JP5595098B2 - Power transmission equipment - Google Patents

Power transmission equipment Download PDF

Info

Publication number
JP5595098B2
JP5595098B2 JP2010095482A JP2010095482A JP5595098B2 JP 5595098 B2 JP5595098 B2 JP 5595098B2 JP 2010095482 A JP2010095482 A JP 2010095482A JP 2010095482 A JP2010095482 A JP 2010095482A JP 5595098 B2 JP5595098 B2 JP 5595098B2
Authority
JP
Japan
Prior art keywords
power
resonance
power transmission
unit
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010095482A
Other languages
Japanese (ja)
Other versions
JP2011229244A (en
Inventor
一禎 木原
哲二 浜岡
正之 渡田
典夫 沼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MM Bridge Co Ltd
Mitsubishi Heavy Industries Machinery Technology Corp
Original Assignee
Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Mitsubishi Heavy Industries Machinery Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd, Mitsubishi Heavy Industries Machinery Technology Corp filed Critical Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Priority to JP2010095482A priority Critical patent/JP5595098B2/en
Publication of JP2011229244A publication Critical patent/JP2011229244A/en
Application granted granted Critical
Publication of JP5595098B2 publication Critical patent/JP5595098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、非接触で電力を伝送する技術に関する。   The present invention relates to a technique for transmitting power in a contactless manner.

電磁誘導を利用して、非接触で電力を伝送できる電力伝送装置が知られている。例えば、特許文献1には、共振結合を備え、需用者に供給する容量形カプラー素子が開示されている。   2. Description of the Related Art A power transmission device that can transmit power in a contactless manner using electromagnetic induction is known. For example, Patent Document 1 discloses a capacitive coupler element that has resonance coupling and is supplied to consumers.

特表2001−512634号公報(p8、p9、Fig.3)JP-T-2001-512634 (p8, p9, FIG. 3)

一般に、非接触で電力を伝送する場合、電力送信手段と電力受信手段との間隙が大きくなると、受電側から出力される電力が極端に小さくなり、電力送信手段と電力受信手段との間隙が小さくなると、受電側から出力される電力が極端に大きくなるという問題がある。本発明は、上記に鑑みてなされたものであり、非接触で電力を伝送するにあたって、電力送信手段と電力受信手段との間隙が変化することによる電力受信手段の出力変化を低減することを目的とする。   In general, when power is transmitted in a non-contact manner, if the gap between the power transmission means and the power reception means becomes large, the power output from the power receiving side becomes extremely small, and the gap between the power transmission means and the power reception means becomes small. Then, there is a problem that the power output from the power receiving side becomes extremely large. The present invention has been made in view of the above, and an object of the present invention is to reduce an output change of a power receiving unit due to a change in a gap between a power transmitting unit and a power receiving unit when transmitting power in a contactless manner. And

上述した課題を解決し、目的を達成するために、本発明に係る電力伝送装置は、電気エネルギを磁気エネルギに変換する給電側コイルを有する電力送信手段と、前記電力送信手段に設けられる第1の共振手段と、前記電力送信手段から出力される磁気エネルギを電気エネルギに変換する受電側コイルを有する電力受信手段と、前記電力受信手段に設けられる第2の共振手段と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a power transmission device according to the present invention includes a power transmission unit having a power supply side coil for converting electric energy into magnetic energy, and a first power transmission unit provided in the power transmission unit. Resonance means, power receiving means having a power receiving coil for converting magnetic energy output from the power transmitting means into electrical energy, and second resonance means provided in the power receiving means. And

この電力伝送装置は、電力送信手段と電力受信手段との両方に、共振手段を備える。このような構成により、二つの共振手段から放出される電力で、電力受信手段から出力される電力を増加させることができる。その結果、非接触で電力を伝送するにあたって、電力送信手段と電力受信手段との間隙が変化することによる電力受信手段の出力変化を低減できる。   This power transmission device includes resonance means in both the power transmission means and the power reception means. With such a configuration, the power output from the power receiving means can be increased by the power emitted from the two resonance means. As a result, when transmitting power in a non-contact manner, it is possible to reduce changes in the output of the power receiving means due to a change in the gap between the power transmitting means and the power receiving means.

本発明の望ましい態様としては、前記第1の共振手段及び前記第2の共振手段は、コンデンサを含むことが好ましい。これによって、共振手段を簡単に構成することができる。   As a desirable aspect of the present invention, it is preferable that the first resonance unit and the second resonance unit include a capacitor. Thereby, the resonance means can be configured easily.

本発明の望ましい態様としては、前記第1の共振手段に含まれるコンデンサは、前記給電側コイルとは異なる給電側共振手段用コイルと電気的に接続され、前記第2の共振手段に含まれるコンデンサは、前記受電側コイルとは異なる受電側共振手段用コイルと電気的に接続されることが好ましい。これによって、第1の共振手段及び第2の共振手段をLC共振回路で構成することができる。   In a preferred aspect of the present invention, the capacitor included in the first resonance unit is electrically connected to a power supply side resonance unit coil different from the power supply side coil, and is included in the second resonance unit. Is preferably electrically connected to a power receiving side resonance means coil different from the power receiving side coil. Thereby, the first resonance means and the second resonance means can be constituted by LC resonance circuits.

本発明の望ましい態様としては、前記第1の共振手段の共振周波数と、前記第2の共振手段の共振周波数とは異なることが好ましい。これによって、電力送信手段と電力受信手段との間隙の広い範囲で、電力受信手段の出力する電力の低下を抑制できる。   As a desirable aspect of the present invention, it is preferable that the resonance frequency of the first resonance means is different from the resonance frequency of the second resonance means. As a result, it is possible to suppress a reduction in the power output from the power receiving means in a wide range of the gap between the power transmitting means and the power receiving means.

本発明の望ましい態様としては、前記電力送信手段及び前記電力受信手段は、それぞれ、水中の異なる構造物に取り付けられて、前記異なる構造物間で電力を伝送することが好ましい。   As a desirable mode of the present invention, it is preferable that the power transmitting unit and the power receiving unit are respectively attached to different structures in water and transmit power between the different structures.

本発明は、非接触で電力を伝送するにあたって、電力送信手段と電力受信手段との間隙が変化することによる電力受信手段の出力変化を低減できる。   The present invention can reduce a change in the output of the power receiving means due to a change in the gap between the power transmitting means and the power receiving means in transmitting power without contact.

図1は、本実施形態に係る電力伝送装置の構成図である。FIG. 1 is a configuration diagram of a power transmission device according to the present embodiment. 図2は、電力送信手段と電力受信手段との間隙と、電力受信手段が出力する電力との関係を示す図である。FIG. 2 is a diagram illustrating the relationship between the gap between the power transmission unit and the power reception unit and the power output from the power reception unit. 図3は、本実施形態に係る電力伝送装置の使用態様の一例を示す模式図である。FIG. 3 is a schematic diagram illustrating an example of a usage mode of the power transmission device according to the present embodiment. 図4は、本実施形態に係る電力伝送装置の使用態様の一例を示す模式図である。FIG. 4 is a schematic diagram illustrating an example of a usage mode of the power transmission device according to the present embodiment.

以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。以下の構成要素は、適宜組み合わせることができる。   Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited by the following modes for carrying out the invention (hereinafter referred to as embodiments). In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. The following components can be combined as appropriate.

図1は、本実施形態に係る電力伝送装置の構成図である。図2は、電力送信手段と電力受信手段との間隙と、電力受信手段が出力する電力との関係を示す図である。図2の縦軸は、皮相電力(VA)である。本実施形態に係る電力伝送装置は、電磁誘導を利用して非接触で電力を伝送するものであり、電力送信手段と電力受信手段とに共振手段を設け、伝送する電力の共振を利用して電力を伝送する点に特徴がある。   FIG. 1 is a configuration diagram of a power transmission device according to the present embodiment. FIG. 2 is a diagram illustrating the relationship between the gap between the power transmission unit and the power reception unit and the power output from the power reception unit. The vertical axis in FIG. 2 is the apparent power (VA). The power transmission device according to the present embodiment transmits power in a non-contact manner using electromagnetic induction, and provides resonance means for the power transmission means and the power reception means, and uses the resonance of the transmitted power. It is characterized by transmitting power.

図1に示すように、電力伝送装置10は、電力送信手段10Aと、電力受信手段10Bとを含んで構成される。電力送信手段10Aは、電気エネルギを磁気エネルギに変換する給電側コイル12A、13Aを有する。電力受信手段10Bは、電力送信手段10Aから出力される磁気エネルギを電気エネルギに変換する受電側コイル12B、13Bを有する。本実施形態において、給電側コイル12A、13A及び受電側コイル12B、13Bは、いずれも銅線である。   As shown in FIG. 1, the power transmission device 10 includes a power transmission unit 10A and a power reception unit 10B. The power transmission unit 10A includes power supply side coils 12A and 13A that convert electric energy into magnetic energy. The power receiving unit 10B includes power receiving coils 12B and 13B that convert magnetic energy output from the power transmitting unit 10A into electric energy. In the present embodiment, the power supply side coils 12A and 13A and the power reception side coils 12B and 13B are all copper wires.

