JP5603889B2 - Steel part, single-cylinder internal combustion engine, straddle-type vehicle, and method for manufacturing steel part - Google Patents

Steel part, single-cylinder internal combustion engine, straddle-type vehicle, and method for manufacturing steel part Download PDF

Info

Publication number
JP5603889B2
JP5603889B2 JP2012026001A JP2012026001A JP5603889B2 JP 5603889 B2 JP5603889 B2 JP 5603889B2 JP 2012026001 A JP2012026001 A JP 2012026001A JP 2012026001 A JP2012026001 A JP 2012026001A JP 5603889 B2 JP5603889 B2 JP 5603889B2
Authority
JP
Japan
Prior art keywords
less
steel part
carburizing
steel
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012026001A
Other languages
Japanese (ja)
Other versions
JP2012184502A (en
Inventor
剛 久保田
博文 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2012026001A priority Critical patent/JP5603889B2/en
Publication of JP2012184502A publication Critical patent/JP2012184502A/en
Application granted granted Critical
Publication of JP5603889B2 publication Critical patent/JP5603889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、鋼製部品およびその製造方法に関し、特に、転がり軸受に接する表面を有する鋼製部品およびその製造方法に関する。また、本発明は、そのような鋼製部品を備えた単気筒内燃機関や鞍乗型車両にも関する。   The present invention relates to a steel part and a manufacturing method thereof, and more particularly to a steel part having a surface in contact with a rolling bearing and a manufacturing method thereof. The present invention also relates to a single-cylinder internal combustion engine or a straddle-type vehicle provided with such steel parts.

内燃機関には、ピストンとクランクシャフトとを連結するためにコネクティングロッドと呼ばれる(「コンロッド(con'rod)」と略称されることもある)部材が用いられている。コネクティングロッドは、棒状のロッド本体部と、ロッド本体部の一端に設けられた小端部と、ロッド本体部の他端に設けられた大端部とを備える。小端部がピストンに接続されるのに対し、大端部はクランクシャフトに接続される。より具体的には、小端部に形成された貫通孔にピストンのピストンピンが挿通される。また、大端部に形成された貫通孔にクランクシャフトのクランクピンが挿通される。これにより、コネクティングロッドがピストンおよびクランクシャフトに接続される。   In the internal combustion engine, a member called a connecting rod (sometimes abbreviated as “con'rod”) is used to connect the piston and the crankshaft. The connecting rod includes a rod-shaped rod main body, a small end provided at one end of the rod main body, and a large end provided at the other end of the rod main body. The small end is connected to the piston, while the large end is connected to the crankshaft. More specifically, the piston pin of the piston is inserted through the through hole formed in the small end portion. A crank pin of the crankshaft is inserted through a through hole formed at the large end. Thereby, the connecting rod is connected to the piston and the crankshaft.

コネクティングロッドは、大端部が2つに分割された分割型と、大端部が分割されていない一体型とに大別される。一体型のコネクティングロッドは、主に単気筒の内燃機関に用いられる。   The connecting rod is roughly divided into a split type in which the large end is divided into two and an integrated type in which the large end is not divided. The integral connecting rod is mainly used for a single cylinder internal combustion engine.

一体型コネクティングロッドの大端部の内周面とクランクピンとの間には、フリクションロスを低減するためにニードルベアリングやボールベアリングなどの転がり軸受が配置される。内燃機関の運転時にピストンを経由して伝わる爆発力は、コネクティングロッドを転がり軸受に押し付けるので、大端部の内周面には、大きな応力が発生する。この応力が過大な場合、大端部の内周面には、フレーキング(flaking)と呼ばれる疲労破壊現象が発生する。   Roller bearings such as needle bearings and ball bearings are arranged between the inner peripheral surface of the large end portion of the integral connecting rod and the crank pin in order to reduce friction loss. The explosive force transmitted through the piston during operation of the internal combustion engine presses the connecting rod against the rolling bearing, so that a large stress is generated on the inner peripheral surface of the large end. When this stress is excessive, a fatigue fracture phenomenon called flaking occurs on the inner peripheral surface of the large end.

コネクティングロッドにフレーキングが発生すると、内燃機関のスムーズな回転が妨げられるので、内燃機関や車両に不快な音と振動が発生して商品性や快適性を損なってしまう。そのため、コネクティングロッドにはフレーキングが発生しないことが求められる。   When flaking occurs in the connecting rod, smooth rotation of the internal combustion engine is impeded, and unpleasant sound and vibration are generated in the internal combustion engine and the vehicle, thereby impairing commerciality and comfort. Therefore, it is required that no flaking occurs in the connecting rod.

従来、フレーキングの発生を抑制して長寿命化を実現するために、肌焼鋼(例えばJIS SCM420)から形成されたコネクティングロッドに対し、浸炭処理を施すことが一般に行われている。浸炭処理によってコネクティングロッドの表面から炭素を浸透させることにより、表面近傍の炭素濃度が高くなる。そのため、焼入れ後に表面硬度が高くなり、そのことによりフレーキングの発生が抑制される。   Conventionally, in order to suppress the occurrence of flaking and to achieve a long life, carburizing treatment is generally performed on a connecting rod formed from case-hardened steel (for example, JIS SCM420). By infiltrating carbon from the surface of the connecting rod by carburizing, the carbon concentration in the vicinity of the surface is increased. Therefore, the surface hardness is increased after quenching, thereby suppressing the occurrence of flaking.

また、特許文献1には、コネクティングロッドの表面硬度をさらに高くする技術として、高濃度浸炭処理が提案されている。この技術では、カーボンポテンシャル(CP)が0.8%以上である雰囲気下での浸炭を行う。これにより、コネクティングロッドの表面近傍に微細な粒状の炭化物が析出するとともに、表面近傍におけるマルテンサイト組織の結晶粒径が小さくなる。そのため、表面硬度が著しく高くなるので、疲労強度のいっそうの向上が可能となる。また、特許文献1には、高濃度浸炭処理と同様にコネクティングロッドの表面硬度を高くする技術として、高濃度浸炭窒化処理にも言及がなされている。   Patent Document 1 proposes high-concentration carburizing treatment as a technique for further increasing the surface hardness of the connecting rod. In this technique, carburization is performed in an atmosphere having a carbon potential (CP) of 0.8% or more. Thereby, fine granular carbide precipitates in the vicinity of the surface of the connecting rod, and the crystal grain size of the martensite structure in the vicinity of the surface becomes small. Therefore, the surface hardness is remarkably increased, and the fatigue strength can be further improved. Patent Document 1 also mentions high-concentration carbonitriding as a technique for increasing the surface hardness of the connecting rod, as in high-concentration carburizing.

特開2000−313949号公報JP 2000-313949 A

しかしながら、近年、内燃機関を高性能化した場合、一般的な浸炭処理や、特許文献1に開示されているような高濃度浸炭処理、高濃度浸炭窒化処理が施されたコネクティングロッドでは、フレーキングが比較的短時間で発生するようになってきた。そのため、フレーキング寿命が内燃機関の高性能化の妨げとなり、内燃機関のさらなる高性能化のためには、フレーキング寿命の増大(つまりコネクティングロッドの長寿命化)が必須となってきた。また、フレーキング寿命の増大は、コネクティングロッドだけでなく、転がり軸受に接する表面を有する他の鋼製部品(例えばクランクピン)にも要望されている。   However, in recent years, when the performance of an internal combustion engine has been improved, flaking is not possible in a connecting rod that has been subjected to general carburizing treatment, high-concentration carburizing treatment, or high-concentration carbonitriding treatment as disclosed in Patent Document 1. Has occurred in a relatively short time. For this reason, the flaking life hinders the improvement of the performance of the internal combustion engine, and in order to further improve the performance of the internal combustion engine, it is essential to increase the flaking life (that is, to extend the life of the connecting rod). Further, an increase in flaking life is demanded not only for connecting rods but also for other steel parts (for example, crank pins) having a surface in contact with a rolling bearing.

本発明は、上記問題に鑑みてなされたものであり、その目的は、転がり軸受に接する表面におけるフレーキングの発生が抑制され、フレーキング寿命に優れた鋼製部品およびその製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a steel part having excellent flaking life and a method for producing the same, in which the occurrence of flaking on the surface in contact with the rolling bearing is suppressed. It is in.

本発明による鋼製部品は、転がり軸受に接する表面を有する鋼製部品であって、前記表面から0.1mmの深さにおいて、残留オーステナイト量が50vol%以上で、且つ、ビッカース硬さHVが710以上である。   A steel part according to the present invention is a steel part having a surface in contact with a rolling bearing, and at a depth of 0.1 mm from the surface, the amount of retained austenite is 50 vol% or more, and the Vickers hardness HV is 710. That's it.

ある好適な実施形態において、前記表面から0.1mmの深さにおける炭素含有量は1.1wt%以上2.2wt%未満である。   In a preferred embodiment, the carbon content at a depth of 0.1 mm from the surface is 1.1 wt% or more and less than 2.2 wt%.

ある好適な実施形態において、前記表面から0.1mmの深さにおける炭素含有量は1.6wt%以上2.0wt%以下である。   In a preferred embodiment, the carbon content at a depth of 0.1 mm from the surface is 1.6 wt% or more and 2.0 wt% or less.

ある好適な実施形態において、前記表面から0.1mmの深さにおける鋼組織の結晶粒径は9μm以下である。   In a preferred embodiment, the crystal grain size of the steel structure at a depth of 0.1 mm from the surface is 9 μm or less.

ある好適な実施形態において、前記表面から0.1mmの深さにおける窒素含有量は0.03wt%以上0.19wt%以下である。   In a preferred embodiment, the nitrogen content at a depth of 0.1 mm from the surface is 0.03 wt% or more and 0.19 wt% or less.

ある好適な実施形態において、本発明による鋼製部品は、浸炭窒化処理が施されているか、または、浸炭処理および窒化処理が施されている。   In a preferred embodiment, the steel part according to the present invention is carbonitrided or carburized and nitrided.

ある好適な実施形態において、前記表面近傍に析出している炭化物および炭窒化物の粒径は10μm以下である。   In a preferred embodiment, the carbide and carbonitride precipitated in the vicinity of the surface have a particle size of 10 μm or less.

ある好適な実施形態において、本発明による鋼製部品は、コネクティングロッドである。   In a preferred embodiment, the steel part according to the invention is a connecting rod.

ある好適な実施形態において、コネクティングロッドである、本発明による鋼製部品は、ロッド本体部と、前記ロッド本体部の一端に設けられた小端部と、前記ロッド本体部の他端に設けられた大端部と、を備え、前記大端部の内周面が、転がり軸受に接する前記表面である。   In a preferred embodiment, the steel part according to the present invention, which is a connecting rod, is provided at the rod main body, a small end provided at one end of the rod main body, and the other end of the rod main body. A large end portion, and the inner peripheral surface of the large end portion is the surface in contact with the rolling bearing.

ある好適な実施形態において、本発明による鋼製部品は、クランクピンである。   In a preferred embodiment, the steel part according to the invention is a crankpin.

本発明による内燃機関は、上記構成を有する鋼製部品を備える。   The internal combustion engine by this invention is equipped with the steel components which have the said structure.

ある好適な実施形態において、本発明による内燃機関は、前記表面に接するように設けられた転がり軸受をさらに備える。   In a preferred embodiment, the internal combustion engine according to the present invention further includes a rolling bearing provided in contact with the surface.

本発明による自動車両は、上記構成を有する内燃機関を備える。   A motor vehicle according to the present invention includes an internal combustion engine having the above-described configuration.

本発明による鋼製部品の製造方法は、転がり軸受に接する表面を有する鋼製部品の製造方法であって、鋼から形成されたワークピースを用意する工程(A)と、前記ワークピースに対して1.1%以上のカーボンポテンシャルを有する雰囲気下で浸炭処理を施してその後に窒化処理を施すか、または、前記ワークピースに対して1.1%以上のカーボンポテンシャルを有する雰囲気下で浸炭窒化処理を施す工程(B)と、前記工程(B)の後に、0.07cm-1以上0.11cm-1未満の焼入れ強烈度を有する焼入れ油を用い、前記焼入れ油の表面上の雰囲気圧を5kPa以上60kPa以下に制御しながら前記ワークピースに対して焼入れを施す工程(C)と、を包含する。 A method for manufacturing a steel part according to the present invention is a method for manufacturing a steel part having a surface in contact with a rolling bearing, the step (A) of preparing a workpiece formed from steel, and the workpiece Carburizing treatment is performed in an atmosphere having a carbon potential of 1.1% or more, followed by nitriding treatment, or carbonitriding treatment in an atmosphere having a carbon potential of 1.1% or more with respect to the workpiece. and the applying step (B), after the step (B), using a quenching oil having a quenching intense size of less than 0.07 cm -1 or 0.11 cm -1, 5 kPa to ambient pressure on the surface of the quenching oil A step (C) of quenching the workpiece while controlling the pressure to 60 kPa or less.

ある好適な実施形態において、前記工程(B)における前記浸炭処理または前記浸炭窒化処理は、2.2%未満のカーボンポテンシャルを有する雰囲気下で行われる。   In a preferred embodiment, the carburizing process or the carbonitriding process in the step (B) is performed under an atmosphere having a carbon potential of less than 2.2%.

ある好適な実施形態において、前記工程(B)における前記浸炭処理または前記浸炭窒化処理は、1.6%以上2.0%以下のカーボンポテンシャルを有する雰囲気下で行われる。   In a preferred embodiment, the carburizing process or the carbonitriding process in the step (B) is performed in an atmosphere having a carbon potential of 1.6% or more and 2.0% or less.

ある好適な実施形態において、前記工程(B)における前記浸炭処理または前記浸炭窒化処理は、1.4%以上のカーボンポテンシャルを有する雰囲気下で行われ、前記工程(C)は、前記焼入れ油の表面上の雰囲気圧を50kPa以上60kPa以下に制御しながら実行される。   In a preferred embodiment, the carburizing process or the carbonitriding process in the step (B) is performed under an atmosphere having a carbon potential of 1.4% or more, and the step (C) is performed by using the quenching oil. It is executed while controlling the atmospheric pressure on the surface to 50 kPa or more and 60 kPa or less.

ある好適な実施形態において、前記工程(B)および前記工程(C)は、少なくとも前記焼入れ油の表面上の空間を減圧することができる減圧機構を備えた浸炭炉内で実行される。   In a preferred embodiment, the step (B) and the step (C) are performed in a carburizing furnace provided with a pressure reducing mechanism capable of decompressing at least a space on the surface of the quenching oil.

ある好適な実施形態において、前記浸炭炉は、その内部で前記工程(B)が実行される加熱室と、その内部で前記工程(C)が実行される冷却室とをさらに備え、前記減圧機構によって前記加熱室の内部および前記冷却室の内部の両方を減圧することができる真空浸炭炉である。   In a preferred embodiment, the carburizing furnace further includes a heating chamber in which the step (B) is performed, and a cooling chamber in which the step (C) is performed. Is a vacuum carburizing furnace that can depressurize both the inside of the heating chamber and the inside of the cooling chamber.

ある好適な実施形態において、前記工程(B)における前記浸炭処理または前記浸炭窒化処理中に、前記加熱室の内部への炭化水素の導入は複数回停止される。   In a preferred embodiment, introduction of hydrocarbons into the heating chamber is stopped a plurality of times during the carburizing process or the carbonitriding process in the step (B).

ある好適な実施形態において、前記工程(B)における前記浸炭処理または前記浸炭窒化処理中に、前記加熱室の内部への炭化水素の導入が4回または5回停止される。   In a preferred embodiment, during the carburizing process or the carbonitriding process in the step (B), introduction of hydrocarbons into the heating chamber is stopped four or five times.

ある好適な実施形態において、前記工程(B)において、前記浸炭処理と前記窒化処理との間に、前記加熱室の内部へ炭化水素およびアンモニアのいずれもが導入されないリファイニング工程が実行される。   In a preferred embodiment, in the step (B), a refining step in which neither hydrocarbon nor ammonia is introduced into the heating chamber is performed between the carburizing treatment and the nitriding treatment.

ある好適な実施形態において、前記工程(A)において用意される前記ワークピースは、0.1wt%以上0.4wt%以下の炭素、0.1wt%以上0.5wt%以下のケイ素および0.3wt%以上1.2wt%以下のクロムを含む鋼から形成されている。   In a preferred embodiment, the workpiece prepared in the step (A) includes 0.1 wt% or more and 0.4 wt% or less of carbon, 0.1 wt% or more and 0.5 wt% or less of silicon and 0.3 wt%. % To 1.2 wt% chromium.

以下、本発明の作用を説明する。   Hereinafter, the operation of the present invention will be described.

転がり軸受に接する表面を有する鋼製部品では、最表面ではなく、表面から約0.1mmの深さにおいて応力が最大となる。そのため、その深さにおける材料特性が、耐フレーキング性に大きな影響を与える。本発明による鋼製部品では、表面から0.1mmの深さにおける残留オーステナイト量およびビッカース硬さHVが特定の範囲に設定されている。具体的には、本発明による鋼製部品では、表面から0.1mmの深さにおける残留オーステナイト量が50vol%以上で、且つ、その深さにおけるビッカース硬さHVが710以上である。このことにより、耐フレーキング性が顕著に向上し、フレーキングの発生を長期間にわたって防止することができる。   In a steel part having a surface in contact with the rolling bearing, the stress is maximum at a depth of about 0.1 mm from the surface, not the outermost surface. Therefore, the material characteristics at that depth have a great influence on the flaking resistance. In the steel part according to the present invention, the amount of retained austenite and the Vickers hardness HV at a depth of 0.1 mm from the surface are set in a specific range. Specifically, in the steel part according to the present invention, the amount of retained austenite at a depth of 0.1 mm from the surface is 50 vol% or more, and the Vickers hardness HV at the depth is 710 or more. Thereby, the anti-flaking property is remarkably improved, and the occurrence of flaking can be prevented over a long period of time.

表面から0.1mmの深さにおける炭素含有量は、1.1wt%以上2.2wt%未満であることが好ましく、1.6wt%以上2.0wt%以下であることがさらに好ましい。炭素含有量が1.1wt%未満となるような条件で製造された鋼製部品では、残留オーステナイト量が十分に多くならないことがある。また、炭化物の析出量が少なくなり、硬さが低下することがある。一方、炭素含有量が2.2%以上となるような条件で製造された鋼製部品では、炭化物の析出量が多くなりすぎ、靱性が低下することがある。   The carbon content at a depth of 0.1 mm from the surface is preferably 1.1 wt% or more and less than 2.2 wt%, and more preferably 1.6 wt% or more and 2.0 wt% or less. In steel parts manufactured under conditions such that the carbon content is less than 1.1 wt%, the amount of retained austenite may not be sufficiently increased. Moreover, the precipitation amount of a carbide | carbonized_material may decrease and hardness may fall. On the other hand, in steel parts manufactured under conditions such that the carbon content is 2.2% or more, the amount of precipitated carbide is excessively increased and the toughness may be reduced.

いっそうの長寿命化を図る観点からは、表面から0.1mmの深さにおける鋼組織の結晶粒径は9μm以下であることが好ましい。   From the viewpoint of further extending the life, the grain size of the steel structure at a depth of 0.1 mm from the surface is preferably 9 μm or less.

耐フレーキング性のいっそうの向上を図る観点からは、表面から0.1mmの深さにおける窒素含有量は0.03wt%以上0.19wt%以下であることが好ましい。   From the viewpoint of further improving the flaking resistance, the nitrogen content at a depth of 0.1 mm from the surface is preferably 0.03 wt% or more and 0.19 wt% or less.

本発明による鋼製部品は、典型的には、疲労強度を向上させるため、浸炭窒化処理が施されているか、または、浸炭処理および窒化処理が施されている。その場合、表面近傍に析出している炭化物および炭窒化物の粒径は、なるべく小さいことが好ましく、具体的には10μm以下であることが好ましい。炭化物および炭窒化物の粒径が10μmを超えると、靭性が低下して十分な強度が得られないことがある。   The steel part according to the present invention is typically subjected to carbonitriding or carburizing and nitriding in order to improve fatigue strength. In that case, the particle sizes of the carbides and carbonitrides precipitated in the vicinity of the surface are preferably as small as possible, specifically 10 μm or less. When the particle size of the carbide and carbonitride exceeds 10 μm, the toughness may be lowered and sufficient strength may not be obtained.

本発明による鋼製部品は、例えば、コネクティングロッドである。コネクティングロッドは、ロッド本体部と、ロッド本体部の一端に設けられた小端部と、ロッド本体部の他端に設けられた大端部とを備える。コネクティングロッドでは、大端部の内周面が転がり軸受に接する。本発明によると、フレーキング寿命が向上するので、鋼製部品に従来よりも高負荷をかけることが可能になる。そのため、本発明による鋼製部品がコネクティングロッドである場合、大端部の寸法を小さくし、軽量化することも可能になる。   The steel part according to the invention is, for example, a connecting rod. The connecting rod includes a rod body part, a small end part provided at one end of the rod body part, and a large end part provided at the other end of the rod body part. In the connecting rod, the inner peripheral surface of the large end is in contact with the rolling bearing. According to the present invention, since the flaking life is improved, it is possible to apply a higher load to the steel part than before. Therefore, when the steel part according to the present invention is a connecting rod, it is possible to reduce the size of the large end and reduce the weight.

勿論、本発明による鋼製部品は、コネクティングロッド以外の部品であってもよく、例えば、クランクピンであってもよい。クランクピンでは、その外周面が転がり軸受に接する。   Of course, the steel part according to the present invention may be a part other than the connecting rod, for example, a crankpin. The outer peripheral surface of the crank pin is in contact with the rolling bearing.

本発明による鋼製部品(例えばコネクティングロッドやクランクピン)は、内燃機関に好適に用いられる。フリクションロスの低減が重視される仕様の内燃機関(例えばシリンダの数が1つである単気筒内燃機関)では、一般的には、コネクティングロッドの大端部の内周面とクランクピンの外周面との間に転がり軸受(例えばニードルベアリングやボールベアリング)が設けられる。転がり軸受が設けられている場合、コネクティングロッドやクランクピンが転がり軸受に押し付けられることにより、コネクティングロッドの大端部の内周面やクランクピンの外周面に応力が発生する。この応力が過大であると、フレーキングの発生が懸念されるが、本発明によれば、耐フレーキング性が向上するので、フレーキングの発生が長期間にわたって防止される。   A steel part (for example, a connecting rod or a crankpin) according to the present invention is suitably used for an internal combustion engine. In an internal combustion engine with a specification in which reduction of friction loss is important (for example, a single-cylinder internal combustion engine having one cylinder), generally the inner peripheral surface of the connecting rod and the outer peripheral surface of the crank pin Are provided with a rolling bearing (for example, a needle bearing or a ball bearing). When a rolling bearing is provided, stress is generated on the inner peripheral surface of the large end portion of the connecting rod and the outer peripheral surface of the crank pin when the connecting rod and the crank pin are pressed against the rolling bearing. If this stress is excessive, the occurrence of flaking is a concern. However, according to the present invention, since the anti-flaking property is improved, the occurrence of flaking is prevented for a long period of time.

本発明による鋼製部品を備えた内燃機関は、各種の自動車両(例えば自動二輪車)に好適に用いられる。本発明によると、フレーキング寿命が向上するので、そのことによって鋼製部品の軽量化が可能になる(コネクティングロッドの場合について既に説明した)。そのため、内燃機関や自動車両の車体も軽量化することができるので、自動車両の走行安定性、乗り易さ、扱い易さなどが向上し、商品性が向上する。   The internal combustion engine provided with the steel parts according to the present invention is suitably used for various types of motor vehicles (for example, motorcycles). According to the invention, the flaking life is improved, which makes it possible to reduce the weight of the steel part (as already described for the case of the connecting rod). Therefore, since the internal combustion engine and the vehicle body of the motor vehicle can be reduced in weight, the traveling stability, ease of riding, ease of handling, etc. of the motor vehicle are improved, and the merchantability is improved.

本発明による鋼製部品の製造方法では、鋼から形成されたワークピースに対し、浸炭処理および窒化処理が施されるか、あるいは、浸炭窒化処理が施される(工程(B))。浸炭窒化処理(または浸炭処理と窒化処理)により、鋼製部品の表面硬度が高くなり、疲労強度が向上する。また、本発明による製造方法では、上記の浸炭窒化処理や浸炭処理が、カーボンポテンシャル(CP)が1.1%以上である雰囲気下で行われる。つまり、ワークピースに対して、高濃度浸炭窒化処理または高濃度浸炭処理が施される。高濃度浸炭窒化処理または高濃度浸炭処理によれば、ワークピースの表面近傍に微細な粒状の炭化物および/または炭窒化物が析出するとともに、表面近傍におけるマルテンサイト組織の結晶粒径が小さくなる。そのため、表面硬度が著しく高くなり、疲労強度の向上効果が高い。   In the method of manufacturing a steel part according to the present invention, a workpiece formed from steel is subjected to a carburizing process and a nitriding process, or a carbonitriding process is performed (step (B)). Carbonitriding (or carburizing and nitriding) increases the surface hardness of steel parts and improves fatigue strength. In the production method according to the present invention, the carbonitriding process and the carburizing process are performed in an atmosphere having a carbon potential (CP) of 1.1% or more. That is, a high concentration carbonitriding process or a high concentration carburizing process is performed on the workpiece. According to the high-concentration carbonitriding process or the high-concentration carburizing process, fine granular carbides and / or carbonitrides are precipitated in the vicinity of the surface of the workpiece, and the crystal grain size of the martensite structure in the vicinity of the surface is reduced. Therefore, the surface hardness is remarkably increased, and the effect of improving the fatigue strength is high.

さらに、本発明による製造方法では、上記の工程(B)の後に、0.07cm-1以上0.11cm-1未満の焼入れ強烈度(H値)を有する焼入れ油を用い、焼入れ油の表面上の雰囲気圧を5kPa以上60kPa以下に制御しながらワークピースに対して焼入れを施す工程(C)が行われる。0.11cm-1未満のH値を有する焼入れ油(いわゆるホットクエンチ油)を用いて減圧下で焼入れを施すと、焼入れ油の沸点が低くなるので、焼入れ初期にワークピースが焼入れ油の蒸気膜(断熱の役割を果たす)に覆われている時間(蒸気膜段階)が長くなる。そのため、焼入れ初期の冷却速度が遅くなる。しかしその一方で、蒸気膜破壊後の冷却速度は速くなるため、マルテンサイト変態自体には影響を及ぼさず、残留オーステナイト量を増加させることができる。蒸気膜段階を十分長くするためには、焼入れ油の表面上の雰囲気圧は60kPa以下であることが好ましい。また、ホットクエンチ油は、常圧ではH値が低いが、減圧によって対流段階開始温度が低下するので、そのことによって焼入れ性(対流段階における冷却性)が向上し、実効的なH値を大きくすることができる。そのため、鋼製部品の表面近傍の硬さを十分に高くすることができる。これに対し、0.11cm-1以上の焼入れ強烈度(H値)を有する焼入れ油(いわゆるコールドクエンチ油)には、一般に、蒸気膜段階を短くするための添加剤が含まれているので、このような焼入れ油(コールドクエンチ油)を用いると、たとえ減圧しても蒸気膜段階を十分に長くすることができず、残留オーステナイト量を増加させることができない。なお、工程(C)において用いられる焼入れ油の焼入れ強烈度(H値)は、0.07cm-1以上であることが好ましい。H値が0.07cm-1未満の場合、減圧の度合いによっては十分な焼入れ性が得られない(実効的なH値が十分に大きくならない)ことがある。さらに、工程(C)は、焼入れ油の表面上の雰囲気圧を5kPa以上に制御しながら実行されることが好ましい。雰囲気圧が5kPa未満である場合、焼入れ油の沸点が低くなりすぎて蒸気膜段階が長くなりすぎることがある。そのため、焼入れ性が低下して十分に高い硬さが得られないおそれがある。このように、本発明による製造方法によれば、鋼製部品の硬さを十分に高く維持しつつ、耐フレーキング性に寄与する(好影響を及ぼす)残留オーステナイト組織の量を増加させることができる。そのため、本発明による製造方法により製造された鋼製部品は、フレーキング寿命に優れる。 Furthermore, in the manufacturing method according to the invention, after the above step (B), using a quenching oil having 0.07 cm -1 or 0.11 cm -1 of less than quenching intense degree (H value), on the surface of the quenching oil The step (C) of quenching the workpiece while controlling the atmospheric pressure at 5 kPa to 60 kPa is performed. When quenching is performed under reduced pressure using quenching oil having a H value of less than 0.11 cm −1 (so-called hot quench oil), the boiling point of the quenching oil is lowered, so that the workpiece becomes a vapor film of quenching oil at the initial stage of quenching. The time (vapor film stage) covered with (acting heat insulation) becomes longer. Therefore, the cooling rate at the initial stage of quenching becomes slow. However, on the other hand, since the cooling rate after the vapor film breakage is increased, the amount of retained austenite can be increased without affecting the martensitic transformation itself. In order to make the vapor film stage sufficiently long, the atmospheric pressure on the surface of the quenching oil is preferably 60 kPa or less. Hot quench oil has a low H value at normal pressure, but the convection stage start temperature decreases due to the reduced pressure, which improves hardenability (coolability in the convection stage) and increases the effective H value. can do. Therefore, the hardness in the vicinity of the surface of the steel part can be sufficiently increased. In contrast, a quenching oil (so-called cold quench oil) having a quenching intensity (H value) of 0.11 cm −1 or more generally contains an additive for shortening the vapor film stage. When such quenching oil (cold quench oil) is used, the vapor film stage cannot be made sufficiently long even if the pressure is reduced, and the amount of retained austenite cannot be increased. The quenching intensity (H value) of the quenching oil used in the step (C) is preferably 0.07 cm −1 or more. When the H value is less than 0.07 cm −1 , sufficient hardenability may not be obtained depending on the degree of decompression (the effective H value may not be sufficiently large). Furthermore, it is preferable to perform a process (C), controlling the atmospheric pressure on the surface of hardening oil to 5 kPa or more. When the atmospheric pressure is less than 5 kPa, the boiling point of the quenching oil becomes too low and the vapor film stage may become too long. Therefore, there is a possibility that hardenability is lowered and sufficiently high hardness cannot be obtained. Thus, according to the manufacturing method of the present invention, the amount of retained austenite structure that contributes to (good influence on) the anti-flaking property can be increased while maintaining the hardness of the steel part sufficiently high. it can. Therefore, the steel part manufactured by the manufacturing method according to the present invention has an excellent flaking life.

工程(B)における浸炭処理または浸炭窒化処理は、2.2%未満のカーボンポテンシャルを有する雰囲気下で行われることが好ましい。カーボンポテンシャルが2.2%以上であると、炭化物の析出量が多くなりすぎ、靱性が低下することがある。   The carburizing treatment or carbonitriding treatment in the step (B) is preferably performed in an atmosphere having a carbon potential of less than 2.2%. When the carbon potential is 2.2% or more, the amount of carbides precipitated becomes too large and the toughness may be lowered.

