JP5602220B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP5602220B2
JP5602220B2 JP2012509724A JP2012509724A JP5602220B2 JP 5602220 B2 JP5602220 B2 JP 5602220B2 JP 2012509724 A JP2012509724 A JP 2012509724A JP 2012509724 A JP2012509724 A JP 2012509724A JP 5602220 B2 JP5602220 B2 JP 5602220B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizing plate
retardation
crystal display
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012509724A
Other languages
Japanese (ja)
Other versions
JP2012526297A (en
Inventor
キム・ボンチョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongwoo Fine Chem Co Ltd
Original Assignee
Dongwoo Fine Chem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongwoo Fine Chem Co Ltd filed Critical Dongwoo Fine Chem Co Ltd
Publication of JP2012526297A publication Critical patent/JP2012526297A/en
Application granted granted Critical
Publication of JP5602220B2 publication Critical patent/JP5602220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、ブルー相液晶モードに特定の複合構成偏光板セットを適用して広視野角確保が可能な液晶表示装置に関する。   The present invention relates to a liquid crystal display device capable of ensuring a wide viewing angle by applying a specific composite configuration polarizing plate set to a blue phase liquid crystal mode.

液晶表示装置(liquid crystal display;LCD)は、開発初期のさまざまな技術的な難題を解決して、現在、大衆的な画像表示装置として広く使用されている。これらの液晶表示装置は、映像を表示する液晶表示パネル及び液晶表示パネルに光を提供するバックライトアセンブリーを含む。   A liquid crystal display (LCD) solves various technical problems in the early stages of development, and is now widely used as a popular image display device. These liquid crystal display devices include a liquid crystal display panel that displays an image and a backlight assembly that provides light to the liquid crystal display panel.

液晶表示パネルに用いられる液晶としては、ネマチック(NEMATIC)液晶、スメクティック(SMECTIC)液晶及びコレステリック(CHOLESTERIC)液晶などが挙げられ、主にネマチック液晶が用いられる。これらのネマチック液晶は、画素電極と共通電極の間に形成された電界により傾斜角が調節され、液晶層はネマチック液晶の傾斜角に応じて光透過率を調節する。これにより液晶表示パネルの輝度は、液晶層の厚み、即ち液晶表示パネルのセルギャップと液晶の異方性屈折率により決まる。   Examples of the liquid crystal used in the liquid crystal display panel include nematic (NEMATIC) liquid crystal, smectic (SMECTIC) liquid crystal, and cholesteric liquid crystal, and nematic liquid crystal is mainly used. The tilt angle of these nematic liquid crystals is adjusted by an electric field formed between the pixel electrode and the common electrode, and the liquid crystal layer adjusts the light transmittance according to the tilt angle of the nematic liquid crystals. Thereby, the brightness of the liquid crystal display panel is determined by the thickness of the liquid crystal layer, that is, the cell gap of the liquid crystal display panel and the anisotropic refractive index of the liquid crystal.

このようなセルギャップの依存度及び視野角の低下を誘発する異方性屈折率の問題を乗り越えるために、ブルー相液晶を有する液晶表示パネルが提案された[アメリカ特許第4,767,149号]。ブルー相液晶は、印加電圧の大きさに応じて異方性屈折率が等方性に変わる特性を有するので、液晶表示パネルの視野角及び回答速度を向上させることができる。   In order to overcome the problem of the anisotropic refractive index that induces the dependence of the cell gap and the viewing angle, a liquid crystal display panel having a blue phase liquid crystal has been proposed [US Pat. No. 4,767,149. ]. Since the blue phase liquid crystal has a characteristic that the anisotropic refractive index changes isotropic depending on the magnitude of the applied voltage, the viewing angle and the response speed of the liquid crystal display panel can be improved.

一方、ブルー相液晶をノーマルブラックで具現するときに、広視野角確保に容易な面内切替式(IPS:In−Plane−Switching)液晶表示装置用画素電極、共通電極及び複合構成偏光板を適用することが一般的である[大韓民国公開特許第2008−67041号]。   On the other hand, when implementing the blue phase liquid crystal in normal black, apply the in-plane-switching (IPS) liquid crystal display pixel electrode, common electrode, and composite configuration polarizing plate, which is easy to secure a wide viewing angle. It is common to do this [Republic of Korea No. 2008-67041].

上記の面内切替式液晶表示装置用複合構成偏光板は、液晶セルの両方に位置し、一方の液晶セルと偏光子の間には等方性保護フィルムを含み、他方の液晶セルと偏光子の間には光学特性の異なる2枚の補償層または厚み配向フィルム(または3次元位相差フィルム)が位置する。   The in-plane switching-type liquid crystal display device composite configuration polarizing plate is located in both of the liquid crystal cells, includes an isotropic protective film between one liquid crystal cell and the polarizer, and the other liquid crystal cell and the polarizer. Two compensation layers or thickness-oriented films (or three-dimensional retardation films) having different optical characteristics are located between the two.

しかし、複合構成偏光板内に光学的性質の異なる2枚の補償層を使用するので、従来の他の液晶モードを用いた液晶表示装置に比べて単価が高く、薄型化が難しいだけでなく、液晶セルの両方の厚みがばらついていて温度や湿度の変化による曲がりが発生する可能性が高い。特に厚み配向フィルムは、製造時に収縮フィルムを適用する収縮工程が必ず要求されるのでコストが非常に高い問題がある。   However, since two compensation layers having different optical properties are used in the composite configuration polarizing plate, the unit price is higher than that of the conventional liquid crystal display device using other liquid crystal modes, and not only thinning is difficult, The thickness of both liquid crystal cells varies, and there is a high possibility of bending due to changes in temperature and humidity. In particular, a thickness-oriented film has a problem that its cost is very high because a shrinking process in which the shrink film is applied at the time of manufacture is always required.

したがって面内切替式液晶表示装置と同等以上の広視野角の具現が可能でありながら、構造が単純でかつコストが低いため、大量生産が容易なブルー相液晶用の液晶表示装置が切実に求められている実情である。   Therefore, there is an urgent need for a liquid crystal display device for blue phase liquid crystal that can be realized in a wide viewing angle equal to or greater than that of the in-plane switching type liquid crystal display device, but has a simple structure and low cost, and is easy to mass-produce. It is a fact that has been.

本発明は、構造が単純かつ容易であって大量生産が可能な複合構成偏光板セットと、上記複合構成偏光板セットを適用して従来の液晶表示装置の中で特に広視野角確保が容易な面内切替式液晶表示装置と同等以上の広視野角の具現が可能であり、価格競争力に優れたブルー相液晶モード液晶表示装置を提示しようとする。   The present invention is simple and easy in structure and can be mass-produced, and a composite viewing polarizing plate set and the above-described composite polarizing plate set can be applied to easily secure a wide viewing angle particularly among conventional liquid crystal display devices. It is intended to present a blue phase liquid crystal mode liquid crystal display device that can realize a wide viewing angle equal to or greater than that of the in-plane switching liquid crystal display device and is excellent in price competitiveness.

本発明は、第1複合構成偏光板及び第2複合構成偏光板を含み、第1複合構成偏光板と第2複合構成偏光板は、それぞれ、位相差フィルム、偏光子及び保護フィルムからなり、第1複合構成偏光板の位相差フィルムは、正面位相差値(R0)が50〜150nmであり、屈折率比(NZ)が−6.0〜−0.1であり、遅相軸が隣接した偏光子の吸収軸と平行になるように配置され、第2複合構成偏光板の位相差フィルムは正面位相差値(R0)が0〜10nmであり、厚み方向位相差(Rth)は80〜310nmである複合構成偏光板セットを、ブルー相液晶モードの上側偏光板及び下側偏光板として含む液晶表示装置であることにその特徴がある。
The present invention includes a first composite constituent polarizing plate and a second composite constituent polarizing plate, each of the first composite constituent polarizing plate and the second composite constituent polarizing plate comprising a retardation film, a polarizer and a protective film, 1 The retardation film of a composite polarizing plate has a front retardation value (R0) of 50 to 150 nm, a refractive index ratio (NZ) of −6.0 to −0.1, and a slow axis adjacent thereto. Arranged so as to be parallel to the absorption axis of the polarizer, the retardation film of the second composite configuration polarizing plate has a front retardation value (R0) of 0 to 10 nm and a thickness direction retardation (Rth) of 80 to 310 nm. The composite structure polarizing plate set is a liquid crystal display device including an upper polarizing plate and a lower polarizing plate in a blue phase liquid crystal mode .

本発明は、構造が単純であるため薄型化に有利であり、製造工程が容易であるため大量生産が可能な複合構成偏光板セットであって、これを適用した液晶表示装置は、従来に比べて特に広視野角確保が容易な面内切替式液晶表示装置と対比して同等以上の広視野角の具現が可能である。   The present invention is a composite configuration polarizing plate set that is advantageous for thinning because of its simple structure, and that can be mass-produced because the manufacturing process is easy. In particular, it is possible to realize a wide viewing angle that is equal to or greater than that of the in-plane switching type liquid crystal display device in which it is easy to ensure a wide viewing angle.

図1は、本発明に係る液晶表示装置の構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of a liquid crystal display device according to the present invention. 図2は、本発明に係る位相差フィルムの屈折率を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the refractive index of the retardation film according to the present invention. 図3は、本発明に係る位相差フィルムと偏光板の延伸方向を説明するための製造過程上のMD方向を示す模式図である。FIG. 3 is a schematic diagram showing the MD direction in the manufacturing process for explaining the stretching direction of the retardation film and the polarizing plate according to the present invention. 図4は、本発明の座標系でθ、φで表現することを説明するための模式図である。FIG. 4 is a schematic diagram for explaining the expression by θ and φ in the coordinate system of the present invention. 図5は、実施例1で使用された第2位相差フィルムの全波長波長分散性を示したグラフである。FIG. 5 is a graph showing the full-wavelength wavelength dispersibility of the second retardation film used in Example 1. 図6は、実施例1で使用された第1位相差フィルムの全波長波長分散性を示したグラフである。FIG. 6 is a graph showing the full-wavelength wavelength dispersibility of the first retardation film used in Example 1. 図7は、本発明に係る実施例1の全ての視角からの透過率をシミュレーションした結果である。FIG. 7 shows the result of simulating the transmittance from all viewing angles of Example 1 according to the present invention. 図8は、本発明の実施例1で傾斜面(θ=60゜、φ=45゜)方向に出る光の偏光状態変化をポアンカレ球(Poincare Sphere)上に示したものである。FIG. 8 shows a change in the polarization state of the light emitted in the direction of the inclined surface (θ = 60 °, φ = 45 °) on the Poincare sphere (Poincare Sphere) in Example 1 of the present invention. 図9は、本発明の液晶モードに面内切替式液晶表示装置用複合構成偏光板セットを適用したとき、全ての視角からの透過率をシミュレーションした結果である。FIG. 9 shows the result of simulating the transmittance from all viewing angles when the composite polarizing plate set for in-plane switching type liquid crystal display device is applied to the liquid crystal mode of the present invention. 図10は、本発明に係る実施例2の全ての視角からの透過率をシミュレーションした結果である。FIG. 10 shows the result of simulating the transmittance from all viewing angles of the second embodiment according to the present invention. 図11は、本発明の実施例2で傾斜面(θ=60゜、φ=45゜)方向に出る光の偏光状態変化をポアンカレ球(Poincare Sphere)上に示したものである。FIG. 11 shows a change in the polarization state of the light emitted in the direction of the inclined surface (θ = 60 °, φ = 45 °) on the Poincare sphere (Poincare Sphere) in Example 2 of the present invention. 図12は、本発明に係る実施例3の全ての視角からの透過率をシミュレーションした結果である。FIG. 12 shows the result of simulating the transmittance from all viewing angles of Example 3 according to the present invention. 図13は、本発明の実施例3で傾斜面(θ=60゜、φ=45゜)方向に出る光の偏光状態変化をポアンカレ球(Poincare Sphere)上に示したものである。FIG. 13 shows the change in the polarization state of light emitted in the direction of the inclined surface (θ = 60 °, φ = 45 °) on the Poincare sphere (Poincare Sphere) in Example 3 of the present invention. 図14は、本発明に係る実施例4の全ての視角からの透過率をシミュレーションした結果である。FIG. 14 shows the result of simulating the transmittance from all viewing angles in Example 4 according to the present invention. 図15は、本発明の実施例4で傾斜面(θ=60゜、φ=45゜)方向に出る光の偏光状態変化をポアンカレ球(Poincare Sphere)上に示したものである。FIG. 15 shows a change in the polarization state of light emitted in the direction of the inclined surface (θ = 60 °, φ = 45 °) on the Poincare sphere (Poincare Sphere) in Example 4 of the present invention. 図16は、本発明に係る実施例5の全ての視角からの透過率をシミュレーションした結果である。FIG. 16 shows the result of simulating the transmittance from all viewing angles of the fifth embodiment according to the present invention. 図17は、本発明の実施例5で傾斜面(θ=60゜、φ=45゜)方向に出る光の偏光状態変化をポアンカレ球(Poincare Sphere)上に示したものである。FIG. 17 shows the change in the polarization state of the light emitted in the direction of the inclined surface (θ = 60 °, φ = 45 °) on the Poincare sphere (Poincare Sphere) in Example 5 of the present invention. 図18は、本発明に係る実施例6の全ての視角からの透過率をシミュレーションした結果である。FIG. 18 shows the result of simulating the transmittance from all viewing angles in Example 6 according to the present invention. 図19は、本発明の実施例6で傾斜面(θ=60゜、φ=45゜)方向に出る光の偏光状態変化をポアンカレ球(Poincare Sphere)上に示したものである。FIG. 19 shows the change in the polarization state of the light emitted in the direction of the inclined surface (θ = 60 °, φ = 45 °) on the Poincare sphere (Poincare Sphere) in Example 6 of the present invention. 図20は、本発明の比較例1の全ての視角からの透過率をシミュレーションした結果である。FIG. 20 shows the result of simulating the transmittance from all viewing angles of Comparative Example 1 of the present invention. 図21は、本発明の比較例2の全ての視角からの透過率をシミュレーションした結果である。FIG. 21 shows the result of simulating the transmittance from all viewing angles of Comparative Example 2 of the present invention. 図22は、本発明の比較例3の全ての視角からの透過率をシミュレーションした結果である。FIG. 22 shows the result of simulating the transmittance from all viewing angles of Comparative Example 3 of the present invention. 図23は、本発明の比較例4の全ての視角からの透過率をシミュレーションした結果である。FIG. 23 shows the result of simulating the transmittance from all viewing angles of Comparative Example 4 of the present invention. 図24は、本発明の比較例5の全ての視角からの透過率をシミュレーションした結果である。FIG. 24 shows the result of simulating the transmittance from all viewing angles of Comparative Example 5 of the present invention. 図25は、本発明の比較例6の全ての視角からの透過率をシミュレーションした結果である。FIG. 25 is a result of simulating the transmittance from all viewing angles of Comparative Example 6 of the present invention.

本発明は、特定の光学特性を有する位相差フィルムが積層された第1複合構成偏光板及び第2複合構成偏光板を含む複合構成偏光板セットに関する。具体的に、複合構成偏光板セットの第1複合構成偏光板と第2複合構成偏光板は、それぞれ、位相差フィルム、偏光子及び保護フィルムからなる。   The present invention relates to a composite configuration polarizing plate set including a first composite configuration polarizing plate and a second composite configuration polarizing plate in which retardation films having specific optical characteristics are laminated. Specifically, the first composite constituent polarizing plate and the second composite constituent polarizing plate of the composite constituent polarizing plate set are each composed of a retardation film, a polarizer and a protective film.

上記第1複合構成偏光板の位相差フィルムは正面位相差値(R0)が50〜150nmであり、屈折率比(NZ)が−6.0〜−0.1であり、第2複合構成偏光板の位相差フィルムは正面位相差値(R0)が0〜10nmであり、厚み方向位相差(Rth)は80〜310nmであるものを使用する。このとき、上記第1複合構成偏光板の位相差フィルムは、遅相軸が隣接した偏光子の吸収軸と平行になるように配置される。   The retardation film of the first composite configuration polarizing plate has a front retardation value (R0) of 50 to 150 nm, a refractive index ratio (NZ) of −6.0 to −0.1, and a second composite configuration polarization. A plate retardation film having a front retardation value (R0) of 0 to 10 nm and a thickness direction retardation (Rth) of 80 to 310 nm is used. At this time, the retardation film of the first composite configuration polarizing plate is arranged so that the slow axis is parallel to the absorption axis of the adjacent polarizer.

本発明で位相差フィルムの光学特性は、可視光線領域内の全波長に対して、下記の数式1〜3で定義される。   In the present invention, the optical properties of the retardation film are defined by the following formulas 1 to 3 for all wavelengths in the visible light region.

光源の波長に対する言及がない場合は、波長が589nmの光に対する光学特性である。ここで、Nxは、面内方向で屈折率が最大である軸方向の屈折率であり、Nyは、面内方向でNxと垂直方向の屈折率であり、Nzは、厚み方向の屈折率であり、それらは以下に説明するように図2に示される。
[数1]
Rth=[(Nx+Ny)/2−Nz]×d
(ここで、Nx、Nyは面内屈折率であってNx≧Nyであり、Nzはフィルムの厚み方向で振動する光の屈折率、dはフィルムの厚みを示す)
[数2]
R0=(Nx−Ny)×d
(ここで、Nx、Nyは位相差フィルムの面内屈折率であり、dはフィルムの厚みを示し、Nx≧Nyである)
[数3]
NZ=(Nx−Nz)/(Nx−Ny)=Rth / R0+0.5
(ここで、 Nx、Nyは面内屈折率であってNx≧Nyであり、Nzはフィルムの厚み方向で振動する光の屈折率、dはフィルムの厚みを示す。)
When there is no mention with respect to the wavelength of the light source, the optical characteristic is for light having a wavelength of 589 nm. Here, Nx is the refractive index in the axial direction where the refractive index is maximum in the in-plane direction, Ny is the refractive index in the in-plane direction and perpendicular to Nx, and Nz is the refractive index in the thickness direction. They are shown in FIG. 2 as described below.
[Equation 1]
Rth = [(Nx + Ny) / 2−Nz] × d
(Here, Nx and Ny are in-plane refractive indexes and Nx ≧ Ny, Nz is the refractive index of light vibrating in the thickness direction of the film, and d is the thickness of the film)
[Equation 2]
R0 = (Nx−Ny) × d
(Here, Nx and Ny are in-plane refractive indexes of the retardation film, d indicates the thickness of the film, and Nx ≧ Ny)
[Equation 3]
NZ = (Nx-Nz) / (Nx-Ny) = Rth / R0 + 0.5
(Nx and Ny are in-plane refractive indexes and Nx ≧ Ny, Nz is the refractive index of light vibrating in the thickness direction of the film, and d is the thickness of the film.)

本明細書では、上記Rthは厚み方向の位相差であり、厚み方向における面内平均屈折率との差を示すものであって、実質的な位相差とは言えない参考値であり、上記R0は正面位相差であり、光がフィルムをノーマル方向(垂直方向)で通過したときの実質的な位相差である。   In the present specification, the Rth is a retardation in the thickness direction, which indicates a difference from the in-plane average refractive index in the thickness direction, and is a reference value that cannot be said to be a substantial retardation, and the R0 Is a front phase difference, which is a substantial phase difference when light passes through the film in the normal direction (vertical direction).

また、NZは屈折率比であり、位相差フィルムのプレートの種類を区分することができる。位相差フィルムのプレートの種類は、位相差が発生しない、フィルム内の光経路である光軸がフィルムの面内方向に存在する場合はAプレート、光軸が面の垂直方向に存在する場合はCプレート、及び光軸が2つ存在する場合は二軸性プレートと呼ばれる。   Moreover, NZ is a refractive index ratio and can classify | categorize the kind of plate of retardation film. The type of retardation film plate is such that no phase difference occurs. When the optical axis, which is the optical path in the film, is in the in-plane direction of the film, the A plate is used. When there are two C-plates and optical axes, they are called biaxial plates.

具体的に、NZ=1の場合は、屈折率はNx>Ny=Nzの関係を満たし、「ポジティブAプレート(POSITIVE A PLATE)」と呼ばれ、1<NZの場合は、屈折率はNx>Ny>Nzを満たし、「ネガティブ二軸性Aプレート(NEGATIVE BIAXIAL A PLATE)」と呼ばれ、0<NZ<1の場合は、屈折率はNx>Nz>Nyの関係を有し、「Z軸配向フィルム」と呼ばれ、NZ=0の場合は、屈折率はNx=Nz>Nyの関係を有し、「ネガティブAプレート(NEGATIVE A PLATE)」と呼ばれ、NZ<0の場合は、屈折率はNz>Nx>Nyの関係を有し、「ポジティブ二軸性Aプレート(POSITIVE BIAXIAL A PLATE)」と呼ばれ、NZ=∞の場合は、屈折率はNx=Ny>Nzの関係を有し、「ネガティブCプレート(NEGATIVE C PLATE)」と呼ばれ、NZ=−∞の場合は、屈折率はNz>Nx=Nyの関係を有し、「ポジティブCプレート(POSITIVE C PLATE)」と呼ばれる。   Specifically, when NZ = 1, the refractive index satisfies the relationship of Nx> Ny = Nz and is called “POSITIVE A PLATE”, and when 1 <NZ, the refractive index is Nx>. Ny> Nz is satisfied, which is referred to as “NEGATIVE BIAXIAL A PLATE”. When 0 <NZ <1, the refractive index has a relationship of Nx> Nz> Ny, and “Z axis When NZ = 0, the refractive index has a relationship of Nx = Nz> Ny, and is called “Negative A Plate”. When NZ <0, the refractive index is refracted. The refractive index has a relationship of Nz> Nx> Ny and is called “POSITIVE BIAXIAL A PLATE”. When NZ = ∞, the refractive index is Nx = N y> Nz, which is referred to as “Negative C Plate”. When NZ = −∞, the refractive index has a relationship of Nz> Nx = Ny, and “positive C plate ( "POSITIVE C PLATE)".

しかし、上記の理論的定義に完璧に一致するAプレート及びCプレートを作ることは実際の工程では不可能である。そのため、一般的な工程では、Aプレートの場合は屈折率比のおよその範囲を設定し、Cプレートの場合は正面位相差の範囲内の所定値を設定することにより、AプレートとCプレートとを区分している。この所定値の設定は、延伸に依存して異なる屈折率を有するすべて他の材料への適用では限られている。よって、本発明の第1及び第2複合構成偏光板に含まれる位相差フィルムは、屈折率異方性によるプレート(偏光板)の種類ではなく、プレートの光学特性であるNZ、RO及びRthなどを数値として示している。   However, it is not possible in the actual process to make A and C plates that perfectly match the above theoretical definition. Therefore, in a general process, in the case of the A plate, an approximate range of the refractive index ratio is set, and in the case of the C plate, by setting a predetermined value within the range of the front phase difference, the A plate and the C plate Is divided. The setting of this predetermined value is limited in application to all other materials having different refractive indices depending on the stretching. Therefore, the retardation film included in the first and second composite polarizing plates of the present invention is not the type of plate (polarizing plate) due to refractive index anisotropy, but NZ, RO, Rth, etc., which are optical characteristics of the plate Is shown as a numerical value.

これらの位相差フィルムは、延伸によって位相差が与えられるが、そのうちで、延伸方向に増加した屈折率を有するフィルムは、「正(+)の屈折率特性」を有しており、延伸方向に減少した屈折率を有するフィルムは、「負(−)の屈折率特性」を有している。正(+)の屈折率特性を有する位相差フィルムは、三酢酸セルロース(TAC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリスルホン(PSF)及びポリメチルメタクリレート(PMMA)からなる群から選ばれたもので製造することができ、負(−)の屈折率特性を有する位相差フィルムは、具体的には変性ポリスチレン(PS)または変性ポリカーボネート(PC)で製造することができる。   These retardation films are given a phase difference by stretching. Among them, a film having a refractive index increased in the stretching direction has a “positive (+) refractive index characteristic” and is in the stretching direction. A film having a reduced refractive index has “negative (−) refractive index characteristics”. Retardation films having positive (+) refractive index characteristics include cellulose triacetate (TAC), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC ), Polysulfone (PSF) and polymethyl methacrylate (PMMA), and a retardation film having a negative (−) refractive index characteristic is specifically a modified polystyrene ( PS) or modified polycarbonate (PC).

また、位相差フィルムに光学特性を与える延伸方法は、固定端延伸と自由端延伸に分けられ、ここで固定端延伸とは、フィルムを延伸する間に延伸する方向以外の長さを固定する方式であり、自由端延伸とは、フィルムを延伸する間に延伸方向以外の方向に対して自由度を与える方式である。一般的に、フィルムを延伸すると、延伸方向以外の方向は収縮するが、Z軸配向フィルムは、延伸以外に特定の収縮工程が要求される。   In addition, the stretching method for imparting optical properties to the retardation film is divided into fixed-end stretching and free-end stretching. Here, the fixed-end stretching is a method of fixing a length other than the stretching direction while stretching the film. The free end stretching is a method of giving a degree of freedom to a direction other than the stretching direction while stretching the film. Generally, when a film is stretched, directions other than the stretching direction shrink, but the Z-axis oriented film requires a specific shrinking process in addition to stretching.

図3は巻いた状態の原料フィルムの方向を示すものであって、巻いたフィルムの展開方向(unrolled direction)をMD(機械方向:Machine Direction)方向と呼び、これに垂直な方向をTD(横断方向:Transverse Direction)方向と呼ぶ。このとき、工程でフィルムをMD方向の延伸を自由端延伸と呼び、TD方向の延伸を固定端延伸と呼ぶ。   FIG. 3 shows the direction of the rolled raw material film. The unrolled direction of the rolled film is called the MD (Machine Direction) direction, and the direction perpendicular to this is TD (transverse). Direction: This is referred to as a “Transverse Direction” direction. At this time, in the process, stretching in the MD direction is referred to as free end stretching, and stretching in the TD direction is referred to as fixed end stretching.

1次工程だけを適用したとき、延伸方法によってNZとプレートの種類を整理すると、ポジティブAプレートは、正(+)の屈折率特性を有するフィルムを自由端延伸して製造することができ、ネガティブ二軸性Aプレートは、正(+)の屈折率特性を有するフィルムを固定端延伸して製造することができ、Z軸配向フィルムは、正(+)の屈折率特性又は負(−)の屈折率特性を有するフィルムを、自由端延伸した後に固定端収縮させて製造することができ、ネガティブAプレートは、負(−)の屈折率特性を有するフィルムを自由端延伸して製造することができ、そしてポジティブ二軸性Aプレートは、負(−)の屈折率特性を有するフィルムを固定端延伸して製造することができる。   When only the primary process is applied and the types of NZ and plate are arranged by the stretching method, the positive A plate can be produced by stretching a film having a positive (+) refractive index characteristic at the free end, and negative A biaxial A-plate can be produced by stretching a film having a positive (+) refractive index characteristic at a fixed end, and a Z-axis oriented film can have a positive (+) refractive index characteristic or a negative (-) refractive index characteristic. A film having a refractive index characteristic can be manufactured by stretching the free end and then shrinking the fixed end, and the negative A plate can be manufactured by stretching a film having a negative (−) refractive index characteristic by free end stretching. The positive biaxial A-plate can be manufactured by stretching a film having negative (−) refractive index characteristics at a fixed end.

上記延伸方法以外の追加工程を適用することにより、遅相軸(Slow Axis)の方向、位相差値及びNZの値を制御することができ、この追加工程は当分野において一般的に適用されている工程であれば特に限定されない。   By applying an additional process other than the above stretching method, the direction of the slow axis (Slow Axis), the phase difference value, and the value of NZ can be controlled. This additional process is generally applied in this field. There is no particular limitation as long as it is a process.

本発明に係る複合構成偏光板セットは、それぞれ、位相差フィルム、偏光子及び保護フィルムからなる第1複合構成偏光板と第2複合構成偏光板で構成される。   The composite configuration polarizing plate set according to the present invention includes a first composite configuration polarizing plate and a second composite configuration polarizing plate each including a retardation film, a polarizer, and a protective film.

第1複合構成偏光板の位相差フィルムは、正面位相差値(R0)が50〜150nmであり、屈折率比(NZ)が−6.0〜−0.1であるものを使用しているところ、本発明の条件で正面位相差値(R0)は大きくなり、屈折率比はその絶対値が小くなるほど偏光状態の分散性が小さくなって、本発明の位相差フィルムとして容易に使用可能であり、正面位相差値(R0)は屈折率比により適切に組み合わせて使用することができる。上記屈折率比(NZ)が−6.0未満であれば、第1位相差フィルム、液晶セル及び第2位相差フィルムからなる最適の視野角効果を奏する液晶表示装置を通過した後の波長による偏光状態差を称する分散性が非常に大きくなるため、基準波長に対する補償がなされても他の波長に対する補償がまともになれないので、本発明の効果達成が難しく、屈折率比(NZ)が−0.1を超過すれば位相差フィルムの遅相軸とMD方向が異なっていてロール・ツー・ロール(roll−to−roll)工程に適用することが容易でない問題がある。   The retardation film of the first composite polarizing plate uses a film having a front retardation value (R0) of 50 to 150 nm and a refractive index ratio (NZ) of −6.0 to −0.1. However, the front retardation value (R0) increases under the conditions of the present invention, and the refractive index ratio decreases as the absolute value thereof decreases, so that the dispersibility of the polarization state decreases and can be easily used as the retardation film of the present invention. The front phase difference value (R0) can be used in an appropriate combination depending on the refractive index ratio. If the refractive index ratio (NZ) is less than −6.0, it depends on the wavelength after passing through the liquid crystal display device having the optimum viewing angle effect composed of the first retardation film, the liquid crystal cell, and the second retardation film. Since the dispersibility referred to as the polarization state difference becomes very large, even if compensation for the reference wavelength is performed, compensation for other wavelengths cannot be achieved. Therefore, it is difficult to achieve the effect of the present invention, and the refractive index ratio (NZ) is − If it exceeds 0.1, the slow axis of the retardation film and the MD direction are different, and there is a problem that it is not easy to apply to a roll-to-roll process.

また、現在の液晶表示装置に一般的に適用される均一な位相差値(目的値の ±5nm以内)及び位相差角度(±0.5゜)を有する位相差フィルムを製造するための最小限の位相差値は40nm以上は維持しなければならず、実際工程上では位相差の最小値が50nm以上を維持した方が良い。   In addition, it is the minimum for manufacturing a retardation film having a uniform retardation value (within ± 5 nm of the target value) and a retardation angle (± 0.5 °) that are generally applied to current liquid crystal display devices. The phase difference value must be maintained at 40 nm or more, and it is better to maintain the minimum value of the phase difference at 50 nm or more in the actual process.

好ましくは正面位相差値(R0)が80〜150nmであり、屈折率比(NZ)が−2.0〜−0.1であるものを使用した方が良いところ、分散特性が小さいので、実質的な量産が可能な範囲である。上記正面位相差値(R0)は屈折率比(NZ)値により第2位相差層によって補償が可能な値が決まるので、NZ−2.0〜−0.1による正面位相差(R0)の範囲は80〜150nmである。より好ましくは、正面位相差値(R0)が100〜150nmであり、屈折率比(NZ)が−1.0〜−0.1であるものを使用した方が良いところ、上記屈折率比は実際工程上のTD1軸延伸工程が容易な範囲である。上記正面位相差値(R0)は屈折率比(NZ)値により第2位相差層によって補償が可能な値が決まるので、NZ−1.0〜−0.1による正面位相差(R0)の範囲は100〜150nmである。このとき、TD1軸延伸は2軸延伸に比べて工程が簡単であるため生産原価の節減が容易である。   Preferably, it is better to use one having a front phase difference value (R0) of 80 to 150 nm and a refractive index ratio (NZ) of −2.0 to −0.1. Is within the range of possible mass production. The front phase difference value (R0) is determined by the refractive index ratio (NZ) value so that it can be compensated by the second phase difference layer. Therefore, the front phase difference (R0) of NZ-2.0 to -0.1 is determined. The range is 80-150 nm. More preferably, it is better to use one having a front retardation value (R0) of 100 to 150 nm and a refractive index ratio (NZ) of −1.0 to −0.1. The TD uniaxial stretching process on the actual process is in an easy range. The front phase difference value (R0) is determined by the refractive index ratio (NZ) value so as to be compensated by the second phase difference layer. Therefore, the front phase difference (R0) of NZ-1.0 to -0.1 is determined. The range is 100-150 nm. At this time, since the TD uniaxial stretching process is simpler than the biaxial stretching, the production cost can be easily reduced.

このような第1複合構成偏光板の位相差フィルムは、遅相軸が隣接した偏光子の吸収軸と平行になるように配置される。   Such a retardation film of the first composite configuration polarizing plate is disposed so that the slow axis is parallel to the absorption axis of the adjacent polarizer.

第2複合構成偏光板の位相差フィルムは、正面位相差値(R0)が0〜10nmであり、厚み方向位相差(Rth)は80〜310nmであるものを使用するところ、第1複合構成偏光板の位相差フィルムと光学特性を考慮して広視野角確保が容易な組合を使用する。   The retardation film of the second composite constituent polarizing plate is one having a front retardation value (R0) of 0 to 10 nm and a thickness direction retardation (Rth) of 80 to 310 nm. Considering the retardation film of the plate and optical characteristics, use a combination that facilitates securing a wide viewing angle.

上記の第1位相差層の好ましい範囲による第2位相差層の好ましい範囲は、正面位相差値(R0)が0〜5nmであり、厚み方向位相差(Rth)は80〜200nm、上記第1位相差層のより好ましい範囲による第2位相差層のより好ましい範囲は正面位相差値(R0)が0〜3nmであり、厚み方向位相差(Rth)は80〜140nmを維持した方が良い。これらの範囲も上記第1複合構成偏光板の位相差フィルムのように光学特性と共に製造工程上の容易性を考慮して限定したことで、製造工程はキャスティング工法あるいは完全二軸延伸方法の適用が容易である。   The preferred range of the second retardation layer according to the preferred range of the first retardation layer is that the front retardation value (R0) is 0 to 5 nm, the thickness direction retardation (Rth) is 80 to 200 nm, and the first retardation layer is the first retardation layer. The more preferable range of the second retardation layer due to the more preferable range of the retardation layer is that the front retardation value (R0) is 0 to 3 nm, and the thickness direction retardation (Rth) is preferably maintained at 80 to 140 nm. These ranges are also limited in consideration of the ease of the manufacturing process as well as the optical characteristics like the retardation film of the first composite configuration polarizing plate, and the manufacturing process can be applied by the casting method or the complete biaxial stretching method. Easy.

このような第2複合構成偏光板の位相差フィルムは遅相軸がないので、特に隣接した偏光子の吸収軸と関係なく配置される。   Since the retardation film of such a 2nd composite structure polarizing plate does not have a slow axis, it is arrange | positioned irrespective of the absorption axis of an adjacent polarizer especially.

一般的に位相差フィルムは入射される波長によって異なる位相差値を有する。通常、短波長で大きい位相差値を有し、長波長で小さい位相差値を有するが、このような特性を有する位相差フィルムを、正波長分散性を有する位相差フィルムと呼ぶ。また短波長で小さい位相差値を有し、長波長で大きい位相差値を有するフィルムを、逆波長分散性を有する位相差フィルムと呼ぶ。本発明は、このような位相差フィルムの分散性に関係なく、全て使用可能である。   In general, a retardation film has different retardation values depending on the incident wavelength. Usually, a retardation film having a large retardation value at a short wavelength and a small retardation value at a long wavelength is referred to as a retardation film having positive wavelength dispersion. A film having a small retardation value at a short wavelength and a large retardation value at a long wavelength is referred to as a retardation film having reverse wavelength dispersion. All of the present invention can be used regardless of the dispersibility of the retardation film.

本発明で位相差フィルムの分散性は、当分野において一般的に使われている780nmの光源に対する位相差値と、380nmの光源に対する位相差値との比で示す。参考までに、全ての波長に対して同じ偏光状態にすることができる完璧な逆波長分散性を有する位相差フィルムの場合は、[R0(380nm)/ R0(780nm)]=0.4872の値を有する。   In the present invention, the dispersibility of the retardation film is represented by a ratio of a retardation value for a light source of 780 nm generally used in this field and a retardation value for a light source of 380 nm. For reference, in the case of a retardation film having perfect reverse wavelength dispersion that can be in the same polarization state for all wavelengths, a value of [R0 (380 nm) / R0 (780 nm)] = 0.4872. Have

第1及び第2複合構成偏光板の偏光子には、それぞれ、延伸と染色などの工程を通じて偏光機能が与えられた偏光子であるポリビニルアルコール(PVA)層が位置し、第1複合構成偏光板のポリビニルアルコール(PVA)層と第2複合構成偏光板のポリビニルアルコール(PVA)層には、液晶セルと対向する側に、それぞれ保護フィルムが位置されている。上記第1及び第2複合構成偏光板は当分野において一般的に適用される工程で製造することができ、具体的には複合ロール・ツー・ロール(roll−to−roll)工程、シート・ツー・シート(Sheet to Sheet)工程を適用することができる。歩留り及び製造工程上の効率性などを考慮して、ロール・ツー・ロール(roll−to−roll)工程を適用するのが好ましく、特にPVA偏光子の吸収軸の方向が常にMD方向に固定されるので、この適用が効果的である。   Each of the polarizers of the first and second composite constituent polarizing plates has a polyvinyl alcohol (PVA) layer, which is a polarizer provided with a polarizing function through processes such as stretching and dyeing, and the first composite constituent polarizing plate. Each of the polyvinyl alcohol (PVA) layer and the polyvinyl alcohol (PVA) layer of the second composite configuration polarizing plate is provided with a protective film on the side facing the liquid crystal cell. The first and second composite configuration polarizing plates can be manufactured by a process generally applied in this field. Specifically, a composite roll-to-roll process, a sheet-to-roll process, and the like. A sheet (Sheet to Sheet) process can be applied. It is preferable to apply a roll-to-roll process in consideration of yield and manufacturing process efficiency. In particular, the direction of the absorption axis of the PVA polarizer is always fixed in the MD direction. Therefore, this application is effective.

この構成では、第1及び第2複合構成偏光板の保護フィルムは屈折率差による光学的特性が視野角に影響を及ぼさないので、本発明では屈折率が特に制限されない。上記第1及び第2複合構成偏光板の保護フィルムの材料としては、当分野において一般的に使われるものを適用することができ、具体的には三酢酸セルロース(TAC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリスルホン(PSF)及びポリメチルメタクリレート(PMMA)からなる群から選ばれたものを使用することができる。   In this configuration, the protective film of the first and second composite polarizing plates has no particular limitation on the refractive index in the present invention because the optical characteristics due to the refractive index difference do not affect the viewing angle. As a material for the protective film of the first and second composite polarizing plates, those commonly used in the art can be applied. Specifically, cellulose triacetate (TAC), cycloolefin polymer (COP) ), Cycloolefin copolymer (COC), polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), polysulfone (PSF) and polymethyl methacrylate (PMMA) can be used. .

また、本発明はブルー相液晶と、液晶の上側及び下側偏光板に、それぞれ、特定の光学特性を有する位相差フィルムが配置された第1複合構成偏光板及び第2複合構成偏光板を含む複合構成偏光板セットを含む液晶表示装置に関する。上記液晶表示装置は上側偏光板として第1複合構成偏光板を配置し、下側偏光板として第2複合構成偏光板を配置するか、上側偏光板として第2複合構成偏光板を配置し、下側偏光板として第1複合構成偏光板を配置することができる。上記第1複合構成偏光板の吸収軸は第2複合構成偏光板の吸収軸と直交している。   The present invention also includes a blue composite liquid crystal and a first composite constituent polarizer and a second composite constituent polarizer in which retardation films having specific optical characteristics are disposed on the upper and lower polarizers of the liquid crystal, respectively. The present invention relates to a liquid crystal display device including a composite configuration polarizing plate set. In the liquid crystal display device, the first composite constituent polarizing plate is arranged as the upper polarizing plate, the second composite constituent polarizing plate is arranged as the lower polarizing plate, or the second composite constituent polarizing plate is arranged as the upper polarizing plate. A 1st composite structure polarizing plate can be arrange | positioned as a side polarizing plate. The absorption axis of the first composite constituent polarizing plate is orthogonal to the absorption axis of the second composite constituent polarizing plate.

本発明のブルー相液晶は電場の印加可否によって異方性から等方性に屈折率が変わるものである。これらの液晶は分子が3次元螺旋形で捻られて整列されたシリンダー形態のアレイからなるが、かかる配向構造をダブルツイストシリンダー(double twist cylinder、以下、DTCという)構造という。ブルー相液晶は、上記DTCの中心軸から外側方向を向いてますます捻られるように配置される。すなわち、ブルー相液晶は、上記DTC内で直交している二つのツイスト軸に沿って捻られるように配置され、DTCの中心軸を基準としてDTC内で方向性を有する。   The blue phase liquid crystal of the present invention has a refractive index that changes from anisotropy to isotropic depending on whether or not an electric field is applied. These liquid crystals are composed of a cylindrical array in which molecules are twisted and aligned in a three-dimensional spiral shape. Such an alignment structure is called a double twist cylinder (hereinafter referred to as DTC) structure. The blue phase liquid crystal is arranged so as to be twisted further outward from the central axis of the DTC. That is, the blue phase liquid crystal is arranged so as to be twisted along two twist axes that are orthogonal to each other in the DTC, and has directionality in the DTC with reference to the central axis of the DTC.

このようなブルー相液晶は、第1ブルー相、第2ブルー相及び第3ブルー相があり、DTC内でブルー相の種類によってその配置構造が変わる。第1ブルー相はDTCが格子構造の1つの体心立方構造で配置され、第2ブルー相はDTCが単純立方構造で配置される。上記ブルー相は、DTCが格子構造で配置されるので、隣接した3つのDTCが接する部分でディスクリネーション(DISCLINATION)が発生する。上記ディスクリネーションは液晶が規則的な方向性を持たないため不規則に配列される部分であって、ディスクリネーションラインを形成する。   Such a blue phase liquid crystal has a first blue phase, a second blue phase, and a third blue phase, and the arrangement structure changes depending on the type of the blue phase in the DTC. The first blue phase is arranged in a body-centered cubic structure with a DTC having a lattice structure, and the second blue phase is arranged in a simple cubic structure with a DTC. Since the DTC is arranged in a lattice structure in the blue phase, disclination occurs at a portion where three adjacent DTCs are in contact. The disclination is an irregularly arranged portion because the liquid crystal does not have a regular directionality, and forms a disclination line.

上記ブルー相液晶は印加された電圧の大きさによって異方性屈折率が上記印加電圧の二乗に比例して変わる。等方性有極性物質に電界を印加したとき、屈折率が印加電圧の二乗に比例する光学効果をカー効果(KERR EFFECT)といい、液晶表示装置はブルー相液晶のカー効果を用いて映像を表示するので回答速度が向上する。   The blue phase liquid crystal has an anisotropic refractive index that changes in proportion to the square of the applied voltage depending on the magnitude of the applied voltage. When an electric field is applied to an isotropic polar substance, the optical effect in which the refractive index is proportional to the square of the applied voltage is called the Kerr effect (KERR EFFECT), and the liquid crystal display device uses the Kerr effect of the blue phase liquid crystal to display images. Since it is displayed, the response speed is improved.

また、ブルー相液晶は電界が形成される領域別に屈折率が決まる。上記電界が形成される領域が一定に形成されると、セルギャップ均一度に構わず、均一な輝度を有するので液晶表示装置の表示特性を向上させることができる。   In addition, the refractive index of the blue phase liquid crystal is determined for each region where an electric field is formed. If the region where the electric field is formed is formed uniformly, the display characteristics of the liquid crystal display device can be improved because the luminance is uniform regardless of the cell gap uniformity.

本発明の光学条件で構成された液晶表示装置は、暗(Black)状態で全ての視角からの最大透過率が0.05%以下、好ましくは0.02%以下の補償関係を満たす。現在量産されている最も明るい液晶表示装置の正面輝度は、垂直配向モード(VA Mode)を使用して約10000nits程度を示し、60゜傾斜面の視野角では明るさが約10000nits×cos60゜程度であり、これに対する0.05%は2.5nitsである。よって、本発明は垂直配向モードを適用した液晶表示装置と同等以上の全ての視角からの透過度を具現しようとする。   The liquid crystal display device configured with the optical conditions of the present invention satisfies a compensation relationship in which the maximum transmittance from all viewing angles in the dark state is 0.05% or less, preferably 0.02% or less. The brightest liquid crystal display device currently in mass production has a front luminance of about 10000 nits using the vertical alignment mode (VA Mode), and a brightness of about 10000 nits × cos 60 ° at a viewing angle of 60 ° inclined surface. Yes, 0.05% for this is 2.5 nits. Therefore, the present invention tries to realize the transmittance from all viewing angles equal to or higher than that of the liquid crystal display device to which the vertical alignment mode is applied.

図1は、本発明に係るブルー相液晶用の液晶表示装置の基本構造を示す斜視図であり、これを用いて説明すれば、下記のとおりである。   FIG. 1 is a perspective view showing a basic structure of a liquid crystal display device for a blue phase liquid crystal according to the present invention, which will be described as follows.

本発明に係るブルー相液晶用の液晶表示装置はバックライトユニット40側から第2保護フィルム13、第2偏光子11、第2位相差フィルム14、ブルー相(blue phase)液晶セル30、第1位相差フィルム24、第1偏光子21、第1保護フィルム23の順に積層される。視認側から見たときに、上記第1偏光子21の吸収軸12と第2偏光子11の吸収軸22は直交しており、第1位相差フィルムの遅相軸と第1偏光子の吸収軸は平行である。具体的には、図1(a)は第1複合構成偏光板が上側偏光板として配置されたもので、第1位相差フィルム24の遅相軸25と第1偏光子21の吸収軸22は平行に構成されたものであり、図1(b)は第1複合構成偏光板が下側偏光板として配置されたもので、第1位相差フィルム24の遅相軸25と第1偏光子21の吸収軸22は平行に構成されたものである。   The liquid crystal display device for blue phase liquid crystal according to the present invention includes a second protective film 13, a second polarizer 11, a second retardation film 14, a blue phase liquid crystal cell 30, a first phase from the backlight unit 40 side. The retardation film 24, the first polarizer 21, and the first protective film 23 are laminated in this order. When viewed from the viewing side, the absorption axis 12 of the first polarizer 21 and the absorption axis 22 of the second polarizer 11 are orthogonal to each other, and the slow axis of the first retardation film and the absorption of the first polarizer. The axes are parallel. Specifically, FIG. 1A shows a case where the first composite configuration polarizing plate is arranged as an upper polarizing plate, and the slow axis 25 of the first retardation film 24 and the absorption axis 22 of the first polarizer 21 are as follows. FIG. 1B shows a configuration in which the first composite configuration polarizing plate is arranged as a lower polarizing plate. The slow axis 25 of the first retardation film 24 and the first polarizer 21 are arranged in parallel. The absorption axis 22 is configured in parallel.

本発明の第1複合構成偏光板20及び第2複合構成偏光板10は大量生産が容易なロール・ツー・ロール(roll−to−roll)方式を適用して製造される。図3は、ロール・ツー・ロール製造工程上のMD方向を説明する模式図であり、これを参照して図1(a)の構成を以下に具体的に説明する。   The first composite configuration polarizing plate 20 and the second composite configuration polarizing plate 10 of the present invention are manufactured by applying a roll-to-roll method that is easy to mass-produce. FIG. 3 is a schematic diagram illustrating the MD direction in the roll-to-roll manufacturing process, and the configuration of FIG. 1A will be specifically described below with reference to this.

第1複合構成偏光板20及び第2複合構成偏光板10は、さまざまな光学フィルムの組合で作られ、それぞれの光学フィルムは複合構成偏光板に接合される前に巻いた(Roll)状態で存在する。巻いた状態でフィルムが展開するか巻かれる方向をMD(Machine Direction)方向と言う。第2複合構成偏光板10の場合、第2保護フィルム13と第2位相差フィルム14の方向は光学性能に影響がないため、ロール・ツー・ロール(roll−to−roll)生産が可能であり、第1複合構成偏光板20の場合、第1保護フィルム23の方向とは関係がなく、第1偏光子21と第1位相差フィルム24のMD方向だけを一致させればロール・ツー・ロール(roll−to−roll)生産が可能である。   The first composite constituent polarizing plate 20 and the second composite constituent polarizing plate 10 are made of a combination of various optical films, and each optical film exists in a rolled state before being bonded to the composite constituent polarizing plate. To do. The direction in which the film is unrolled or wound in the wound state is referred to as the MD (Machine Direction) direction. In the case of the second composite polarizing plate 10, the direction of the second protective film 13 and the second retardation film 14 does not affect the optical performance, so that roll-to-roll production is possible. In the case of the first composite configuration polarizing plate 20, there is no relation to the direction of the first protective film 23, and only the MD direction of the first polarizer 21 and the first retardation film 24 is matched to roll-to-roll. (Roll-to-roll) production is possible.

また、バックライトユニットに近い第2偏光子11の吸収軸12が垂直方向である時、第2複合構成偏光板10を通過した光は水平方向に偏光され、これはパネルの電圧が印加された液晶セルを通過して明の状態になるときに、光は垂直方向になって吸収軸が水平方向である視認側の第1複合構成偏光板20を通過する。このとき、視認側から、吸収軸が水平方向である偏光サングラス(偏光サングラスの吸収軸は水平方向である)をかけている人も液晶表示装置から出た光を認知することができる。もし、バックライトユニットに近い第2偏光子11の吸収軸12が水平方向である場合は、偏光サングラスをかけた人には画像が見えなくなる問題が発生する。また、大型液晶表示装置の場合、視認側で画像がよく見えるようにするために、人間の主視野が垂直方向よりも水平方向が広いということを考慮して、広告用などの特殊目的液晶表示装置を除いた一般的な液晶表示装置では、4:3または16:9の形態で製作される。よって視認側から見たときに、第2偏光子の吸収軸は垂直、第1偏光子の吸収軸は平行である。   Further, when the absorption axis 12 of the second polarizer 11 close to the backlight unit is in the vertical direction, the light passing through the second composite constituent polarizing plate 10 is polarized in the horizontal direction, which is applied with the panel voltage. When the light passes through the liquid crystal cell and becomes bright, the light passes in the vertical direction and passes through the viewing-side first composite polarizing plate 20 whose absorption axis is in the horizontal direction. At this time, a person wearing polarized sunglasses whose absorption axis is in the horizontal direction (the absorption axis of polarized sunglasses is in the horizontal direction) can also recognize light emitted from the liquid crystal display device from the viewing side. If the absorption axis 12 of the second polarizer 11 close to the backlight unit is in the horizontal direction, there arises a problem that an image cannot be seen by a person wearing polarized sunglasses. In addition, in the case of large liquid crystal display devices, special purpose liquid crystal displays such as for advertisements are used in consideration of the fact that the main visual field of human beings is wider in the horizontal direction than in the vertical direction so that the image can be seen well on the viewer side A general liquid crystal display device excluding the device is manufactured in the form of 4: 3 or 16: 9. Therefore, when viewed from the viewing side, the absorption axis of the second polarizer is vertical and the absorption axis of the first polarizer is parallel.

本発明の視野角補償の効果はポアンカレ球(Poincare Sphere)を通じて説明することができる。ポアンカレ球(Poincare Sphere)は、特定視角における偏光状態の変化を表現するのにとても有用な方法であるため、ポアンカレ球は、偏光を用いて画像を表示する液晶表示装置の中を特定視角に沿って進行する光が、液晶表示装置の内部のそれぞれの光学素子を通過するときの偏光状態の変化を示すことができる。本発明において「特定視角」とは、図4に示した半円座標系でθ=60゜、φ=45゜の方向であり、この方向に出る光の偏光状態変化を人間がもっとも明るく感じる波長550nmを基準として説明する。具体的に、φ方向の面を、正面のφ+90゜の軸の周りで視認側にθだけ回転させたときに、正面方向から出る光に対する偏光状態変化をポアンカレ球上に示したものである。ポアンカレ球上で、S3軸の座標が正(+)を示すときに右円偏光を示し、ここで、右円偏光とは、ある偏光水平成分をEx、偏光垂直成分をEyとしたときに、光のEx成分のEy成分に対する位相の遅れ(位相遅延)が0より大きく、半波長より小さいことを言う。   The effect of the viewing angle compensation of the present invention can be explained through a Poincare sphere. The Poincare sphere is a very useful method for expressing a change in the polarization state at a specific viewing angle. Therefore, the Poincare sphere follows a specific viewing angle in a liquid crystal display device that displays an image using polarized light. The change of the polarization state when the traveling light passes through the respective optical elements inside the liquid crystal display device can be shown. In the present invention, the “specific viewing angle” is the direction of θ = 60 ° and φ = 45 ° in the semicircular coordinate system shown in FIG. 4, and the wavelength at which humans feel the brightest change in the polarization state of light emitted in this direction. The description will be made based on 550 nm. Specifically, when the surface in the φ direction is rotated by θ toward the viewing side around the front φ + 90 ° axis, the change in polarization state with respect to light emitted from the front direction is shown on the Poincare sphere. is there. On the Poincare sphere, right circularly polarized light is shown when the coordinate of the S3 axis indicates positive (+). Here, right circularly polarized light means that when a horizontal polarization component is Ex and a vertical polarization component is Ey, The phase delay (phase delay) of the Ex component of light with respect to the Ey component is greater than 0 and less than half a wavelength.

以下、上記構成において、電圧非印加時の全視野角における暗状態の具現に対する効果を、実施例と比較例を通して記述する。本発明は下記の実施例によってより理解しやすくなるが、下記の実施例は本発明の単なる例示を提供するものであり、添付された特許請求の範囲によって請求される保護範囲を制限するものではない。   Hereinafter, in the above configuration, the effect of realizing the dark state at all viewing angles when no voltage is applied will be described through examples and comparative examples. The present invention will be more readily understood by the following examples, which are provided by way of illustration only and are not intended to limit the scope of protection claimed by the appended claims. Absent.

実施例
下記の実施例1〜実施例6、及び比較例1〜比較例6では、LCDシミュレーションシステムであるTECH WIZ LCD 1D(サナイシステム社、韓国)を用いたシミュレーションを通して広視野角効果を比べた。
Example In the following Example 1 to Example 6 and Comparative Example 1 to Comparative Example 6, the wide viewing angle effect was compared through a simulation using TECH WIZ LCD 1D (Sanai System Co., Korea) as an LCD simulation system. .

実施例1
本発明に係る各光学フィルム、液晶セル及びバックライトなどの実測データを、図1(a)に示すような積層構造と共に、TECH WIZ LCD 1D(サナイシステム社、韓国)に使用した。図1(a)の構造を以下に具体的に説明する。
Example 1
The actual measurement data of each optical film, liquid crystal cell, and backlight according to the present invention was used for TECH WIZ LCD 1D (Sanai System Co., Korea) together with the laminated structure as shown in FIG. The structure of FIG. 1A will be specifically described below.

バックライトユニット40側から第2保護フィルム13、第2偏光子11、第2位相差フィルム14、ブルー相(blue phase)液晶セル30、第1位相差フィルム24、第1偏光子21、第1保護フィルム23で構成され、第2偏光子11の吸収軸12は視認側から見たときに垂直方向であり、第1偏光子21の吸収軸22は視認側から見たときに水平方向であり、第1偏光子21の吸収軸12と第2偏光子11の吸収軸22は直交し、第1位相差フィルム24の遅相軸25と第1偏光子21の吸収軸22は平行である。   From the backlight unit 40 side, the second protective film 13, the second polarizer 11, the second retardation film 14, the blue phase liquid crystal cell 30, the first retardation film 24, the first polarizer 21, the first It is composed of a protective film 23, and the absorption axis 12 of the second polarizer 11 is in the vertical direction when viewed from the viewing side, and the absorption axis 22 of the first polarizer 21 is in the horizontal direction when viewed from the viewing side. The absorption axis 12 of the first polarizer 21 and the absorption axis 22 of the second polarizer 11 are orthogonal to each other, and the slow axis 25 of the first retardation film 24 and the absorption axis 22 of the first polarizer 21 are parallel.

液晶セルは電場を印加しないときに、屈折率等方性を有し、電場を印加すれば電場を印加した方向に屈折率が大きくなるもので、このような液晶モードの試製作品はブルー相(Blue Phase)液晶(サムソン電子、SID2008)を使用した。これを適用する場合、初期液晶配向が必要ではないため、液晶セル製作工程が簡単になる。   A liquid crystal cell has a refractive index isotropic property when no electric field is applied, and the refractive index increases in the direction in which the electric field is applied when an electric field is applied. A prototype of such a liquid crystal mode is a blue phase ( Blue Phase) liquid crystal (Samson Electronics, SID2008) was used. When this is applied, the liquid crystal cell manufacturing process is simplified because initial liquid crystal alignment is not required.

一方、本発明の実施例1で使われたそれぞれの光学フィルム及びバックライトは、下記のような光学的物性を有している。   On the other hand, each optical film and backlight used in Example 1 of the present invention has the following optical properties.

まず、第1偏光子11及び第2偏光子21は延伸されたPVAをヨウ素で染色して偏光子機能を付与しており、このような偏光子の偏光性能は、370〜780nmの可視光線領域では、視感度の偏光度99.9%以上、視感度の単体透過率41%以上である。視感度偏光度と視感度単体透過率は、波長による透過軸の透過率をTD(λ)、波長による吸収軸の透過率をMD(λ)、JIS Z 8701:1999に定義された視感度の補償値を
としたとき、下記の数式4〜8で定義される。ここでS(λ)は光源スペクトラムであり、光源はC光源である。
[数4]
[数5]
[数6]
[数7]
[数8]

First, the first polarizer 11 and the second polarizer 21 are provided with a polarizer function by dyeing stretched PVA with iodine, and the polarization performance of such a polarizer is in the visible light region of 370 to 780 nm. Then, the polarization degree of visibility is 99.9% or more, and the single transmittance of visibility is 41% or more. The visibility polarization degree and the visibility single transmittance are TD (λ) as the transmittance of the transmission axis according to the wavelength, MD (λ) as the transmittance of the absorption axis according to the wavelength, and the visibility defined in JIS Z 8701: 1999. Compensation value
Is defined by the following mathematical formulas 4 to 8. Here, S (λ) is a light source spectrum, and the light source is a C light source.
[Equation 4]
[Equation 5]
[Equation 6]
[Equation 7]
[Equation 8]

各フィルムの方向による内部屈折率差によって生じる光学特性について、波長589.3nmで、下側の第2位相差フィルム14は、正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が90nmであるものを使用し、上側の第1位相差フィルム24は正面位相差値(R0)が140nm、屈折率比(NZ)が−0.11であるものを使用した。   Regarding the optical characteristics generated by the internal refractive index difference depending on the direction of each film, the front retardation value (R0) of the lower second retardation film 14 is 2.0 nm at a wavelength of 589.3 nm, and the thickness direction retardation is A film having a value (Rth) of 90 nm was used, and the upper first retardation film 24 having a front retardation value (R0) of 140 nm and a refractive index ratio (NZ) of −0.11 was used.

上記第2位相差フィルム14の波長分散性は、正面位相差(波長、380nm)/正面位相差(波長、780nm)=[R0(380nm)/R0(780nm)]は0.862であり、図5のような全波長波長分散度を示し、上記第1位相差フィルム24の波長分散性は正面位相差(波長、380nm)/正面位相差(波長、780nm)=[R0(380nm)/R0(780nm)]は1.197であり、図6のような全波長波長分散度を示す。   As for the wavelength dispersion of the second retardation film 14, the front phase difference (wavelength, 380 nm) / front phase difference (wavelength, 780 nm) = [R0 (380 nm) / R0 (780 nm)] is 0.862. The wavelength dispersion of the first retardation film 24 is a front phase difference (wavelength, 380 nm) / front phase difference (wavelength, 780 nm) = [R0 (380 nm) / R0 ( 780 nm)] is 1.197, indicating the total wavelength chromatic dispersion as shown in FIG.

第1及び第2偏光子の外側の第1保護フィルム13及び第2保護フィルム23として入射光589.3nmに対して厚み方向位相差値(Rth)が50nmである光学特性を有する三酢酸セルロース(TAC)を使用した。バックライトユニットとしては、サムソン電子46インチ液晶TV PAVV(LTA460HR0)に搭載されたバックライト実測スペクトラムデータを使用した。   Cellulose triacetate having optical characteristics with a thickness direction retardation value (Rth) of 50 nm with respect to incident light of 589.3 nm as the first protective film 13 and the second protective film 23 outside the first and second polarizers ( TAC) was used. As the backlight unit, backlight measured spectrum data mounted on a Samsung Electronics 46-inch liquid crystal TV PAVV (LTA460HR0) was used.

上記の各光学素子を図1(a)に示すように積層した後、全方位からの光の透過率のシミュレーションを実施した結果を図7に示す。本発明の基準視角(θ=60゜、φ=45゜)で波長550nmの偏光状態の変化は図8に示し、ポアンカレ球(Poincare Sphere)上で第2偏光子11を通過した時の偏光状態は1、第2位相差フィルム14を通過した時の偏光状態と液晶セルを通過した時の偏光状態は2、第1位相差フィルム24を通過した時の偏光状態は3で示す。   FIG. 7 shows the result of simulation of the transmittance of light from all directions after laminating the above optical elements as shown in FIG. The change in the polarization state at a wavelength of 550 nm at the reference viewing angle (θ = 60 °, φ = 45 °) of the present invention is shown in FIG. 8, and the polarization state when passing through the second polarizer 11 on the Poincare sphere (Poincare Sphere). 1, the polarization state when passing through the second retardation film 14, the polarization state when passing through the liquid crystal cell is 2, and the polarization state when passing through the first retardation film 24 is 3.

図7は、暗(BLACK)を画面に表示する場合の全ての視角からの透過率分布を示したものであって、スケール上の範囲は透過率0%〜0.05%であり、暗を示すときの透過率0.05%を超過した部位は赤色、透過率が低い部位は青色で示す。このとき、中央の青色の範囲が広いほど広い視野角を示すことであって、広視野角の確保が可能であるということが確認できた。   FIG. 7 shows the transmittance distribution from all viewing angles when dark (BLACK) is displayed on the screen. The range on the scale is from 0% to 0.05% of the transmittance. The portion where the transmittance exceeds 0.05% is shown in red, and the portion where the transmittance is low is shown in blue. At this time, it was confirmed that the wider the blue range at the center, the wider the viewing angle, and the wide viewing angle can be secured.

このように、面内切替式液晶表示装置用偏光板(I Plus Pol構成、東友ファインケム、韓国)を本発明の液晶モードに適用したときの全ての視角からの透過率を示した図9より優れた視野角補償効果を奏することを確認した。   Thus, from FIG. 9 which showed the transmittance | permeability from all the viewing angles when the polarizing plate for liquid crystal display devices in an in-plane switching system (I Plus Pol structure, Toyu Finechem, Korea) is applied to the liquid crystal mode of this invention. It was confirmed that there was an excellent viewing angle compensation effect.

実施例2
上記実施例1と同様に構成されるが、589.3nmで第2位相差フィルム14は、正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が300nmであるものを使用し、第1位相差フィルム24は、正面位相差値(R0)が55nm、屈折率比(NZ)が−5.9であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Example 2
Although comprised similarly to the said Example 1, as for the 2nd phase difference film 14 at 589.3 nm, a front phase difference value (R0) is 2.0 nm, and thickness direction phase difference value (Rth) is 300 nm. A first phase difference film 24 having a front phase difference value (R0) of 55 nm and a refractive index ratio (NZ) of −5.9 is used to form a liquid crystal display device for blue phase liquid crystal. Manufactured.

図10は、暗(BLACK)を画面に示す場合の全ての視角からの透過率分布を示したものであって、スケール上の範囲は透過率0%〜0.05%であり、暗を示すときの透過率0.05%を超過した部位は赤色、透過率が低い部位は青色で示す。このとき、中央の青色の範囲が広いほど広い視野角を示すことであって、広視野角の確保が可能であるということが確認できた。   FIG. 10 shows the transmittance distribution from all viewing angles when dark (BLACK) is displayed on the screen, and the range on the scale is 0% to 0.05%, indicating darkness. When the transmittance exceeds 0.05%, the portion where the transmittance is high is shown in red, and the portion where the transmittance is low is shown in blue. At this time, it was confirmed that the wider the blue range at the center, the wider the viewing angle, and the wide viewing angle can be secured.

また、面内切替式液晶表示装置用偏光板(I Plus Pol構成、東友ファインケム、韓国)を本発明の液晶モードに適用したときの全ての視角からの透過率を示した図9と同等な視野角補償効果を奏することを確認した。   Further, the in-plane switching type liquid crystal display polarizing plate (I Plus Pol configuration, Toyu Finechem, Korea) is equivalent to FIG. 9 showing the transmittance from all viewing angles when applied to the liquid crystal mode of the present invention. It was confirmed that there was a viewing angle compensation effect.

図11は実施例2の光学補償原理をポアンカレ球上に示したものであり、図8は実施例1の光学補償原理をポアンカレ球上に示したものであり、上記ポアンカレ球上の二つの経路間に補償可能な経路が無数に多く存在することが分かる。また、第1位相差フィルム24及び第2位相差フィルム14の単独により光学特性がよくなることではなく、第2位相差フィルム14の光学特性による最適は第1位相差フィルム24の光学特性が決まることが分かる。   FIG. 11 shows the optical compensation principle of the second embodiment on the Poincare sphere, and FIG. 8 shows the optical compensation principle of the first embodiment on the Poincare sphere, and two paths on the Poincare sphere. It can be seen that there are an infinite number of paths that can be compensated between. In addition, the optical properties of the first retardation film 24 and the second retardation film 14 are not improved, but the optical properties of the first retardation film 24 are determined optimally by the optical properties of the second retardation film 14. I understand.

実施例3
上記実施例1と同様に構成されるが、図1(b)のようにバックライトユニット40側から第1保護フィルム23、第1偏光子21、第1位相差フィルム24、ブルー相(blue phase)液晶セル30、第2位相差フィルム14、第2偏光子11、第2保護フィルム13が配置されるように構成した。上記第1偏光子21の吸収軸22は、視認側から見たときに垂直方向であり、第2偏光子11の吸収軸12は視認側から見たときに水平方向であり、第1偏光子21の吸収軸22と第2偏光子11の吸収軸12は直交するように構成し、第1位相差フィルム24の遅相軸25と第1偏光子21の吸収軸22は平行となるように構成した。
Example 3
Although it is comprised similarly to the said Example 1, as shown in FIG.1 (b), the 1st protective film 23, the 1st polarizer 21, the 1st phase difference film 24, the blue phase (blue phase) from the backlight unit 40 side. ) The liquid crystal cell 30, the second retardation film 14, the second polarizer 11, and the second protective film 13 were arranged. The absorption axis 22 of the first polarizer 21 is in the vertical direction when viewed from the viewing side, and the absorption axis 12 of the second polarizer 11 is in the horizontal direction when viewed from the viewing side. The absorption axis 22 of the first polarizer 21 and the absorption axis 12 of the second polarizer 11 are configured to be orthogonal to each other, and the slow axis 25 of the first retardation film 24 and the absorption axis 22 of the first polarizer 21 are parallel to each other. Configured.

各フィルムの方向による内部屈折率差により生ずる光学特性は、波長589.3nmで、第2位相差フィルム14は正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が90nmであるものを使用し、第1位相差フィルム24は正面位相差値(R0)が140nm、屈折率比(NZ)が−0.11であるものを使用した。   The optical characteristics generated by the internal refractive index difference depending on the direction of each film are a wavelength of 589.3 nm, the second retardation film 14 has a front retardation value (R0) of 2.0 nm, and a thickness direction retardation value (Rth). Is used, and the first retardation film 24 has a front retardation value (R0) of 140 nm and a refractive index ratio (NZ) of −0.11.

上記第2位相差フィルム14の波長分散性は正面位相差(波長380nm)/正面位相差(波長780nm)=[R0(380nm)/R0(780nm)]は0.862であり、図5のような全波長波長分散度を示し、上記第1位相差フィルム24の波長分散性は正面位相差(波長 380nm)/正面位相差(波長 780nm)=[R0(380nm)/R0(780nm)]は1.197であり、図6のような全波長波長分散度を示す。   The wavelength dispersion of the second retardation film 14 is 0.862, which is a front retardation (wavelength 380 nm) / front retardation (wavelength 780 nm) = [R0 (380 nm) / R0 (780 nm)], as shown in FIG. The wavelength dispersion of the first retardation film 24 is 1 for front retardation (wavelength 380 nm) / front retardation (wavelength 780 nm) = [R0 (380 nm) / R0 (780 nm)]. .197, indicating the chromatic dispersion of all wavelengths as shown in FIG.

上記各光学的構成要素を図1(b)のように積層し、全ての視角からの透過率シミュレーションを実施した結果、図12のような結果が得られた。本発明の基準視角(θ=60゜、φ=45゜)で波長550nmの偏光状態の変化は図13に示し、ポアンカレ球(Poincare Sphere)上で第1偏光子21を通過したときに偏光状態は1、第1位相差フィルム24を通過した時の偏光状態と液晶セルを通過した時の偏光状態は2、第2位相差フィルム14を通過した時の偏光状態は3で示す。   As a result of laminating the above optical components as shown in FIG. 1B and carrying out transmittance simulations from all viewing angles, results as shown in FIG. 12 were obtained. The change in the polarization state at a wavelength of 550 nm at the reference viewing angle (θ = 60 °, φ = 45 °) of the present invention is shown in FIG. 13, and the polarization state when passing through the first polarizer 21 on the Poincare sphere (Poincare Sphere). 1, the polarization state when passing through the first retardation film 24, the polarization state when passing through the liquid crystal cell is 2, and the polarization state when passing through the second retardation film 14 is 3.

図12は、暗(BLACK)を画面に示す場合の全ての視角からの透過率分布を示したものであって、スケール上の範囲は透過率0%〜0.05%であり、暗を示すときの透過率0.05%を超過した部位は赤色、透過率が低い部位は青色で示す。このとき、中央の青色の範囲が広いほど広い視野角を示すことであって、広視野角の確保が可能であることが確認できた。   FIG. 12 shows the transmittance distribution from all viewing angles when dark (BLACK) is displayed on the screen, and the range on the scale is 0% to 0.05%, indicating darkness. When the transmittance exceeds 0.05%, the portion where the transmittance is high is shown in red, and the portion where the transmittance is low is shown in blue. At this time, it was confirmed that the wider the central blue range, the wider the viewing angle, and the wide viewing angle could be secured.

このように、面内切替式液晶表示装置用偏光板(I Plus Pol構成、東友ファインケム、韓国)を本発明の液晶モードに適用したときの全ての視角からの透過率を示した図9よりも優れた視野角補償効果を示すことを確認した。   Thus, from FIG. 9 which showed the transmittance | permeability from all the viewing angles when the polarizing plate for liquid crystal display devices in an in-plane switching system (I Plus Pol structure, Toyu Finechem, Korea) is applied to the liquid crystal mode of this invention. It was also confirmed that the viewing angle compensation effect was excellent.

実施例4
上記実施例3と同様に図1(b)のように積層して構成されるが、589.3nmで、第2位相差フィルム14は正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が300nmであるものを使用し、第1位相差フィルム24は正面位相差値(R0)が55nm、屈折率比(NZ)が−5.9であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Example 4
1B, the second retardation film 14 has a front retardation value (R0) of 2.0 nm and a thickness of 589.3 nm. A film having a directional retardation value (Rth) of 300 nm is used, and a first retardation film 24 having a front retardation value (R0) of 55 nm and a refractive index ratio (NZ) of −5.9 is disposed. A liquid crystal display device for a blue phase liquid crystal was manufactured.

図14は、暗(BLACK)を画面に表示する場合の全ての視角からの透過率分布を示したものであって、広視野角の確保が可能であることが確認できた。図15は本発明の基準視角(θ=60゜、φ=45゜)で波長550nmの偏光状態の変化を示したものである。   FIG. 14 shows the transmittance distribution from all viewing angles when dark (BLACK) is displayed on the screen, and it was confirmed that a wide viewing angle can be secured. FIG. 15 shows changes in the polarization state at a wavelength of 550 nm at the reference viewing angle (θ = 60 °, φ = 45 °) of the present invention.

実施例5
上記実施例1と同様に構成されるが、589.3nmで、第2位相差フィルム14は正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が141nmであるものを使用し、第1位相差フィルム24は正面位相差値(R0)が99nm、屈折率比(NZ)が−1.0であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Example 5
Although it is comprised similarly to the said Example 1, the 2nd phase difference film 14 is 58 nm, front retardation value (R0) is 2.0 nm, and thickness direction phase difference value (Rth) is 141 nm. A first phase difference film 24 having a front phase difference value (R0) of 99 nm and a refractive index ratio (NZ) of -1.0 is used to manufacture a liquid crystal display device for blue phase liquid crystal. did.

上記構成の全ての視角からの透過率を図16に示し、図17は本発明の基準視角(θ=60゜、φ=45゜)で波長550nmの偏光状態の変化を示したものである。   FIG. 16 shows the transmittance from all viewing angles of the above configuration, and FIG. 17 shows changes in the polarization state at a wavelength of 550 nm at the reference viewing angles (θ = 60 °, φ = 45 °) of the present invention.

実施例6
上記実施例1と同様に構成されるが、589.3nmで、第2位相差フィルム14は正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が110nmであるものを使用し、第1位相差フィルム24は正面位相差値(R0)が110nm、屈折率比(NZ)が−0.5であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Example 6
Although it is comprised similarly to the said Example 1, it is 589.3 nm, the 2nd phase difference film 14 has a front phase difference value (R0) of 2.0 nm, and a thickness direction phase difference value (Rth) is 110 nm. A first phase difference film 24 having a front phase difference value (R0) of 110 nm and a refractive index ratio (NZ) of −0.5 is manufactured to produce a liquid crystal display device for blue phase liquid crystal did.

上記構成の全ての視角からの透過率は、図18に示し、図19は本発明の基準視角(θ=60゜、φ=45゜)で波長550nmの偏光状態の変化を示したものである。   The transmittance from all viewing angles of the above configuration is shown in FIG. 18, and FIG. 19 shows changes in the polarization state at a wavelength of 550 nm at the reference viewing angle (θ = 60 °, φ = 45 °) of the present invention. .

比較例1
上記実施例1と同様に構成されるが、第2位相差フィルム14及び第1位相差フィルム24の光学特性が一般TAC(正面位相差値(R0)=2.0nm、厚み方向位相差値(Rth)=52nm)であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Comparative Example 1
Although it is comprised similarly to the said Example 1, the optical characteristic of the 2nd phase difference film 14 and the 1st phase difference film 24 is general TAC (front phase difference value (R0) = 2.0 nm, thickness direction phase difference value ( Rth) = 52 nm) was placed to manufacture a liquid crystal display device for blue phase liquid crystal.

上記液晶表示装置の全ての視角からの透過率シミュレーションを実施した結果は図20に示しており、図20のように暗(BLACK)状態で傾斜面透過度が高いため、視野角が狭いことが確認できた。   The results of the transmittance simulation from all viewing angles of the liquid crystal display device are shown in FIG. 20, and since the inclined surface transmittance is high in the dark (BLACK) state as shown in FIG. It could be confirmed.

比較例2
上記実施例1と同様に構成されるが、第1位相差フィルム14及び第2位相差フィルム24は低価型面内切替式液晶表示装置に多く使われる0−TAC(正面位相差値(R0)=1nm、厚み方向位相差値(Rth)=2nm)であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Comparative Example 2
The first retardation film 14 and the second retardation film 24 are configured in the same manner as in the first embodiment. ) = 1 nm and thickness direction retardation value (Rth) = 2 nm) were arranged to produce a liquid crystal display device for blue phase liquid crystal.

上記液晶表示装置の全ての視角からの透過率シミュレーションを実施した結果は図21に示しており、図21のように、暗(BLACK)状態で傾斜面透過度が高いため、視野角が狭いことが確認できた。   The results of the transmittance simulation from all the viewing angles of the liquid crystal display device are shown in FIG. 21 and, as shown in FIG. Was confirmed.

比較例3
上記実施例1と同様に構成されるが、第1位相差フィルム24の遅相軸25と第1偏光子21の吸収軸22を直交するように配置してブルー相液晶表示装置を製造した。
Comparative Example 3
Although configured in the same manner as in Example 1, a blue phase liquid crystal display device was manufactured by arranging the slow axis 25 of the first retardation film 24 and the absorption axis 22 of the first polarizer 21 so as to be orthogonal to each other.

上記液晶表示装置の全ての視角からの透過率シミュレーションを実施した結果は図22に示しており、図22のように、暗(BLACK)状態で傾斜面透過度が高いため、視野角が狭いことが確認できた。   The results of the transmittance simulation from all viewing angles of the liquid crystal display device are shown in FIG. 22. As shown in FIG. 22, the viewing angle is narrow because the inclined surface has high transmittance in the dark state. Was confirmed.

比較例4
上記実施例1と同様に構成されるが、589.3nmで、第2位相差フィルム14は正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が50nmであるものを使用し、第1位相差フィルム24は正面位相差値(R0)が55nm、屈折率比(NZ)が−2.1であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Comparative Example 4
Although it is comprised similarly to the said Example 1, the 2nd phase difference film 14 is 58 nm, front phase difference value (R0) is 2.0 nm, and thickness direction phase difference value (Rth) is 50 nm. A first phase difference film 24 having a front phase difference value (R0) of 55 nm and a refractive index ratio (NZ) of -2.1 is disposed to manufacture a liquid crystal display device for blue phase liquid crystal. did.

上記液晶表示装置の全ての視角からの透過率シミュレーションを実施した結果は図23に示しており、図23のように、暗(BLACK)状態で傾斜面透過度が高いため、視野角が狭いことが確認できた。   The results of the transmittance simulation from all viewing angles of the liquid crystal display device are shown in FIG. 23. As shown in FIG. 23, the viewing angle is narrow because the inclined surface has a high transmittance in the dark (BLACK) state. Was confirmed.

比較例5
上記実施例1と同様に構成されるが、589.3nmで、第2位相差フィルム14は正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が50nmであるものを使用し、第1位相差フィルム24は、正面位相差値(R0)が55nm、屈折率比(NZ)が−8であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Comparative Example 5
Although it is comprised similarly to the said Example 1, the 2nd phase difference film 14 is 58 nm, front phase difference value (R0) is 2.0 nm, and thickness direction phase difference value (Rth) is 50 nm. A first phase difference film 24 having a front phase difference value (R0) of 55 nm and a refractive index ratio (NZ) of −8 was used to manufacture a liquid crystal display device for blue phase liquid crystal. .

上記液晶表示装置の全ての視角からの透過率シミュレーションを実施した結果は図24に示しており、図24のように、暗(BLACK)状態で傾斜面透過度が高いため、視野角が狭いことが確認できた。   The results of the transmittance simulation from all the viewing angles of the liquid crystal display device are shown in FIG. 24. As shown in FIG. 24, the viewing angle is narrow because of the high transmittance on the inclined surface in the dark (BLACK) state. Was confirmed.

比較例6
上記実施例1と同様に構成されるが、589.3nmで、第2位相差フィルム14は正面位相差値(R0)が2.0nmであり、厚み方向位相差値(Rth)が350nmであるものを使用し、第1位相差フィルム24は正面位相差値(R0)が170nm、屈折率比(NZ)が−0.3であるものを配置してブルー相液晶用の液晶表示装置を製造した。
Comparative Example 6
Although comprised similarly to the said Example 1, the 2nd phase difference film 14 is 58 nm, front retardation value (R0) is 2.0 nm, and thickness direction phase difference value (Rth) is 350 nm. A first phase difference film 24 having a front phase difference value (R0) of 170 nm and a refractive index ratio (NZ) of −0.3 is manufactured to produce a liquid crystal display device for blue phase liquid crystal did.

上記液晶表示装置の全ての視角からの透過率シミュレーションを実施した結果は、図25に示しており、図25のように暗(BLACK)状態で傾斜面透過度が高いため、視野角が狭いことが確認できた。   The results of the transmittance simulation from all the viewing angles of the liquid crystal display device are shown in FIG. 25. As shown in FIG. 25, the viewing angle is narrow because the inclined surface has high transmittance in the dark state. Was confirmed.

産業上利用可能性Industrial applicability

以上のように、本発明に係るブルー相液晶用の液晶表示装置は広い視野角を提供することができ、高い光学的水準が求められる大画面液晶表示装置に適用することができる。   As described above, the liquid crystal display device for blue phase liquid crystal according to the present invention can provide a wide viewing angle and can be applied to a large-screen liquid crystal display device that requires a high optical level.

Claims (8)

第1複合構成偏光板及び第2複合構成偏光板を含み、
第1複合構成偏光板と第2複合構成偏光板は、それぞれ位相差フィルム、偏光子及び保護フィルムからなり、
第1複合構成偏光板の位相差フィルムは、正面位相差値(R0)が50〜150nmであり、屈折率比(NZ)が−6.0〜−0.1であり、遅相軸が隣接した偏光子の吸収軸と平行になるように配置され、
第2複合構成偏光板の位相差フィルムは、正面位相差値(R0)が0〜10nmであり、厚み方向位相差(Rth)は、80〜310nmである複合構成偏光板セットを、ブルー相液晶モードの上側偏光板及び下側偏光板として含むことを特徴とする液晶表示装置。
Including a first composite configuration polarizing plate and a second composite configuration polarizing plate,
The first composite constituent polarizing plate and the second composite constituent polarizing plate are each composed of a retardation film, a polarizer and a protective film,
The retardation film of the first composite polarizing plate has a front retardation value (R0) of 50 to 150 nm, a refractive index ratio (NZ) of −6.0 to −0.1, and a slow axis adjacent thereto. Arranged parallel to the absorption axis of the polarizer,
The retardation film of the second composite constituent polarizing plate has a front constituent retardation value (R0) of 0 to 10 nm and a thickness direction retardation (Rth) of 80 to 310 nm. A liquid crystal display device comprising a mode upper polarizing plate and a lower polarizing plate.
ブルー相液晶モードは、ブルー相液晶分子が3次元螺旋形で捩じれて整列されたシリンダー形態のアレイからなることを特徴とする請求項に記載の液晶表示装置。 Blue phase liquid crystal mode liquid crystal display device according to claim 1, characterized in that it consists of an array of cylindrical form blue phase liquid crystal molecules are aligned twisted in a three-dimensional spiral. 傾斜角(θ=60゜、φ=45゜)でブラックモードにおける透過率が0.05%以下の補償関係を満たすことを特徴とする請求項1に記載液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the liquid crystal display device satisfies a compensation relationship in which the transmittance in the black mode is 0.05% or less at an inclination angle (θ = 60 °, φ = 45 °). 前記第1複合構成偏光板の位相差フィルムは、正面位相差値(R0)が80〜150nmであり、屈折率比(NZ)が−2.0〜−0.1であることを特徴とする請求項1〜3のいずれか1項に記載の液晶表示装置。The retardation film of the first composite polarizing plate has a front retardation value (R0) of 80 to 150 nm and a refractive index ratio (NZ) of −2.0 to −0.1. The liquid crystal display device according to claim 1. 前記第1複合構成偏光板の位相差フィルムは、正面位相差値(R0)が100〜150nmであり、屈折率比(NZ)が−1.0〜−0.1であることを特徴とする請求項1〜3のいずれか1項に記載の液晶表示装置。The retardation film of the first composite polarizing plate has a front retardation value (R0) of 100 to 150 nm and a refractive index ratio (NZ) of −1.0 to −0.1. The liquid crystal display device according to claim 1. 前記第2複合構成偏光板の位相差フィルムは、正面位相差値(R0)が0〜5nmであり、厚み方向位相差(Rth)は80〜200nmであることを特徴とする請求項1〜3のいずれか1項に記載の液晶表示装置。The retardation film of the second composite polarizing plate has a front retardation value (R0) of 0 to 5 nm and a thickness direction retardation (Rth) of 80 to 200 nm. The liquid crystal display device according to any one of the above. 前記第2複合構成偏光板の位相差フィルムは、正面位相差値(R0)が0〜3nmであり、厚み方向位相差(Rth)は80〜140nmであることを特徴とする請求項1〜3のいずれか1項に記載の複液晶表示装置。The retardation film of the second composite-constituting polarizing plate has a front retardation value (R0) of 0 to 3 nm and a thickness direction retardation (Rth) of 80 to 140 nm. The double liquid crystal display device according to any one of the above. 前記第1複合構成偏光板と第2複合構成偏光板の位相差フィルム及び保護フィルムは、互いに独立的に三酢酸セルロース(TAC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリスルホン(PSF)及びポリメチルメタクリレート(PMMA)からなる群から選ばれたものから製造されたものであることを特徴とする請求項1〜3のいずれか1項に記載の液晶表示装置。The retardation film and the protective film of the first composite constituent polarizing plate and the second composite constituent polarizing plate are, independently of each other, cellulose triacetate (TAC), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyethylene terephthalate. 4. A product produced from a material selected from the group consisting of (PET), polypropylene (PP), polycarbonate (PC), polysulfone (PSF) and polymethyl methacrylate (PMMA). The liquid crystal display device according to any one of the above.
JP2012509724A 2009-05-04 2010-05-03 Liquid crystal display Expired - Fee Related JP5602220B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090038903A KR101609313B1 (en) 2009-05-04 2009-05-04 A laminated polarizer set and blue phase liquid crystal mode liquid crystal display comprising the same
KR10-2009-0038903 2009-05-04
PCT/KR2010/002790 WO2010128778A2 (en) 2009-05-04 2010-05-03 Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same

Publications (2)

Publication Number Publication Date
JP2012526297A JP2012526297A (en) 2012-10-25
JP5602220B2 true JP5602220B2 (en) 2014-10-08

Family

ID=43050607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509724A Expired - Fee Related JP5602220B2 (en) 2009-05-04 2010-05-03 Liquid crystal display

Country Status (5)

Country Link
JP (1) JP5602220B2 (en)
KR (1) KR101609313B1 (en)
CN (1) CN102414589B (en)
TW (1) TWI495910B (en)
WO (1) WO2010128778A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089210A (en) * 2011-02-01 2012-08-09 후지필름 가부시키가이샤 Liquid crystal display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042461A1 (en) * 2002-11-02 2004-05-21 Merck Patent Gmbh Optically compensated electro-optical light modulation element with optically isotropic phase
KR100601916B1 (en) * 2003-11-21 2006-07-14 주식회사 엘지화학 In-plane switching liquid crystal display comprising compensation film for angular field of view using positive biaxial retardation film
JP4147217B2 (en) * 2003-12-19 2008-09-10 シャープ株式会社 Display element and display device
TWI268372B (en) * 2004-03-26 2006-12-11 Nitto Denko Corp IPS mode liquid crystal display to realize a high contrast ratio over a wide range by laminating a polarizing plate and a retardation film to form an optical film
KR100717564B1 (en) * 2004-05-26 2007-05-15 닛토덴코 가부시키가이샤 Liquid crystal display device
US20070091229A1 (en) * 2005-06-09 2007-04-26 Jang Soo J Vertically aligned liquid crystal display
JP5311605B2 (en) * 2005-06-30 2013-10-09 日東電工株式会社 Liquid crystal panel and liquid crystal display device
JP2008020670A (en) * 2006-07-13 2008-01-31 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2008197192A (en) 2007-02-09 2008-08-28 Hitachi Displays Ltd Liquid crystal display device
JP4878306B2 (en) * 2007-02-09 2012-02-15 株式会社 日立ディスプレイズ Liquid crystal display
JP5068146B2 (en) * 2007-05-01 2012-11-07 日東電工株式会社 Liquid crystal panel and liquid crystal display device
JP5194621B2 (en) * 2007-08-02 2013-05-08 日本ゼオン株式会社 Liquid crystal display
JP5234310B2 (en) * 2007-10-04 2013-07-10 Nltテクノロジー株式会社 Liquid crystal display
KR100877926B1 (en) * 2008-02-20 2009-01-12 동우 화인켐 주식회사 Retardation films assembled negative c plate and negative biaxial plate, and vertically aligned liquid crystal display having said retardation films
WO2009125515A1 (en) * 2008-04-07 2009-10-15 シャープ株式会社 Liquid crystal display
JP5069166B2 (en) * 2008-04-09 2012-11-07 日東電工株式会社 Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film

Also Published As

Publication number Publication date
KR20100119967A (en) 2010-11-12
JP2012526297A (en) 2012-10-25
TW201040594A (en) 2010-11-16
KR101609313B1 (en) 2016-04-05
TWI495910B (en) 2015-08-11
WO2010128778A2 (en) 2010-11-11
WO2010128778A3 (en) 2011-01-13
CN102414589A (en) 2012-04-11
CN102414589B (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5719343B2 (en) Composite polarizing plate set and IPS mode liquid crystal display device having the same
KR20110048203A (en) In-plane switching mode liquid crystal display
JP5602222B2 (en) Liquid crystal display
KR20110066255A (en) In-plane switching mode liquid crystal display
KR101565010B1 (en) Polarizer and in-plane switching mode liquid crystal display comprising the same
JP5602221B2 (en) Liquid crystal display
KR20100101981A (en) Narrowviewing liquid crystal display
KR20090117641A (en) In-plane switching liquid crystal display comprising biaxial retardation film with negative refractive property and biaxial retardation film with positive refractive property
JP5621084B2 (en) In-plane switching type liquid crystal display device
JP5602220B2 (en) Liquid crystal display
KR20100060091A (en) Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20100060092A (en) Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR101486748B1 (en) Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20100022919A (en) Twist nematic liquid crystal display with wideviewing
KR101565009B1 (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR101512710B1 (en) Wideviewing vertical align liquid crystal display
KR101629742B1 (en) In-plane switching mode liquid crystal display
KR20100071255A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20100071254A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20090101871A (en) In-plane switching liquid crystal display comprising biaxial retardation film with negative refractive property and protective film with negative c-plate property
KR20100071457A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20100071253A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20110031537A (en) In-plane switching mode liquid crystal display
KR20110016211A (en) Wideviewing vertical align liquid crystal display
KR20090101856A (en) In-plane switching liquid crystal display comprising uniaxial retardation film with negative refractive property and biaxial retardation film with positive refractive property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5602220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees