で設定される。ドライブシャフトが発電機を回転させることができないとき、このエネルギー蓄積デバイスがその代わりに発電機を駆動する。エネルギー蓄積デバイス内に貯蔵されるエネルギーは、アンカー・ドラム9を戻すためにも使用することができ、この目的のためにエネルギー蓄積デバイスを戻り送り機構107に連結することができる。
発電機21の2つの、互いに対して回転可能な部品間での電磁気結合を利用する場合では、ドライブシャフト11は第1の部品21’に、この部品を矢印23によって示す方向に回転するように駆動するために連結器23’を使用して機械的に連結され、発電機の部品間の電磁気結合がドライブシャフトの回転に対応するトルクを与え、もう1つの部品21’’も同じ方向に回転するようにさせる、図10b参照。発電機の第2の部品21’’は、ドライブシャフトの回転のために、回転の動きをするときにそれが回転のエネルギーの一部分をエネルギー蓄積デバイス105内に蓄積するように、何らかの方法で連結される。ドライブシャフトの回転速度が低くなり、それが最早発電機の第2の部品を回転させることができないとき、このエネルギー蓄積デバイスが代わりに発電機の第2の部品を前と反対方向に回転するように駆動する。
上記で説明した設計では、2つの発電機21が使用される。しかし、もしあるとすれば、付属のパワー・エレクトロニクスおよびギアボックスを有する発電機は、波力エネルギー変換器1のうちで比較的コストの掛かる部品であるので、1つの発電機しか有さない設計はよりコスト効率が高くなる可能性がある。以下に1つの発電機しか有さない可能性のある設計を説明する。
2つのカウンターウエイト19と発電機のステーターがブイ3に固定された1つ発電機21を有する第1の設計では、図14参照、例えば図26に示すように、戻り送りないしリンク・シャフト58も存在する。このリンク・シャフトは、2つのカウンターウエイト・ドラムの移動を一緒に連結し、したがって、右のカウンターウエイト・ドラム15hからの推進力が左のカウンターウエイト・ドラム15vに伝達される。この左のカウンターウエイト・ドラムは、発電機の回転速度をステップ・アップし、リング歯車連結を使用して左のカウンターウエイト・ドラムおよびカウンターウエイト19へのトルクも制限する遊星歯車35を含む。さらに巻上げドラムの位置は上記で説明した設計と同じであり、したがってこの方法で設計される波力エネルギー変換器内のブイ3は、2つの発電機を有する設計とほぼ同じである、波に向かう安定性または位置決めを得る。この発電機21は、図に示すように、発電機のステーター21’’がブイに固定された状態で別個の発電機ハウジング181内に搭載することができ、または別法として左のカウンターウエイト・ドラム15v内にまたは左のカウンターウエイト・ドラム15vのところに搭載することができる。
図示のように、リンク・シャフト58を、波方向に見たときのドライブシャフト11の前に配置することができる。これは海床基礎5から離れて漂流するとき、より良好な間隔を与える。この漂流は、ドライブシャフト・フレーム141と接触させてはならないアンカー線7をカウンターウエイト線に対して斜めの角度である方向に延びるようにさせる。別法として、このリンク・シャフト58はドライブシャフト11の上に、斜めの位置にまたは真直ぐ上に配置することができる。
さらに、波力エネルギー変換器が波方向に向かって安定性または位置決めを緩めずに1つのカウンターウエイト19のみ使用するように、変速機ユニット2を設計することが可能である。それどころかそのような設計は、波方向に対する位置決めを高めることができる、正面図について図15aを、側面図について図15b参照。このアンカー線7はY−連結器191内で2つの下位線に分割され、これらは単一のカウンターウエイト・ドラム15’の両側に位置決めされるそれぞれ1つのアンカー・ドラム9v、9hの周りに巻き上げるようにさせられる。図13a、13bおよび13cについて説明したものに対応する案内ローラー193がこの下位線をそらさせ、したがってそれらはアンカー・ドラム上に正しく巻き上げられる。カウンターウエイト19は、それぞれの線が巻き上げられるカウンターウエイト・ドラムおよびアンカー・ドラムのところの点が、ドライブシャフト11の対向する側の上にあるので、アンカー線がY−連結器内に一緒になるにも関わらず、自由に動く。基礎5からの漂流は、アンカー線7、7’に対して割り増しの余裕を与えるある角度も与える。さらなる安全余裕のために、このY−連結器191は、図示しないカウンターウエイト19の可能な限り最も低い位置の下に配置することができる。