給電側コイル12A、13Aは直列に接続されるとともに、コの字形状の給電側コア11Aに巻かれている。受電側コイル12B、13Bは直列に接続されるとともに、コの字形状の受電側コア11Bに巻かれている。給電側コイル12A、13Aには、交流電源1(本実施形態では商用電源であり、周波数は数10Hz)が接続されている。受電側コイル12B、13Bには、負荷2が接続されている。電力送信手段10Aから電力受信手段10Bへ電力を伝送する場合、給電側コア11Aと受電側コア11Bとが対向して配置されるとともに、給電側コア11Aと受電側コア11Bとの間に間隙Gが形成される。間隙Gは、5mmから30mm程度である。   The power supply side coils 12A and 13A are connected in series and wound around a U-shaped power supply side core 11A. The power receiving coils 12B and 13B are connected in series and wound around a U-shaped power receiving core 11B. The power supply side coils 12A and 13A are connected to an AC power source 1 (in this embodiment, a commercial power source having a frequency of several tens of Hz). A load 2 is connected to the power receiving coils 12B and 13B. When power is transmitted from the power transmitting unit 10A to the power receiving unit 10B, the power feeding side core 11A and the power receiving side core 11B are disposed to face each other, and a gap G is provided between the power feeding side core 11A and the power receiving side core 11B. Is formed. The gap G is about 5 mm to 30 mm.

給電側コア11A及び受電側コア11Bは、鉄が用いられ、例えば、複数のケイ素鋼板を積層して構成される。なお、電力伝送装置10は、給電側コア11A及び受電側コア11Bは必ずしも備える必要はなく、少なくとも給電側コイル12A、13A及び受電側コイル12B、13Bを備えていればよい。   The power supply side core 11 </ b> A and the power reception side core 11 </ b> B are made of iron. For example, a plurality of silicon steel plates are laminated. Note that the power transmission device 10 does not necessarily include the power supply side core 11A and the power reception side core 11B, and may include at least the power supply side coils 12A and 13A and the power reception side coils 12B and 13B.

本実施形態において、電力送信手段10Aは第1の共振手段を有し、電力受信手段10Bは第2の共振手段を有している。第1の共振手段は、少なくともコンデンサを含む。本実施形態において、第1の共振手段は、給電側コイル12A、13Aとは異なる給電側共振手段用コイル14Aとコンデンサ(給電側コンデンサ)15Aとを含んで構成される。給電側コンデンサ15Aは、給電側共振手段用コイル14Aと電気的に接続される(並列接続)。   In the present embodiment, the power transmission unit 10A has a first resonance unit, and the power reception unit 10B has a second resonance unit. The first resonance means includes at least a capacitor. In the present embodiment, the first resonance unit includes a power supply side resonance unit coil 14A and a capacitor (power supply side capacitor) 15A different from the power supply side coils 12A and 13A. The power supply side capacitor 15A is electrically connected to the power supply side resonance means coil 14A (parallel connection).

第2の共振手段も、第1の共振手段と同様に、少なくともコンデンサを含む。本実施形態において、第2の共振手段は、受電側コイル12B、13Bとは異なる受電側共振手段用コイル14Bとコンデンサ(受電側コンデンサ)15Aとを含んで構成される。受電側コンデンサ15Bは、受電側共振手段用コイル14Bと電気的に接続される(並列接続)。このように、第1の共振手段及び第2の共振手段は、LC共振回路を構成する。なお、給電側共振手段用コイル14A及び受電側共振手段用コイル14Bは、本実施形態においてはいずれも銅線であるが、これに限定されるものではない。例えば、アルミニウム、銀等の電気の導体であれば、給電側共振手段用コイル14A及び受電側共振手段用コイル14Bに用いることができる。電解コンデンサのようなケミカルコンデンサは経年劣化が大きいため、ケミカルコンデンサ以外のコンデンサを給電側コンデンサ15A及び受電側コンデンサ15Bに用いることが好ましい。これによって、給電側コンデンサ15A及び受電側コンデンサ15Bの経年劣化を抑制できるので、水中等の保守点検がしにくい場所で電力伝送装置10を使用する際に好ましい。   Similar to the first resonance means, the second resonance means also includes at least a capacitor. In the present embodiment, the second resonance means includes a power reception side resonance means coil 14B different from the power reception side coils 12B and 13B and a capacitor (power reception side capacitor) 15A. The power receiving side capacitor 15B is electrically connected to the power receiving side resonance means coil 14B (parallel connection). Thus, the first resonance means and the second resonance means constitute an LC resonance circuit. Note that the power supply side resonance means coil 14A and the power reception side resonance means coil 14B are both copper wires in the present embodiment, but are not limited thereto. For example, an electric conductor such as aluminum or silver can be used for the power supply side resonance means coil 14A and the power reception side resonance means coil 14B. Since a chemical capacitor such as an electrolytic capacitor is greatly deteriorated over time, it is preferable to use a capacitor other than the chemical capacitor for the power supply side capacitor 15A and the power reception side capacitor 15B. As a result, deterioration over time of the power supply side capacitor 15A and the power reception side capacitor 15B can be suppressed, which is preferable when the power transmission device 10 is used in a place where maintenance inspection such as underwater is difficult.

給電側共振手段用コイル14Aは、給電側コア11Aに巻かれるとともに、給電側コイル12A、13Aの間に配置される。受電側共振手段用コイル14Bは、受電側コア11Bに巻かれるとともに、受電側コイル12B、13Bの間に配置される。なお、給電側共振手段用コイル14A及び受電側共振手段用コイル14Bが配置される位置は、上記例に限定されるものではない。   The power supply side resonance means coil 14A is wound around the power supply side core 11A and disposed between the power supply side coils 12A and 13A. The power receiving side resonance means coil 14B is wound around the power receiving side core 11B and disposed between the power receiving side coils 12B and 13B. The positions at which the power supply side resonance means coil 14A and the power reception side resonance means coil 14B are arranged are not limited to the above example.

このような構成により、給電側コイル12A、13Aに交流電源1から交流電圧が印加されると、給電側コイル12A、13Aで発生した磁束が、給電側コア11Aと受電側コア11Bとの間に形成される間隙Gを介して受電側コイル12B、12Aへ鎖交し、受電側コイル12B、13Bに電圧が発生する。すなわち、電力送信手段10Aと電力受信手段10Bとは、一次側と二次側とが間隙Gによって分離された変圧器を形成することになる。これによって、交流電源1の電力が、電力送信手段10Aから電力受信手段10Bへ非接触で伝送される。   With this configuration, when an AC voltage is applied from the AC power source 1 to the power supply side coils 12A and 13A, the magnetic flux generated in the power supply side coils 12A and 13A is generated between the power supply side core 11A and the power reception side core 11B. A voltage is generated in the power receiving side coils 12B and 13B by interlinking with the power receiving side coils 12B and 12A through the formed gap G. That is, the power transmitter 10A and the power receiver 10B form a transformer in which the primary side and the secondary side are separated by the gap G. Thereby, the electric power of the AC power supply 1 is transmitted from the power transmission unit 10A to the power reception unit 10B in a non-contact manner.

図2の実線PLは、第1の共振手段及び第2の共振手段を備えない場合において、電力送信手段10Aが出力する電力を同一とした場合に、電力受信手段10Bが出力する電力を示している。このように、電力送信手段10Aから出力される電力が同一であれば、電力送信手段10Aと電力受信手段10Bとの間隙Gが大きくなる程、電力受信手段10Bから出力される電力は小さくなる。   The solid line PL in FIG. 2 indicates the power output from the power receiving means 10B when the power output from the power transmitting means 10A is the same when the first resonant means and the second resonant means are not provided. Yes. Thus, if the power output from the power transmission unit 10A is the same, the power output from the power reception unit 10B decreases as the gap G between the power transmission unit 10A and the power reception unit 10B increases.

上述したように、電力伝送装置10は、電力送信手段10Aと電力受信手段10Bとに、それぞれ異なる共振手段を有している。電力伝送装置10は、これらの共振手段により、伝送する電力に電力送信手段10Aと電力受信手段10Bとで共振を発生させ、送電効率を向上させる。すなわち、第1の共振手段及び第2の共振手段は、上述したようにLC共振回路で構成され、それぞれの共振周波数で振動する電力を蓄えることができる。この電力は、第1の共振手段及び第2の共振手段が放出する。図2の点線PAが、第1の共振手段が放出する電力であり、点線PBが、第2の共振手段が放出する電力である。   As described above, the power transmission device 10 has different resonance means in the power transmission means 10A and the power reception means 10B. The power transmission device 10 causes the power transmission unit 10A and the power reception unit 10B to resonate with the power to be transmitted by these resonance units, thereby improving power transmission efficiency. That is, the first resonance unit and the second resonance unit are configured by the LC resonance circuit as described above, and can store electric power that vibrates at the respective resonance frequencies. This power is released by the first resonance means and the second resonance means. The dotted line PA in FIG. 2 is the electric power emitted by the first resonance means, and the dotted line PB is the electric power emitted by the second resonance means.

第1の共振手段及び第2の共振手段がそれぞれ蓄えた電力を放出することにより、図2の一点鎖線PHで示すように、電力受信手段10Bから出力される電力は、第1の共振手段が放出する電力と第2の共振手段が放出する電力とが合成された分、増加する。これによって、電力受信手段10Bから出力される電力は、第1の共振手段及び第2の共振手段を備えない場合と比較して増加する。その結果、電力送信手段10Aと電力受信手段10Bとの間隙Gが大きくなった場合でも、送電効率の低下を抑制し、非接触での効率的な電力の伝送を実現する。送電効率とは、電力送信手段10Aに入力された電力Waに対する電力受信手段10Bが出力する電力Wbとの比Wb/Waである。   As the first resonance means and the second resonance means release the power stored respectively, the power output from the power reception means 10B is the same as the power output from the power reception means 10B as indicated by the one-dot chain line PH in FIG. The electric power to be released and the electric power to be released by the second resonance means are increased by the combined amount. As a result, the power output from the power receiving unit 10B increases as compared with the case where the first resonance unit and the second resonance unit are not provided. As a result, even when the gap G between the power transmission unit 10A and the power reception unit 10B becomes large, a decrease in power transmission efficiency is suppressed, and efficient power transmission without contact is realized. The power transmission efficiency is a ratio Wb / Wa of the power Wb output from the power receiving unit 10B to the power Wa input to the power transmitting unit 10A.

電力伝送装置10は、共振を利用して送電効率の低下を抑制するので、商用周波数の交流電源である交流電源1から供給される交流の周波数を高くする必要はない。これによって、電力伝送装置10は、周波数変換装置が不要になり、部品点数を削減できるので、電力伝送装置10全体をコンパクトにすることができるとともに、電力伝送装置10の製造コストを低減できる。また、電力伝送装置10から発生するノイズを低減できる。給電側コイル12A、13A及び受電側コイル12B、14Aの巻数を多くすれば、これらを流れる電流を小さくできるので、これらの素線径を小さくできる。その結果、電力伝送装置10全体をよりコンパクトにすることができる。交流電源1は、上述したものに限定されず、交流電力を生み出すものであればよい。例えば、自家発電機等の発電機であってもよく、DC/ACコンバータを備える太陽光発電装置や燃料電池発電装置、あるいは風力発電装置等であってもよい。   Since the power transmission device 10 uses resonance to suppress a decrease in power transmission efficiency, it is not necessary to increase the frequency of the alternating current supplied from the alternating current power source 1 that is an alternating current power source having a commercial frequency. As a result, the power transmission device 10 does not require a frequency conversion device and can reduce the number of components. Therefore, the power transmission device 10 as a whole can be made compact, and the manufacturing cost of the power transmission device 10 can be reduced. Further, noise generated from the power transmission device 10 can be reduced. If the number of turns of the power supply side coils 12A, 13A and the power reception side coils 12B, 14A is increased, the current flowing through them can be reduced, so that the diameters of these wires can be reduced. As a result, the entire power transmission device 10 can be made more compact. The AC power source 1 is not limited to the one described above, and any AC power source that generates AC power may be used. For example, a generator such as a private generator may be used, and a solar power generation device, a fuel cell power generation device, a wind power generation device, or the like including a DC / AC converter may be used.

第1の共振手段を構成する給電側コンデンサ15Aの静電容量をCa、給電側共振手段用コイル14AのインダクタンスをLaとすると、第1の共振手段の共振周波数faは、1/(2×π×√(La×Ca))となる。同様に、第2の共振手段を構成する受電側コンデンサ15Bの静電容量をCb、受電側共振手段用コイル14BのインダクタンスをLbとすると、第2の共振手段の共振周波数fbは、1/(2×π×√(Lb×Cb))となる。   When the capacitance of the power supply side capacitor 15A constituting the first resonance means is Ca and the inductance of the power supply side resonance means coil 14A is La, the resonance frequency fa of the first resonance means is 1 / (2 × π × √ (La × Ca)). Similarly, when the electrostatic capacity of the power receiving side capacitor 15B constituting the second resonance means is Cb and the inductance of the power receiving side resonance means coil 14B is Lb, the resonance frequency fb of the second resonance means is 1 / ( 2 × π × √ (Lb × Cb)).

第1の共振手段の共振周波数faと、第2の共振手段の共振周波数fbとは同じであってもよいが、本実施形態では、両者を異ならせている。このようにすると、図2に示すように、第1の共振手段が放出する電力のピークと、第2の共振手段が放出する電力のピークとが異なるので、第1の共振手段が放出する電力と第2の共振手段が放出する電力とが合成され、電力受信手段10Bの出力する電力の増加する範囲が広くなる。その結果、間隙Gの広い範囲で、電力受信手段10Bの出力する電力の低下及び送電効率の低下を抑制し、非接触での効率的な電力の伝送を実現できる。このため、第1の共振手段の共振周波数faと、第2の共振手段の共振周波数fbと異ならせると、電力送信手段10Aと電力受信手段10Bとの間隔が大きく変化するような場合であっても、安定して電力を伝送できる。   The resonance frequency fa of the first resonance means and the resonance frequency fb of the second resonance means may be the same, but in the present embodiment, they are different. In this case, as shown in FIG. 2, the power peak emitted by the first resonance means is different from the peak peak of the power released by the second resonance means. And the power released by the second resonance means are combined, and the range in which the power output from the power receiving means 10B increases is widened. As a result, in a wide range of the gap G, it is possible to suppress a decrease in power output from the power receiving unit 10B and a decrease in power transmission efficiency, and to realize efficient power transmission without contact. For this reason, if the resonance frequency fa of the first resonance means is different from the resonance frequency fb of the second resonance means, the interval between the power transmission means 10A and the power reception means 10B changes greatly. However, power can be transmitted stably.

図3は、本実施形態に係る電力伝送装置の使用態様の一例を示す模式図である。図3は、可動式防波堤20の可動体22の機器類23に電力を供給するために、電力伝送装置10を用いた例を示している。可動式防波堤20は、水底Bを掘削して可動体22を配置し、津波や高潮が発生したときに、可動体22内に空気を吹き込み、可動体22を水底Bから水面Hへ向かって浮上させて、津波や高潮の通過を阻害し、港湾設備等を保護する。可動体22は、内部に機器類23を有しているが、この機器類23へ可動体22の外部から電力を供給する必要がある。   FIG. 3 is a schematic diagram illustrating an example of a usage mode of the power transmission device according to the present embodiment. FIG. 3 shows an example in which the power transmission device 10 is used to supply power to the devices 23 of the movable body 22 of the movable breakwater 20. The movable breakwater 20 excavates the bottom B and arranges the movable body 22. When a tsunami or storm surge occurs, air is blown into the movable body 22, and the movable body 22 floats from the bottom B toward the water surface H. And prevent the passage of tsunamis and storm surges and protect harbor facilities. Although the movable body 22 has the equipment 23 inside, it is necessary to supply electric power to this equipment 23 from the outside of the movable body 22.

電力伝送装置10の電力受信手段10Bは、構造物である可動体22の頂部に取り付けられる。電力受信手段10Bの取り付け位置はこれに限定されるものではなく、例えば、可動体22の胴部、底部等であってもよい。電力伝送装置10の電力送信手段10Aは、可動体22が水底Bで待機している状態において、可動体22を格納する立て坑の開口部の周囲に設けられる構造物であるベース21に、電力受信手段10Bと対向するように取り付けられる。電力送信手段10Aの入力端子は、陸上に配置される交流電源1に接続されて、これから交流電力の供給を受けて、可動体22に取り付けられた電力受信手段10Bへ電力を出力する。電力受信手段10Bの出力端子は、可動体22の機器類23と接続されて、電力送信手段10Aから電送された電力を機器類23へ供給する。   The power receiving means 10B of the power transmission device 10 is attached to the top of the movable body 22 that is a structure. The attachment position of the power receiving means 10B is not limited to this, and may be, for example, the trunk portion, the bottom portion, or the like of the movable body 22. The power transmission means 10A of the power transmission device 10 supplies power to the base 21 which is a structure provided around the opening of the shaft where the movable body 22 is stored while the movable body 22 is waiting at the bottom B. It is attached so as to face the receiving means 10B. The input terminal of the power transmission means 10A is connected to the AC power supply 1 arranged on land, receives supply of AC power from this, and outputs power to the power reception means 10B attached to the movable body 22. The output terminal of the power receiving unit 10B is connected to the devices 23 of the movable body 22 and supplies the power transmitted from the power transmitting unit 10A to the devices 23.

このように、電力伝送装置10の電力送信手段10A及び電力受信手段10Bは、それぞれ、水中の異なる構造物に取り付けられて、異なる構造物間で電力を伝送する。電力伝送装置10は、上述したように、全体をコンパクトにすることができる。これによって、電力伝送装置10の交換が必要になった場合には、潜水夫の人力でも取り扱いが容易になる。そして、電力伝送装置10は人力で簡単に交換できるので、交換時の費用も低減できる。   As described above, the power transmission unit 10A and the power reception unit 10B of the power transmission device 10 are attached to different structures in the water, and transmit power between the different structures. As described above, the power transmission apparatus 10 can be made compact as a whole. As a result, when the power transmission device 10 needs to be replaced, it is easy to handle even with the power of a diver. And since the electric power transmission apparatus 10 can be replaced | exchanged easily by human power, the expense at the time of replacement | exchange can also be reduced.

図4は、本実施形態に係る電力伝送装置の使用態様の一例を示す模式図である。図4は、岸壁4に停泊中の船舶30に、停泊中に消費する電力を供給するために、電力伝送装置10を用いた例を示している。岸壁4には、電力伝送装置10の電力送信手段10Aが設けられており、船舶30には電力受信手段10Bが設けられる。また、岸壁4の電力送信手段10Aの周囲には磁石3Aが取り付けられ、船舶30の電力受信手段10Bの周囲には、磁石3Aと対向する位置に、磁性体で構成される磁石接触部3Bが設けられる。磁石3Aは電磁石である。   FIG. 4 is a schematic diagram illustrating an example of a usage mode of the power transmission device according to the present embodiment. FIG. 4 shows an example in which the power transmission device 10 is used to supply power consumed during anchoring to the ship 30 anchored on the quay 4. The quay 4 is provided with power transmission means 10A of the power transmission device 10, and the ship 30 is provided with power reception means 10B. Further, a magnet 3A is attached around the power transmission means 10A of the quay 4 and a magnet contact portion 3B made of a magnetic material is provided around the power reception means 10B of the ship 30 at a position facing the magnet 3A. Provided. The magnet 3A is an electromagnet.

電力送信手段10Aの入力端子は、陸上に配置される交流電源1に接続されて、これから交流電力の供給を受けて、船舶30に取り付けられた電力受信手段10Bへ電力を伝送する。電力受信手段10Bの出力端子は、船舶30の負荷2と接続されて、電力送信手段10Aから電送された電力を負荷2へ出力する。   The input terminal of the power transmission means 10 </ b> A is connected to the AC power supply 1 disposed on the land, receives supply of AC power from this, and transmits power to the power reception means 10 </ b> B attached to the ship 30. The output terminal of the power receiving means 10B is connected to the load 2 of the ship 30 and outputs the power transmitted from the power transmitting means 10A to the load 2.

船舶30が岸壁に接岸すると、磁石3Aと磁石接触部3Bとが接する。この状態で磁石3Aに通電すると、磁力によって磁石3Aに磁石接触部3Bが固定され、岸壁4と船舶30とが位置決めされる。電力送信手段10Aが電力受信手段10Bへ交流電力を出力すると、電力受信手段10Bは、電力送信手段10Aから出力された交流電力を負荷2へ電力を出力する。このような構成により、岸壁4に停泊中の船舶30へ電力を供給することができる。電力伝送装置10の使用態様は上述した例に限定されるものではなく、この他にも、電気自動車への充電、浮き桟橋の電力供給等に適用できる。   When the ship 30 contacts the quay, the magnet 3A and the magnet contact portion 3B come into contact with each other. When the magnet 3A is energized in this state, the magnet contact portion 3B is fixed to the magnet 3A by the magnetic force, and the quay 4 and the ship 30 are positioned. When the power transmission unit 10A outputs AC power to the power reception unit 10B, the power reception unit 10B outputs the AC power output from the power transmission unit 10A to the load 2. With such a configuration, power can be supplied to the ship 30 that is anchored on the quay 4. The usage mode of the power transmission device 10 is not limited to the above-described example, but can be applied to charging of an electric vehicle, power supply of a floating pier, and the like.

以上のように、本発明に係る電力伝送装置は、電力送信手段と電力受信手段との間隙が変化することによる電力受信手段から出力される電力の変動を低減することに有用である。   As described above, the power transmission device according to the present invention is useful for reducing fluctuations in the power output from the power receiving unit due to the change in the gap between the power transmitting unit and the power receiving unit.

1 交流電源
2 負荷
3A 磁石
3B 磁石接触部
4 岸壁
10 電力伝送装置
10A 電力送信手段
10B 電力受信手段
11A 給電側コア
11B 受電側コア
12A、13A 給電側コイル
12B、13B 受電側コイル
14A 給電側共振手段用コイル
14B 受電側共振手段用コイル
15A 給電側コンデンサ
15B 受電側コンデンサ
20 可動式防波堤
30 船舶
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Load 3A Magnet 3B Magnet contact part 4 Quay wall 10 Power transmission apparatus 10A Power transmission means 10B Power reception means 11A Power supply side core 11B Power reception side core 12A, 13A Power supply side coil 12B, 13B Power reception side coil 14A Power supply side resonance means Coil 14B Coil for receiving side resonance means 15A Power supply side capacitor 15B Power receiving side capacitor 20 Movable breakwater 30 Ship

Claims (4)

水中の可動式防波堤の構造物に取り付けられ、陸上に配置される交流電源から受けた電気エネルギを磁気エネルギに変換する給電側コイルを有する電力送信手段と、
前記電力送信手段に設けられる第1の共振手段と、
前記構造物とは異なる、水中の前記可動式防波堤の構造物に格納される可動体に取り付けられて、前記電力送信手段から出力される磁気エネルギを電気エネルギに変換する受電側コイルを有する電力受信手段と、
前記電力受信手段に設けられる第2の共振手段と、
を含むことを特徴とする電力伝送装置。
A power transmission means attached to a structure of a movable breakwater in water and having a power supply side coil for converting electrical energy received from an AC power source disposed on land into magnetic energy;
First resonance means provided in the power transmission means;
Different from the structure, the power receiving unit has a power receiving side coil which is attached to a movable body stored in the structure of the movable breakwater in water and converts magnetic energy output from the power transmitting unit into electric energy. Means,
Second resonance means provided in the power receiving means;
A power transmission device comprising:
前記第1の共振手段及び前記第2の共振手段は、コンデンサを含む請求項1に記載の電力伝送装置。   The power transmission device according to claim 1, wherein the first resonance unit and the second resonance unit include a capacitor. 前記第1の共振手段に含まれるコンデンサは、前記給電側コイルとは異なる給電側共振手段用コイルと電気的に接続され、
前記第2の共振手段に含まれるコンデンサは、前記受電側コイルとは異なる受電側共振手段用コイルと電気的に接続される、請求項2に記載の電力伝送装置。
The capacitor included in the first resonance means is electrically connected to a power supply side resonance means coil different from the power supply side coil,
The power transmission device according to claim 2, wherein the capacitor included in the second resonance unit is electrically connected to a power reception side resonance unit coil different from the power reception side coil.
前記第1の共振手段の共振周波数と、前記第2の共振手段の共振周波数とは異なる請求項1から3のいずれか1項に記載の電力伝送装置。   4. The power transmission device according to claim 1, wherein a resonance frequency of the first resonance unit is different from a resonance frequency of the second resonance unit. 5.
JP2010095482A 2010-04-16 2010-04-16 Power transmission equipment Active JP5595098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095482A JP5595098B2 (en) 2010-04-16 2010-04-16 Power transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095482A JP5595098B2 (en) 2010-04-16 2010-04-16 Power transmission equipment

Publications (2)

Publication Number Publication Date
JP2011229244A JP2011229244A (en) 2011-11-10
JP5595098B2 true JP5595098B2 (en) 2014-09-24

Family

ID=45043994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095482A Active JP5595098B2 (en) 2010-04-16 2010-04-16 Power transmission equipment

Country Status (1)

Country Link
JP (1) JP5595098B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219972A (en) * 2012-04-11 2013-10-24 Ihi Corp Underwater power supply system
EP2838178A4 (en) * 2012-04-13 2016-05-04 Ihi Corp Power-receiving structure for ship, power supply device, and power supply method
KR101531582B1 (en) * 2013-11-08 2015-06-25 삼성중공업 주식회사 Non-contact power swivel
WO2015186697A1 (en) 2014-06-06 2015-12-10 株式会社Ihi Power transmitting device, power receiving device, and wireless power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166459A (en) * 2002-11-15 2004-06-10 Mitsui Eng & Shipbuild Co Ltd Non-contact feeding device
DE102007060811A1 (en) * 2007-09-01 2009-03-05 Maquet Gmbh & Co. Kg Device and method for wireless energy and / or data transmission between a source device and at least one target device
JP5361052B2 (en) * 2008-04-21 2013-12-04 株式会社大林組 Movable breakwater and operating method of movable breakwater

Also Published As

Publication number Publication date
JP2011229244A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP6164421B2 (en) Power transmission coil unit and wireless power transmission device
RU2459340C2 (en) Method and device for transmission of power
JP6065838B2 (en) Wireless power feeding system and wireless power feeding method
US9300366B2 (en) Wireless power transmitter
JP6432251B2 (en) Power transmission coil unit and wireless power transmission device
US9349532B2 (en) Turning joint for electric excavator
JP5595098B2 (en) Power transmission equipment
CN102386684A (en) Electronic component, power feeding apparatus, power receiving apparatus, and wireless power feeding system
JP2015106581A (en) Power transmission coil unit and wireless power transmission device
US9570225B2 (en) Magnetoelectric device capable of storing usable electrical energy
KR20190063084A (en) Wireless power supply and pickup coil for solid-state transformer of railway vehicle and module thereof
CN104285264A (en) Integral inductor arrangement
JP2013214614A (en) Coil unit and power transmission device having coil unit
KR20130098828A (en) Multi-layer coil structure of wireless charging system
KR101953571B1 (en) Semiconductor transformer for railway vehicle with wireless power transmission coil and wireless power transmission coil thereof
JP2013214613A (en) Coil unit and power transmission device having coil unit
KR101595774B1 (en) Composite Coil Module for Transmitting Wireless Power
JP5972297B2 (en) Non-contact power transmission equipment
CN102075017A (en) Mobile noncontact uninterrupted power supply device
JP6284055B2 (en) Power transmission equipment
JP2020537483A (en) Resonant circuit for transmitting electrical energy
KR102464779B1 (en) Wireless power supply and pickup coil structure for solid-state transformer
JP5945002B2 (en) Transformers and converters
JP2010213480A (en) Power converter of fuel cell
JP5824631B2 (en) Non-contact charging module and charger and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5595098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250