いっそうの長寿命化を図る観点からは、工程(B)における浸炭処理または浸炭窒化処理は、1.6%以上2.0%以下のカーボンポテンシャルを有する雰囲気下で行われることが好ましい。   From the viewpoint of further extending the life, the carburizing treatment or carbonitriding treatment in the step (B) is preferably performed in an atmosphere having a carbon potential of 1.6% or more and 2.0% or less.

また、表面近傍における鋼組織の結晶粒径を小さく(具体的には9μm以下に)することによっていっそうの長寿命化を図る観点からは、工程(B)における浸炭処理または浸炭窒化処理は、1.4%以上のカーボンポテンシャルを有する雰囲気下で行われ、且つ、工程(C)は、焼入れ油の表面上の雰囲気圧を50kPa以上60kPa以下に制御しながら実行されることが好ましい。   Further, from the viewpoint of further extending the life by reducing the crystal grain size of the steel structure in the vicinity of the surface (specifically to 9 μm or less), the carburizing treatment or carbonitriding treatment in the step (B) is 1 It is preferably performed in an atmosphere having a carbon potential of 4% or more, and the step (C) is performed while controlling the atmospheric pressure on the surface of the quenching oil to 50 kPa or more and 60 kPa or less.

典型的には、工程(B)および工程(C)は、少なくとも焼入れ油の表面上の空間を減圧することができる減圧機構を備えた浸炭炉内で実行される。   Typically, steps (B) and (C) are performed in a carburizing furnace equipped with a pressure reducing mechanism that can depressurize at least a space on the surface of the quenching oil.

浸炭炉は、例えば、真空浸炭炉である。真空浸炭炉は、その内部で工程(B)が実行される加熱室と、その内部で工程(C)が実行される冷却室とをさらに備えており、減圧機構によって加熱室の内部および冷却室の内部の両方を減圧することができる。   The carburizing furnace is, for example, a vacuum carburizing furnace. The vacuum carburizing furnace further includes a heating chamber in which the step (B) is executed inside, and a cooling chamber in which the step (C) is executed therein, and the inside of the heating chamber and the cooling chamber by the decompression mechanism. Both of the inside of the can be decompressed.

真空浸炭炉を用いる場合、工程(B)における浸炭処理または浸炭窒化処理中に、加熱室の内部への炭化水素の導入を複数回停止することが好ましい。これにより、カーボンポテンシャルを高い精度で調節することができ、鋼製部品の表面近傍における炭素含有量を高い精度で制御することができる。例えば、鋼製部品の表面から0.1mmの深さにおける炭素含有量を1.6wt%以上2.0wt%以下に精度良く制御するためには、工程(B)における浸炭処理または浸炭窒化処理中に、加熱室の内部への炭化水素の導入を4回または5回停止することが好ましい。   When using a vacuum carburizing furnace, it is preferable to stop introduction of hydrocarbons into the inside of the heating chamber a plurality of times during the carburizing process or the carbonitriding process in the step (B). Thereby, the carbon potential can be adjusted with high accuracy, and the carbon content in the vicinity of the surface of the steel part can be controlled with high accuracy. For example, in order to accurately control the carbon content at a depth of 0.1 mm from the surface of the steel part to 1.6 wt% or more and 2.0 wt% or less, during the carburizing process or the carbonitriding process in the step (B) Furthermore, it is preferable to stop the introduction of hydrocarbons into the heating chamber four or five times.

工程(B)において、浸炭処理と窒化処理との間に、加熱室の内部へ炭化水素およびアンモニアのいずれもが導入されないリファイニング工程を実行すると、表面近傍に析出している炭化物の粒径をいっそう小さくすることが可能となる。   In the step (B), when a refining step in which neither hydrocarbon nor ammonia is introduced into the inside of the heating chamber is performed between the carburizing treatment and the nitriding treatment, the particle size of the carbide precipitated near the surface is changed. It becomes possible to make it even smaller.

工程(A)において用意されるワークピースは、0.1wt%以上0.4wt%以下の炭素、0.1wt%以上0.5wt%以下のケイ素および0.3wt%以上1.2wt%以下のクロムを含む鋼から形成されていることが好ましい。炭素含有量が0.1wt%以上0.4wt%以下であることにより、熱処理(焼入れおよび焼戻し)後の鋼製部品の表面から0.1mmより深い位置における内部硬さ(ビッカース硬さHV)を200以上500以下にすることができるので、鋼製部品内部の強度および靭性を十分に高く保つことができる。また、ケイ素含有量が増加すると、耐フレーキング性は向上するが、靭性は低下するおそれがある。ケイ素含有量が0.1wt%以上0.5wt%以下であることにより、耐フレーキング性を十分に向上させ、且つ、十分な靭性を確保することができる。また、クロム含有量が増加すると、焼入れ性が良くなる。ただし、クロム含有量が過度に多くなると、焼戻し脆化が発生することがある。クロム含有量が0.3wt%以上1.2wt%以下であることにより、適切な焼入れ性を得つつ、焼戻し脆化の発生を防止することができる。   The workpiece prepared in step (A) is 0.1 wt% or more and 0.4 wt% or less of carbon, 0.1 wt% or more and 0.5 wt% or less of silicon, and 0.3 wt% or more and 1.2 wt% or less of chromium. It is preferable that it is formed from the steel containing. When the carbon content is 0.1 wt% or more and 0.4 wt% or less, the internal hardness (Vickers hardness HV) at a position deeper than 0.1 mm from the surface of the steel part after heat treatment (quenching and tempering) Since it can be 200 or more and 500 or less, the strength and toughness inside the steel part can be kept sufficiently high. Further, when the silicon content is increased, the anti-flaking property is improved, but the toughness may be lowered. When the silicon content is 0.1 wt% or more and 0.5 wt% or less, the flaking resistance can be sufficiently improved and sufficient toughness can be ensured. Moreover, when the chromium content is increased, the hardenability is improved. However, if the chromium content is excessively large, temper embrittlement may occur. When the chromium content is 0.3 wt% or more and 1.2 wt% or less, the occurrence of temper embrittlement can be prevented while obtaining appropriate hardenability.

本発明によると、転がり軸受に接する表面におけるフレーキングの発生が抑制され、フレーキング寿命に優れた鋼製部品およびその製造方法が提供される。   According to the present invention, the occurrence of flaking on the surface in contact with the rolling bearing is suppressed, and a steel part excellent in flaking life and a method for producing the same are provided.

本発明の好適な実施形態におけるコネクティングロッド1を模式的に示す図であり、(a)は平面図、(b)は(a)中の1B−1B’線に沿った断面図、(c)は(a)中の1C−1C’線に沿った断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the connecting rod 1 in preferable embodiment of this invention, (a) is a top view, (b) is sectional drawing along the 1B-1B 'line in (a), (c). FIG. 3 is a cross-sectional view taken along line 1C-1C ′ in FIG. 一般的なコネクティングロッドの大端部内周面における深さ方向の応力分布(内燃機関の運転時で応力が最大になるときの応力分布)を示す図である。It is a figure which shows the stress distribution (stress distribution when a stress becomes the maximum at the time of the driving | operation of an internal combustion engine) in the depth direction in the internal peripheral surface of the large end part of a general connecting rod. 本発明の好適な実施形態におけるコネクティングロッド1の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the connecting rod 1 in suitable embodiment of this invention. 図3に示されている製造方法の一部の工程における処理条件の例を示す図である。It is a figure which shows the example of the process conditions in the one part process of the manufacturing method shown by FIG. 浸炭炉(真空浸炭炉)50を模式的に示す図である。It is a figure which shows typically the carburizing furnace (vacuum carburizing furnace) 50. FIG. 従来の製造方法の一部の工程における処理条件の例を示す図である。It is a figure which shows the example of the process conditions in the one part process of the conventional manufacturing method. コネクティングロッド1の深さ方向における炭素濃度(炭素含有量)の分布を示すグラフである。It is a graph which shows distribution of the carbon concentration (carbon content) in the depth direction of the connecting rod. 図3に示されている製造方法の一部の工程における処理条件の例を示す図である。It is a figure which shows the example of the process conditions in the one part process of the manufacturing method shown by FIG. コネクティングロッド1の深さ方向における硬さ分布を示すグラフである。It is a graph which shows the hardness distribution in the depth direction of the connecting rod. コネクティングロッド1の深さ方向における残留オーステナイト量分布を示すグラフである。It is a graph which shows the amount distribution of retained austenite in the depth direction of the connecting rod. 残留オーステナイト量およびビッカース硬さHVを変化させてフレーキング寿命への影響を検証した結果を、横軸にビッカース硬さHVをとり、縦軸にL50寿命をとってプロットしたグラフである。It is the graph which plotted the result which changed the amount of retained austenites and Vickers hardness HV, and verified the influence on flaking life, taking Vickers hardness HV on the horizontal axis and L50 life on the vertical axis. 残留オーステナイト量およびビッカース硬さHVを変化させてフレーキング寿命への影響を検証した結果を、横軸に残留オーステナイト量をとり、縦軸にビッカース硬さHVをとってプロットしたグラフである。It is the graph which plotted the result which changed the amount of retained austenite and Vickers hardness HV, and verified the influence on flaking life, taking the amount of retained austenite on the horizontal axis and Vickers hardness HV on the vertical axis. 図4に示されている処理条件の改変例を示す図である。It is a figure which shows the example of a change of the process conditions shown by FIG. 図8に示されている処理条件の改変例を示す図である。It is a figure which shows the example of a change of the process conditions shown by FIG. 本発明の好適な実施形態におけるコネクティングロッド1を備えた内燃機関100を模式的に示す断面図である。It is sectional drawing which shows typically the internal combustion engine 100 provided with the connecting rod 1 in suitable embodiment of this invention. 図15に示す内燃機関100を備えた自動二輪車を模式的に示す側面図である。FIG. 16 is a side view schematically showing a motorcycle including the internal combustion engine 100 shown in FIG. 15.

本願発明者は、高濃度浸炭処理や高濃度浸炭窒化処理が施されたコネクティングロッドにおいてもフレーキングが発生する理由を詳細に検討し、その結果、以下に説明する知見を得た。   The inventor of the present application has studied in detail the reason why flaking occurs even in a connecting rod subjected to high-concentration carburizing treatment or high-concentration carbonitriding treatment, and as a result, has obtained the knowledge described below.

フレーキングの原因は、既に説明したように、ニードルベアリングやボールベアリングなどの転がり軸受から大端部の内周面に大きな応力が伝達されることにある。そのため、コネクティングロッドの表面硬度を、高濃度浸炭処理や高濃度浸炭窒化処理によって上昇させることにより、フレーキングの発生を防止することができると考えられるが、実際には、十分な効果を得ることができない。つまり、単純にコネクティングロッドの表面硬度を高くしても、十分な耐フレーキング性は得られない。   As described above, the cause of flaking is that a large stress is transmitted from the rolling bearing such as a needle bearing or a ball bearing to the inner peripheral surface of the large end. Therefore, it is considered that flaking can be prevented by increasing the surface hardness of the connecting rod by high-concentration carburizing treatment or high-concentration carbonitriding treatment. I can't. That is, even if the surface hardness of the connecting rod is simply increased, sufficient flaking resistance cannot be obtained.

そこで、本願発明者が、コネクティングロッドの深さ方向における応力分布を分析したところ、最表面ではなく、表面からある程度の深さにおいてもっとも大きな応力が作用することがわかった。さらに、最大応力が作用する深さにおける材料特性と、耐フレーキング性との関係を検証したところ、最大応力が作用する深さにおける残留オーステナイト量およびビッカース硬さHVを特定の範囲に設定することにより、耐フレーキング性が顕著に向上することがわかった。   Then, when this inventor analyzed the stress distribution in the depth direction of a connecting rod, it turned out that the largest stress acts on a certain amount of depth from the surface instead of the outermost surface. Furthermore, when the relationship between the material characteristics at the depth at which the maximum stress acts and the anti-flaking property was verified, the amount of retained austenite and Vickers hardness HV at the depth at which the maximum stress acts should be set within a specific range. Thus, it was found that the anti-flaking property was remarkably improved.

本発明は、本願発明者が見出した上記知見に基づいてなされたものである。以下、図面を参照しながら本発明の実施形態を説明する。なお、以下では、コネクティングロッドを例として説明を行うが、本発明はコネクティングロッドに限定されるものではなく、転がり軸受に接する表面を有する鋼製部品に広く用いられる。   This invention is made | formed based on the said knowledge which this inventor discovered. Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, a connecting rod will be described as an example. However, the present invention is not limited to the connecting rod, and is widely used for steel parts having a surface in contact with a rolling bearing.

図1(a)〜(c)に、本実施形態におけるコネクティングロッド1を示す。図1(a)は、コネクティングロッド1を模式的に示す平面図である。また、図1(b)は、図1(a)中の1B−1B’線に沿った断面図であり、図1(c)は、図1(a)中の1C−1C’線に沿った断面図である。   1A to 1C show a connecting rod 1 according to this embodiment. FIG. 1A is a plan view schematically showing the connecting rod 1. 1B is a cross-sectional view taken along the line 1B-1B ′ in FIG. 1A, and FIG. 1C is taken along the line 1C-1C ′ in FIG. FIG.

コネクティングロッド1は、図1(a)および(b)に示すように、ロッド本体部10と、ロッド本体部10の一端に設けられた小端部20と、ロッド本体部10の他端に設けられた大端部30とを備える。   As shown in FIGS. 1A and 1B, the connecting rod 1 is provided at the rod body 10, the small end 20 provided at one end of the rod body 10, and the other end of the rod body 10. The large end 30 is provided.

ロッド本体部(軸部)10は、棒状である。ロッド本体部10の断面形状は、典型的には、図1(c)に示すように、H字状である。   The rod main body (shaft) 10 has a rod shape. The cross-sectional shape of the rod body 10 is typically H-shaped as shown in FIG.

小端部20は、ピストンピンを通すための貫通孔(ピストンピン孔)22を有する。小端部20は、ピストンピンを介してピストンに接続される。小端部320の内周面(ピストンピン孔22の外縁を規定する面)20aは、典型的には、ベアリングを介さずにピストンピンと接触する。   The small end portion 20 has a through hole (piston pin hole) 22 through which the piston pin passes. The small end 20 is connected to the piston via a piston pin. The inner peripheral surface 20a (the surface defining the outer edge of the piston pin hole 22) 20a typically contacts the piston pin without a bearing.

大端部30は、クランクピンを通すための貫通孔(クランクピン孔)32を有している。大端部30は、クランクピンを介してクランクシャフトに接続される。クランクピン孔32内には、典型的には、転がり軸受が配置されるため、大端部30の内周面(クランクピン孔32の外縁を規定する面)30aは、転がり軸受と接触する。コネクティングロッド1は、大端部30が2つに分割されていない、一体型のコネクティングロッドである。   The large end portion 30 has a through hole (crank pin hole) 32 through which the crank pin is passed. The large end 30 is connected to the crankshaft via a crankpin. Since a rolling bearing is typically disposed in the crankpin hole 32, the inner peripheral surface 30a (the surface defining the outer edge of the crankpin hole 32) 30a of the large end 30 is in contact with the rolling bearing. The connecting rod 1 is an integrated connecting rod in which the large end portion 30 is not divided into two.

本実施形態におけるコネクティングロッド1は、鋼(鉄合金)から形成されている。また、コネクティングロッド1は、浸炭窒化処理が施されているか、または、浸炭処理および窒化処理が施されている。なお、コネクティングロッド1に施されている浸炭窒化処理(浸炭処理)は、比較的高いカーボンポテンシャル(CP)の雰囲気下で行われる、いわゆる高濃度浸炭窒化処理(高濃度浸炭処理)である。高濃度浸炭窒化処理(高濃度浸炭処理)によれば、コネクティングロッド1の表面近傍に微細な粒状の炭化物および/または炭窒化物が析出するとともに、表面近傍におけるマルテンサイト組織の結晶粒径が小さくなる。そのため、表面硬度が著しく高くなり、疲労強度の向上効果が高い。なお、一般的には、雰囲気のカーボンポテンシャル(CP)が0.8%以上の場合の浸炭窒化処理(浸炭処理)が高濃度浸炭窒化処理(高濃度浸炭処理)と称されるが、後述する理由から、カーボンポテンシャルは1.1%以上であることが好ましい。   The connecting rod 1 in this embodiment is formed from steel (iron alloy). In addition, the connecting rod 1 is subjected to carbonitriding or carburizing and nitriding. The carbonitriding process (carburizing process) applied to the connecting rod 1 is a so-called high-concentration carbonitriding process (high-concentration carburizing process) performed in an atmosphere having a relatively high carbon potential (CP). According to the high-concentration carbonitriding process (high-concentration carburizing process), fine granular carbides and / or carbonitrides are precipitated in the vicinity of the surface of the connecting rod 1, and the crystal grain size of the martensite structure in the vicinity of the surface is small. Become. Therefore, the surface hardness is remarkably increased, and the effect of improving the fatigue strength is high. In general, carbonitriding (carburizing) when the carbon potential (CP) of the atmosphere is 0.8% or more is referred to as high-concentration carbonitriding (high-concentrating carburizing), which will be described later. For the reason, the carbon potential is preferably 1.1% or more.

さらに、本実施形態におけるコネクティングロッド1では、大端部30の内周面30aから0.1mmの深さにおける残留オーステナイト量が50vol%以上で、且つ、その深さにおけるビッカース硬さHVが710以上である。このことにより、耐フレーキング性が顕著に向上する。   Furthermore, in the connecting rod 1 in the present embodiment, the amount of retained austenite at a depth of 0.1 mm from the inner peripheral surface 30a of the large end portion 30 is 50 vol% or more, and the Vickers hardness HV at that depth is 710 or more. It is. This significantly improves the anti-flaking property.

図2に、一般的なコネクティングロッドの大端部内周面における深さ方向の応力分布(内燃機関の運転時で応力が最大になるときの応力分布)を計算した結果を示す。図2中には、内周面からの深さが負の値で示されている。例えば、深さ0.15mmの位置は、「−0.15」と表記されている。また、図2中で応力を示す複数の曲線には、1〜22の番号が付されており、番号が大きいほど大きな応力を示している。   FIG. 2 shows the result of calculating the stress distribution in the depth direction (stress distribution when the stress becomes maximum during operation of the internal combustion engine) on the inner peripheral surface of the large end portion of a general connecting rod. In FIG. 2, the depth from the inner peripheral surface is shown as a negative value. For example, a position at a depth of 0.15 mm is written as “−0.15”. Moreover, the number of 1-22 is attached | subjected to the some curve which shows stress in FIG. 2, and the bigger stress is shown, so that the number is large.

図2からわかるように、応力は最表面においてもっとも大きいわけではない。また、図2から、内周面から約0.1mmの深さにおいて応力が最大となることがわかる。そこで、本願発明者が、深さ0.1mmの位置における材料特性と耐フレーキング性との関係を詳細に検証したところ、深さ0.1mmの位置における残留オーステナイト量およびビッカース硬さHVが、耐フレーキング性に大きな影響を与えることがわかった。具体的には、後に検証結果ともに説明するように、この深さにおける残留オーステナイト量が50vol%で、且つ、ビッカース硬さHVが710以上であることにより、耐フレーキング性の向上効果が格段に高くなることがわかった。   As can be seen from FIG. 2, the stress is not the greatest at the outermost surface. Further, it can be seen from FIG. 2 that the stress becomes maximum at a depth of about 0.1 mm from the inner peripheral surface. Therefore, the inventor of the present application has examined in detail the relationship between the material characteristics and the anti-flaking property at a position of 0.1 mm depth, the amount of retained austenite and Vickers hardness HV at a position of depth 0.1 mm, It was found that the flaking resistance was greatly affected. Specifically, as will be described later along with the verification results, the amount of retained austenite at this depth is 50 vol% and the Vickers hardness HV is 710 or more, so that the effect of improving anti-flaking property is remarkably increased. I found it to be higher.

本実施形態におけるコネクティングロッド1では、大端部30の内周面30aから0.1mmの深さにおける残留オーステナイト量が50vol%以上で、且つ、その深さにおけるビッカース硬さHVが710以上であるので、耐フレーキング性が顕著に向上し、フレーキングの発生を長期間にわたって防止することができる。そのため、本実施形態におけるコネクティングロッド1は、単に高濃度浸炭窒化処理や高濃度浸炭処理が施されたコネクティングロッドに比べ、フレーキング寿命に優れる。   In the connecting rod 1 in the present embodiment, the amount of retained austenite at a depth of 0.1 mm from the inner peripheral surface 30a of the large end portion 30 is 50 vol% or more, and the Vickers hardness HV at the depth is 710 or more. Therefore, the anti-flaking property is remarkably improved, and the occurrence of flaking can be prevented over a long period of time. Therefore, the connecting rod 1 in the present embodiment is superior in flaking life compared to a connecting rod that has been simply subjected to high-concentration carbonitriding or high-concentration carburizing.

残留オーステナイト組織は、高い靭性を有し、また、表面付近の微細な凹凸による、内部への応力集中を緩和する効果を奏するために、耐フレーキング性に寄与する(好影響を及ぼす)と考えられる。ただし、残留オーステナイト量が多くなると、硬さが低下してしまう。そのため、浸炭処理が施された一般的なコネクティングロッドでは、表面近傍の残留オーステナイト量は20vol%程度であり、高濃度浸炭処理が施されたコネクティングロッドでも、表面近傍の残留オーステナイト量は30〜40vol%程度である。このことからもわかるように、従来提案されていた製造方法では、表面近傍の硬さを高く維持しつつ、残留オーステナイト量を十分に増加させることは困難であった。そのため、表面近傍におけるビッカース硬さHVを710以上に維持しつつ、残留オーステナイト量を50vol%以上にすることはできなかった。   Residual austenite structure has high toughness and contributes to anti-flaking property (good effect) because it has the effect of reducing stress concentration inside due to fine irregularities near the surface. It is done. However, when the amount of retained austenite increases, the hardness decreases. Therefore, in a general connecting rod subjected to carburizing treatment, the amount of retained austenite near the surface is about 20 vol%, and even in a connecting rod subjected to high concentration carburizing treatment, the amount of retained austenite near the surface is 30 to 40 vol. %. As can be seen from this fact, it has been difficult to sufficiently increase the amount of retained austenite while maintaining the hardness in the vicinity of the surface high in the conventionally proposed manufacturing method. For this reason, the amount of retained austenite could not be increased to 50 vol% or higher while maintaining the Vickers hardness HV in the vicinity of the surface at 710 or higher.

これに対し、以下に説明する製造方法によれば、コネクティングロッドの表面近傍の硬さを高く維持しつつ、残留オーステナイト量を十分に増加させることができる。以下、図3および図4を参照しながら、本実施形態におけるコネクティングロッド1の製造方法を説明する。図3は、コネクティングロッド1の製造工程を示すフローチャートである。図4は、一部の工程における処理条件の例を示す図である。   On the other hand, according to the manufacturing method described below, the amount of retained austenite can be sufficiently increased while maintaining the hardness near the surface of the connecting rod high. Hereinafter, the manufacturing method of the connecting rod 1 in this embodiment is demonstrated, referring FIG. 3 and FIG. FIG. 3 is a flowchart showing manufacturing steps of the connecting rod 1. FIG. 4 is a diagram illustrating an example of processing conditions in some steps.

まず、鋼から鍛造により成形されたワークピースを用意する(工程S1)。鋼の組成に特に限定はないが、鋼の炭素(C)含有量は、0.1wt%以上0.4wt%以下であることが好ましい。炭素含有量が0.1wt%以上0.4wt%以下であることにより、熱処理(焼入れおよび焼戻し)後のコネクティングロッド1の内部硬さ(ビッカース硬さHV)を200以上500以下にすることができるので、コネクティングロッド1内部の強度および靭性を十分に高く保つことができる。   First, a workpiece formed by forging from steel is prepared (step S1). The composition of the steel is not particularly limited, but the carbon (C) content of the steel is preferably 0.1 wt% or more and 0.4 wt% or less. When the carbon content is 0.1 wt% or more and 0.4 wt% or less, the internal hardness (Vickers hardness HV) of the connecting rod 1 after the heat treatment (quenching and tempering) can be 200 or more and 500 or less. Therefore, the strength and toughness inside the connecting rod 1 can be kept sufficiently high.

また、鋼のケイ素(Si)含有量は、0.1wt%以上0.5wt%以下であることが好ましい。ケイ素含有量が増加すると、耐フレーキング性は向上するが、靭性は低下するおそれがある。ケイ素含有量が0.1wt%以上0.5wt%以下であることにより、耐フレーキング性を十分に向上させ、且つ、十分な靭性を確保することができる。   Moreover, it is preferable that the silicon (Si) content of steel is 0.1 wt% or more and 0.5 wt% or less. Increasing the silicon content improves anti-flaking properties but may reduce toughness. When the silicon content is 0.1 wt% or more and 0.5 wt% or less, the flaking resistance can be sufficiently improved and sufficient toughness can be ensured.

さらに、クロム含有量は、0.3wt%以上1.2wt%以下であることが好ましい。クロム含有量が増加すると、焼入れ性(熱処理による硬化のし易さを示す性質)が良くなるものの、クロム含有量が過度に多くなると、焼戻し脆化(鉄合金が所定の温度範囲に長時間保持された場合に生じる脆化現象)が発生することがある。クロム含有量が0.3wt%以上1.2wt%以下であることにより、適切な焼入れ性を得つつ、焼戻し脆化の発生を防止することができる。   Furthermore, it is preferable that chromium content is 0.3 wt% or more and 1.2 wt% or less. Increasing chromium content improves hardenability (a property indicating the ease of hardening by heat treatment). However, excessive chromium content causes temper embrittlement (the iron alloy is kept in a specified temperature range for a long time). The embrittlement phenomenon that occurs when the When the chromium content is 0.3 wt% or more and 1.2 wt% or less, the occurrence of temper embrittlement can be prevented while obtaining appropriate hardenability.

このように、ワークピースの材料(コネクティングロッド1の材料)である鋼は、0.1wt%以上0.4wt%以下の炭素、0.1wt%以上0.5wt%以下のケイ素および0.3wt%以上1.2wt%以下のクロムを含むことが好ましい。炭素含有量、ケイ素含有量およびクロム含有量が上記の範囲内にある鉄合金としては、例えばJIS SCM420鋼や、JIS SCr420鋼を用いることができる。SCM420鋼は、0.18wt%以上0.23wt%以下の炭素、0.15wt%以上0.35wt%以下のケイ素、0.90wt%以上1.2wt%以下のクロム、0.60wt%以上0.85wt%以下のマンガン、0.15wt%以上0.30%以下のモリブデンを含む。SCr420鋼は、0.18wt%以上0.23wt%以下の炭素、0.15wt%以上0.35wt%以下のケイ素、0.90wt%以上1.2wt%以下のクロム、0.60wt%以上0.85wt%以下のマンガンを含む。   As described above, steel that is a material of the workpiece (material of the connecting rod 1) is carbon of 0.1 wt% or more and 0.4 wt% or less, silicon of 0.1 wt% or more and 0.5 wt% or less of silicon, and 0.3 wt%. It is preferable to contain 1.2 wt% or less chromium. As an iron alloy having a carbon content, a silicon content, and a chromium content within the above ranges, for example, JIS SCM420 steel or JIS SCr420 steel can be used. SCM420 steel is made of 0.18 wt% or more and 0.23 wt% or less of carbon, 0.15 wt% or more and 0.35 wt% or less of silicon, 0.90 wt% or more and 1.2 wt% or less of chromium, 0.60 wt% or more and 0.002 wt% or less. 85% by weight or less of manganese and 0.15% by weight or more and 0.30% or less of molybdenum are included. The SCr420 steel is composed of 0.18 wt% or more and 0.23 wt% or less carbon, 0.15 wt% or more and 0.35 wt% or less silicon, 0.90 wt% or more and 1.2 wt% or less chromium, 0.60 wt% or more and 0. Contains 85 wt% or less manganese.

なお、ここでは鍛造を例示したが、ワークピースを用意する工程における成形手法はこれに限定されるものではない。ワークピースは、例えば、焼結や鋳造、焼結鍛造などによって成形されてもよい。   In addition, although forging was illustrated here, the shaping | molding method in the process of preparing a workpiece is not limited to this. The workpiece may be formed by, for example, sintering, casting, sintering forging, or the like.

次に、ワークピースに対して機械加工を行う(工程S2)。この機械加工により、鍛造後のワークピースの外径寸法が整えられる。例えば、バリ取り、ピストンピン孔22およびクランクピン孔32の形成、小端部20および大端部30の端面加工などが行われる。このように、この工程では主に切削が行われる。   Next, machining is performed on the workpiece (step S2). By this machining, the outer diameter of the workpiece after forging is adjusted. For example, deburring, formation of the piston pin hole 22 and the crank pin hole 32, and end face processing of the small end portion 20 and the large end portion 30 are performed. Thus, cutting is mainly performed in this step.

続いて、ワークピースに対して高濃度浸炭処理を施す(工程S3)。この工程S3(および後述する工程S4〜S8)は、浸炭炉内で行われる。浸炭炉内を所定の温度に設定するとともに、カーボンポテンシャルが1.1%以上になるように炭化水素(ガス状である)を炉内に導入し、所定時間浸炭を行う。例えば、図4に示しているように、950℃で300分間、浸炭を行う。また、この高濃度浸炭処理中には、炭化水素を導入する期間Aと炭化水素の導入を停止する期間Bとが交互に複数回繰り返される。つまり、高濃度浸炭処理中に、浸炭炉内への炭化水素の導入が複数回停止される。   Subsequently, a high-concentration carburizing process is performed on the workpiece (step S3). This step S3 (and steps S4 to S8 described later) is performed in a carburizing furnace. The inside of the carburizing furnace is set to a predetermined temperature, and hydrocarbons (in the form of gas) are introduced into the furnace so that the carbon potential is 1.1% or more, and carburizing is performed for a predetermined time. For example, as shown in FIG. 4, carburization is performed at 950 ° C. for 300 minutes. Further, during the high-concentration carburizing process, the period A for introducing hydrocarbons and the period B for stopping introduction of hydrocarbons are alternately repeated a plurality of times. That is, the introduction of hydrocarbons into the carburizing furnace is stopped a plurality of times during the high-concentration carburizing process.

その後、ガス冷却を行う(工程S4)。例えば、窒素(N2)ガスを導入することにより、冷却を行う。 Thereafter, gas cooling is performed (step S4). For example, cooling is performed by introducing nitrogen (N 2 ) gas.

次に、ワークピースに対して窒化処理を施す(工程S5)。浸炭炉内を所定の温度に設定するとともに、アンモニアガスを浸炭炉内に導入し、所定時間窒化を行う。例えば、図4に示しているように、850℃で130分間、窒化を行う。   Next, nitriding is performed on the workpiece (step S5). While setting the inside of the carburizing furnace to a predetermined temperature, ammonia gas is introduced into the carburizing furnace and nitriding is performed for a predetermined time. For example, as shown in FIG. 4, nitridation is performed at 850 ° C. for 130 minutes.

続いて、ワークピースに対して焼入れ(油冷)を施す(工程S6)。この工程S6は、0.07cm-1以上0.11cm-1未満の焼入れ強烈度(「H値」と呼ばれる)を有する焼入れ油を用いて行われる。0.11cm-1未満のH値を有する焼入れ油は、一般には、ホットクエンチ油と呼ばれる。なお、本願明細書において、焼入れ油を特徴付ける「H値」は、特にことわらない限り、ほぼ常圧におけるH値を指し、より具体的には、JIS K 2242に準拠した試験方法により、油温120℃、油面上の雰囲気圧100kPa、撹拌無しで800℃から焼入れした際の冷却曲線から求められるH値(cm-1)である。また、この工程S6は、焼入れ油の表面上の雰囲気圧を5kPa以上60kPa以下に制御しながら実行される。つまり、工程S6は、常圧(標準大気圧)よりも低い雰囲気圧で(つまり減圧下で)行われる。 Subsequently, the workpiece is quenched (oil-cooled) (step S6). This step S6 is performed using a quenching oil having a quenching intensity (referred to as “H value”) of 0.07 cm −1 or more and less than 0.11 cm −1 . Quenched oils having H values less than 0.11 cm -1 are commonly referred to as hot quench oils. In the present specification, the “H value” characterizing the quenching oil means an H value at almost normal pressure unless otherwise specified. More specifically, the oil temperature is determined by a test method based on JIS K 2242. It is an H value (cm −1 ) determined from a cooling curve when quenched from 120 ° C. and an atmospheric pressure of 100 kPa on the oil surface and from 800 ° C. without stirring. Moreover, this process S6 is performed, controlling the atmospheric pressure on the surface of hardening oil to 5 kPa or more and 60 kPa or less. That is, step S6 is performed at an atmospheric pressure lower than normal pressure (standard atmospheric pressure) (that is, under reduced pressure).

次に、焼戻しを行う(工程S7)。焼戻しは、例えば、図4に示しているように、190℃で120分間行われる。その後、空冷を行う(工程S8)。   Next, tempering is performed (step S7). Tempering is performed at 190 ° C. for 120 minutes, for example, as shown in FIG. Thereafter, air cooling is performed (step S8).

最後に、ワークピースに対して機械加工を行う(工程S9)。例えば、小端部20の内周面20aや大端部30の内周面30aの研磨が行われる。このように、この工程では主に研磨が行われる。上述したようにして、コネクティングロッド1が完成する。   Finally, machining is performed on the workpiece (step S9). For example, the inner peripheral surface 20a of the small end portion 20 and the inner peripheral surface 30a of the large end portion 30 are polished. Thus, polishing is mainly performed in this step. As described above, the connecting rod 1 is completed.

工程S4〜S8を実行するための浸炭炉の例を図5に示す。図5に示す浸炭炉50は、加熱室51と、冷却室52とを備える。   An example of a carburizing furnace for executing steps S4 to S8 is shown in FIG. A carburizing furnace 50 shown in FIG. 5 includes a heating chamber 51 and a cooling chamber 52.

加熱室51の内部では、ワークピースWPに対する高濃度浸炭処理(工程S3)、窒化処理(工程S5)および焼戻し(工程S7)が実行される。加熱室51内には、加熱を行うためのヒータ53が設けられている。また、ここでは図示しないが、炭化水素ガスやアンモニアガスを導入するためのノズルも設けられており、高濃度浸炭処理の際に炭化水素は加熱室51の内部に導入される。   Inside the heating chamber 51, a high-concentration carburizing process (process S3), a nitriding process (process S5), and a tempering process (process S7) are performed on the workpiece WP. A heater 53 for heating is provided in the heating chamber 51. Although not shown here, a nozzle for introducing hydrocarbon gas or ammonia gas is also provided, and the hydrocarbon is introduced into the heating chamber 51 during the high-concentration carburizing process.

冷却室52の内部では、ガス冷却(工程S4)、焼入れ(工程S6)および空冷(工程S8)が行われる。冷却室52内には、焼入れ油QOが貯留された油槽54が設けられている。   Inside the cooling chamber 52, gas cooling (step S4), quenching (step S6), and air cooling (step S8) are performed. An oil tank 54 in which quenching oil QO is stored is provided in the cooling chamber 52.

加熱室51と冷却室52との間、および、冷却室52と外部との間には、それぞれ扉55aおよび55bが設けられている。   Doors 55a and 55b are provided between the heating chamber 51 and the cooling chamber 52 and between the cooling chamber 52 and the outside, respectively.

浸炭炉50は、さらに、加熱室51の内部および冷却室52の内部を減圧することができる減圧機構(例えば真空ポンプ)56を備える。つまり、浸炭炉50は、いわゆる真空浸炭炉である。減圧機構56により、焼入れ油QOの表面上の空間を減圧することができる。   The carburizing furnace 50 further includes a decompression mechanism (for example, a vacuum pump) 56 that can decompress the inside of the heating chamber 51 and the inside of the cooling chamber 52. That is, the carburizing furnace 50 is a so-called vacuum carburizing furnace. The space on the surface of the quenching oil QO can be decompressed by the decompression mechanism 56.

上述した製造方法によれば、コネクティングロッド1の表面近傍の硬さを高く維持しつつ、残留オーステナイト量を十分に増加させることができる。その理由を説明するに先立ち、図6を参照しながら、従来提案されていた製造方法を説明する。図6は、従来の製造方法の一部の工程における処理条件を示す図である。   According to the manufacturing method described above, the amount of retained austenite can be sufficiently increased while maintaining the hardness near the surface of the connecting rod 1 high. Prior to explaining the reason, a conventionally proposed manufacturing method will be described with reference to FIG. FIG. 6 is a diagram showing processing conditions in some steps of the conventional manufacturing method.

従来の製造方法においても、まず、鋼から形成されたワークピースを用意し、次に、ワークピースに対して機械加工を行う。続いて、ワークピースに対して高濃度浸炭処理を施す。例えば、図6に示すように、950℃で300分間、浸炭を行う。ただし、このとき、浸炭炉内への炭化水素の導入は絶えず行われている。   Also in the conventional manufacturing method, first, a workpiece formed from steel is prepared, and then machining is performed on the workpiece. Subsequently, a high-concentration carburizing process is performed on the workpiece. For example, as shown in FIG. 6, carburization is performed at 950 ° C. for 300 minutes. At this time, however, hydrocarbons are continuously introduced into the carburizing furnace.

次に、ガス冷却を行い、続いて、ワークピースに対して窒化処理を行う。例えば、図6に示すように、アンモニア(アンモニアガス)を浸炭炉内に導入して850℃で130分間、窒化を行う。   Next, gas cooling is performed, and then a nitriding process is performed on the workpiece. For example, as shown in FIG. 6, ammonia (ammonia gas) is introduced into a carburizing furnace and nitriding is performed at 850 ° C. for 130 minutes.

その後、ワークピースに対して焼入れ(油冷)を施す。一般的には、この工程は、0.11cm-1以上の焼入れ強烈度(H値)を有する焼入れ油を用いて行われる。0.11cm-1以上のH値を有する焼入れ油は、一般には、コールドクエンチ油と呼ばれる。また、この工程において、焼入れ油の表面上の雰囲気圧は、ほぼ常圧(約100kPa)である。 Thereafter, the workpiece is quenched (oil-cooled). In general, this step is performed using a quenching oil having a quenching intensity (H value) of 0.11 cm −1 or more. Quenched oils having an H value of 0.11 cm -1 or more are generally referred to as cold quench oils. In this step, the atmospheric pressure on the surface of the quenching oil is almost normal pressure (about 100 kPa).

次に、焼戻しを行う。焼戻しは、例えば、図6に示しているように、190℃で120分間行われる。その後、空冷を行い、最後に、ワークピースに対して機械加工を行う。   Next, tempering is performed. Tempering is performed at 190 ° C. for 120 minutes, for example, as shown in FIG. Thereafter, air cooling is performed, and finally, machining is performed on the workpiece.

このように、従来の製造方法においては、焼入れにはコールドクエンチ油が用いられる。これは、従来の製造方法では、焼入れ性が高い(つまりH値が大きい)焼入れ油を用いる必要があるからである。0.8%以上のカーボンポテンシャルを有する雰囲気下で浸炭処理(あるいは浸炭窒化処理)を行った場合には、鉄の炭化物が析出するだけでなく、鋼中に存在するクロムも炭化物として析出しやすくなり、その結果、鋼母材中のクロム濃度が低下して焼入れ性が低下する。そのため、焼入れ性が高いコールドクエンチ油を用いる必要がある。コールドクエンチ油を用いる従来の製造方法では、コネクティングロッドの表面近傍の硬さを十分に高く維持しつつ、残留オーステナイト量を十分に多くすることはできない。   Thus, in the conventional manufacturing method, cold quench oil is used for quenching. This is because in the conventional manufacturing method, it is necessary to use quenching oil having high hardenability (that is, having a high H value). When carburizing (or carbonitriding) is performed in an atmosphere having a carbon potential of 0.8% or more, not only iron carbides are precipitated, but also chromium present in the steel is likely to precipitate as carbides. As a result, the chromium concentration in the steel base material decreases and the hardenability decreases. Therefore, it is necessary to use cold quench oil with high hardenability. In the conventional production method using cold quench oil, the amount of retained austenite cannot be sufficiently increased while maintaining the hardness near the surface of the connecting rod sufficiently high.

これに対し、本実施形態における製造方法では、ワークピースに対して焼入れを施す工程(図3中に示す工程S6)が、0.11cm-1未満の焼入れ強烈度(H値)を有する焼入れ油を用い、焼入れ油の表面上の雰囲気圧を60kPa以下に制御しながら行われる。0.11cm-1未満のH値を有する焼入れ油(ホットクエンチ油)を用いて減圧下で焼入れを施すと、焼入れ油の沸点が低くなるので、焼入れ初期にワークピースが焼入れ油の蒸気膜(断熱の役割を果たす)に覆われている時間(蒸気膜段階)が長くなる。そのため、焼入れ初期の冷却速度が遅くなる。しかしその一方で、蒸気膜破壊後の冷却速度は速くなるため、マルテンサイト変態自体には影響を及ぼさず、残留オーステナイト量を増加させることができる。蒸気膜段階を十分長くするためには、本実施形態のように、焼入れ油の表面上の雰囲気圧は60kPa以下であることが好ましい。 On the other hand, in the manufacturing method in the present embodiment, the step of quenching the workpiece (step S6 shown in FIG. 3) is a quenching oil having a quenching intensity (H value) of less than 0.11 cm −1. And the atmospheric pressure on the surface of the quenching oil is controlled to 60 kPa or less. When quenching is performed under reduced pressure using a quenching oil (hot quench oil) having an H value of less than 0.11 cm −1 , the boiling point of the quenching oil is lowered, so that the workpiece becomes a quenching oil vapor film ( The time (vapor film stage) covered with (insulating heat) becomes longer. Therefore, the cooling rate at the initial stage of quenching becomes slow. However, on the other hand, since the cooling rate after the vapor film breakage is increased, the amount of retained austenite can be increased without affecting the martensitic transformation itself. In order to make the vapor film stage sufficiently long, the atmospheric pressure on the surface of the quenching oil is preferably 60 kPa or less as in the present embodiment.

また、ホットクエンチ油は、常圧ではH値が低いが、減圧によって対流段階開始温度が低下するので、そのことによって焼入れ性(対流段階における冷却性)が向上し、実効的なH値を大きくすることができる。そのため、コネクティングロッド1の表面近傍(深さ0.1mmの位置)の硬さを十分に高くすることができる。これに対し、0.11cm-1以上のH値を有する焼入れ油(コールドクエンチ油)には、一般に、蒸気膜段階を短くするための添加剤が含まれているので、コールドクエンチ油を用いると、たとえ減圧しても蒸気膜段階を十分に長くすることができず、残留オーステナイト量を十分に増加させることができない。 Hot quench oil has a low H value at normal pressure, but the convection stage start temperature decreases due to the reduced pressure, which improves hardenability (coolability in the convection stage) and increases the effective H value. can do. Therefore, the hardness in the vicinity of the surface of the connecting rod 1 (depth 0.1 mm) can be sufficiently increased. On the other hand, quenching oil (cold quench oil) having an H value of 0.11 cm −1 or more generally contains an additive for shortening the vapor film stage. Even if the pressure is reduced, the vapor film stage cannot be made sufficiently long, and the amount of retained austenite cannot be increased sufficiently.

なお、焼入れを施す工程において用いられる焼入れ油のH値は、0.07cm-1以上であることが好ましい。H値が0.07cm-1未満の場合、減圧の度合いによっては十分な焼入れ性が得られない(実効的なH値が十分に大きくならない)ことがある。 The H value of the quenching oil used in the quenching step is preferably 0.07 cm −1 or more. When the H value is less than 0.07 cm −1 , sufficient hardenability may not be obtained depending on the degree of decompression (the effective H value may not be sufficiently large).

また、焼入れを施す工程は、焼入れ油の表面上の雰囲気圧を5kPa以上に制御しながら実行されることが好ましい。雰囲気圧が5kPa未満である場合、焼入れ油の沸点が低くなりすぎて蒸気膜段階が長くなりすぎることがある。そのため、焼入れ性が低下して十分に高い硬さが得られないおそれがある。   Moreover, it is preferable to perform the process of quenching while controlling the atmospheric pressure on the surface of the quenching oil to 5 kPa or more. When the atmospheric pressure is less than 5 kPa, the boiling point of the quenching oil becomes too low and the vapor film stage may become too long. Therefore, there is a possibility that hardenability is lowered and sufficiently high hardness cannot be obtained.

このように、本実施形態における製造方法によれば、コネクティングロッド1の硬さを十分に高く維持しつつ、耐フレーキング性に寄与する(好影響を及ぼす)残留オーステナイト組織の量を増加させることができる。そのため、本実施形態における製造方法により製造されたコネクティングロッド1は、フレーキング寿命に優れる。また、フレーキング寿命が向上した本実施形態におけるコネクティングロッド1には、従来よりも高負荷をかけることが可能になる。そのため、大端部30の寸法を小さくし、軽量化することも可能になる。   Thus, according to the manufacturing method in the present embodiment, the amount of the retained austenite structure that contributes to (good influence on) the anti-flaking property is increased while maintaining the hardness of the connecting rod 1 sufficiently high. Can do. Therefore, the connecting rod 1 manufactured by the manufacturing method in this embodiment is excellent in flaking life. Moreover, it becomes possible to apply a higher load to the connecting rod 1 in the present embodiment with an improved flaking life than in the prior art. Therefore, the size of the large end portion 30 can be reduced and the weight can be reduced.

なお、本実施形態では、ワークピースに対し、高濃度浸炭処理と窒化処理とを別々に(順次)施す場合を説明したが、高濃度浸炭処理を施す際に窒化処理を同時に施してもよい。つまり、ワークピースに対し、高濃度浸炭窒化処理を施してもよい。   In the present embodiment, the case where the high-concentration carburizing process and the nitriding process are separately (sequentially) performed on the workpiece has been described. However, the nitriding process may be performed simultaneously when the high-concentration carburizing process is performed. That is, you may perform a high concentration carbonitriding process with respect to a workpiece.

高濃度浸炭処理(高濃度浸炭窒化処理)は、本実施形態にように、1.1%以上のカーボンポテンシャルを有する雰囲気下で行われることが好ましい。カーボンポテンシャルが1.1%未満である場合、残留オーステナイト量が十分に多くならないことがある。また、炭化物の析出量が少なくなり、硬さが低下することがある。   The high concentration carburizing treatment (high concentration carbonitriding treatment) is preferably performed in an atmosphere having a carbon potential of 1.1% or more as in the present embodiment. When the carbon potential is less than 1.1%, the amount of retained austenite may not be sufficiently increased. Moreover, the precipitation amount of a carbide | carbonized_material may decrease and hardness may fall.

また、高濃度浸炭処理(高濃度浸炭窒化処理)は、2.2%未満のカーボンポテンシャルを有する雰囲気下で行われることが好ましい。カーボンポテンシャルが2.2%以上であると、炭化物の析出量が多くなりすぎ、靱性が低下することがある。   Further, the high concentration carburizing treatment (high concentration carbonitriding treatment) is preferably performed in an atmosphere having a carbon potential of less than 2.2%. When the carbon potential is 2.2% or more, the amount of carbides precipitated becomes too large and the toughness may be lowered.

高濃度浸炭処理(高濃度浸炭窒化処理)における雰囲気のカーボンポテンシャルは、表面から0.1mmの深さにおける炭素含有量にほぼ対応する。従って、コネクティングロッド1の表面から0.1mmの深さにおける炭素含有量は、1.1wt%以上2.2wt%未満であることが好ましい。また、後に検証結果を説明するように、いっそうの長寿命化を図る観点からは、コネクティングロッド1の表面から0.1mmの深さにおける炭素含有量は、1.6wt%以上2.0wt%未満であることが好ましく、そのため、高濃度浸炭処理(高濃度浸炭窒化処理)は、1.6%以上2.0%以下のカーボンポテンシャルを有する雰囲気下で行われることが好ましい。   The carbon potential of the atmosphere in the high concentration carburizing process (high concentration carbonitriding process) substantially corresponds to the carbon content at a depth of 0.1 mm from the surface. Accordingly, the carbon content at a depth of 0.1 mm from the surface of the connecting rod 1 is preferably 1.1 wt% or more and less than 2.2 wt%. Further, as will be described later, the carbon content at a depth of 0.1 mm from the surface of the connecting rod 1 is 1.6 wt% or more and less than 2.0 wt% from the viewpoint of further extending the life. Therefore, the high-concentration carburizing treatment (high-concentration carbonitriding treatment) is preferably performed in an atmosphere having a carbon potential of 1.6% or more and 2.0% or less.

さらに、いっそうの長寿命化を図る観点からは、表面から0.1mmの深さにおける鋼組織の結晶粒径が9μm以下であることも好ましい。例えば、高濃度浸炭処理(高濃度浸炭窒化処理)を、1.4%以上のカーボンポテンシャルを有する雰囲気下で行い、且つ、焼入れを、焼入れ油の表面上の雰囲気圧を50kPa以上60kPa以下に制御しながら実行することにより、鋼組織の結晶粒径を9μm以下にすることができる。   Furthermore, from the viewpoint of further extending the life, it is also preferable that the crystal grain size of the steel structure at a depth of 0.1 mm from the surface is 9 μm or less. For example, high-concentration carburization (high-concentration carbonitriding) is performed in an atmosphere having a carbon potential of 1.4% or more, and quenching is controlled so that the atmospheric pressure on the surface of the quenching oil is 50 kPa to 60 kPa. However, the grain size of the steel structure can be reduced to 9 μm or less.

また、靭性を高くする観点からは、表面近傍に析出している炭化物および炭窒化物の粒径は、なるべく小さいことが好ましく、具体的には10μm以下であることが好ましい。   Further, from the viewpoint of increasing toughness, the particle diameters of carbides and carbonitrides precipitated in the vicinity of the surface are preferably as small as possible, and specifically 10 μm or less.

さらに、耐フレーキング性のいっそうの向上を図る観点からは、表面から0.1mmの深さにおける窒素含有量は、0.03wt%以上0.19wt%以下であることが好ましく、0.04wt%以上0.18wt%以下であることがより好ましく、0.05wt%以上0.15wt%以下であることがさらに好ましい。   Furthermore, from the viewpoint of further improving the flaking resistance, the nitrogen content at a depth of 0.1 mm from the surface is preferably 0.03 wt% or more and 0.19 wt% or less, and 0.04 wt%. It is more preferably 0.18 wt% or less, and further preferably 0.05 wt% or more and 0.15 wt% or less.

本実施形態のように真空浸炭炉を用いる場合、高濃度浸炭処理(または高濃度浸炭窒化処理)中に、加熱室51の内部への炭化水素の導入を複数回停止することが好ましい。これにより、カーボンポテンシャルを高い精度で調節することができ、コネクティングロッド1の表面近傍における炭素含有量を高い精度で制御することができる。なお、図4には、炭化水素の導入の停止を2回行う例を示したが、炭化水素の導入の停止を3回以上行ってもよい。   When using a vacuum carburizing furnace as in the present embodiment, it is preferable to stop introduction of hydrocarbons into the heating chamber 51 a plurality of times during high-concentration carburizing treatment (or high-concentration carbonitriding treatment). Thereby, the carbon potential can be adjusted with high accuracy, and the carbon content in the vicinity of the surface of the connecting rod 1 can be controlled with high accuracy. Although FIG. 4 shows an example in which the introduction of hydrocarbons is stopped twice, the introduction of hydrocarbons may be stopped three or more times.

なお、必ずしも真空浸炭炉を用いなくてもよい。減圧機構56は、少なくとも焼入れ油の表面上の空間を(つまり冷却室52内を)減圧することができればよい。従って、冷却室52内を減圧することができるように構成されたガス浸炭炉を用いてもよい。ガス浸炭炉を用いる場合、浸炭処理を平衡反応として行うことができるため、カーボンポテンシャルをより確実に上述した好ましい範囲(1.1%以上2.2%未満)に制御することが可能となる。   Note that the vacuum carburizing furnace is not necessarily used. The decompression mechanism 56 only needs to be able to decompress at least the space on the surface of the quenching oil (that is, the inside of the cooling chamber 52). Therefore, you may use the gas carburizing furnace comprised so that the inside of the cooling chamber 52 could be pressure-reduced. When the gas carburizing furnace is used, the carburizing process can be performed as an equilibrium reaction, so that the carbon potential can be more reliably controlled within the above-described preferable range (1.1% or more and less than 2.2%).

図7に、本実施形態における製造方法によって実際に製造されたコネクティングロッド1の深さ方向における炭素濃度(炭素含有量)の分布を示す。コネクティングロッド1の材料である鋼としては、肌焼鋼(JIS SCM420)を用いた。高濃度浸炭処理等の処理条件は、図8に示す通りである。高濃度浸炭処理は、950℃で300分間行った。その際、炭化水素(具体的にはアセチレン)を導入する期間Aとして1時間、炭化水素の導入を停止する期間Bとして40分を設定し、これらを交互に3回繰り返した。つまり、加熱室51内への炭化水素の導入を3回停止した。窒化処理は、850℃で130分間行った。焼入れは、H値が0.10cm-1の焼入れ油を用い、焼入れ油の表面上の雰囲気圧を15kPaに制御しながら行った。焼戻しは、190℃で120分間行った。 FIG. 7 shows a distribution of carbon concentration (carbon content) in the depth direction of the connecting rod 1 actually manufactured by the manufacturing method according to the present embodiment. As the steel that is the material of the connecting rod 1, case-hardened steel (JIS SCM420) was used. Processing conditions such as high-concentration carburizing processing are as shown in FIG. The high-concentration carburizing treatment was performed at 950 ° C. for 300 minutes. At that time, the period A for introducing hydrocarbons (specifically acetylene) was set to 1 hour and the period B for stopping introduction of hydrocarbons was set to 40 minutes, and these were repeated three times alternately. That is, introduction of hydrocarbons into the heating chamber 51 was stopped three times. The nitriding treatment was performed at 850 ° C. for 130 minutes. Quenching was performed using a quenching oil having an H value of 0.10 cm −1 while controlling the atmospheric pressure on the surface of the quenching oil to 15 kPa. Tempering was performed at 190 ° C. for 120 minutes.

図7に示されている例では、表面から0.1mmの深さにおける炭素濃度は約1.4wt%である。なお、図7に示したような炭素濃度分布は、例えば電子線マイクロアナライザ(EPMA)により測定することができる。   In the example shown in FIG. 7, the carbon concentration at a depth of 0.1 mm from the surface is about 1.4 wt%. The carbon concentration distribution as shown in FIG. 7 can be measured by, for example, an electron beam microanalyzer (EPMA).

図9に、コネクティングロッド1の深さ方向における硬さ分布を示し、図10に、深さ方向における残留オーステナイト量分布を示す。図9に示されているように、表面から0.1mmの深さにおけるビッカース硬さHVは740である。また、図10に示されているように、表面から0.1mmの深さにおける残留オーステナイト量は58%である。このように、本実施形態における製造方法によれば、表面から0.1mmの深さにおけるビッカース硬さHVを710以上に維持しつつ、その深さにおける残留オーステナイト量を50vol%以上にすることができる。このコネクティングロッド1についてフレーキング寿命(累積破損確率50%の寿命であり、「L50寿命」と呼ばれる)を測定したところ、1.91×106cycleと高い数値であった。 FIG. 9 shows the hardness distribution in the depth direction of the connecting rod 1, and FIG. 10 shows the residual austenite amount distribution in the depth direction. As shown in FIG. 9, the Vickers hardness HV at a depth of 0.1 mm from the surface is 740. Further, as shown in FIG. 10, the amount of retained austenite at a depth of 0.1 mm from the surface is 58%. Thus, according to the manufacturing method in the present embodiment, the amount of retained austenite at the depth can be 50 vol% or more while maintaining the Vickers hardness HV at a depth of 0.1 mm from the surface at 710 or more. it can. The connecting rod 1 was measured for flaking life (having a cumulative failure probability of 50%, referred to as “L50 life”) and was a high value of 1.91 × 10 6 cycles.

次に、表面から0.1mmの深さにおける残留オーステナイト量、ビッカース硬さHVを変化させ、フレーキング寿命への影響を検証した結果を説明する。   Next, the results of verifying the influence on the flaking life by changing the amount of retained austenite and Vickers hardness HV at a depth of 0.1 mm from the surface will be described.

下記表1に、H値が0.10cm-1の焼入れ油を用いて60kPa以下の雰囲気圧でワークピースに対して焼入れが施された実施例1〜10と、H値が0.11cm-1の焼入れ油を用いて100kPaの雰囲気圧でワークピースに対して焼入れが施された比較例1〜11とについて、検証結果を示す。なお、残留オーステナイト量は、X線回折手法を用いた分析機(例えばX線残留応力測定機)により測定することができる。また、表1に示す結果を、横軸にビッカース硬さHVをとり、縦軸にL50寿命をとってプロットしたものが図11であり、横軸に残留オーステナイト量をとり、縦軸にビッカース硬さHVをとってプロットしたものが図12である。図11および図12中のex1〜10は実施例1〜10に対応し、ce1〜11は比較例1〜11に対応する。また、図11中にプロットされた点に付された数値は、残留オーステナイト量を示している。 In the following Table 1, the Examples 1 to 10 in which quenching is performed relative to the workpiece by the following ambient pressure 60kPa using a quenching oil H value 0.10 cm -1, H values are 0.11 cm -1 A verification result is shown about Comparative Examples 1-11 by which hardening was performed with respect to the workpiece by the atmospheric pressure of 100 kPa using this hardening oil. The amount of retained austenite can be measured by an analyzer using an X-ray diffraction technique (for example, an X-ray residual stress measuring machine). The results shown in Table 1 are plotted with the Vickers hardness HV on the horizontal axis and the L50 life on the vertical axis. FIG. 11 shows the amount of retained austenite on the horizontal axis and the Vickers hardness on the vertical axis. FIG. 12 is a plot of HV. 11 and 12 correspond to Examples 1 to 10, and ce1 to 11 correspond to Comparative Examples 1 to 11, respectively. Moreover, the numerical value attached | subjected to the point plotted in FIG. 11 has shown the amount of retained austenite.

Figure 0005603889
Figure 0005603889

表1および図11から、実施例1〜10のフレーキング寿命が、比較例1〜11のフレーキング寿命よりも長いことがわかる。また、表1および図12から、焼入れにコールドクエンチ油を用いる従来の製造方法では、残留オーステナイト量が50vol%以上になると710以上のビッカース硬さHVを維持できないのに対し、焼入れにホットクエンチ油を用いる本実施形態における製造方法では、残留オーステナイト量が50vol%以上になっても710以上のビッカース硬さHVを維持できることがわかる。   From Table 1 and FIG. 11, it can be seen that the flaking life of Examples 1 to 10 is longer than the flaking life of Comparative Examples 1 to 11. Moreover, from Table 1 and FIG. 12, in the conventional manufacturing method using cold quench oil for quenching, when the amount of retained austenite becomes 50 vol% or more, Vickers hardness HV of 710 or more cannot be maintained, whereas hot quench oil for quenching is used. It can be seen that, in the manufacturing method according to the present embodiment using V, a Vickers hardness HV of 710 or more can be maintained even when the amount of retained austenite is 50 vol% or more.

このように、表面から0.1mmの深さにおける残留オーステナイト量を50vol%以上にし、且つ、その深さにおけるビッカース硬さHVを710以上にすることにより、フレーキング寿命を従来よりも長くし得ることがわかった。   Thus, the flaking life can be made longer than before by setting the amount of retained austenite at a depth of 0.1 mm from the surface to 50 vol% or more and the Vickers hardness HV at the depth to 710 or more. I understood it.

表2に、実施例1〜10および比較例1〜11について、表面から0.1mmの深さにおける鋼組織の結晶粒径と、期間AおよびBの繰り返し回数と、表面から0.1mmの深さにおける炭素含有量とを示す。鋼組織の結晶粒径の測定は、JIS G 0551「鋼−結晶粒度の顕微鏡試験方法」中の「計数方法による評価方法」に従い、結晶粒の平均直径を求めることにより行った。また、炭素含有量の測定は、電子線マイクロアナライザ(EPMA)を用いて行った。なお、比較例3〜10については、一部の値は示されていない。   In Table 2, for Examples 1 to 10 and Comparative Examples 1 to 11, the grain size of the steel structure at a depth of 0.1 mm from the surface, the number of repetitions of periods A and B, and the depth of 0.1 mm from the surface The carbon content is shown. The crystal grain size of the steel structure was measured by determining the average diameter of the crystal grains according to “Evaluation Method by Counting Method” in JIS G 0551 “Steel—Microscopic Test Method for Crystal Grain Size”. The carbon content was measured using an electron beam microanalyzer (EPMA). For Comparative Examples 3 to 10, some values are not shown.

Figure 0005603889
Figure 0005603889

実施例4および8と、実施例1〜3、7、9および10との比較から、鋼組織の結晶粒径を9μm以下にすることにより、いっそうの長寿命化が可能であることがわかる。   From a comparison between Examples 4 and 8 and Examples 1 to 3, 7, 9 and 10, it can be seen that a longer life can be achieved by setting the crystal grain size of the steel structure to 9 μm or less.

また、表1および表2から、鋼組織の結晶粒径を9μm以下とするためには、表面から0.1mmの深さにおける炭素含有量が1.4wt%以上で(つまり高濃度浸炭処理あるいは高濃度浸炭窒化処理を1.4%以上のカーボンポテンシャルを有する雰囲気下で行い)、且つ、焼き入れの際の焼入れ油の表面上の雰囲気圧が50kPa以上であることが好ましいことがわかる。   Also, from Tables 1 and 2, in order to make the grain size of the steel structure 9 μm or less, the carbon content at a depth of 0.1 mm from the surface is 1.4 wt% or more (that is, high-concentration carburizing treatment or It is understood that the high concentration carbonitriding treatment is performed in an atmosphere having a carbon potential of 1.4% or more), and the atmospheric pressure on the surface of the quenching oil during quenching is preferably 50 kPa or more.

実施例1〜3および10からわかるように、雰囲気圧が50kPa未満(ここではいずれも40kPa以下)であると、炭素含有量が十分多くても鋼組織の結晶粒径を十分に微細化することはできない。また、比較例1、2および11からわかるように、雰囲気圧が50kPa以上であっても、炭素含有量が少ないと、鋼組織の結晶粒径を十分に微細化することはできない。   As can be seen from Examples 1 to 3 and 10, when the atmospheric pressure is less than 50 kPa (both 40 kPa or less in this case), the crystal grain size of the steel structure is sufficiently refined even if the carbon content is sufficiently large. I can't. Further, as can be seen from Comparative Examples 1, 2, and 11, even if the atmospheric pressure is 50 kPa or more, if the carbon content is small, the crystal grain size of the steel structure cannot be sufficiently refined.

なお、既に説明したように、雰囲気圧が60kPaを超えると、蒸気膜段階を十分長くすることができず、残留オーステナイト量を十分に増やすことができないので、雰囲気圧は50kPa以上60kPa以下が好ましいといえる。   As already described, if the atmospheric pressure exceeds 60 kPa, the vapor film stage cannot be made sufficiently long, and the amount of retained austenite cannot be increased sufficiently. Therefore, the atmospheric pressure is preferably 50 kPa or more and 60 kPa or less. I can say that.

また、実施例5および6と、実施例1〜3、7、9および10との比較から、炭素含有量を1.6wt%以上2.0wt%以下にすることによっても、いっそうの長寿命化が可能であることがわかる。従って、炭素含有量は、1.6wt%以上2.0wt%以下であることが好ましい。   Further, from comparison between Examples 5 and 6 and Examples 1 to 3, 7, 9, and 10, the life can be further extended by making the carbon content 1.6 wt% or more and 2.0 wt% or less. It is understood that is possible. Therefore, the carbon content is preferably 1.6 wt% or more and 2.0 wt% or less.

表面から0.1mmの深さにおける炭素含有量を1.6wt%以上2.0wt%以下に精度良く制御するためには、高濃度浸炭処理(高濃度浸炭窒化処理)中に、期間AおよびBを4回または5回繰り返すことが好適である。つまり、加熱室51の内部への炭化水素の導入を4回または5回停止することが好ましい。   In order to accurately control the carbon content at a depth of 0.1 mm from the surface to 1.6 wt% or more and 2.0 wt% or less, the periods A and B during the high concentration carburizing treatment (high concentration carbonitriding treatment) Is preferably repeated 4 or 5 times. That is, it is preferable to stop introduction of hydrocarbons into the heating chamber 51 four or five times.

表3に、H値が0.07cm-1の焼入れ油を用いて15kPaの雰囲気圧で焼入れが行われた実施例11、H値が0.06cm-1の焼入れ油を用いて15kPaの雰囲気圧で焼入れが行われた比較例12、H値が0.10cm-1の焼入れ油を用いて3kPa以下の雰囲気圧で焼入れが行われた比較例13およびH値が0.10cm-1の焼入れ油を用いて65kPaの雰囲気圧で焼入れが行われた比較例14について、ビッカース硬さHVと残留オーステナイト量とを示す。 Table 3, ambient pressure of 15kPa with a quenching oil H value Example 11 quenching is performed at ambient pressure of 15kPa with a quenching oil is 0.07 cm -1, H values are 0.06 cm -1 Comparative Example 12 that was quenched in Example 10, Comparative Example 13 that was quenched at an atmospheric pressure of 3 kPa or less using a quenching oil that had an H value of 0.10 cm −1, and a quenching oil that had an H value of 0.10 cm −1 Vickers hardness HV and amount of retained austenite are shown for Comparative Example 14 in which quenching was performed at an atmospheric pressure of 65 kPa.

Figure 0005603889
Figure 0005603889

実施例11では、ビッカース硬さHVが710以上であるのに対し、比較例12および13では、ビッカース硬さHVは710未満である。このように、実施例11と比較例12との比較から、また、実施例11と比較例13との比較から、十分な硬さを実現する観点からは、焼入れ油のH値は、0.07cm-1以上であることが好ましく、焼入れ油の表面上の雰囲気圧は5kPa以上であることが好ましいことがわかる。また、実施例11では、残留オーステナイト量が50vol%以上であるのに対し、比較例14では、残留オーステナイト量は50vol%未満である。このように、実施例11と比較例14との比較から、残留オーステナイト量を十分に増加させる観点からは、焼入れ油の表面上の雰囲気圧は60kPa以下であることが好ましいことがわかる。 In Example 11, the Vickers hardness HV is 710 or more, whereas in Comparative Examples 12 and 13, the Vickers hardness HV is less than 710. As described above, from the comparison between Example 11 and Comparative Example 12 and from the comparison between Example 11 and Comparative Example 13, the H value of the quenching oil is 0. It is preferable that the pressure is 07 cm −1 or more, and the atmospheric pressure on the surface of the quenching oil is preferably 5 kPa or more. In Example 11, the amount of retained austenite is 50 vol% or more, whereas in Comparative Example 14, the amount of retained austenite is less than 50 vol%. Thus, from the comparison between Example 11 and Comparative Example 14, it can be seen that the atmospheric pressure on the surface of the quenching oil is preferably 60 kPa or less from the viewpoint of sufficiently increasing the amount of retained austenite.

また、高濃度浸炭処理と窒化処理との間に、加熱室51の内部へ炭化水素およびアンモニアのいずれもが導入されないリファイニング工程を実行することも好ましい。リファイニング工程により、表面近傍に析出している炭化物の粒径をいっそう小さくすることが可能となる。   It is also preferable to execute a refining process in which neither hydrocarbon nor ammonia is introduced into the heating chamber 51 between the high-concentration carburizing process and the nitriding process. By the refining process, it is possible to further reduce the particle size of the carbide precipitated in the vicinity of the surface.

例えば、図4および図8に示した処理条件を、それぞれ図13および図14に示すように改変することができる。図13および図14に示す処理条件では、高濃度浸炭処理と窒化処理との間に、850℃で60分間(もちろんこの温度、時間に限定されるものではない)、炭化水素およびアンモニアの導入が行われないリファイニング工程が実行され、その後、ガス冷却が行われる。このようなリファイニング工程により、表面近傍に析出している炭化物の粒径をいっそう小さくすることができる。例えば、図8に示した処理条件では、炭化物の粒径が7〜9μmであったのに対し、図14に示した処理条件では、炭化物の粒径は4〜6μmであった。   For example, the processing conditions shown in FIGS. 4 and 8 can be modified as shown in FIGS. 13 and 14, respectively. Under the processing conditions shown in FIG. 13 and FIG. 14, introduction of hydrocarbons and ammonia is carried out between the high-concentration carburizing process and the nitriding process at 850 ° C. for 60 minutes (of course not limited to this temperature and time). A refining step that is not performed is performed, and then gas cooling is performed. By such a refining process, the particle size of the carbide precipitated in the vicinity of the surface can be further reduced. For example, in the processing conditions shown in FIG. 8, the particle size of the carbide was 7 to 9 μm, whereas in the processing conditions shown in FIG. 14, the particle size of the carbide was 4 to 6 μm.

本実施形態におけるコネクティングロッド1は、内燃機関に好適に用いられる。図15に、本実施形態におけるコネクティングロッド1を備えた内燃機関100の一例を示す。内燃機関100は、クランクケース110、シリンダブロック120およびシリンダヘッド130を有している。   The connecting rod 1 in this embodiment is suitably used for an internal combustion engine. FIG. 15 shows an example of the internal combustion engine 100 provided with the connecting rod 1 in the present embodiment. The internal combustion engine 100 includes a crankcase 110, a cylinder block 120, and a cylinder head 130.

クランクケース110内にはクランクシャフト111が収容されている。クランクシャフト111は、クランクピン112およびクランクウェブ113を有している。クランクピン112と、クランクウェブ113とは、別体に形成されている。つまり、クランクシャフト111は、組立て式のクランクシャフトである。   A crankshaft 111 is accommodated in the crankcase 110. The crankshaft 111 has a crankpin 112 and a crank web 113. The crank pin 112 and the crank web 113 are formed separately. That is, the crankshaft 111 is an assembly-type crankshaft.

クランクケース110の上に、シリンダブロック120が設けられている。シリンダブロック120には、円筒状のシリンダスリーブ121がはめ込まれており、ピストン122は、シリンダスリーブ121内を往復し得るように設けられている。   A cylinder block 120 is provided on the crankcase 110. The cylinder block 120 is fitted with a cylindrical cylinder sleeve 121, and the piston 122 is provided so as to reciprocate within the cylinder sleeve 121.

シリンダブロック120の上に、シリンダヘッド130が設けられている。シリンダヘッド130は、シリンダブロック120のピストン122やシリンダスリーブ121とともに燃焼室131を形成する。シリンダヘッド130は、吸気ポート132および排気ポート133を有している。吸気ポート132内には燃焼室131内に混合気を供給するための吸気弁134が設けられており、排気ポート133内には燃焼室131内の排気を行うための排気弁135が設けられている。   A cylinder head 130 is provided on the cylinder block 120. The cylinder head 130 forms a combustion chamber 131 together with the piston 122 and the cylinder sleeve 121 of the cylinder block 120. The cylinder head 130 has an intake port 132 and an exhaust port 133. An intake valve 134 for supplying air-fuel mixture into the combustion chamber 131 is provided in the intake port 132, and an exhaust valve 135 for exhausting the combustion chamber 131 is provided in the exhaust port 133. Yes.

ピストン122とクランクシャフト111とは、コネクティングロッド1によって連結されている。具体的には、コネクティングロッド1の小端部20に形成されたピストンピン孔にピストン122のピストンピン123が挿通されているとともに、大端部30に形成されたクランクピン孔にクランクシャフト111のクランクピン112が挿通されており、そのことによってピストン122とクランクシャフト111とが連結されている。   The piston 122 and the crankshaft 111 are connected by the connecting rod 1. Specifically, the piston pin 123 of the piston 122 is inserted into the piston pin hole formed in the small end portion 20 of the connecting rod 1, and the crankshaft 111 is formed in the crankpin hole formed in the large end portion 30. The crank pin 112 is inserted, whereby the piston 122 and the crank shaft 111 are connected.

フリクションロスの低減が重視される仕様の内燃機関(例えばシリンダの数が1つである単気筒内燃機関)では、図15に示す内燃機関100のように、コネクティングロッド1の大端部30の内周面30aとクランクピン112との間には、ニードルベアリング114が設けられている。ニードルベアリング114が設けられている場合、コネクティングロッド1がニードルベアリング114に押し付けられることにより、大端部30の内周面30aに応力が発生する。この応力が過大であると、フレーキングの発生が懸念される。しかしながら、本実施形態におけるコネクティングロッド1は、耐フレーキング性に優れているので、フレーキングの発生が商品として必要な期間以上の長期間にわたって防止される。   In an internal combustion engine having a specification in which reduction of friction loss is important (for example, a single-cylinder internal combustion engine having one cylinder), as shown in FIG. A needle bearing 114 is provided between the peripheral surface 30 a and the crank pin 112. When the needle bearing 114 is provided, stress is generated on the inner peripheral surface 30 a of the large end portion 30 by pressing the connecting rod 1 against the needle bearing 114. If this stress is excessive, the occurrence of flaking is a concern. However, since the connecting rod 1 in this embodiment is excellent in anti-flaking property, the occurrence of flaking is prevented for a long period of time longer than that required for a product.

なお、図15には、転がり軸受としてニードルベアリング114を例示したが、転がり軸受は、ニードルベアリングのようなころ軸受に限定されるものではなく、ボールベアリング(玉軸受)であってもよい。   In FIG. 15, the needle bearing 114 is illustrated as the rolling bearing, but the rolling bearing is not limited to a roller bearing such as a needle bearing, and may be a ball bearing (ball bearing).

図16に、図15に示した内燃機関100を備えた自動二輪車を示す。図16に示す自動二輪車では、本体フレーム301の前端にヘッドパイプ302が設けられている。ヘッドパイプ302には、フロントフォーク303が車両の左右方向に揺動し得るように取り付けられている。フロントフォーク303の下端には、前輪304が回転可能なように支持されている。   FIG. 16 shows a motorcycle including the internal combustion engine 100 shown in FIG. In the motorcycle shown in FIG. 16, a head pipe 302 is provided at the front end of the main body frame 301. A front fork 303 is attached to the head pipe 302 so as to be able to swing in the left-right direction of the vehicle. A front wheel 304 is rotatably supported at the lower end of the front fork 303.

本体フレーム301の後端上部から後方に延びるようにシートレール306が取り付けられている。本体フレーム301上に燃料タンク307が設けられており、シートレール306上にメインシート308aおよびタンデムシート308bが設けられている。   A seat rail 306 is attached so as to extend rearward from the upper rear end of the main body frame 301. A fuel tank 307 is provided on the main body frame 301, and a main seat 308 a and a tandem seat 308 b are provided on the seat rail 306.

また、本体フレーム301の後端に、後方へ延びるリアアーム309が取り付けられている。リアアーム309の後端に後輪310が回転可能なように支持されている。   A rear arm 309 extending rearward is attached to the rear end of the main body frame 301. A rear wheel 310 is rotatably supported at the rear end of the rear arm 309.

本体フレーム301の中央部には、図13に示した内燃機関100が保持されている。内燃機関100は、本実施形態におけるコネクティングロッド1を備えている。内燃機関100の前方には、ラジエータ311が設けられている。内燃機関100の排気ポートには排気管312が接続されており、排気管312の後端にマフラー313が取り付けられている。   The internal combustion engine 100 shown in FIG. 13 is held at the center of the main body frame 301. The internal combustion engine 100 includes the connecting rod 1 in the present embodiment. A radiator 311 is provided in front of the internal combustion engine 100. An exhaust pipe 312 is connected to the exhaust port of the internal combustion engine 100, and a muffler 313 is attached to the rear end of the exhaust pipe 312.

内燃機関100には変速機315が連結されている。変速機315の出力軸316に駆動スプロケット317が取り付けられている。駆動スプロケット317は、チェーン318を介して後輪310の後輪スプロケット319に連結されている。変速機315およびチェーン318は、内燃機関100により発生した動力を駆動輪に伝える伝達機構として機能する。   A transmission 315 is connected to the internal combustion engine 100. A drive sprocket 317 is attached to the output shaft 316 of the transmission 315. The drive sprocket 317 is connected to the rear wheel sprocket 319 of the rear wheel 310 via a chain 318. The transmission 315 and the chain 318 function as a transmission mechanism that transmits the power generated by the internal combustion engine 100 to the drive wheels.

図16に示した自動二輪車には、本実施形態におけるコネクティングロッド1を備えた内燃機関100が用いられているので、商品として必要な期間以上の長期間にわたってフレーキングの発生が防止される。また、本実施形態におけるコネクティングロッド1は、小型軽量化にも適している。高寿命化により、高負荷をコネクティングロッド1にかけることが可能になるためである。コネクティングロッド1の小型軽量化により、内燃機関100や車体も軽量化され、自動二輪車の走行安定性や、乗り易さ、扱い易さが向上し、商品性が向上する。   Since the motorcycle shown in FIG. 16 uses the internal combustion engine 100 including the connecting rod 1 according to the present embodiment, the occurrence of flaking is prevented for a long period of time longer than a period necessary for a product. Moreover, the connecting rod 1 in the present embodiment is also suitable for reducing the size and weight. This is because it is possible to apply a high load to the connecting rod 1 by extending the life. By reducing the size and weight of the connecting rod 1, the internal combustion engine 100 and the vehicle body are also reduced in weight, so that the running stability, ease of riding, and ease of handling of the motorcycle are improved, and the merchantability is improved.

なお、本実施形態におけるコネクティングロッド1を備えた内燃機関100は、自動二輪車に限定されず、自動車両全般に好適に用いられ、ライダーが跨って乗る鞍乗り型車両に特に好適に用いられる。鞍乗型車両としては、例示した自動二輪車の他、バギーなどのATVが挙げられる。   Note that the internal combustion engine 100 including the connecting rod 1 in the present embodiment is not limited to a motorcycle, but is preferably used for all motor vehicles and particularly preferably for saddle riding type vehicles on which riders ride. Examples of the straddle-type vehicle include an ATV such as a buggy in addition to the illustrated motorcycle.

また、本実施形態におけるコネクティングロッド1は、発電機や農作業機器などで用いられる小型内燃機関にも用いることができる。   Moreover, the connecting rod 1 in this embodiment can be used also for the small internal combustion engine used with a generator, an agricultural work apparatus, etc.

なお、本実施形態では、コネクティングロッドを例として説明を行ったが、本発明は、コネクティングロッドおよびその製造方法に限定されるものではない。本発明による鋼製部品は、コネクティングロッド以外の部品であってもよく、例えば、クランクピンであってもよい。クランクピンでは、その外周面が転がり軸受に接する。   In the present embodiment, the connecting rod has been described as an example. However, the present invention is not limited to the connecting rod and the manufacturing method thereof. The steel part according to the present invention may be a part other than the connecting rod, for example, a crankpin. The outer peripheral surface of the crank pin is in contact with the rolling bearing.

本発明によると、転がり軸受に接する表面におけるフレーキングの発生が抑制され、フレーキング寿命に優れた鋼製部品およびその製造方法が提供される。   According to the present invention, the occurrence of flaking on the surface in contact with the rolling bearing is suppressed, and a steel part excellent in flaking life and a method for producing the same are provided.

本発明による鋼製部品は、各種の自動車両用の内燃機関(例えば自動二輪車用の内燃機関)に広く用いられる。   The steel component according to the present invention is widely used in various internal combustion engines for motor vehicles (for example, internal combustion engines for motorcycles).

1 コネクティングロッド
10 ロッド本体部
20 小端部
20a 小端部の内周面
22 ピストンピン孔
30 大端部
30a 大端部の内周面
32 クランクピン孔
100 内燃機関
DESCRIPTION OF SYMBOLS 1 Connecting rod 10 Rod main-body part 20 Small end part 20a Inner peripheral surface of a small end part 22 Piston pin hole 30 Large end part 30a Inner peripheral surface of a large end part 32 Crank pin hole 100 Internal combustion engine

Claims (17)

転がり軸受に接する表面を有する鋼製部品であって、
0.1wt%以上0.4wt%以下の炭素および0.3wt%以上1.2wt%以下のクロムを含む鋼から形成されたコネクティングロッドまたはクランクピンであり、
前記表面から0.1mmの深さにおいて、残留オーステナイト量が50vol%以上65vol%以下で、且つ、ビッカース硬さHVが710以上775以下である鋼製部品。
A steel part having a surface in contact with a rolling bearing,
A connecting rod or crankpin formed from steel containing 0.1 wt% or more and 0.4 wt% or less of carbon and 0.3 wt% or more and 1.2 wt% or less of chromium;
A steel part having a residual austenite amount of 50 vol% or more and 65 vol% or less and a Vickers hardness HV of 710 or more and 775 or less at a depth of 0.1 mm from the surface.
前記表面から0.1mmの深さにおける炭素含有量が1.1wt%以上2.2wt%未満である請求項1に記載の鋼製部品。   The steel part according to claim 1, wherein a carbon content at a depth of 0.1 mm from the surface is 1.1 wt% or more and less than 2.2 wt%. 前記表面から0.1mmの深さにおける炭素含有量が1.6wt%以上2.0wt%以下である請求項2に記載の鋼製部品。   The steel part according to claim 2, wherein a carbon content at a depth of 0.1 mm from the surface is 1.6 wt% or more and 2.0 wt% or less. 前記表面から0.1mmの深さにおける鋼組織の結晶粒径が9μm以下である請求項1から3のいずれかに記載の鋼製部品。   The steel part according to any one of claims 1 to 3, wherein a crystal grain size of the steel structure at a depth of 0.1 mm from the surface is 9 µm or less. ロッド本体部と、
前記ロッド本体部の一端に設けられた小端部と、
前記ロッド本体部の他端に設けられた大端部と、を備え、
前記大端部の内周面が、転がり軸受に接する前記表面である請求項1から4のいずれかに記載の鋼製部品。
The rod body,
A small end provided at one end of the rod body,
A large end provided at the other end of the rod body,
The steel part according to any one of claims 1 to 4, wherein an inner peripheral surface of the large end is the surface in contact with a rolling bearing.
請求項1から5のいずれかに記載の鋼製部品を備えた内燃機関。   An internal combustion engine comprising the steel part according to any one of claims 1 to 5. 前記表面に接するように設けられた転がり軸受をさらに備える請求項6に記載の内燃機関。   The internal combustion engine according to claim 6, further comprising a rolling bearing provided so as to be in contact with the surface. 請求項6または7に記載の内燃機関を備えた自動車両。   A motor vehicle comprising the internal combustion engine according to claim 6 or 7. 転がり軸受に接する表面を有する鋼製部品の製造方法であって、
鋼から形成されたワークピースを用意する工程(A)と、
前記ワークピースに対して1.1%以上のカーボンポテンシャルを有する雰囲気下で浸炭処理を施してその後に窒化処理を施すか、または、前記ワークピースに対して1.1%以上のカーボンポテンシャルを有する雰囲気下で浸炭窒化処理を施す工程(B)と、
前記工程(B)の後に、0.07cm-1以上0.11cm-1未満の焼入れ強烈度を有する焼入れ油を用い、前記焼入れ油の表面上の雰囲気圧を5kPa以上60kPa以下に制御しながら前記ワークピースに対して焼入れを施す工程(C)と、を包含し、
前記鋼製部品の前記表面から0.1mmの深さにおいて、残留オーステナイト量が50vol%以上65vol%以下で、且つ、ビッカース硬さHVが710以上775以下である鋼製部品の製造方法。
A method of manufacturing a steel part having a surface in contact with a rolling bearing,
Preparing a workpiece formed from steel (A);
Carburizing treatment is performed in an atmosphere having a carbon potential of 1.1% or more with respect to the workpiece, followed by nitriding treatment, or having a carbon potential of 1.1% or more with respect to the workpiece. Performing carbonitriding in an atmosphere (B),
After the step (B), using a quenching oil having a quenching intensity of 0.07 cm −1 or more and less than 0.11 cm −1, while controlling the atmospheric pressure on the surface of the quenching oil to 5 kPa or more and 60 kPa or less, Including quenching the workpiece (C),
A method for producing a steel part having a residual austenite amount of 50 vol% or more and 65 vol% or less and a Vickers hardness HV of 710 or more and 775 or less at a depth of 0.1 mm from the surface of the steel part.
前記工程(B)における前記浸炭処理または前記浸炭窒化処理は、2.2%未満のカーボンポテンシャルを有する雰囲気下で行われる請求項9に記載の鋼製部品の製造方法。   The method for manufacturing a steel part according to claim 9, wherein the carburizing process or the carbonitriding process in the step (B) is performed in an atmosphere having a carbon potential of less than 2.2%. 前記工程(B)における前記浸炭処理または前記浸炭窒化処理は、1.6%以上2.0%以下のカーボンポテンシャルを有する雰囲気下で行われる請求項10に記載の鋼製部品の製造方法。   The method for manufacturing a steel part according to claim 10, wherein the carburizing treatment or the carbonitriding treatment in the step (B) is performed in an atmosphere having a carbon potential of 1.6% or more and 2.0% or less. 前記工程(B)における前記浸炭処理または前記浸炭窒化処理は、1.4%以上のカーボンポテンシャルを有する雰囲気下で行われ、
前記工程(C)は、前記焼入れ油の表面上の雰囲気圧を50kPa以上60kPa以下に制御しながら実行される請求項9から11のいずれかに記載の鋼製部品の製造方法。
The carburizing process or the carbonitriding process in the step (B) is performed in an atmosphere having a carbon potential of 1.4% or more,
The method of manufacturing a steel part according to any one of claims 9 to 11, wherein the step (C) is performed while controlling an atmospheric pressure on the surface of the quenching oil to 50 kPa or more and 60 kPa or less.
前記工程(B)および前記工程(C)は、少なくとも前記焼入れ油の表面上の空間を減圧することができる減圧機構を備えた浸炭炉内で実行される請求項9から12のいずれかに記載の鋼製部品の製造方法。   The said process (B) and the said process (C) are performed in the carburizing furnace provided with the decompression mechanism which can decompress the space on the surface of the said quenching oil at least. Method of manufacturing steel parts. 前記浸炭炉は、その内部で前記工程(B)が実行される加熱室と、その内部で前記工程(C)が実行される冷却室とをさらに備え、前記減圧機構によって前記加熱室の内部および前記冷却室の内部の両方を減圧することができる真空浸炭炉である請求項13に記載の鋼製部品の製造方法。   The carburizing furnace further includes a heating chamber in which the step (B) is performed, and a cooling chamber in which the step (C) is performed. The method of manufacturing a steel part according to claim 13, which is a vacuum carburizing furnace capable of reducing the pressure inside both of the cooling chambers. 前記工程(B)における前記浸炭処理または前記浸炭窒化処理中に、前記加熱室の内部への炭化水素の導入が複数回停止される請求項14に記載の鋼製部品の製造方法。   The method of manufacturing a steel part according to claim 14, wherein introduction of hydrocarbons into the heating chamber is stopped a plurality of times during the carburizing process or the carbonitriding process in the step (B). 前記工程(B)における前記浸炭処理または前記浸炭窒化処理中に、前記加熱室の内部への炭化水素の導入が4回または5回停止される請求項15に記載の鋼製部品の製造方法。   The method of manufacturing a steel part according to claim 15, wherein introduction of hydrocarbons into the heating chamber is stopped four times or five times during the carburizing process or the carbonitriding process in the step (B). 前記工程(B)において、前記浸炭処理と前記窒化処理との間に、前記加熱室の内部へ炭化水素およびアンモニアのいずれもが導入されないリファイニング工程が実行される請求項14から16のいずれかに記載の鋼製部品の製造方法。   The refining process in which neither hydrocarbon nor ammonia is introduced into the heating chamber is performed between the carburizing process and the nitriding process in the step (B). The manufacturing method of the steel components as described in 2.
JP2012026001A 2011-02-14 2012-02-09 Steel part, single-cylinder internal combustion engine, straddle-type vehicle, and method for manufacturing steel part Active JP5603889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026001A JP5603889B2 (en) 2011-02-14 2012-02-09 Steel part, single-cylinder internal combustion engine, straddle-type vehicle, and method for manufacturing steel part

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011028584 2011-02-14
JP2011028584 2011-02-14
JP2012026001A JP5603889B2 (en) 2011-02-14 2012-02-09 Steel part, single-cylinder internal combustion engine, straddle-type vehicle, and method for manufacturing steel part

Publications (2)

Publication Number Publication Date
JP2012184502A JP2012184502A (en) 2012-09-27
JP5603889B2 true JP5603889B2 (en) 2014-10-08

Family

ID=46672453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026001A Active JP5603889B2 (en) 2011-02-14 2012-02-09 Steel part, single-cylinder internal combustion engine, straddle-type vehicle, and method for manufacturing steel part

Country Status (3)

Country Link
JP (1) JP5603889B2 (en)
MY (1) MY185935A (en)
WO (1) WO2012111527A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY160847A (en) * 2009-12-24 2017-03-31 Yamaha Motor Co Ltd Connecting Rod, Single-Cylinder Internal Combustion Engine Comprising Same, And Saddle Type Vehicle
JP6759842B2 (en) * 2016-08-15 2020-09-23 トヨタ自動車株式会社 Steel manufacturing method
WO2019111591A1 (en) * 2017-12-06 2019-06-13 株式会社Ihi Heat treatment device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969225B2 (en) * 1990-09-28 1999-11-02 エヌティエヌ株式会社 Mechanical structural parts of Mn-Cr non-magnetic steel
JP3013452B2 (en) * 1991-02-04 2000-02-28 日本精工株式会社 Rolling bearing
JP3442447B2 (en) * 1993-01-20 2003-09-02 トヨタ自動車株式会社 Carburizing or carbonitriding and quenching
JPH06306456A (en) * 1993-04-27 1994-11-01 Nippon Steel Corp Production of high strength austenitic steel parts
JP3787663B2 (en) * 1993-12-27 2006-06-21 Ntn株式会社 Heat treatment method for rolling bearings
JPH083720A (en) * 1994-06-16 1996-01-09 Sumitomo Metal Ind Ltd Parts made of steel excellent in rolling fatigue life and its production
JP4198268B2 (en) * 1999-05-12 2008-12-17 ヤマハ発動機株式会社 Iron alloy parts
JP2003277882A (en) * 2002-03-26 2003-10-02 Yamaha Motor Co Ltd Iron alloy parts and production method thereof
JP2006038167A (en) * 2004-07-29 2006-02-09 Nsk Ltd Roller bearing
JP4566036B2 (en) * 2005-03-11 2010-10-20 Ntn株式会社 Rolling bearing
JP2006292108A (en) * 2005-04-12 2006-10-26 Daido Steel Co Ltd Crank shaft and its manufacturing method
JP2007182609A (en) * 2006-01-06 2007-07-19 Ntn Corp Rolling member for use in wheel bearing device, manufacturing method therefor and wheel bearing device
JP2007182603A (en) * 2006-01-06 2007-07-19 Ntn Corp Method for manufacturing rolling member, rolling member and rolling bearing
JP5453839B2 (en) * 2009-02-25 2014-03-26 日本精工株式会社 Rolling bearing

Also Published As

Publication number Publication date
MY185935A (en) 2021-06-14
JP2012184502A (en) 2012-09-27
WO2012111527A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP4627776B2 (en) High concentration carburizing / low strain quenching member and method of manufacturing the same
JP5202043B2 (en) Rolling parts and manufacturing method thereof
WO2006013696A1 (en) Rolling bearing for rocker arm
JP5306795B2 (en) Connecting rod, internal combustion engine, transportation device, and manufacturing method of connecting rod
JP6520347B2 (en) Forming material of induction hardened parts, induction hardened parts, and manufacturing method thereof
JP5603889B2 (en) Steel part, single-cylinder internal combustion engine, straddle-type vehicle, and method for manufacturing steel part
JP4166041B2 (en) Sintered sprocket and manufacturing method thereof
JP2018141218A (en) Component and manufacturing method thereof
JP5342655B2 (en) Connecting rod, single-cylinder internal combustion engine equipped with the same, and saddle riding type vehicle
JP5599211B2 (en) Manufacturing method of bearing parts and bearing parts
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
JP2005264331A (en) Machine structural components
JP2009228829A (en) Manufacturing method of stem, manufacturing method of bearing, stem, and bearing
JP2005325398A (en) High-strength gear and manufacturing method therefor
JP2004538423A (en) Fuel injection valve for internal combustion engine and method of hardening the fuel injection valve
JP2008063603A (en) Method for manufacturing track member, method for manufacturing valve device, and track member
JP4870922B2 (en) Connecting rod, engine, motor vehicle and manufacturing method of connecting rod
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JP2010151218A (en) Connecting rod, internal combustion engine, transportation apparatus and method of manufacturing connecting rod
JP5433692B2 (en) Connecting rod, internal combustion engine, transport device, and method of manufacturing connecting rod
JP5207236B2 (en) Manufacturing method of shaft rod, manufacturing method of bearing, shaft rod and bearing
JP2019157880A (en) Connecting rod, internal combustion engine and method for manufacturing connecting rod
JP2016156037A (en) Method of producing super carburized steel
JP2012255551A (en) Method of manufacturing connecting rod
WO2017146057A1 (en) Cement steel component and steel material having excellent stability of rolling fatigue life, and method for manufacturing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140822

R150 Certificate of patent or registration of utility model

Ref document number: 5603889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250