図15cおよび15dに、分割されたアンカー線7’のアンカー・ドラム9vおよび9hの周りの直巻上げの代替案を示す。ロッド221がこれらの線を互いからある距離に保持し、かつY−連結器191の丁度上に配置される。下位アンカー線7’とカウンターウエイト19の間の衝突のリスクを減少させるために、このロッド221はカウンターウエイトの可能な限り最も低い位置の下に配置することができる。この代替案に伴う1つの利点は、ロッド221を海床基礎5と結合するアンカー線7の部分を程度の差はあるが剛体にすることができ、例えば底ケーブルないしチェインとして設計することができ、一方下位アンカー線7’はアンカー・ドラム9vおよび9hの周りに巻き上げるためにもっと柔軟性のあるようにすることができることである。さらに、このロッド221は、それ自体および分割されないアンカー線7の加重を担持するように設計することができ、したがってこれが、これらの図に図示しない戻り送り部を駆動するためにより低い力しか必要でなくなることにつながる。
図15eに、図15aおよび15bによる波力エネルギー変換器内の変速機ユニットを下から見て、かつより詳細に示す。ドライブシャフト11は、ここでは例えば左の15vで示すアンカー・ドラムのうちの1つにのみ固定される。この左のアンカー・ドラム9v、ドライブシャフトおよび1つかつ唯一のアンカー・ドラム15’は、発電機21がカウンターウエイト・ドラムに組み込まれる、前に説明した設計と同じ機能および構造を有する。この第2のアンカー・ドラム、すなわち右のドラム9hは、それが自由に回転できるがその推進力がリンク・シャフト58を使用して左のアンカー・ドラム9vに伝達されるように、軸受内に軸支される。このリンク・シャフトは、その上に搭載されるチェイン・ホイールまたはギアホイール203を介して、やはり歯付きフランジ31の上を動くチェインまたは歯堤205を使用してアンカー・ドラムに連結することができる。別法としてこのギアホイール203は、図2fに示すのと同じ方式でアンカー・ドラムのフランジに直接結合することができる。アンカー・ドラムの戻り送りは、以前のものと対応する方式で行われるが、この場合スリッパー・クラッチ25’’は、カウンターウエイト・ドラム15’に連結される。
図15fに、図15eによる変速機ユニットに対する代替案を示す。図15fによれば、発電機のステーター21’’は、図2gに示すものと対応する方式でブイ3に固定される。発電機ケーシング71は、単一の、中央に配置されるカウンターウエイト・ドラム15’の片側に配置され、これは結果として変速機ユニット2がより広く作らなければならないことになる。アンカー・ドラム9v、9hは、カウンターウエイト19およびカウンターウエイト線7’を介した基礎5による牽引力が波力エネルギー変換器内で中央にあるべきであるため、カウンターウエイト・ドラムから等しい距離に配置しなければならない。これは、変速機ユニットの部品を担持するために、より多くのステー部品またはシャフト・ステー13、145が必要になることにつながる。上記で図15eについて説明したのと同じ設計のアンカー・ドラムを使用することが可能である。しかしこの場合は、変位されたまたは自由に位置するスリッパー・クラッチ55’を使用して、かつ変速機ユニット2のために変速機ケーシングスペース20内の割り増しのスペースを使用することによって、左のアンカー・ドラム9vを簡略化するように動機付けすることができ、したがって図5cについて前に説明したのと同じ方式で、左のアンカー・ドラム9vをドライブシャフトの第1の部品11’に固定でき、一方スリッパー・クラッチのもう1つの側のドライブシャフトの第2の部品11’’は歯車23に入ってくるシャフトを備える、またはシャフトに直接結合され、カウンターウエイト15’がこの第2の部品の周りを回転することができる。
図15gおよび15hに、機械構造体がより広い範囲で封入されている図15fによる変速機ユニットの代替案を示す。ドライブシャフト11’、11’’とリンク・シャフト58の間の動力伝達は、この設計では好ましくはギアホイール209を介して行うことができる。図に示すように高い歯車比が、リンク・シャフトの回転速度を増加させ、トルクを減少させるために使用され、これが動力変速機のより少ない磨耗とより小さな寸法を与える。この設計では、ドラム9v、9h、15’のみが変速機ハウジング20内で海水に曝される。全ての付属のパワー・エレクトロニクスを伴う発電機21およびリンク・シャフト58は動力変速機を含めて、雰囲気制御される環境195内に封入される。この設計では、戻り送り部26は歯車35の高速度側に配置されているが、低速度側に配置することもできる。戻り送り部26を高速度側に配置することに伴う1つの利点は、それがリンク・シャフト動力変速機210と比較して戻り送り部内により高い歯車比を必要とするので、スペースがより効率的に使用されることである。しかしながらスリッパー・クラッチ内の高い速度回転は、より高い変速機損失を与える。
図15iに、図15gに関連して説明した戻り送り部に対する代替案を示す。ここでは代わりに、リンク・シャフト58上の任意のギアホイール209に直接結合される電気モータ223が使用される。この電気モータは、図示しない制御システムおよび他の電子部品を駆動する図示しない蓄電池から電力を得る。この電気モータは制御システムによって制御され、その方式で戻り送りを最適化することができる。図示しない例えばコイルばねまたは定出力ばねなどのばね機構を使用して、戻り送り部を駆動することも可能である。
1つまたは複数の以下の利点を有する波力エネルギー変換器を説明してきた。
−(複数の)カウンターウエイト・ドラムがシステム内の最大抵抗力を制限し、発電機に作用するトルクに対して鋭い制限を与える。
−エネルギー蓄積が非常に単純でかつ効率的であり、長い時間間隔にわたってエネルギーを貯蔵でき、それと同時に、この時間間隔中の平均波高さに対して推進力を一定に保持することができる。
−波力エネルギー変換器は、エネルギー蓄積のためおよびカウンターウエイトの重量を減少させるために、設備設置場所の深さを最適な方法で利用するように寸法設定することができる。
−エネルギーの貯蔵は、「蓄積が一杯になる」とき自動的に停止し、これは発電機が電力を失うことなく行うことができる。
−拡張可能性は極めて良好であり、この波力エネルギー変換器は、発電機のより良好な稼働時間率を得るように、選ばれた波高さのときに最大容量に到達するように寸法設定することができる。
−平均波高さが通常より相当に高いときの稀な機会にエネルギーの吸収をうまく取り扱うことができるようにシステム全体を過大な寸法にすることは必要ない。
−ブイは、波の大きさとは独立に波の動きに連続的追従する。アンカー・ドラム内の力の制限によって、デバイスがスラストおよび過負荷から効率的に保護される。
−推進力が歯車比に対して一定であり、これによって一定のまたは可変の回転速度で作動する同期交流発電機を含む全ての型式の発電機の使用が可能になる。
−設置時の最小限の手動労力、基礎が降ろされているとき既に電気を発電する設置の短い過程。
−大部分は単純な、耐久性のある構造。
−発電機および変速機の非常に高い稼働時間率。
−長い修理間隔。
本明細書で本発明の特定の実施形態を図示し、説明してきたが、多数の他の実施形態を心に描くことができ、本発明の趣旨および範囲から逸脱することなく多数の追加の利点、改変および変更を当業者が容易に気付くことが理解される。したがって本発明はそのより広い態様において、本明細書で示し、説明した特定の詳細、代表的なデバイスおよび図示の実施例に限定されない。したがって、様々な改変を添付の特許請求の範囲およびそれらの均等物によって定義される全体的な本発明の趣旨および範囲から逸脱することなく行うことができる。したがって、添付の特許請求の範囲は、本発明の真の趣旨および範囲にある全てのそのような改変および変更を包含することを意図していることを理解されたい。多数の他の実施形態は本発明の趣旨および範囲から逸脱することなく心に描くことができる。
1 力エネルギー変換器; 2 動力伝導機構(変速機ユニット)2;
3 ブイ; 5 基礎; 11 ドライブシャフト; 21 発電機;
23 歯車ユニット; 105 エネルギー蓄積デバイス。

Claims (15)

  1. −水域の水の動きによって始動されるように、前記水域中に配置されるブイと、
    −前記ブイに対して、前記水域の水の動きに対抗する力を与えるように配置されるデバイスに対して軸受内で回転可能に軸支されるドライブシャフトと、
    −前記水域内の水の動きに対して対抗する力を与えるように配置される前記ブイに一端部で連結され、且つ他端が前記デバイスに連結される第1の長楕円形の手段と、
    −前記ドライブシャフトに連結され、互いに対して回転可能な2つの部品、すなわち第1の部品と第2の部品を含む発電機と、
    −エネルギー蓄積デバイスとを備え、
    前記第1の長楕円形の手段と前記ドライブシャフトの間の連結が、前記ドライブシャフトを前記ブイまたは前記デバイスの第1の動きのときに主として一方向に回転させ、それによって前記発電機の第1および第2の部品を第1の回転方向に回転させて、電流を発生させるように駆動し、それによって前記エネルギー蓄積デバイスにエネルギーを供給し、前記ブイまたは前記デバイスと、前記第1の長楕円形の手段と、前記の動きに対して対抗する力を与えるように配置される前記デバイスと、前記ドライブシャフトと、前記エネルギー蓄積デバイスとが一緒に連結される波力エネルギー・プラントであって、
    前記エネルギー蓄積デバイスが、主として前記第1の動きから切り離された、前記ブイまたは前記デバイスの主として第2の動きのときに、前記発電機の第1および第2の部分が同じ前記第1の回転方向に回転するように駆動し、それによって、前記ドライブシャフトが前記発電機の第1および第2の部品を回転させるように駆動するときと同じ極性を有する電流を発生させるように構成され、
    −前記ドライブシャフトと前記発電機の第1の部品との間に連結される機械的歯車であって、前記ドライブシャフトが前記機械的歯車の入ってくる側に連結され、前記発電機の第1の部品が前記機械的歯車の第1の出て行く側に連結される機械的歯車と、
    −前記発電機の第1の部品および第2の部品の間の空隙を越えて、少なくともそれらの相対的な移動中に、電磁気結合が存在することと、
    −前記発電機の第2の部品が前記ブイに固定されることと、
    −前記エネルギー蓄積デバイスが、前記機械的歯車の前記第1の出て行く側と切り離された第2の出て行く側に機械的に連結されること、
    を特徴とする、波力エネルギー・プラント。
  2. 水表面の上下動のときに交互に上昇・下降あるいは交互に前後に揺動するように配置されるブイを含み、前記水表面の前記第1の動きが、前記水表面の上に行く動きおよび下に行く動きのうちのいずれか1つを含むことを特徴とする、請求項1に記載の波力エネルギー・プラント。
  3. 前記ドライブシャフトの周りで一方向に回転するように軸受に軸支されたアンカー・ドラムを前記ブイの第1の動きに伴って回転するようにし、それによって前記ドライブシャフトも回転させるように前記第1の長楕円形の手段に連結される、ことを特徴とする、請求項1からのいずれか一項に記載の波力エネルギー・プラント。
  4. 前記第1の長楕円形の手段は、アンカー・ドラム上に巻き上げられる柔軟性のあるワイヤーまたはチェインであり、前記ブイの前述の第2の動きのときに、前記柔軟性のある機関を緊張した状態に維持するように、前記アンカー・ドラムを回転させる機構を有する、ことを特徴とする、請求項に記載の波力エネルギー・プラント。
  5. 前記軸受は、前記ドライブシャフトの周りで単一方向にアンカー・ドラムを回転させるものであり、逆方向に回転しているアンカー・ドラムは前記ドライブシャフトと反対方向に駆動することが可能であり、この軸受は回転力を制限又は切断するための連結器を有し、これによって前記アンカー・ドラムが前記ドライブシャフトに作用する、ことを特徴とする、請求項およびのいずれか一項に記載の波力エネルギー・プラント。
  6. 前記ドライブシャフトがブイのところで軸受内に軸支され、前記第1の長楕円形の手段が一端で前記ブイの動きに対抗するある点に、特に前記水域の底部のところのような固定された点または水域の前記底部のところに締結されたデバイスの固定された点に連結される、ことを特徴とする、請求項1からのいずれか一項に記載の波力エネルギー・プラント。
  7. 前記ドライブシャフトが、水域のところに固定された1つのデバイスに対して軸受内に回転可能に軸支され、前記第1の長楕円形の手段が一端部でブイに連結される、ことを特徴とする、請求項1からのいずれか一項に記載の波力エネルギー・プラント。
  8. 前記ドライブシャフトが前記水表面の下に配置され、前記エネルギー蓄積デバイスが少なくとも1つの浮遊物体を含む、ことを特徴とする、請求項に記載の波力エネルギー・プラント。
  9. 前記ドライブシャフトが前記ブイに対して軸受内に回転可能に軸支され、前記第1の長楕円形の手段が一端で前記ブイに弾力的に吊り下げられる錘に連結される、ことを特徴とする、請求項1からのいずれか一項に記載の波力エネルギー・プラント。
  10. 前記ブイが空気ポケットとして機能し、中に少なくとも前記ドライブシャフトの主要な部品が配置されるスペースを含む、ことを特徴とする、請求項1からのいずれか一項に記載の波力エネルギー・プラント。
  11. 前記エネルギー蓄積デバイスが、前記ブイの前記の第1の動きのときに上向きに移動しそこに位置エネルギーが蓄積される錘として配置されるカウンターウエイトを含み、前記ブイまたは前記他のデバイスと、前記第1の長楕円形の手段と、前記ドライブシャフトと、前記カウンターウエイトとの間の連結が、前記ブイまたは前記デバイスの前記第2の動きのときに前記カウンターウエイトが下向きに移動し、前記カウンターウエイトが前記発電機の第1の部品および第2の部品が前記第1の回転方向に回転するように駆動するように構成される、ことを特徴とする、請求項1からおよびから10のいずれか一項に記載の波力エネルギー・プラント。
  12. 前記エネルギー蓄積デバイスが、前記ドライブシャフトに対して軸受内に回転可能に軸支されるカウンターウエイト・ドラムと前記カウンターウエイト・ドラムが回転するように駆動するために前記カウンターウエイト内の動きを連結するための第2の長楕円形の手段とを含み、前記ドライブシャフトが前記発電機の第1の部品を回転させるように連結され、かつ前記カウンターウエイト・ドラムが前記発電機の第2の部品を回転させるように連結され、前記発電機の第2の部品が前記発電機の第1の部品に対して回転するとき前記発電機が電流を発生させ、と同時にそれがこの回転に対して対抗するトルクを与え、前記発電機の第1の部品および第2の部品が互いに対して常に同じ前記第1の回転方向に回転するようにされる、ことを特徴とする、請求項11に記載の波力エネルギー・プラント。
  13. 前記エネルギー蓄積デバイスが、前記ドライブシャフトに対して軸受内に回転可能に軸支されるカウンターウエイト・ドラムと、前記カウンターウエイト・ドラムが回転するように駆動するために前記カウンターウエイト内の動きを連結するための第2の長楕円形の手段とを含み、機械的歯車が前記ドライブシャフトと前記発電機の第1の部品の間に連結され、前記ドライブシャフトが前記機械的歯車の入力側に連結され、前記発電機の第1の部品が前記機械的歯車の第1の出力側に連結され、前記発電機の第2の部品が前記ブイに固定され、前記カウンターウエイト・ドラムが前記機械的歯車の、前記第1の側とは切り離された、第2の出力側に機械的に連結され、したがって、前記ブイのデバイスの前述の第1の動きのときに、前記ドライブシャフトが前記機械的歯車の両方の出力側に、発電機の第1の部品を回転させるためにかつ前記カウンターウエイトを前記ドライブシャフトに対して持ち上げるために、前記カウンターウエイト・ドラムを回転させる推進力を与え、したがって、前記ブイの前述の第2の動きのときに、前記歯車の第2の出力側への前記カウンターウエイト・ドラムの連結を介して、前記カウンターウエイト・ドラムが前記発電機の第1の部品を回転させるための推進力を与える、ことを特徴とする、請求項11に記載の波力エネルギー・プラント。
  14. 前記エネルギー蓄積デバイスは、カウンターウエイト・ドラムとカウンターウエイトとを含み、前記第2の長楕円形の手段は、その下端部で前記カウンターウエイトに固定され、その上端部が程度の差はあるが前記カウンターウエイト・ドラム上に巻き上げられる柔軟性のある線、ワイヤーないしチェインである、ことを特徴とする、請求項1からおよびから13のいずれか一項に記載の波力エネルギー・プラント。
  15. 前記発電機の第1の部品と第2の部品の間の回転速度差をなくすために前記発電機の電気負荷を制御する制御システムによって特徴付けられる、請求項1から14のいずれか一項に記載の波力エネルギー・プラント。
JP2010547589A 2008-02-20 2009-02-20 波力エネルギープラント Expired - Fee Related JP5604310B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE0800395A SE532074C2 (sv) 2008-02-20 2008-02-20 Vågkraftverk
SE0800395-6 2008-02-20
SE0802165-1 2008-10-10
SE0802165 2008-10-10
PCT/SE2009/000100 WO2009105011A1 (en) 2008-02-20 2009-02-20 Wave power plant and transmission

Publications (2)

Publication Number Publication Date
JP2011512488A JP2011512488A (ja) 2011-04-21
JP5604310B2 true JP5604310B2 (ja) 2014-10-08

Family

ID=40985760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010547589A Expired - Fee Related JP5604310B2 (ja) 2008-02-20 2009-02-20 波力エネルギープラント

Country Status (9)

Country Link
US (1) US8581433B2 (ja)
EP (1) EP2257708A4 (ja)
JP (1) JP5604310B2 (ja)
KR (1) KR101679433B1 (ja)
CN (1) CN102016294B (ja)
CA (1) CA2715601C (ja)
NZ (1) NZ587401A (ja)
WO (1) WO2009105011A1 (ja)
ZA (1) ZA201005830B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823136B2 (en) 2018-04-27 2020-11-03 Pliant Energy Systems Llc Apparatuses, methods and systems for harnessing the energy of fluid flow to generate electricity or pump fluid

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393089B2 (en) 2013-04-05 2019-08-27 Oscilla Power Inc. Wave energy converter
CA2831560A1 (en) * 2010-04-07 2011-10-13 Ocean Harvesting Technologies Ab Wave energy converter and transmission
EP2375355A1 (en) 2010-04-09 2011-10-12 ST-Ericsson SA Method and device for protecting memory content
NO331710B1 (no) * 2010-07-09 2012-03-05 Smartmotor As Elektrisk maskin for undervannsanvendelser og system for energiomforming.
WO2012034104A1 (en) * 2010-09-10 2012-03-15 Whirl Energy, Inc. Energy storage devices and methods for using same
US8786151B1 (en) 2010-12-13 2014-07-22 Northern Power Systems, Inc. Apparatus for maintaining air-gap spacing in large diameter, low-speed motors and generators
FI123177B (fi) * 2011-05-05 2012-12-14 Esko Raikamo Järjestely aaltoenergian talteen ottamiseksi
ES2635423T3 (es) * 2011-06-03 2017-10-03 Ocean Harvesting Technologies Ab Convertidor de energía de las olas
NO20110813A1 (no) * 2011-06-06 2012-10-15 Oevretveit Hans Aage Bølgekraftverk
US8938957B2 (en) * 2011-10-03 2015-01-27 Mark R. Frich Wave responsive electrical generator
CN102410134A (zh) * 2011-10-31 2012-04-11 集美大学 多振荡浮子式波浪能液压发电装置
ITRM20110581A1 (it) * 2011-11-04 2013-05-05 Paolo Greco Dispositivo di conversione dell'energia meccanica delle onde del mare in energia elettrica
ES2619629T3 (es) 2012-03-20 2017-06-26 Aperia Technologies Sistema de inflado de neumáticos
EP2917564A4 (en) * 2012-10-05 2016-07-13 Ocean Harvesting Technologies Ab DEVICE FOR CONVERTING WAVEN ENERGY
US10144254B2 (en) * 2013-03-12 2018-12-04 Aperia Technologies, Inc. Tire inflation system
US9604157B2 (en) 2013-03-12 2017-03-28 Aperia Technologies, Inc. Pump with water management
US11453258B2 (en) 2013-03-12 2022-09-27 Aperia Technologies, Inc. System for tire inflation
US9995269B2 (en) 2013-07-31 2018-06-12 Ingine, Inc. Power converting apparatus
US20160215751A1 (en) * 2013-07-31 2016-07-28 Ingine, Inc. Power converting apparatus
WO2015045055A1 (ja) * 2013-09-26 2015-04-02 木村 光照 波力発電システムとこれに用いる伝達体および回転変換部
US10267286B2 (en) * 2013-12-04 2019-04-23 Weptos A/S Belt drive wave energy plant
GB201407447D0 (en) * 2014-04-28 2014-06-11 Deciwatt Ltd Portable apparatus for generating electrical energy
WO2016040746A1 (en) * 2014-09-12 2016-03-17 SeaPower Systems, LLC. Gravity-based energy-storage system and method
AU2015376139B2 (en) * 2015-01-09 2019-08-22 Wello Oy Method and system for adjusting the torque of a mass and spinning wheel rotator in a wave power plant
SE540572C2 (sv) * 2015-03-30 2018-10-02 Olcon Eng Ab Vågkraftverk
KR101667154B1 (ko) * 2015-06-01 2016-10-17 울산대학교 산학협력단 가변 관성과 cvt를 이용한 고효율 파력발전기
KR101749036B1 (ko) * 2015-06-24 2017-06-21 주식회사 인진 부유식 파력 발전 장치
KR101684144B1 (ko) * 2015-07-08 2016-12-07 울산대학교 산학협력단 무단변속기를 이용한 고효율 파력발전기 및 그 제어방법
WO2017012464A1 (zh) * 2015-07-18 2017-01-26 曲言明 浮体绳轮波浪能采集系统
GB2591421B (en) * 2015-07-22 2022-03-02 Oscilla Power Inc Improved wave energy converter
US9644600B2 (en) * 2015-09-29 2017-05-09 Fahd Nasser J ALDOSARI Energy generation from buoyancy effect
KR20150143381A (ko) * 2015-10-13 2015-12-23 정민시 중력체에 의한 부력 발전장치
KR101646162B1 (ko) * 2015-11-16 2016-08-05 정민시 중력과 부력을 이용한 자가 발전장치 및 이를 이용한 해양 경계등
US20170145984A1 (en) * 2015-11-23 2017-05-25 EcoH2O Innovations LLC Wave motor and desalination system
NO20151811A1 (no) * 2015-12-30 2017-03-06 Arvid Nesheim Bølgekraftomformer med forankringssystem
KR101758657B1 (ko) * 2016-03-25 2017-07-17 성용준 1축 동력 변환 장치
PL417271A1 (pl) * 2016-05-20 2017-12-04 Adam Bednarczyk Żaglowa siłownia wiatrowa
CN109488517B (zh) * 2016-07-03 2023-12-05 国网浙江省电力有限公司江山市供电公司 浮体绳轮波浪能采集系统
EP3491235B1 (en) 2016-07-28 2022-02-16 Bardex Corporation Wave energy converter with a depth adjustable paravane
US10731622B2 (en) 2016-08-03 2020-08-04 Ensea S.R.L. Device for conversion of mechanical energy from sea waves to electric energy
US11536241B2 (en) * 2016-08-08 2022-12-27 Yanming Qu Wave-activated power generator provided with rope-control hydraulic cylinder
CN109952237B (zh) 2016-09-06 2022-08-26 阿佩利亚科技公司 用于轮胎充气的系统
US10473083B2 (en) * 2016-09-11 2019-11-12 Lone Gull Holdings, Ltd. Inertial wave energy converter
WO2018125318A2 (en) * 2016-09-11 2018-07-05 Brian Lee Moffat Inertial wave energy converter
DK179607B1 (en) * 2016-09-14 2019-02-27 Resen Waves Aps A WAVE ENERGY CONVERSION SYSTEM AND A METHOD FOR GENERATING ELECTRIAL POWER FROM WAVE ENERGY
KR20180071647A (ko) 2016-12-20 2018-06-28 주식회사 포스코 노즐 장치
CN106515343A (zh) * 2016-12-30 2017-03-22 北京汽车研究总院有限公司 一种车辆悬架系统及车辆
US10654544B2 (en) * 2017-02-24 2020-05-19 Blue Ocean Gear LLC Detection of derelict fishing gear
WO2018226152A1 (en) * 2017-06-09 2018-12-13 Ocean Harvesting Technologies Ab Power take off device comprising a variable transmission for use in a wave energy converter
JP6474506B2 (ja) * 2017-07-24 2019-02-27 邦廣 畠山 改良型高効率発電装置
DK179738B1 (en) 2017-10-11 2019-04-30 Ravn Niels Wind-Driven Energy Converting Device
FR3073013B1 (fr) * 2017-10-26 2019-11-29 Seaturns Dispositif houlomoteur flottant
GB2583286B (en) * 2018-01-23 2022-05-11 Hussain Ahmad Rocking lever assembly for harnessing energy from surface waves
US11028818B2 (en) * 2018-04-27 2021-06-08 Oscilla Power Inc. Wave energy conversion of horizontal surge motion
KR102075575B1 (ko) 2018-11-21 2020-02-10 원광대학교산학협력단 파력발전용 터빈의 최대출력추적을 위한 발전기 제어 방법
WO2020112686A1 (en) 2018-11-27 2020-06-04 Aperia Technologies, Inc. Hub-integrated inflation system
CN109611258B (zh) * 2019-01-14 2023-11-17 中国海洋大学 一种波浪能发电装置的潮位自适应锚固装置及其运行方法
US10352288B1 (en) * 2019-01-23 2019-07-16 Saad KH. S. M. E. Alsahlawi Ocean wave energy generator and parabolic concentrator system
US10914280B2 (en) * 2019-06-06 2021-02-09 Arthur Lander Wave power generator
US11397087B1 (en) * 2019-06-27 2022-07-26 Amazon Technologies, Inc. Ocean-based storage and distribution of items
CN110601587A (zh) * 2019-09-12 2019-12-20 长春工业大学 高效俘获间歇运动能量的储能型摩擦纳米发电机
EP3839245A1 (en) * 2019-12-18 2021-06-23 Fazzini Meccanica di Menegoi Nadia C. S.N.C. System for the conversion of sea, lake or river wave power into energy
NL2026767B1 (en) 2020-10-26 2022-06-17 Dutch Wave Power B V Wave energy converter and a method of generating electrical power from wave energy
IT202100008900A1 (it) * 2021-04-09 2022-10-09 Tullio Mariotti Dispositivo di generazione di energia elettrica
US11739727B2 (en) * 2021-09-13 2023-08-29 Aquaharmonics Inc. System and method for wave energy converting device
KR20230050578A (ko) * 2021-10-08 2023-04-17 주식회사 인진 파력 발전 시스템
KR20230050576A (ko) * 2021-10-08 2023-04-17 주식회사 인진 파력 발전 시스템
WO2023064948A1 (en) * 2021-10-17 2023-04-20 Iyer Narayan R Magnetic peak load aversion in a wave energy conversion system
CN113922585B (zh) * 2021-11-23 2024-03-12 江苏科技大学 一种面向水下监测节点的海流能收集装置及其控制方法
US11746739B1 (en) 2021-12-09 2023-09-05 Dankiel Garcia Bouyancy energy conversion system and method
US20230234675A1 (en) * 2022-01-27 2023-07-27 Robert J. Cavanagh, JR. Gravity buoy
CN114876709B (zh) * 2022-05-19 2023-04-11 上海交通大学 重力储能式波浪能发电装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1292223A (en) * 1918-03-12 1919-01-21 Carl R Anell Wave-motor.
US3567953A (en) * 1969-03-10 1971-03-02 Bruno Lord Tide-operated power plant
FR2339071A1 (fr) 1976-01-20 1977-08-19 Comte Cyrille Appareillage d'exploitation de l'energie des vagues
JPS5322934A (en) 1976-08-14 1978-03-02 Kaiyou Kaihatsu Gijiyutsu Kenk Wave force generating set
IL53179A (en) * 1977-09-23 1983-02-23 Yedidia Solell Wave motor
IT1091611B (it) * 1977-11-21 1985-07-06 Fiat Spa Dispositivo per la trasformazione del moto ondoso marino in energia elettrica
US4241579A (en) * 1978-09-14 1980-12-30 Hydrodynamic Energy Systems Corporation Apparatus for producing electrical energy from multidirectional water wave action
JPS55127886U (ja) * 1979-03-05 1980-09-10
FR2465896A1 (fr) 1979-09-19 1981-03-27 Martinez Ortega Ignacio Appareil pour la captation de l'energie hydraulique des vagues de la mer
US5424582A (en) * 1984-05-24 1995-06-13 Elektra Power Industries, Inc. Cushioned dual-action constant speed wave power generator
KR880001911A (ko) * 1986-07-07 1988-04-27 심현진 파력발전방법 및 그 장치
JP2856790B2 (ja) * 1989-11-28 1999-02-10 池田 毅 波動発電装置
CN2099205U (zh) * 1991-08-03 1992-03-18 青岛银达(集团)光电计时设备公司 波浪发电原动装置
CN1064917A (zh) * 1991-11-29 1992-09-30 陈剑波 波浪发电的方法及装置
JP2857383B2 (ja) 1997-06-16 1999-02-17 佳津夫 立石 波力を利用した発電設備
US5889336A (en) * 1997-09-05 1999-03-30 Tateishi; Kazuo Power generating installation
EP1466090B1 (en) 2002-01-08 2007-03-14 Seabased AB Wave-power unit and plant for the production of electric power and a method of generating electric power
GB2408075A (en) 2003-10-16 2005-05-18 Univ Manchester Device for utilising wave energy
ES2238167B1 (es) 2003-11-28 2007-12-16 Arlas Invest, S.L. Sistema de generacion de energia a partir de la olas del mar.
FR2869368B3 (fr) 2004-04-23 2006-08-11 Olaf Rene Zalcman Appareil d'extraction de l'energie des vagues
US7319278B2 (en) * 2005-06-01 2008-01-15 Donald Hollis Gehring Ocean wave generation
CA2630440C (en) * 2005-11-18 2011-02-08 Alexander Greenspan Wave energy recovery system
NZ544812A (en) * 2006-01-19 2008-01-31 Lindsay Tadman Wave powered electricity generation using a floating body connected to a generator
ES2315092B1 (es) * 2006-04-12 2010-01-12 Pipo Systems S.L. Sistema de multiple captacion y transformacion complementada de energia a partir de las olas del mar.
US7245041B1 (en) * 2006-05-05 2007-07-17 Olson Chris F Ocean wave energy converter
WO2008038825A1 (fr) * 2006-09-27 2008-04-03 Iwao Ikegami Dispositif de stockage de l'énergie des vagues et générateur d'énergie l'utilisant
NO326323B1 (no) * 2007-03-16 2008-11-10 Craft Services As Anordning ved bolgekraftverk
AU2009204866A1 (en) * 2008-01-14 2009-07-23 Single Buoy Moorings Inc. Wave energy absorber
CA2622284A1 (en) * 2008-02-25 2009-08-25 Rolly Patton Method and apparatus for converting energy in a moving fluid mass to rotational energy driving a transmission
CN102099570A (zh) * 2008-05-15 2011-06-15 海洋能量系统有限责任公司 波浪能量回收系统
US7791213B2 (en) * 2008-08-20 2010-09-07 Patterson Morris D Vertical motion wave power generator
TWM381681U (en) * 2010-01-12 2010-06-01 shi-xiong Chen Seesaw type water wave electric generator
CN102022250B (zh) * 2010-04-28 2013-06-05 陈大千 潮汐能储能、发电方法及系统
IES86095B2 (en) * 2010-06-11 2012-12-05 Ocean Renewables Ltd A floating vessel that converts wave energy at sea into electrical energy
EP2596235B1 (en) * 2010-07-19 2014-06-11 Mile Dragic Ocean wave power plant
WO2012034104A1 (en) * 2010-09-10 2012-03-15 Whirl Energy, Inc. Energy storage devices and methods for using same
US8441139B2 (en) * 2010-10-10 2013-05-14 Reza Karimi Apparatus for converting wave, solar and wind energy
US8084877B1 (en) * 2011-06-14 2011-12-27 Netanel Raisch Methods and devices for converting wave energy into rotational energy
US8938957B2 (en) * 2011-10-03 2015-01-27 Mark R. Frich Wave responsive electrical generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823136B2 (en) 2018-04-27 2020-11-03 Pliant Energy Systems Llc Apparatuses, methods and systems for harnessing the energy of fluid flow to generate electricity or pump fluid

Also Published As

Publication number Publication date
KR20100133364A (ko) 2010-12-21
ZA201005830B (en) 2011-10-26
JP2011512488A (ja) 2011-04-21
NZ587401A (en) 2012-12-21
EP2257708A1 (en) 2010-12-08
US20110018275A1 (en) 2011-01-27
CN102016294B (zh) 2014-04-30
KR101679433B1 (ko) 2016-11-24
CA2715601C (en) 2016-05-03
CA2715601A1 (en) 2009-08-27
AU2009215956A1 (en) 2009-08-27
US8581433B2 (en) 2013-11-12
CN102016294A (zh) 2011-04-13
EP2257708A4 (en) 2013-04-10
WO2009105011A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5604310B2 (ja) 波力エネルギープラント
US10619618B2 (en) Inertial wave energy converter
US20130200626A1 (en) Wave Energy Converter and Transmission
US9784238B2 (en) Wave energy convertor
US20080053084A1 (en) Method and Apparatus for Utilising Wave Energy
AU2013327790B2 (en) Wave energy converter
EP3059441B1 (en) Wave-power generation system, and transmission body and rotation conversion unit used therefor
AU2017385006B2 (en) Inertial wave energy converter
KR20190033490A (ko) 파도 에너지 변환기
US20200395818A1 (en) The electric power generation system and Potential energy storage device for a power generation system
GB2412697A (en) Wind turbine
EP4348038A1 (en) Hydrodynamic power generator and system
AU2009215956B2 (en) Wave power plant and transmission
SE532074C2 (sv) Vågkraftverk
KR101013296B1 (ko) 승강식 횡형 수면 수차 발전 시스템
GB2477222A (en) Energy storage transmission unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140407

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140507

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees