JP5591523B2 - In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation - Google Patents

In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation Download PDF

Info

Publication number
JP5591523B2
JP5591523B2 JP2009264086A JP2009264086A JP5591523B2 JP 5591523 B2 JP5591523 B2 JP 5591523B2 JP 2009264086 A JP2009264086 A JP 2009264086A JP 2009264086 A JP2009264086 A JP 2009264086A JP 5591523 B2 JP5591523 B2 JP 5591523B2
Authority
JP
Japan
Prior art keywords
target
crystal
region
sputtering target
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009264086A
Other languages
Japanese (ja)
Other versions
JP2011106003A (en
Inventor
将之 糸瀬
公規 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009264086A priority Critical patent/JP5591523B2/en
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to PCT/JP2010/006761 priority patent/WO2011061938A1/en
Priority to KR1020177022621A priority patent/KR102027127B1/en
Priority to CN201080048855.1A priority patent/CN102597302B/en
Priority to US13/510,933 priority patent/US20120228133A1/en
Priority to EP10831337.0A priority patent/EP2503019A4/en
Priority to KR1020127012752A priority patent/KR20120084767A/en
Priority to TW099140075A priority patent/TWI498436B/en
Publication of JP2011106003A publication Critical patent/JP2011106003A/en
Application granted granted Critical
Publication of JP5591523B2 publication Critical patent/JP5591523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、酸化物半導体や透明導電膜等の酸化物薄膜作製用、特に薄膜トランジスタ作製用のスパッタリングターゲットに関する。   The present invention relates to a sputtering target for forming an oxide thin film such as an oxide semiconductor or a transparent conductive film, particularly for forming a thin film transistor.

酸化インジウム及び酸化亜鉛からなる、あるいは酸化インジウム、酸化亜鉛及び酸化ガリウムからなる非晶質の酸化物膜は、可視光透過性を有しかつ導電体、半導体から絶縁体まで広い電気特性を有するため、透明導電膜や(薄膜トランジスタ等に用いる)半導体膜として着目されている。   An amorphous oxide film made of indium oxide and zinc oxide, or made of indium oxide, zinc oxide and gallium oxide has visible light transmittance and wide electrical characteristics from conductors, semiconductors to insulators. Attention has been paid to transparent conductive films and semiconductor films (used for thin film transistors and the like).

前記酸化物膜の成膜方法としては、スパッタリング、パルスレーザーデポジション(PLD)、蒸着等の物理的な成膜やゾルゲル法等の化学的な成膜があるが、比較的低温で大面積に均一に成膜できる方法としてスパッタリング法等の物理的成膜が中心に検討されている。   As a method for forming the oxide film, there are physical film formation such as sputtering, pulse laser deposition (PLD), and vapor deposition, and chemical film formation such as a sol-gel method. As a method for uniformly forming a film, physical film formation such as a sputtering method has been mainly studied.

スパッタリング等の物理的成膜で酸化物薄膜を成膜する際は、均一に、安定して、効率よく(高い成膜速度で)成膜するために、酸化物焼結体からなるターゲットを用いることが一般的である。   When an oxide thin film is formed by physical film formation such as sputtering, a target made of an oxide sintered body is used in order to form a film uniformly, stably and efficiently (at a high film formation rate). It is common.

代表的な酸化物膜(導電膜・半導体膜)としては、例えば酸化インジウム、酸化亜鉛、酸化ガリウムからなる酸化物膜が挙げられる。これらの酸化物膜(通常非晶質膜)を作製するためのターゲット(主にスパッタリングターゲット)としては、InGaZnO、InGaZnO等の公知の結晶型の組成あるいはそれと近い組成のものが中心に検討されている。 As a typical oxide film (conductive film / semiconductor film), for example, an oxide film made of indium oxide, zinc oxide, or gallium oxide can be given. As a target (mainly a sputtering target) for producing these oxide films (usually amorphous films), a known crystal type composition such as InGaZnO 4 , In 2 Ga 2 ZnO 7 or a composition close to that is known. Is mainly considered.

例えば、特許文献1には、InGaZnO(InGaO(ZnO))のホモロガス構造を含むターゲットが開示されている。また、特許文献2では、絶縁性の高いGa結晶相については、これを生成させない製造法の検討がなされている。また、特許文献3及び4には、ZnOを主成分とするスパッタリングターゲットが開示されているが、光記録媒体用、透明電極用の検討のみで、このようなターゲットを用い薄膜トランジスタを形成した際のトランジスタ特性への影響は検討されていなかった。また、特許文献5には、InGaZnOの六方晶層状化合物とZnGaのスピネル構造の混合物からなるターゲット等混合物の特性を活かしたターゲットの開発が検討されている。しかし、これらの検討ではターゲットの表面と内部の結晶型等の性状の検討や、これらの結晶型を一致させることは検討されていない。 For example, Patent Document 1 discloses a target including a homologous structure of InGaZnO 4 (InGaO 3 (ZnO)). Patent Document 2 discusses a production method that does not generate a highly insulating Ga 2 O 3 crystal phase. Patent Documents 3 and 4 disclose a sputtering target mainly composed of ZnO. However, when only a target for an optical recording medium or a transparent electrode is studied, a thin film transistor is formed using such a target. The effect on transistor characteristics has not been studied. Patent Document 5 discusses the development of a target utilizing the characteristics of a mixture such as a target composed of a mixture of a hexagonal layered compound of InGaZnO 4 and a spinel structure of ZnGa 2 O 4 . However, in these examinations, examination of the properties of the target surface and internal crystal forms, etc., and matching these crystal forms are not considered.

また、特許文献6には、金属組成比In:Ga:Zn=30:15:55のIn−Ga−Zn−O焼結体を用い非晶質酸化物半導体膜及び薄膜トランジスタを形成した例が開示されている。しかし、適切なスパッタリングターゲットの性状や製造方法の検討はなされておらず、このような焼結体をターゲットとして用いると、薄膜のGaの含有比率がターゲットのGaの含有比率の3分の2程度と極端に小さくなってしまうという問題があった。これは、ターゲット内において、組成を含む種々の性状には大きな分布があることを示唆しているが、ターゲット性状の均一性に関する検討はなされていない。   Patent Document 6 discloses an example in which an amorphous oxide semiconductor film and a thin film transistor are formed using an In—Ga—Zn—O sintered body having a metal composition ratio In: Ga: Zn = 30: 15: 55. Has been. However, the properties of the appropriate sputtering target and the manufacturing method have not been studied, and when such a sintered body is used as a target, the Ga content ratio of the thin film is about two-thirds of the Ga content ratio of the target. There was a problem of becoming extremely small. This suggests that there are large distributions of various properties including the composition in the target, but no study has been made on the uniformity of the target properties.

スパッタリングターゲットを用いた薄膜トランジスタの作製が実用化に向かうにつれ、従来のガス供給によるプラズマ気相成長法(PECVD)を用いたシリコン系薄膜トランジスタの作製と異なり、一つのターゲットを使用してスパッタリングを長期に渡り続けることにより、得られる薄膜の特性の変化や成膜速度等の変動により、薄膜トランジスタ性能が変化したり、成膜条件の微調整が必要になる等の、長期に渡って成膜を行った際の不安定性の問題が顕在化してきた。また、透明導電膜を成膜する場合に比べ、薄膜トランジスタ(TFT)に代表される半導体素子は特にこの影響が顕著であることも明らかになってきた。上記のように酸化物薄膜を作製するためのターゲットについて種々の検討がなされているが、一つのターゲットを長期に渡って使用して成膜した時に、得られる薄膜の性状、ひいては薄膜トランジスタの性能の安定性については考慮されていない。   Unlike the production of silicon thin film transistors using plasma vapor deposition (PECVD) with conventional gas supply, the production of thin film transistors using sputtering targets has become more practical. The film was formed over a long period of time, such as thin film transistor performance changes due to changes in the properties of the thin film obtained and fluctuations in the film formation speed, and fine adjustment of the film formation conditions was required. The problem of instability has become apparent. In addition, it has become clear that this effect is particularly significant in a semiconductor element typified by a thin film transistor (TFT) as compared with the case where a transparent conductive film is formed. As described above, various studies have been made on a target for producing an oxide thin film. However, when a single target is used for a long period of time to form a film, the properties of the obtained thin film and, consequently, the performance of the thin film transistor are evaluated. Stability is not considered.

特開2007−73312号公報JP 2007-73312 A 特開2007−223849号公報JP 2007-223849 A WO2004/079038WO2004 / 079038 特許3644647号公報Japanese Patent No. 3644647 WO2008/072486WO2008 / 072486 特開2008−53356号公報JP 2008-53356 A

本発明の目的は、長期に渡る成膜を行った際に、得られる薄膜の特性の安定性に優れたスパッタリングターゲットを提供することである。   An object of the present invention is to provide a sputtering target having excellent stability of characteristics of a thin film obtained when film formation is performed over a long period of time.

上記目的を達成するため、本発明者らが鋭意研究を重ねた結果、長期成膜した際の薄膜の特性の不安定性は、スパッタリングを長期に渡り続けることによりターゲットの性状(比抵抗等)が変化するためであることを見出した。さらに、酸化インジウム、酸化亜鉛及び酸化ガリウムからなるスパッタリングターゲットは、長期間成膜を行うと表面のスパッタリングを受ける面の結晶形態の変化(結晶型の変化)が起き、このことが前記の不安定性の原因となっていることを見出した。   In order to achieve the above object, as a result of intensive studies by the present inventors, the instability of the characteristics of the thin film when the film is formed for a long period of time is caused by the property of the target (specific resistance, etc.) by continuing the sputtering for a long period of time. I found out that it was to change. Furthermore, when a sputtering target made of indium oxide, zinc oxide and gallium oxide is formed for a long period of time, a change in crystal form (change in crystal type) occurs on the surface subjected to sputtering, which is the instability described above. I found out that it is the cause of.

この問題は、従来、酸化インジウム及び酸化錫からなるスパッタリングターゲットや、酸化インジウム及び酸化亜鉛からなるスパッタリングターゲットでは顕在化していなかった。これはガリウムと亜鉛がともに含まれることで層状化合物を含む、生成しうる結晶型に多様性が生じ、その生成温度の違いから、わずかな条件の違いや成分の蒸発等による組成比の変動で結晶型が変化することによるものと推定される。   Conventionally, this problem has not been manifested in sputtering targets made of indium oxide and tin oxide, and sputtering targets made of indium oxide and zinc oxide. This is because the inclusion of both gallium and zinc results in a diversity of crystal forms that can be produced, including layered compounds, and due to differences in the formation temperature, the composition ratio varies due to slight differences in conditions and evaporation of components. This is presumably due to the change in crystal form.

さらに、好適な組成比を得るのに適した製造方法や製造条件を選定すること、例えば、厚みが厚めの成形体を遅い速度で昇温し、焼結体を作製し、表面を十分に研削してターゲットとすることや、各組成に対して適正な結晶型が生成する条件を採用すること等で解決しうることを見出した。   Furthermore, select a manufacturing method and manufacturing conditions suitable for obtaining a suitable composition ratio. For example, the molded body having a large thickness is heated at a slow speed to produce a sintered body, and the surface is sufficiently ground. It has been found that this can be solved by using a target and adopting conditions for generating an appropriate crystal form for each composition.

そして、このようにして作製した、表面部分と内部の結晶形態が同じ(結晶型が二種類以上の場合には、結晶型の組合せが同じ)であるスパッタリングターゲットを用いることで、長期間成膜を行っても成膜速度の変化が少なく、得られる薄膜を使用して作製されたTFTの特性の変化を抑えることに成功し、本発明を完成させた。
また、本発明を用いるとターゲットと薄膜の組成の差も小さくなり、薄膜のGaの含有比率がターゲットのGaの含有比率より極端に小さくなるという問題も改善することも見出した。
Then, by using the sputtering target having the same surface portion and the same internal crystal form (in the case of two or more crystal types, the combination of crystal types is the same), the film is formed for a long time. The film formation rate did not change much even if the process was performed, and the change in characteristics of TFTs produced using the thin film obtained was successfully suppressed, and the present invention was completed.
It has also been found that the use of the present invention reduces the difference between the composition of the target and the thin film, and improves the problem that the Ga content ratio of the thin film becomes extremely smaller than the Ga content ratio of the target.

本発明によれば、以下のスパッタリングターゲット及びスパッタリングターゲットの製造方法が提供される。
1.In、Zn、及びGaを含み、
表面と内部の化合物の結晶型が実質的に同一である酸化物焼結体からなるスパッタリングターゲット。
2.前記酸化物焼結体の表面の比抵抗(R1)と表面からt/2mmの深部の比抵抗(R2)の比R1/R2が、0.4以上2.5以下である、上記1に記載のスパッタリングターゲット。
3.前記酸化物焼結体のIn、Zn、及びGaの組成比(原子比)が、下記領域1〜6のいずれかを満たす、上記1又は2に記載のスパッタリングターゲット。
領域1
Ga/(In+Ga+Zn)≦0.50
0.58≦In/(In+Zn)≦0.85
In/(In+Ga)≦0.58
領域2
Ga/(In+Ga+Zn)≦0.50
0.20≦In/(In+Zn)<0.58
In/(In+Ga)≦0.58
領域3
0.20<Ga/(In+Ga+Zn)
0.51≦In/(In+Zn)≦0.85
0.58<In/(In+Ga)
領域4
0.00<Ga/(In+Ga+Zn)<0.15
0.20≦In/(In+Zn)<0.51
0.58<In/(In+Ga)
領域5
0.00<Ga/(In+Ga+Zn)≦0.20
0.51≦In/(In+Zn)≦0.85
領域6
0.15≦Ga/(In+Ga+Zn)
In/(In+Zn)<0.51
0.58<In/(In+Ga)
4.前記実質同一の結晶型が、一種類の結晶型のみからなる、上記3に記載のスパッタリングターゲット。
5.前記一種類の結晶型が、InGaZnOで表されるホモロガス結晶構造であり、かつ前記領域1の組成比を満たす、上記4に記載のスパッタリングターゲット。
6.前記一種類の結晶型が、InGaO(ZnO)で表されるホモロガス結晶構造であり、かつ前記領域2又は領域3の組成比を満たす、上記4に記載のスパッタリングターゲット。
7.前記一種類の結晶型が、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造であり、かつ前記領域4の組成比を満たす、上記4に記載のスパッタリングターゲット。
8.前記実質同一の結晶型が、ZnGaで表されるスピネル結晶構造と、Inで表されるビックスバイト結晶構造とを含み、かつ前記領域1又は領域3の組成比を満たす、上記3に記載のスパッタリングターゲット。
9.前記実質同一の結晶型が、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造と、Inで表されるビックスバイト結晶構造とを含み、かつ前記領域5の組成比を満たす、上記3に記載のスパッタリングターゲット。
10.前記実質同一の結晶型が、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造と、InGaO(ZnO)で表されるホモロガス結晶構造とを含み、かつ上記領域6の組成比を満たす、上記3に記載のスパッタリングターゲット。
11.下記(a)〜(e)の工程を含む上記4、5、6及び8のいずれか1項に記載のスパッタリングターゲットの製造方法。
(a)原料化合物粉末を混合して混合物を調製する工程、
(b)前記混合物を成形して厚み6.0mm以上の成形体を調製する工程、
(c)雰囲気を昇温速度3℃/分以下で昇温する工程、
(d)前記昇温した成形体をさらに1280℃以上1520℃以下で2時間以上96時間以下焼結し、厚み5.5mm以上の焼結体を得る工程、
(e)前記焼結体の表面を0.25mm以上研削する工程
12.下記(a)〜(e)の工程を含む上記5に記載のスパッタリングターゲットの製造方法。
(a)原料化合物粉末を混合して混合物を調製する工程、
(b)前記混合物を成形して厚み6.0mm以上の成形体を調製する工程、
(c)雰囲気を昇温速度3℃/分以下で昇温する工程、
(d)前記昇温した成形体をさらに1350℃超1540℃以下で2時間以上36時間以下焼結し、厚み5.5mm以上の焼結体を得る工程、
(e)前記焼結体の表面を0.25mm以上研削する工程
13.下記(f)〜(i)の工程を含む上記8のスパッタリングターゲットの製造方法。
(f)原料化合物粉末を混合して混合物を調製する工程、
(g)前記混合物を成形して成形体を調製する工程、
(h)雰囲気を昇温速度10℃/分以下で昇温する工程、
(i)前記昇温した成形体をさらに1100℃以上1350℃以下で4時間以上96時間以下焼結する工程
According to this invention, the manufacturing method of the following sputtering targets and sputtering targets is provided.
1. Including In, Zn, and Ga,
A sputtering target comprising an oxide sintered body in which the crystal types of the surface and internal compounds are substantially the same.
2. 2. The ratio 1 / R2 of the specific resistance (R1) of the surface of the oxide sintered body and the specific resistance (R2) at a depth of t / 2 mm from the surface is 0.4 or more and 2.5 or less. Sputtering target.
3. 3. The sputtering target according to 1 or 2 above, wherein the composition ratio (atomic ratio) of In, Zn, and Ga in the oxide sintered body satisfies any of the following regions 1 to 6.
Region 1
Ga / (In + Ga + Zn) ≦ 0.50
0.58 ≦ In / (In + Zn) ≦ 0.85
In / (In + Ga) ≦ 0.58
Region 2
Ga / (In + Ga + Zn) ≦ 0.50
0.20 ≦ In / (In + Zn) <0.58
In / (In + Ga) ≦ 0.58
Region 3
0.20 <Ga / (In + Ga + Zn)
0.51 ≦ In / (In + Zn) ≦ 0.85
0.58 <In / (In + Ga)
Region 4
0.00 <Ga / (In + Ga + Zn) <0.15
0.20 ≦ In / (In + Zn) <0.51
0.58 <In / (In + Ga)
Region 5
0.00 <Ga / (In + Ga + Zn) ≦ 0.20
0.51 ≦ In / (In + Zn) ≦ 0.85
Region 6
0.15 ≦ Ga / (In + Ga + Zn)
In / (In + Zn) <0.51
0.58 <In / (In + Ga)
4). 4. The sputtering target according to 3 above, wherein the substantially same crystal type consists of only one type of crystal type.
5. 5. The sputtering target according to 4 above, wherein the one type of crystal type is a homologous crystal structure represented by In 2 Ga 2 ZnO 7 and satisfies the composition ratio of the region 1.
6). 5. The sputtering target according to 4 above, wherein the one type of crystal type is a homologous crystal structure represented by InGaO 3 (ZnO) and satisfies the composition ratio of the region 2 or the region 3.
7). The one type of crystal type is 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 ° to 56.5 ° and The sputtering target according to 4 above, which has a crystal structure having an X-ray diffraction peak of Cukα rays at 56.5 ° to 59.5 ° and satisfies the composition ratio of the region 4.
8). The substantially identical crystal type includes a spinel crystal structure represented by ZnGa 2 O 4 and a bixbite crystal structure represented by In 2 O 3 , and satisfies the composition ratio of the region 1 or region 3. 4. The sputtering target according to 3 above.
9. The substantially identical crystal types are 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 ° to 56.5 ° and The crystal structure having an X-ray diffraction peak of Cukα rays at 56.5 ° to 59.5 ° and a bixbite crystal structure represented by In 2 O 3 and satisfying the composition ratio of the region 5 3. The sputtering target according to 3.
10. The substantially identical crystal types are 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 ° to 56.5 ° and The crystal structure having an X-ray diffraction peak of Cukα rays at 56.5 ° to 59.5 ° and a homologous crystal structure represented by InGaO 3 (ZnO), and satisfying the composition ratio of the region 6 3. The sputtering target according to 3.
11. The manufacturing method of the sputtering target of any one of said 4, 5, 6, and 8 including the process of following (a)-(e).
(A) A step of preparing a mixture by mixing raw material compound powders,
(B) forming the mixture to prepare a molded body having a thickness of 6.0 mm or more;
(C) a step of heating the atmosphere at a heating rate of 3 ° C./min or less,
(D) a step of further sintering the heated body at 1280 ° C. to 1520 ° C. for 2 hours to 96 hours to obtain a sintered body having a thickness of 5.5 mm or more,
(E) Grinding the surface of the sintered body by 0.25 mm or more. The manufacturing method of the sputtering target of said 5 containing the process of following (a)-(e).
(A) A step of preparing a mixture by mixing raw material compound powders,
(B) forming the mixture to prepare a molded body having a thickness of 6.0 mm or more;
(C) a step of heating the atmosphere at a heating rate of 3 ° C./min or less,
(D) a step of further sintering the temperature-increased molded body at 1350 ° C. to 1540 ° C. for 2 hours to 36 hours to obtain a sintered body having a thickness of 5.5 mm or more;
(E) Grinding the surface of the sintered body by 0.25 mm or more. The manufacturing method of said 8 sputtering target including the process of following (f)-(i).
(F) mixing the raw material compound powder to prepare a mixture;
(G) forming the mixture to prepare a molded body;
(H) a step of heating the atmosphere at a heating rate of 10 ° C./min or less,
(I) A step of further sintering the temperature-increased compact at 1100 ° C. to 1350 ° C. for 4 hours to 96 hours.

本発明によれば、長期に渡る成膜を行った際に、得られる薄膜の特性の安定性に優れたスパッタリングターゲットを提供することができる。
本発明によれば、長期に渡る成膜を行った場合であっても、安定した薄膜トランジスタ特性が得られる。
According to the present invention, it is possible to provide a sputtering target that is excellent in stability of characteristics of a thin film obtained when film formation is performed over a long period of time.
According to the present invention, stable thin film transistor characteristics can be obtained even when film formation is performed over a long period of time.

本発明に係るチャンネルストッパー型薄膜トランジスタ(逆スタガ型薄膜トランジスタ)の構造を示す模式図である。It is a schematic diagram showing a structure of a channel stopper type thin film transistor (inverse stagger type thin film transistor) according to the present invention.

本発明のスパッタリングターゲット(以下、本発明のターゲットという)は、In、Zn、及びGaを含み、表面と内部の化合物の結晶型の種類が実質的に同一である酸化物焼結体からなることを特徴とする。   The sputtering target of the present invention (hereinafter referred to as the target of the present invention) is composed of an oxide sintered body containing In, Zn, and Ga and having substantially the same crystal type of the surface and the inner compound. It is characterized by.

ターゲットの表面と内部の化合物の結晶型の種類が実質的に同一であれば、一つのターゲットを使用して長期に渡って成膜を行った場合でも、得られる薄膜の特性に変動が生じない。
ここで、「実質的に」とは、表面と内部を切断した面をX線回折測定(XRD)で測定した際、同定された結晶型の種類が同一であればよいことを意味する。
If the surface type of the target and the crystal type of the internal compound are substantially the same, even if the film is formed over a long period of time using a single target, there will be no fluctuation in the properties of the thin film obtained. .
Here, “substantially” means that the types of crystal types identified when the surface and the surface cut into the inside are measured by X-ray diffraction measurement (XRD) may be the same.

ターゲットの表面と内部の化合物の結晶型が実質的に同一であることは、例えば、平均の厚みがtmmの時、表面からt/2mmで切断し、表面の化合物の結晶型と表面からt/2mmの深部の化合物の結晶型をX線回折測定(XRD)で分析して判断する。   For example, when the average thickness is tmm, the crystal form of the target surface and the internal compound are cut at t / 2 mm from the surface, and the crystal form of the surface compound and t / The crystal form of the compound at a depth of 2 mm is determined by analysis by X-ray diffraction measurement (XRD).

スパッタリングターゲットの表面の結晶構造は、ターゲット表面を直接X線回折で測定し、得られたX線回折パターンから確認することができる。   The crystal structure of the surface of the sputtering target can be confirmed from the X-ray diffraction pattern obtained by directly measuring the target surface by X-ray diffraction.

スパッタリングターゲットの深部の結晶構造は、ターゲットを面に水平に切断し、得られた切断面を直接X線回折で測定し、得られたX線回折パターンから確認することができる。   The crystal structure of the deep part of the sputtering target can be confirmed from the obtained X-ray diffraction pattern by cutting the target horizontally on the surface, measuring the obtained cut surface directly by X-ray diffraction.

ターゲットの切断方法は例えば以下の通りである。
装置:(株)マルトー Million−Cutter 2 MC−503N
条件:ダイヤモンドブレード φ200mm
手順:
1.吸収版(アルミナ板)を温め、上面にアドフィックス(マルトー社製接着剤)を塗る。
2.ターゲットを置いた後、水で急冷することでターゲットを固定する。
3.吸収版を装置にセットし、ターゲットを切断する。
4.後は任意の切削面になるように1〜3を繰り返す。
The target cutting method is, for example, as follows.
Apparatus: Maruto Co., Ltd. Million-Cutter 2 MC-503N
Condition: Diamond blade φ200mm
procedure:
1. Heat the absorption plate (alumina plate) and apply Adfix (adhesive manufactured by Marto) on the top surface.
2. After placing the target, fix the target by quenching with water.
3. Set the absorption plate on the device and cut the target.
4). Thereafter, steps 1 to 3 are repeated so as to obtain an arbitrary cutting surface.

X線回折の測定条件は例えば以下の通りである。
装置:(株)リガク製Ultima−III
X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
2θ−θ反射法、連続スキャン(1.0°/分)
サンプリング間隔:0.02°
スリット DS、SS:2/3°、RS:0.6mm
The measurement conditions of X-ray diffraction are as follows, for example.
Device: Rigaku Ultima-III
X-ray: Cu-Kα ray (wavelength 1.5406mm, monochromatized with graphite monochromator)
2θ-θ reflection method, continuous scan (1.0 ° / min)
Sampling interval: 0.02 °
Slit DS, SS: 2/3 °, RS: 0.6 mm

結晶型は、JCPDS(Joint Committee of Powder Diffraction Standards)カードに登録のあるものについては、JCPDSカードと照合することで特定することができる。   The crystal type can be specified by checking with a JCPDS card for those registered in a JCPDS (Joint Committee of Powder Diffraction Standards) card.

結晶構造X線回折パターンで構造が判断されれば、酸素が過剰であったり不足(酸素欠損)であったりしても構わない(化学量論比通りでもずれていてもよい)が、酸素欠損を持っていることが好ましい。酸素が過剰であるとターゲットとしたときに抵抗が高くなりすぎるおそれがある。   If the structure is judged by the crystal structure X-ray diffraction pattern, oxygen may be excessive or insufficient (oxygen deficiency) (may be shifted according to the stoichiometric ratio) or oxygen deficiency. It is preferable to have If the oxygen is excessive, the resistance may be too high when the target is used.

本発明のターゲットは、結晶型が同一であることに加え、結晶型を2種以上含む場合は、ピーク強度比もほぼ同一であることが好ましい。ピーク強度比の比較は、各々の結晶型の最大ピークの高さの比で行う。最大ピークの高さの比を比較し、差異が±30%以下であればほぼ同一と判断する。差異が±15%以下であればより好ましく、±5%以下であれば特に好ましい。
最大ピークの高さの比の差異が小さいほど、長期に渡って使用した際に、得られる薄膜の特性の変動が少なくなることが期待できる。
In addition to having the same crystal type, the target of the present invention preferably has substantially the same peak intensity ratio when it contains two or more crystal types. The comparison of the peak intensity ratio is performed by the ratio of the maximum peak heights of the respective crystal types. The ratio of the maximum peak heights is compared, and if the difference is ± 30% or less, it is judged that they are almost the same. The difference is more preferably ± 15% or less, particularly preferably ± 5% or less.
It can be expected that the smaller the difference in the ratio of the maximum peak heights, the less the variation in the properties of the thin film obtained when used over a long period of time.

本発明のターゲットは、本発明の効果を損ねない範囲において、上述したIn、Ga、Zn以外の金属元素、例えば、Sn、Ge、Si、Ti、Zr及びHf等を含有していてもよい。   The target of the present invention may contain a metal element other than the above-described In, Ga, and Zn, for example, Sn, Ge, Si, Ti, Zr, and Hf, as long as the effects of the present invention are not impaired.

本発明においては、ターゲットに含有される金属元素は、原料や製造工程等により不可避的に含まれる不純物等以外の元素を含まず、In,Ga及びZnのみであってもよい。   In the present invention, the metal element contained in the target does not contain elements other than impurities that are inevitably contained depending on the raw material, the manufacturing process, etc., and may be only In, Ga, and Zn.

表面の結晶粒径と表面からt/2mmの深部の結晶粒径がともに20μm以下が好ましく、10μm以下がより好ましく、5μm以下が特に好ましい。   Both the crystal grain diameter on the surface and the crystal grain diameter at a depth of t / 2 mm from the surface are preferably 20 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less.

表面と深部の結晶粒径が大きく異なると放電条件に差異が生じるおそれがある。   If the crystal grain sizes of the surface and the deep part are greatly different, there is a possibility that the discharge conditions are different.

本発明のターゲットにおいては、酸化物焼結体の表面の比抵抗(R1)と表面からt/2mmの深部の比抵抗(R2)の比R1/R2が、0.4以上2.5以下であることが好ましい。   In the target of the present invention, the ratio R1 / R2 of the specific resistance (R1) on the surface of the oxide sintered body and the specific resistance (R2) at a depth of t / 2 mm from the surface is 0.4 to 2.5. Preferably there is.

R1/R2が、0.4以上2.5以下であることが好ましく、0.5以上2以下であることがより好ましく、0.67以上1.5以下であることが特に好ましい。   R1 / R2 is preferably 0.4 or more and 2.5 or less, more preferably 0.5 or more and 2 or less, and particularly preferably 0.67 or more and 1.5 or less.

R1/R2が、0.4未満あるいは2.5超であると、ターゲットの使用開始時と、長期に渡って使用し消耗した時とでターゲットの性状(比抵抗等)が変化し、成膜速度が変化する、あるいは作製したTFTの特性が変化する等の不安定性の原因となるおそれがある。   When R1 / R2 is less than 0.4 or more than 2.5, the properties (specific resistance, etc.) of the target change depending on when the target is used and when it is consumed over a long period of time. There is a risk of instability such as a change in speed or a change in the characteristics of the manufactured TFT.

本発明のターゲットにおいては、酸化物焼結体のIn、Zn、及びGaの組成比(原子比)が、下記領域1〜6のいずれかを満たしていることが好ましい。   In the target of the present invention, it is preferable that the composition ratio (atomic ratio) of In, Zn, and Ga of the oxide sintered body satisfies any of the following regions 1 to 6.

領域1
Ga/(In+Ga+Zn)≦0.50
0.58≦In/(In+Zn)≦0.85
In/(In+Ga)≦0.58
領域2
Ga/(In+Ga+Zn)≦0.50
0.20≦In/(In+Zn)<0.58
In/(In+Ga)≦0.58
領域3
0.20<Ga/(In+Ga+Zn)
0.51≦In/(In+Zn)≦0.85
0.58<In/(In+Ga)
領域4
0.00<Ga/(In+Ga+Zn)<0.15
0.20≦In/(In+Zn)<0.51
0.58<In/(In+Ga)
領域5
0.00<Ga/(In+Ga+Zn)≦0.20
0.51≦In/(In+Zn)≦0.85
領域6
0.15≦Ga/(In+Ga+Zn)
In/(In+Zn)<0.51
0.58<In/(In+Ga)
Region 1
Ga / (In + Ga + Zn) ≦ 0.50
0.58 ≦ In / (In + Zn) ≦ 0.85
In / (In + Ga) ≦ 0.58
Region 2
Ga / (In + Ga + Zn) ≦ 0.50
0.20 ≦ In / (In + Zn) <0.58
In / (In + Ga) ≦ 0.58
Region 3
0.20 <Ga / (In + Ga + Zn)
0.51 ≦ In / (In + Zn) ≦ 0.85
0.58 <In / (In + Ga)
Region 4
0.00 <Ga / (In + Ga + Zn) <0.15
0.20 ≦ In / (In + Zn) <0.51
0.58 <In / (In + Ga)
Region 5
0.00 <Ga / (In + Ga + Zn) ≦ 0.20
0.51 ≦ In / (In + Zn) ≦ 0.85
Region 6
0.15 ≦ Ga / (In + Ga + Zn)
In / (In + Zn) <0.51
0.58 <In / (In + Ga)

各領域のより好ましい範囲は、下記の通りである。
領域1
Ga/(In+Ga+Zn)≦0.45
0.58≦In/(In+Zn)≦0.80
In/(In+Ga)≦0.56
領域2
Ga/(In+Ga+Zn)≦0.40
0.35≦In/(In+Zn)<0.58
In/(In+Ga)≦0.58
領域3
0.20<Ga/(In+Ga+Zn)
0.60≦In/(In+Zn)≦0.85
0.60<In/(In+Ga)
領域4
0.09<Ga/(In+Ga+Zn)<0.15
0.35≦In/(In+Zn)<0.48
領域5
0.09<Ga/(In+Ga+Zn)≦0.20
0.53≦In/(In+Zn)≦0.75
領域6
0.17≦Ga/(In+Ga+Zn)
0.35≦In/(In+Zn)<0.48
0.60<In/(In+Ga)
領域6のさらに好ましい範囲は、下記の通りである。
領域6
0.18<Ga/(In+Ga+Zn)
0.38<Zn/(In+Ga+Zn)≦0.50
A more preferable range of each region is as follows.
Region 1
Ga / (In + Ga + Zn) ≦ 0.45
0.58 ≦ In / (In + Zn) ≦ 0.80
In / (In + Ga) ≦ 0.56
Region 2
Ga / (In + Ga + Zn) ≦ 0.40
0.35 ≦ In / (In + Zn) <0.58
In / (In + Ga) ≦ 0.58
Region 3
0.20 <Ga / (In + Ga + Zn)
0.60 ≦ In / (In + Zn) ≦ 0.85
0.60 <In / (In + Ga)
Region 4
0.09 <Ga / (In + Ga + Zn) <0.15
0.35 ≦ In / (In + Zn) <0.48
Region 5
0.09 <Ga / (In + Ga + Zn) ≦ 0.20
0.53 ≦ In / (In + Zn) ≦ 0.75
Region 6
0.17 ≦ Ga / (In + Ga + Zn)
0.35 ≦ In / (In + Zn) <0.48
0.60 <In / (In + Ga)
A more preferable range of the region 6 is as follows.
Region 6
0.18 <Ga / (In + Ga + Zn)
0.38 <Zn / (In + Ga + Zn) ≦ 0.50

また、各領域の特徴は下記の通りである。
領域1:光電流が小さいTFTの作製が可能
耐混酸耐性が高いTFTの作製が可能
実質的に単一の結晶型(InGaZnO)からなるターゲッの作製が可能
領域1では、焼結温度等の作製条件を調整する、あるいはSn等の微量のドーパントを含有させることで、InGaZnOの結晶型を生成させることができる。また、XRDでInGaZnOの結晶型以外の結晶型が確認されない酸化物焼結体を生成させることができる。InGaZnOの結晶型を有することで、層状構造により導電性を高めることができる。
領域1では、焼結温度等の作製条件を調整することでIn及びZnGaの結晶型を含ませることができる。In及びZnGaの結晶型を有することにより、還元雰囲気での熱処理を行わなくともIn中に酸素欠損を生成させることが容易となり、比抵抗を下げることができる。また、この結晶型を含むと研削量が少ない、あるいは研削を行わなくとも表面と中心部の結晶型を一致させることが容易である。これは、この結晶型が比較的低温で安定であるためと思われる。
The characteristics of each region are as follows.
Region 1: Fabrication of TFT with low photocurrent is possible
Possible to produce TFT with high resistance to mixed acid
A target substantially consisting of a single crystal type (In 2 Ga 2 ZnO 7 ) can be produced. In region 1, the production conditions such as the sintering temperature are adjusted, or a trace amount of dopant such as Sn is contained. , In 2 Ga 2 ZnO 7 crystal form can be generated. In addition, an oxide sintered body in which a crystal type other than the crystal type of In 2 Ga 2 ZnO 7 is not confirmed by XRD can be generated. By having a crystal type of In 2 Ga 2 ZnO 7 , conductivity can be increased by a layered structure.
In the region 1, the crystal types of In 2 O 3 and ZnGa 2 O 4 can be included by adjusting the production conditions such as the sintering temperature. By having the crystal types of In 2 O 3 and ZnGa 2 O 4 , it is easy to generate oxygen vacancies in In 2 O 3 without performing heat treatment in a reducing atmosphere, and the specific resistance can be reduced. In addition, when this crystal type is included, the grinding amount is small, or it is easy to match the crystal types of the surface and the center without grinding. This seems to be because this crystal form is stable at a relatively low temperature.

領域2:光電流が小さいTFTの作製が可能
実質的に単一の結晶型(InGaZnO)からなるターゲットの作製が可能
Region 2: TFT with low photocurrent can be fabricated
Possible to produce a target consisting essentially of a single crystal type (InGaZnO 4 )

領域3:移動度がやや大きい、S値がやや小さいTFTの作製が可能
TFTを作製した際、光電流が小さい
領域3では、焼結温度等の作製条件を調整することでInの結晶型を含ませることができる。Inの結晶型を有することにより、還元雰囲気での熱処理を行わなくともIn中に酸素欠損を生成させることが容易となり、比抵抗を下げることができる。
領域3では、InとGaの比率が1:1でないにも係わらず、焼結温度等の作製条件を調整することで、InGaZnOあるいはInGaZnOで表されるホモロガス構造の結晶型を生成させることができる。ホモロガス構造の結晶型を有することで、層状構造により導電性を高めることができる。
Region 3: TFT with slightly high mobility and slightly low S value
In the region 3 where the photocurrent is small when the TFT is manufactured, the In 2 O 3 crystal type can be included by adjusting the manufacturing conditions such as the sintering temperature. By having a crystal form of In 2 O 3, without performing heat treatment in a reducing atmosphere becomes easy to generate the oxygen defects in the In 2 O 3, it is possible to lower the resistivity.
In region 3, the crystal form of the homologous structure represented by In 2 Ga 2 ZnO 7 or InGaZnO 4 by adjusting the production conditions such as the sintering temperature, although the ratio of In to Ga is not 1: 1. Can be generated. By having a crystal form of a homologous structure, conductivity can be increased by a layered structure.

領域4:移動度が大きくS値が小さいTFTの作製が可能
実質的に単一の結晶型からなるターゲットの作製が可能
ターゲットの比抵抗が下げることが容易
領域4では、焼結温度等の作製条件を調整することで実質的に単一の結晶型からなるターゲットの作製が可能である。実質的に単一となることで、ターゲットの均一性が向上する。また、導電性が向上する。
Region 4: TFT with high mobility and low S value
Enables the production of targets consisting essentially of a single crystal type
It is easy to reduce the specific resistance of the target. In the region 4, it is possible to produce a target substantially consisting of a single crystal type by adjusting the production conditions such as the sintering temperature. By being substantially single, the uniformity of the target is improved. In addition, conductivity is improved.

領域5:移動度が非常に大きくS値が小さいTFTの作製が可能
ターゲットの比抵抗が下げることが容易
領域5では、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造とInで表される結晶型を含むターゲットの作製が可能である。この結晶型の組合せにより、還元雰囲気での熱処理を行わなくともIn中に酸素欠損を生成させることが容易となり、比抵抗を下げることができる。
また、領域5の組成を持つスパッタリングターゲットは、半導体層を薄膜化した高い移動度の薄膜トランジスタを得るのに適している。
Region 5: TFT with very high mobility and low S value
It is easy to reduce the specific resistance of the target. In region 5, 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 ° to A target including a crystal structure having X-ray diffraction peaks of Cukα rays at 56.5 ° and 56.5 ° to 59.5 ° and a crystal type represented by In 2 O 3 can be manufactured. This combination of crystal types facilitates generation of oxygen vacancies in In 2 O 3 without performing heat treatment in a reducing atmosphere, and can reduce the specific resistance.
Further, the sputtering target having the composition of the region 5 is suitable for obtaining a thin film transistor with high mobility in which a semiconductor layer is thinned.

領域6:移動度がやや大きくS値が小さいTFTの作製が可能
(領域4よりも、光電流・混酸耐性・耐湿性が良好)
領域6では、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造とInGaZnOで表される結晶型を含むターゲットの作製が可能である。ホモロガス構造により導電性が向上する。
Region 6: TFTs with slightly high mobility and small S values can be fabricated
(Better photocurrent, mixed acid resistance, and moisture resistance than region 4)
In region 6, 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 ° to 56.5 ° and 56.5 °. A target including a crystal structure having an X-ray diffraction peak of Cukα rays at ˜59.5 ° and a crystal type represented by InGaZnO 4 can be produced. The conductivity is improved by the homologous structure.

本発明のターゲットを用いてTFTを作製した際に、Ga/(In+Zn+Ga)が0より大で、大きいほど光電流の減少が期待できる。
また、Ga/(In+Zn+Ga)が0.50以下で、小さいほど移動度やS値の向上が期待できる。
When a TFT is fabricated using the target of the present invention, the photocurrent can be expected to decrease as Ga / (In + Zn + Ga) is larger than 0 and larger.
In addition, the smaller the Ga / (In + Zn + Ga) is 0.50 or less, the better the mobility and S value can be expected.

本発明のターゲットを用いてTFTを作製した際に、In/(In+Zn)が0.20以上で、大きいほど移動度の向上が期待できる。
また、In/(In+Zn)が0.80以下で、小さいほどノーマリーオフに調整しやすくなることが期待できる。
When a TFT is manufactured using the target of the present invention, the improvement in mobility can be expected as In / (In + Zn) is 0.20 or more and is larger.
Moreover, it can be expected that the smaller the In / (In + Zn) is 0.80 or less, the easier it is to adjust normally-off.

Ga量の多い、領域1及び2はスパッタリングで成膜する際に、成膜速度やキャリア密度の変化が、酸素分圧に対して比較的敏感であるため、わずかな変動やムラが、得られる薄膜の特性の均一性を乱したり、再現性を低下させたりする場合がある。
成膜速度やキャリア密度の、酸素分圧の変化に対する感度の点では、領域3〜領域6が好ましく、領域4及び領域5が特に好ましい。
In regions 1 and 2 having a large amount of Ga, when film formation is performed by sputtering, changes in film formation rate and carrier density are relatively sensitive to oxygen partial pressure, so slight fluctuations and unevenness can be obtained. The uniformity of the thin film characteristics may be disturbed or the reproducibility may be reduced.
In terms of the sensitivity of the film formation rate and carrier density to changes in oxygen partial pressure, the regions 3 to 6 are preferable, and the regions 4 and 5 are particularly preferable.

本発明のターゲットにおいては、実質同一の結晶型が、一種類の結晶型のみからなっていてもよい。   In the target of the present invention, the substantially same crystal type may consist of only one type of crystal type.

一種類の結晶型のみからなる場合には、ターゲット物性の均一性の向上や外観(色むらや白点・黒点の発生の抑制等)の向上が期待できる。また、ターゲットの強度(抗折強度や衝撃強度)の向上が期待できる場合もある。   In the case of consisting of only one type of crystal, it can be expected to improve the uniformity of the target physical properties and the appearance (suppression of occurrence of uneven color, white spots, black spots, etc.). In some cases, an improvement in the strength (bending strength or impact strength) of the target can be expected.

本発明のターゲットにおいては、上記一種類の結晶型がInGaZnOで表されるホモロガス結晶構造であり、かつ上記領域1の組成比を満たすことが好ましい。 In the target of the present invention, it is preferable that the one type of crystal type has a homologous crystal structure represented by In 2 Ga 2 ZnO 7 and satisfy the composition ratio of the region 1.

(YbFeOFeO型結晶構造を示すInGaZnO(又は(InGaOZnO)で表される結晶構造は「六方晶層状化合物」あるいは「ホモロガス相の結晶構造」と呼ばれ、異なる物質の結晶層を何層か重ね合わせた長周期を有する「自然超格子」構造から成る結晶である。結晶周期ないし各薄膜層の厚さが、ナノメーター程度の場合、これら各層の化学組成や層の厚さの組み合わせによって、単一の物質あるいは各層を均一に混ぜ合わせた混晶の性質とは異なる固有の特性が得られる。そして、ホモロガス相の結晶構造は、例えば、ターゲットの粉砕物や切削片又はターゲットそのものから直接測定したX線回折パターンが、組成比から想定されるホモロガス相の結晶構造X線回折パターンと一致することから確認できる。具体的には、JCPDS(Joint Committee of Powder Diffraction Standards)カードから得られるホモロガス相の結晶構造X線回折パターンと一致することから確認することができる。
InGaZnOで表される結晶構造は、JCPDSカードNo.38−1097である。
A crystal structure represented by In 2 Ga 2 ZnO 7 (or (InGaO 3 ) 2 ZnO) showing a (YbFeO 3 ) 2 FeO type crystal structure is called a “hexagonal layered compound” or “a crystal structure of a homologous phase”. A crystal composed of a “natural superlattice” structure having a long period in which several crystal layers of different substances are stacked. When the crystal cycle or thickness of each thin film layer is on the order of nanometers, depending on the combination of the chemical composition of these layers and the thickness of the layers, it differs from the properties of a single substance or a mixed crystal in which each layer is uniformly mixed. Unique characteristics can be obtained. The crystal structure of the homologous phase is such that, for example, the X-ray diffraction pattern measured directly from the pulverized target, the cut piece or the target itself matches the crystal structure X-ray diffraction pattern of the homologous phase assumed from the composition ratio. It can be confirmed from. Specifically, it can be confirmed from the coincidence with the crystal structure X-ray diffraction pattern of the homologous phase obtained from a JCPDS (Joint Committee of Powder Diffraction Standards) card.
The crystal structure represented by In 2 Ga 2 ZnO 7 is JCPDS card no. 38-1097.

本結晶型は、領域1の組成において、Sn(錫)を下記組成比(原子比)で含むことで容易に得られるようになる。
0.005<Sn/(In+Ga+Zn+Sn)<0.10
上記Sn含有量の範囲は、下記がより好ましい。
0.01<Sn/(In+Ga+Zn+Sn)<0.05
This crystal type can be easily obtained by including Sn (tin) in the composition of region 1 in the following composition ratio (atomic ratio).
0.005 <Sn / (In + Ga + Zn + Sn) <0.10
The range of the Sn content is more preferably as follows.
0.01 <Sn / (In + Ga + Zn + Sn) <0.05

本結晶型(InGaZnOで表されるホモロガス結晶構造)を得るには、焼結温度は1350℃〜1540℃が好ましく、1380〜1500℃がより好ましい。 In order to obtain the present crystal type (a homologous crystal structure represented by In 2 Ga 2 ZnO 7 ), the sintering temperature is preferably 1350 ° C. to 1540 ° C., more preferably 1380 to 1500 ° C.

本発明のターゲットにおいては、一種類の結晶型が、InGaO(ZnO)で表されるホモロガス結晶構造であり、かつ前記領域2あるいは領域3の組成比を満たすことが好ましい。 In the target of the present invention, it is preferable that one type of crystal type has a homologous crystal structure represented by InGaO 3 (ZnO) and satisfy the composition ratio of the region 2 or the region 3.

InGaO(ZnO)(mは1〜20の整数)で表される結晶構造も「六方晶層状化合物」あるいは「ホモロガス相の結晶構造」である。
InGaO(ZnO)で表される結晶構造は、JCPDSカードNo.38−1104である。
The crystal structure represented by InGaO 3 (ZnO) m (m is an integer of 1 to 20) is also a “hexagonal layered compound” or “a crystal structure of a homologous phase”.
The crystal structure represented by InGaO 3 (ZnO) is JCPDS card no. 38-1104.

InGaO(ZnO)は、InGaO(ZnO)(mは1〜20の整数)のm=1の場合であり、InGaZnOと記述する場合もある。 InGaO 3 (ZnO) is a case where m = 1 of InGaO 3 (ZnO) m (m is an integer of 1 to 20), and may be described as InGaZnO 4 .

本発明のターゲットにおいては、一種類の結晶型が、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造であり、かつ前記領域4の組成比を満たすことが好ましい。   In the target of the present invention, one type of crystal type is 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 °. It is preferable that the crystal structure has X-ray diffraction peaks of Cukα rays at ˜56.5 ° and 56.5 ° to 59.5 °, and the composition ratio of the region 4 is satisfied.

この結晶型の酸化物結晶は、JCPDS(Joint Committee of Powder Diffraction Standards)カードにはなく、今まで確認されていない新規な結晶である。   This crystal type oxide crystal is not a JCPDS (Joint Committee of Powder Diffraction Standards) card, and is a novel crystal that has not been confirmed so far.

この酸化物の結晶のX線回折チャートは、InGaO(ZnO)(JCPDS:40−0252)で示される結晶構造及びIn(ZnO)(JCPDS:20−1442)で示される結晶構造に類似している。しかしながら、本発明の酸化物はInGaO(ZnO)特有のピーク(上記領域Aのピーク)、及びIn(ZnO)特有のピーク(上記領域D及びEのピーク)を有し、かつ、InGaO(ZnO)及びIn(ZnO)には観測されないピーク(上記領域B)を有する。従って、本発明の酸化物は、InGaO(ZnO)及びIn(ZnO)とは異なる。 The X-ray diffraction chart of this oxide crystal shows a crystal structure represented by InGaO 3 (ZnO) 2 (JCPDS: 40-0252) and a crystal represented by In 2 O 3 (ZnO) 2 (JCPDS: 20-1442). Similar to structure. However, the oxide of the present invention has a peak peculiar to InGaO 3 (ZnO) 2 (the peak in the region A) and a peak peculiar to In 2 O 3 (ZnO) 2 (the peaks in the regions D and E). In addition, InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 have peaks that are not observed (the region B). Therefore, the oxide of the present invention is different from InGaO 3 (ZnO) 2 and In 2 O 3 (ZnO) 2 .

この新結晶型の特徴は下記条件1を満たすことである。
X線回折測定(Cukα線)により得られるチャートにおいて、下記のA〜Eの領域に回折ピークが観測される。
The feature of this new crystal type is that the following condition 1 is satisfied.
In the chart obtained by X-ray diffraction measurement (Cukα ray), diffraction peaks are observed in the following areas A to E.

条件1
A.入射角(2θ)=7.0°〜8.4°(好ましくは7.2°〜8.2°)
B.2θ=30.6°〜32.0°(好ましくは30.8°〜31.8°)
C.2θ=33.8°〜35.8°(好ましくは34.5°〜35.3°)
D.2θ=53.5°〜56.5°(好ましくは54.1°〜56.1°)
E.2θ=56.5°〜59.5°(好ましくは57.0°〜59.0°)
Condition 1
A. Incident angle (2θ) = 7.0 ° to 8.4 ° (preferably 7.2 ° to 8.2 °)
B. 2θ = 30.6 ° to 32.0 ° (preferably 30.8 ° to 31.8 °)
C. 2θ = 33.8 ° to 35.8 ° (preferably 34.5 ° to 35.3 °)
D. 2θ = 53.5 ° to 56.5 ° (preferably 54.1 ° to 56.1 °)
E. 2θ = 56.5 ° to 59.5 ° (preferably 57.0 ° to 59.0 °)

さらに、下記条件2を満たすことが好ましい。
条件2
2θが30.6°〜32.0°(上記領域B)及び33.8°〜35.8°(上記領域C)の位置に観測される回折ピークの一方がメインピークであり、他方がサブピークである。尚、ここでメインピークとは結晶型のXRDパターンの最大ピークの高さが最も高いものを指し、サブピークとは二番目の高さのものを指す。
Furthermore, it is preferable to satisfy the following condition 2.
Condition 2
One of the diffraction peaks observed at 2θ of 30.6 ° to 32.0 ° (region B) and 33.8 ° to 35.8 ° (region C) is a main peak, and the other is a sub peak. It is. Here, the main peak refers to the highest peak of the crystalline XRD pattern, and the sub peak refers to the second peak.

また、本発明のターゲットにおいては、実質同一の結晶型が、二種類以上の結晶型からなっていてもよい。   In the target of the present invention, substantially the same crystal type may be composed of two or more types of crystal types.

本発明のターゲットにおいては、実質同一の結晶型が、ZnGaで表されるスピネル結晶構造と、Inで表されるビックスバイト結晶構造とを含み、かつ上記領域1又は領域3の組成比を満たすことが好ましい。 In the target of the present invention, the substantially same crystal type includes a spinel crystal structure represented by ZnGa 2 O 3 and a bixbite crystal structure represented by In 2 O 3 , and the region 1 or region 3 described above. It is preferable that the composition ratio is satisfied.

ZnGaで表されるスピネル結晶構造を備えていることにより、絶縁体であるGaの生成を抑制することが期待できる。絶縁体であるGaが生成すると、異常放電の頻度が高くなる、ターゲットの抵抗が高くなる等のおそれがある。
Inで表されるビックスバイト結晶構造を含むことで、還元処理を行わなくとも比抵抗の低いターゲットを製造することが容易となる。
By providing the spinel crystal structure represented by ZnGa 2 O 4 , generation of Ga 2 O 3 that is an insulator can be expected to be suppressed. When Ga 2 O 3 that is an insulator is generated, there is a risk that the frequency of abnormal discharge increases, the resistance of the target increases, and the like.
By including a bixbite crystal structure represented by In 2 O 3 , it is easy to manufacture a target having a low specific resistance without performing a reduction treatment.

Inの含有量が多い組織の酸素含有率が、周囲の他の部分の酸素含有率よりも低いことが好ましい。各組織の酸素含有率は電子プローブマイクロアナライザ(EPMA)による組成分布で確認できる。   It is preferable that the oxygen content of the tissue having a large In content is lower than the oxygen content of other surrounding portions. The oxygen content of each tissue can be confirmed by a composition distribution using an electron probe microanalyzer (EPMA).

また、Inで表されるビックスバイト構造の格子定数aは、10.14以下が好ましく、10.10以下がより好ましく、10.08以下が特に好ましい。格子定数aは、XRDのフィティングで求める。格子定数が小さいと移動度の向上によって比抵抗を下げられることが期待できる。 Further, the lattice constant a of the bixbyite structure represented by In 2 O 3 is preferably 10.14 or less, more preferably 10.10 or less, and particularly preferably 10.08 or less. The lattice constant a is obtained by XRD fitting. If the lattice constant is small, it can be expected that the specific resistance can be lowered by improving the mobility.

本結晶型(スピネル結晶構造及びビックスバイト結晶構造を含む)は、領域1あるいは領域3の組成で、1100℃〜1350℃で焼結すること等により得ることが期待できる。   This crystal type (including spinel crystal structure and bixbite crystal structure) can be expected to be obtained by sintering at 1100 ° C. to 1350 ° C. with the composition of region 1 or region 3.

本結晶型を生成できると、酸化物焼結体の平均厚みが5.5mm未満の場合や焼結体の表面研削が0.3mm未満の場合であっても、表面と深部の結晶型の種類が実質的に同じであるスパッタリングターゲットを製造できる場合がある。   If this crystal form can be generated, the types of crystal forms on the surface and in the deep part, even when the average thickness of the oxide sintered body is less than 5.5 mm or the surface grinding of the sintered body is less than 0.3 mm May be able to produce sputtering targets that are substantially the same.

本発明のターゲットにおいては、実質同一の結晶型が、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造と、Inで表されるビックスバイト結晶構造とを含み、かつ前記領域5の組成比を満たすことが好ましい。 In the target of the present invention, substantially the same crystal type is 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 °. A crystal structure having an X-ray diffraction peak of Cukα rays at ˜56.5 ° and 56.5 ° to 59.5 °, and a bixbite crystal structure represented by In 2 O 3 , It is preferable to satisfy the composition ratio.

Inで表されるビックスバイト結晶構造を含むことで、還元処理を行わなくとも比抵抗の低いターゲットを製造することが容易となる。 By including a bixbite crystal structure represented by In 2 O 3 , it is easy to manufacture a target having a low specific resistance without performing a reduction treatment.

Inの含有量が多い組織の酸素含有率が、周囲の他の部分の酸素含有率よりも低いことが好ましい。各組織の酸素含有率は電子プローブマイクロアナライザ(EPMA)による組成分布で確認できる。   It is preferable that the oxygen content of the tissue having a large In content is lower than the oxygen content of other surrounding portions. The oxygen content of each tissue can be confirmed by a composition distribution using an electron probe microanalyzer (EPMA).

また、Inで表されるビックスバイト構造の格子定数aは、10.14以下が好ましく、10.10以下がより好ましく、10.08以下が特に好ましい。格子定数aは、XRDのフィティングで求める。格子定数が小さいと移動度の向上によって比抵抗を下げられることが期待できる。 Further, the lattice constant a of the bixbyite structure represented by In 2 O 3 is preferably 10.14 or less, more preferably 10.10 or less, and particularly preferably 10.08 or less. The lattice constant a is obtained by XRD fitting. If the lattice constant is small, it can be expected that the specific resistance can be lowered by improving the mobility.

本発明のターゲットにおいては、実質同一の結晶型が、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造と、InGaO(ZnO)で表されるホモロガス結晶構造とを含み、かつ上記領域6の組成比を満たすことが好ましい。 In the target of the present invention, substantially the same crystal type is 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 °. A crystal structure having X-ray diffraction peaks of Cukα rays at ˜56.5 ° and 56.5 ° to 59.5 °, and a homologous crystal structure represented by InGaO 3 (ZnO), and It is preferable to satisfy the composition ratio.

前記のホモロガス結晶構造と推定される新結晶型とInGaO(ZnO)で表されるホモロガス結晶構造をともに含むことで、ターゲットとして使用した際、成膜速度の変動が少ない、ホワイトスポットの生成が少なく外観が良好、抗折強度が高い、異常放電が少ない等の効果が期待できる。 By including both the new crystal type presumed to be the homologous crystal structure and the homologous crystal structure represented by InGaO 3 (ZnO), when used as a target, there is little fluctuation in film formation speed, and the generation of white spots can be achieved. Effects such as few appearances, good bending strength, and less abnormal discharge can be expected.

次に、第一の本発明のスパッタリングターゲットの製造方法(以下、本発明の第一の製造方法という)について説明する。
本発明の第一の製造方法は、下記(a)〜(e)の工程を含むことを特徴とする。
(a)原料化合物粉末を混合して混合物を調製する工程、
(b)前記混合物を成形して厚み6.0mm以上の成形体を調製する工程、
(c)雰囲気を昇温速度3℃/分以下で昇温する工程、
(d)前記昇温した成形体をさらに1280℃以上1520℃以下で2時間以上96時間以下焼結し、厚み5.5mm以上の焼結体を得る工程、
(e)前記焼結体の表面を0.25mm以上研削する工程
Next, the manufacturing method of the sputtering target of the first present invention (hereinafter referred to as the first manufacturing method of the present invention) will be described.
The first production method of the present invention includes the following steps (a) to (e).
(A) A step of preparing a mixture by mixing raw material compound powders,
(B) forming the mixture to prepare a molded body having a thickness of 6.0 mm or more;
(C) a step of heating the atmosphere at a heating rate of 3 ° C./min or less,
(D) a step of further sintering the heated body at 1280 ° C. to 1520 ° C. for 2 hours to 96 hours to obtain a sintered body having a thickness of 5.5 mm or more,
(E) Grinding the surface of the sintered body by 0.25 mm or more

上記本発明の第一の製造方法は、前記本発明のターゲットのうち、実質同一の結晶型が一種類の結晶型のみからなり、当該一種類の結晶型がInGaZnOで表されるホモロガス結晶構造であり、かつ前記領域1の組成比を満たすターゲット、一種類の結晶型がInGaO(ZnO)で表されるホモロガス結晶構造であり、かつ前記領域2の組成比を満たすターゲット、及び実質同一の結晶型がZnGaで表されるスピネル結晶構造とInで表されるビックスバイト結晶構造とを含み、かつ前記領域1又は領域3の組成比を満たすターゲット、及び実質同一の結晶型が2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造と、Inで表されるビックスバイト結晶構造とを含み、かつ前記領域5の組成比を満たすターゲットを製造するのに有用である。 In the first production method of the present invention described above, among the targets of the present invention, substantially the same crystal type consists of only one type of crystal, and the one type of crystal type is represented by In 2 Ga 2 ZnO 7. A target having a homologous crystal structure and satisfying the composition ratio of the region 1, a target having a homologous crystal structure in which one type of crystal type is represented by InGaO 3 (ZnO) and satisfying the composition ratio of the region 2, And a target that includes a spinel crystal structure represented by ZnGa 2 O 3 and a bixbite crystal structure represented by In 2 O 3 , wherein substantially the same crystal type satisfies the composition ratio of the region 1 or region 3, and The substantially identical crystal types are 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 ° to 56.5 ° and 56. Of Cukα rays at 5 ° to 59.5 ° This is useful for manufacturing a target including a crystal structure having an X-ray diffraction peak and a bixbite crystal structure represented by In 2 O 3 and satisfying the composition ratio of the region 5.

成形体の平均厚みは、通常6.0mm以上であり、8mm以上が好ましい。6.0mm以上であると、面内の温度ムラが減少し、表面と深部の結晶型の種類に変動が生じにくくなることが期待できる。   The average thickness of the molded body is usually 6.0 mm or more, preferably 8 mm or more. If it is 6.0 mm or more, in-plane temperature unevenness is reduced, and it can be expected that variations in the types of crystal types on the surface and in the deep part are less likely to occur.

昇温速度は、通常3.0℃/分以下であり、2.5℃/分以下が好ましく、1.5℃/分以下が特に好ましい。尚、昇温速度の下限値は、0.3℃/分程度である。0.3℃/分より遅いと焼結時間が掛かりすぎコスト増となるおそれがある。
昇温速度が3℃/分超であると、表面と深部の結晶型の種類が変動するおそれがある。これは、昇温時にターゲットの厚み方向に温度むら等が生じるためと思われる。
The heating rate is usually 3.0 ° C./min or less, preferably 2.5 ° C./min or less, and particularly preferably 1.5 ° C./min or less. In addition, the lower limit of the temperature rising rate is about 0.3 ° C./min. If it is slower than 0.3 ° C./min, the sintering time may be excessively increased and the cost may increase.
If the rate of temperature rise is more than 3 ° C./min, the types of crystal types on the surface and in the deep part may fluctuate. This is presumably because temperature unevenness occurs in the thickness direction of the target when the temperature is raised.

焼結温度は、通常1280℃以上1520℃以下であり、1300℃以上1500℃以下が好ましい。
焼結時間は、通常2時間以上96時間以下であり、4時間以上48時間以下が好ましく、6時間以上24時間以下がより好ましい。
The sintering temperature is usually from 1280 ° C to 1520 ° C, preferably from 1300 ° C to 1500 ° C.
The sintering time is usually 2 hours to 96 hours, preferably 4 hours to 48 hours, and more preferably 6 hours to 24 hours.

研削する深さは、通常0.25mm以上であり、0.3mm以上が好ましく、0.5mm以上がより好ましく、2mm以上が特に好ましい。0.25mm未満であると表面付近の結晶構造の変動部分を十分に取り除けないおそれがある。   The grinding depth is usually 0.25 mm or more, preferably 0.3 mm or more, more preferably 0.5 mm or more, and particularly preferably 2 mm or more. If it is less than 0.25 mm, there is a possibility that the fluctuation part of the crystal structure near the surface cannot be removed sufficiently.

本発明の第二の製造方法は、下記(a)〜(e)の工程を含むことを特徴とする。
(a)原料化合物粉末を混合して混合物を調製する工程、
(b)前記混合物を成形して厚み6.0mm以上の成形体を調製する工程、
(c)雰囲気を昇温速度3℃/分以下で昇温する工程、
(d)前記昇温した成形体をさらに1350℃超1540℃以下で2時間以上36時間以下焼結し、厚み5.5mm以上の焼結体を得る工程、
(e)前記焼結体の表面を0.25mm以上研削する工程
The second production method of the present invention includes the following steps (a) to (e).
(A) A step of preparing a mixture by mixing raw material compound powders,
(B) forming the mixture to prepare a molded body having a thickness of 6.0 mm or more;
(C) a step of heating the atmosphere at a heating rate of 3 ° C./min or less,
(D) a step of further sintering the temperature-increased molded body at 1350 ° C. to 1540 ° C. for 2 hours to 36 hours to obtain a sintered body having a thickness of 5.5 mm or more;
(E) Grinding the surface of the sintered body by 0.25 mm or more

本発明の第二の製造方法は、上記本発明のターゲットのうち、実質同一の結晶型が一種類の結晶型からなり、当該一種類の結晶型が、InGaZnOで表されるホモロガス結晶構造であり、かつ前記領域1の組成比を満たすターゲットの製造に有用である。 In the second production method of the present invention, among the targets of the present invention, substantially the same crystal type comprises one type of crystal type, and the one type of crystal type is represented by In 2 Ga 2 ZnO 7. This is useful for producing a target having a homologous crystal structure and satisfying the composition ratio of the region 1.

焼結温度は、通常1350℃超1540℃以下であり、1380〜1510℃が好ましく、1400〜1490℃がより好ましい。焼結温度が1350℃以下であったり、1540℃を超えたりすると、上記結晶型(InGaZnOで表されるホモロガス結晶構造)以外の結晶型となるおそれがある。 The sintering temperature is usually more than 1350 ° C. and not more than 1540 ° C., preferably 1380-1510 ° C., more preferably 1400-1490 ° C. When the sintering temperature is 1350 ° C. or lower or exceeds 1540 ° C., there is a possibility that a crystal type other than the above-described crystal type (homologous crystal structure represented by In 2 Ga 2 ZnO 7 ) may be obtained.

また、焼結時間は、通常2時間以上36時間以下であり、4〜24時間が好ましく、8〜12時間がより好ましい。焼結時間が36時間を超えると、上記結晶型(InGaZnOで表されるホモロガス結晶構造)以外の結晶型となるおそれがある。 Moreover, sintering time is 2 hours or more and 36 hours or less normally, 4 to 24 hours are preferable and 8 to 12 hours are more preferable. When the sintering time exceeds 36 hours, there is a possibility that a crystal type other than the above-described crystal type (homologous crystal structure represented by In 2 Ga 2 ZnO 7 ) may be obtained.

その他の条件については、本発明の第一の製造方法と同様であるため、ここでは省略する。   Other conditions are the same as those in the first production method of the present invention, and are omitted here.

本発明の第三の製造方法は、下記(f)〜(i)の工程を含むことを特徴とする。
(f)原料化合物粉末を混合して混合物を調製する工程、
(g)前記混合物を成形して成形体を調製する工程、
(h)雰囲気を昇温速度10℃/分以下で昇温する工程、
(i)前記昇温した成形体をさらに1100℃以上1350℃以下で4時間以上96時間以下焼結する工程
The third production method of the present invention includes the following steps (f) to (i).
(F) mixing the raw material compound powder to prepare a mixture;
(G) forming the mixture to prepare a molded body;
(H) a step of heating the atmosphere at a heating rate of 10 ° C./min or less,
(I) A step of further sintering the temperature-increased compact at 1100 ° C. to 1350 ° C. for 4 hours to 96 hours.

本発明の第三の製造方法は、前記本発明のターゲットのうち、実質同一の結晶型が、ZnGaで表されるスピネル結晶構造と、Inで表されるビックスバイト結晶構造とを含み、かつ前記領域1又は領域3の組成比を満たすスパッタリングターゲットを製造するのに有用である。 In the third production method of the present invention, a spinel crystal structure represented by ZnGa 2 O 3 and a bixbite crystal structure represented by In 2 O 3 are substantially identical among the targets of the present invention. And a sputtering target satisfying the composition ratio of the region 1 or the region 3 is useful.

昇温速度は、通常10℃/分以下であり、6℃/分以下が好ましく、3℃/分以下がより好ましい。昇温速度が10℃/分超であると、表面部分と内部の結晶型等の性状が変わる、あるいはターゲットにクラックが発生するおそれがある。尚、昇温速度の下限値は、0.3℃/分程度である。   The rate of temperature increase is usually 10 ° C./min or less, preferably 6 ° C./min or less, and more preferably 3 ° C./min or less. If the rate of temperature rise exceeds 10 ° C./min, properties such as the surface portion and the internal crystal form may change, or cracks may occur in the target. In addition, the lower limit of the temperature rising rate is about 0.3 ° C./min.

焼結温度は、通常1100℃以上1350℃以下であり、1200℃以上1300℃以下が好ましい。1100℃未満であると、相対密度が上がらないおそれや焼結に時間が掛かるおそれがある。1350℃超であると、高温で生成する他の結晶型が生成し、上記の結晶型(ZnGaで表されるスピネル結晶構造及びInで表されるビックスバイト結晶構造)が安定して得られないおそれがある。 The sintering temperature is usually 1100 ° C. or higher and 1350 ° C. or lower, and preferably 1200 ° C. or higher and 1300 ° C. or lower. If it is less than 1100 ° C., the relative density may not be increased, and it may take time for sintering. When the temperature is higher than 1350 ° C., other crystal types generated at high temperature are generated, and the above crystal types (spinel crystal structure represented by ZnGa 2 O 3 and bixbite crystal structure represented by In 2 O 3 ) are obtained. There is a risk that it cannot be obtained stably.

焼結時間は、通常4時間以上96時間以下であり、4時間以上48時間以下が好ましく、6時間以上24時間以下がより好ましい。4時間未満であると、相対密度が上がらないおそれがある。96時間以上であると、組成の一部が蒸発し組成比の変動が発生するおそれがあり、また製造に時間が掛かりすぎ工業化することが難しい。   The sintering time is usually from 4 hours to 96 hours, preferably from 4 hours to 48 hours, and more preferably from 6 hours to 24 hours. If it is less than 4 hours, the relative density may not increase. If it is 96 hours or longer, part of the composition may evaporate and the composition ratio may vary, and it takes too much time for production and it is difficult to industrialize.

その他の条件については、本発明の第一又は第二の製造方法と同様であるため、ここでは省略する。   Other conditions are the same as those in the first or second production method of the present invention, and are omitted here.

<ターゲットの製造工程毎の説明>
(1)配合工程
配合工程は、スパッタリングターゲットの原料である金属酸化物を混合する工程である。
<Description of each target manufacturing process>
(1) Compounding step The compounding step is a step of mixing a metal oxide that is a raw material of the sputtering target.

原料としては、インジウム化合物の粉末、ガリウム化合物の粉末、亜鉛化合物の粉末等の粉末を用いる。ターゲットの原料となる各金属化合物の比表面積(BET比表面積)は、JIS Z 8830に記載の方法によって測定することができる。インジウムの化合物としては、例えば、酸化インジウム、水酸化インジウム等が挙げられる。ガリウム化合物としては、例えば、酸化ガリウム、水酸化ガリウム等が挙げられる。亜鉛の化合物としては、例えば、酸化亜鉛、水酸化亜鉛等が挙げられる。各々の化合物として、焼結のしやすさ、副生成物の残存のし難さから、酸化物が好ましい。また、原料の一部として金属亜鉛(亜鉛末)を用いることが好ましい。原料の一部に亜鉛末を用いるとホワイトスポットの生成を低減することができる。   As the raw material, powders such as indium compound powder, gallium compound powder, and zinc compound powder are used. The specific surface area (BET specific surface area) of each metal compound as a target raw material can be measured by the method described in JIS Z 8830. Examples of the indium compound include indium oxide and indium hydroxide. Examples of the gallium compound include gallium oxide and gallium hydroxide. Examples of the zinc compound include zinc oxide and zinc hydroxide. As each compound, an oxide is preferable because it is easy to sinter and it is difficult to leave a by-product. Moreover, it is preferable to use metallic zinc (zinc powder) as a part of the raw material. When zinc powder is used as a part of the raw material, the generation of white spots can be reduced.

また、原料の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、特に好ましくは4N(99.99質量%)以上である。純度が2Nより低いと、得られる薄膜の耐久性が低下したり、液晶ディスプレイに用いた際に液晶側に不純物が入り、焼き付けが起こるおそれがある。   The purity of the raw material is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, particularly preferably 4N (99.99% by mass) or more. If the purity is lower than 2N, the durability of the resulting thin film may be reduced, or impurities may enter the liquid crystal side when used in a liquid crystal display, and baking may occur.

金属酸化物等のターゲットの製造に用いる原料を混合し、通常の混合粉砕機、例えば、湿式ボールミルやビーズミル又は超音波装置を用いて、均一に混合・粉砕することが好ましい。   It is preferable to mix the raw materials used for the production of the target such as metal oxide and uniformly mix and pulverize them using an ordinary mixing and pulverizing machine such as a wet ball mill, a bead mill or an ultrasonic device.

(2)仮焼工程
仮焼工程は、スパッタリングターゲットの原料である化合物の混合物を得た後、この混合物を仮焼する、必要に応じて設けられる工程である。
仮焼を行うと、密度を上げることが容易になり好ましいが、コストアップになるおそれがある。そのため、仮焼を行わずに密度を上げられることがより好ましい。
(2) Calcination process The calcination process is a process provided as necessary, after obtaining a mixture of compounds that are raw materials of the sputtering target, and then calcining the mixture.
When calcination is performed, it is easy to increase the density, which is preferable, but there is a risk of increasing the cost. Therefore, it is more preferable that the density can be increased without performing calcination.

仮焼工程においては、500〜1200℃で、1〜100時間の条件で金属酸化物の混合物を熱処理することが好ましい。500℃未満又は1時間未満の熱処理条件では、インジウム化合物や亜鉛化合物、錫化合物の熱分解が不十分となる場合があるためである。一方、熱処理条件が、1200℃を超えた場合又は100時間を超えた場合には、粒子の粗大化が起こる場合があるためである。
従って、特に好ましいのは、800〜1200℃の温度範囲で、2〜50時間の条件で、熱処理(仮焼)することである。
In the calcination step, the metal oxide mixture is preferably heat-treated at 500 to 1200 ° C. for 1 to 100 hours. This is because the thermal decomposition of the indium compound, the zinc compound, and the tin compound may be insufficient under heat treatment conditions of less than 500 ° C. or less than 1 hour. On the other hand, when the heat treatment condition exceeds 1200 ° C. or exceeds 100 hours, coarsening of the particles may occur.
Therefore, it is particularly preferable to perform heat treatment (calcination) in the temperature range of 800 to 1200 ° C. for 2 to 50 hours.

尚、ここで得られた仮焼物は、下記の成形工程及び焼成工程の前に粉砕するのが好ましい。   The calcined product obtained here is preferably pulverized before the following molding step and firing step.

(3)成形工程
成形工程は、金属酸化物の混合物(上記仮焼工程を設けた場合には仮焼物)を加圧成形して成形体とする工程である。この工程により、ターゲットとして好適な形状に成形する。仮焼工程を設けた場合には得られた仮焼物の微粉末を造粒した後、成形処理により所望の形状に成形することができる。
(3) Molding step The molding step is a step of pressure-molding a mixture of metal oxides (or calcined product when the calcining step is provided) to form a compact. By this process, it is formed into a shape suitable as a target. When the calcination step is provided, the obtained calcined fine powder can be granulated and then molded into a desired shape by a molding process.

本工程で用いることができる成形処理としては、例えば、プレス成形(一軸プレス)、金型成形、鋳込み成形、射出成形等も挙げられるが、焼結密度の高い焼結体(ターゲット)を得るためには、冷間静水圧(CIP)等で成形するのが好ましい。
また、プレス成形(一軸プレス)後に、冷間静水圧(CIP)、熱間静水圧(HIP)等を行い2段階以上の成形工程を設けると再現性を高めるという点で好ましい。
Examples of the molding process that can be used in this step include press molding (uniaxial press), mold molding, cast molding, injection molding, and the like. In order to obtain a sintered body (target) having a high sintering density. In this case, it is preferable to mold by cold isostatic pressure (CIP) or the like.
In addition, it is preferable to perform cold isostatic pressure (CIP), hot isostatic pressure (HIP), and the like after press molding (uniaxial pressing) to provide two or more molding processes in order to improve reproducibility.

CIP(冷間静水圧、あるいは静水圧加圧装置)を用いる場合、面圧800〜4000kgf/cmで0.5〜60分保持することが好ましい。面圧2000〜3000kgf/cmで2〜30分保持することがより好ましい。また、面圧が800kgf/cm未満であると、焼結後の密度が上がらないあるいは抵抗が高くなるおそれがある。面圧4000kgf/cmを超えると装置が大きくなりすぎ不経済となるおそれがある。保持時間が0.5分未満であると焼結後の密度が上がらないあるいは抵抗が高くなるおそれがある。60分を超えると時間が掛かりすぎ不経済となるおそれがある。 When using CIP (cold hydrostatic pressure or hydrostatic pressure press), it is preferable to hold at a surface pressure of 800 to 4000 kgf / cm 2 for 0.5 to 60 minutes. It is more preferable to hold at a surface pressure of 2000 to 3000 kgf / cm 2 for 2 to 30 minutes. Further, if the surface pressure is less than 800 kgf / cm 2 , the density after sintering may not increase or the resistance may increase. If the surface pressure exceeds 4000 kgf / cm 2 , the apparatus may become too large and uneconomical. If the holding time is less than 0.5 minutes, the density after sintering may not increase or the resistance may increase. If it exceeds 60 minutes, it may take too much time and be uneconomical.

尚、成形処理に際しては、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成形助剤を用いてもよい。   In the molding process, molding aids such as polyvinyl alcohol, methylcellulose, polywax, and oleic acid may be used.

(4)焼結工程
焼結工程は、上記成形工程で得られた成形体を焼成する工程である。
(4) Sintering process A sintering process is a process of baking the molded object obtained at the said formation process.

この場合の焼結条件としては、酸素ガス雰囲気又は酸素ガス加圧下で行うことが好ましい。酸素ガスを含有しない雰囲気で焼結すると、得られるターゲットの密度を十分に向上させることができず、スパッタリング時の異常放電の発生を十分に抑制できなくなる場合がある。   In this case, the sintering is preferably performed in an oxygen gas atmosphere or under an oxygen gas pressure. If sintering is performed in an atmosphere that does not contain oxygen gas, the density of the target obtained cannot be sufficiently improved, and the occurrence of abnormal discharge during sputtering may not be sufficiently suppressed.

焼結時には、前記所定の雰囲気の昇温速度で昇温を行う。また、昇温の途中で一度昇温を止め保持温度で保持し、2段階以上で焼結を行ってもよい。   At the time of sintering, the temperature is increased at a temperature increase rate in the predetermined atmosphere. Alternatively, the temperature rise may be stopped once during the temperature rise and held at the holding temperature, and sintering may be performed in two or more stages.

また、焼成時の雰囲気の降温速度(冷却速度)は、通常4℃/分以下、好ましくは2℃/分以下、より好ましくは1℃/分以下、さらに好ましくは0.8℃/分以下、特に好ましくは0.5℃/分以下である。4℃/分以下であると、所望の本発明の結晶型が得られやすい。また、降温時にクラックが発生しにくい。   Moreover, the temperature lowering rate (cooling rate) of the atmosphere during firing is usually 4 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, further preferably 0.8 ° C./min or less, Particularly preferred is 0.5 ° C./min or less. When it is 4 ° C./min or less, the desired crystal form of the present invention is easily obtained. In addition, cracks are unlikely to occur when the temperature drops.

(5)還元工程
還元工程は、上記焼結工程で得られた焼結体のバルク抵抗をターゲット全体として低減するために還元処理を行う、必要に応じて設けられる工程である。
(5) Reduction process A reduction process is a process provided as needed which performs a reduction process in order to reduce the bulk resistance of the sintered compact obtained at the said sintering process as the whole target.

本工程で適用することができる還元方法としては、例えば、還元性ガスによる方法や真空焼成又は不活性ガスによる還元等が挙げられる。
還元性ガスによる還元処理の場合、水素、メタン、一酸化炭素や、これらのガスと酸素との混合ガス等を用いることができる。
不活性ガス中での焼成による還元処理の場合、窒素、アルゴンや、これらのガスと酸素との混合ガス等を用いることができる。
Examples of the reduction method that can be applied in this step include a method using a reducing gas, vacuum firing, or reduction using an inert gas.
In the case of reduction treatment with a reducing gas, hydrogen, methane, carbon monoxide, a mixed gas of these gases and oxygen, or the like can be used.
In the case of reduction treatment by firing in an inert gas, nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used.

本発明では、還元処理(アルゴンや窒素等の不活性ガス雰囲気、水素雰囲気、あるいは真空や低圧での熱処理)は行わないことが好ましい。還元処理を行うと、表面部と深部の抵抗値の違いを発生あるいは増幅させるおそれがある。   In the present invention, reduction treatment (inert gas atmosphere such as argon or nitrogen, hydrogen atmosphere, or heat treatment in vacuum or low pressure) is preferably not performed. When the reduction treatment is performed, there is a risk that a difference in resistance value between the surface portion and the deep portion may be generated or amplified.

(6)加工工程
加工工程は、上記のようにして焼結して得られた焼結体を、さらにスパッタリング装置への装着に適した形状に切削加工し、またバッキングプレート等の装着用治具を取り付けるための、必要に応じて設けられる工程である。
(6) Processing step The processing step is to cut the sintered body obtained by sintering as described above into a shape suitable for mounting on a sputtering apparatus, and to mount a jig such as a backing plate. It is the process provided as needed for attaching.

酸化物焼結体をスパッタリングターゲット素材とするには、該焼結体を例えば、平面研削盤で研削して表面粗さRaが5μm以下とすることが好ましい。ターゲット素材の表面粗さRaは0.5μm以下であり、方向性のない研削面を備えていることが好ましい。Raが0.5μmより大きかったり、研磨面に方向性があると、異常放電が起きたり、パーティクルが発生するおそれがある。
ここで、さらにスパッタリングターゲットのスパッタ面に鏡面加工を施して、平均表面粗さRaを1000オングストローム以下としてもよい。この鏡面加工(研磨)は機械的な研磨、化学研磨、メカノケミカル研磨(機械的な研磨と化学研磨の併用)等の、公知の研磨技術を用いることができる。例えば、固定砥粒ポリッシャー(ポリッシュ液:水)で#2000以上にポリッシングしたり、又は遊離砥粒ラップ(研磨材:SiCペースト等)にてラッピング後、研磨材をダイヤモンドペーストに換えてラッピングすることによって得ることができる。
In order to use the oxide sintered body as a sputtering target material, it is preferable that the sintered body is ground with, for example, a surface grinder so that the surface roughness Ra is 5 μm or less. The target material has a surface roughness Ra of 0.5 μm or less, and preferably has a ground surface with no directivity. If Ra is larger than 0.5 μm or the polished surface has directivity, abnormal discharge may occur or particles may be generated.
Here, the sputtering surface of the sputtering target may be further mirror-finished so that the average surface roughness Ra may be 1000 angstroms or less. For this mirror finishing (polishing), a known polishing technique such as mechanical polishing, chemical polishing, and mechanochemical polishing (a combination of mechanical polishing and chemical polishing) can be used. For example, polishing to # 2000 or more with a fixed abrasive polisher (polishing liquid: water) or lapping with loose abrasive lapping (abrasive: SiC paste, etc.), and then lapping by changing the abrasive to diamond paste Can be obtained by:

表面は200〜10,000番のダイヤモンド砥石により仕上げを行うことが好ましく、400〜5,000番のダイヤモンド砥石により仕上げを行うことが特に好ましい。200番より小さい、あるいは10,000番より大きいダイヤモンド砥石を使用するとターゲットが割れやすくなるおそれがある。
このような研磨方法には特に制限はない。得られたスパッタリングターゲット素材をバッキングプレートへボンディングする。
The surface is preferably finished with a diamond grindstone of No. 200 to 10,000, and particularly preferably finished with a diamond grindstone of No. 400 to 5,000. If a diamond grindstone smaller than No. 200 or larger than 10,000 is used, the target may be easily broken.
Such a polishing method is not particularly limited. The obtained sputtering target material is bonded to a backing plate.

ターゲット素材の厚みは通常2〜20mm、好ましくは3〜12mm、特に好ましくは4〜6mmである。また、複数のターゲットを一つのバッキングプレートに取り付け、実質一つのターゲットとしてもよい。   The thickness of the target material is usually 2 to 20 mm, preferably 3 to 12 mm, particularly preferably 4 to 6 mm. Further, a plurality of targets may be attached to one backing plate to make a substantially single target.

次に、清浄処理にはエアーブローあるいは流水洗浄等を使用できる。エアーブローで異物を除去する際には、ノズルの向い側から集塵機で吸気を行なうとより有効に除去できる。尚、以上のエアーブローや流水洗浄では限界があるので、さらに超音波洗浄等を行なうこともできる。この超音波洗浄は周波数25〜300KHzの間で多重発振させて行なう方法が有効である。例えば周波数25〜300KHzの間で、25KHz刻みに12種類の周波数を多重発振させて超音波洗浄を行なうのが良い。
尚、作製したターゲットの組成比(原子比)は、誘導プラズマ発光分析装置(ICP−AES)による分析で求めることができる。
Next, air blow or running water washing can be used for the cleaning treatment. When removing foreign matter by air blow, it is possible to remove the foreign matter more effectively by suctioning with a dust collector from the opposite side of the nozzle. In addition, since the above air blow and running water cleaning have a limit, ultrasonic cleaning etc. can also be performed. This ultrasonic cleaning is effective by performing multiple oscillations at a frequency of 25 to 300 KHz. For example, it is preferable to perform ultrasonic cleaning by multiplying twelve types of frequencies at 25 KHz intervals between frequencies of 25 to 300 KHz.
In addition, the composition ratio (atomic ratio) of the produced target can be obtained by analysis using an induction plasma emission analyzer (ICP-AES).

以下、実施例を用いて本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example, this invention is not limited at all by these Examples.

実施例1
(1)ターゲットの作製
下記条件で同時に同じ酸化物焼結体を2個以上作製し、1個を破壊試験用とした(切断し評価した)。
Example 1
(1) Production of target Two or more of the same oxide sintered bodies were produced simultaneously under the following conditions, and one was used for a destructive test (cut and evaluated).

(a)原料
In 純度4N、アジア物性材料(株)製
Ga 純度4N、アジア物性材料(株)製
ZnO 純度4N、高純度化学(株)製
(b)混合:ボールミルで24時間混合した。
(c)造粒:自然乾燥
(d)成形:
プレス成形、面圧400kgf/cm、1分保持
CIP(静水圧加圧装置)、面圧2200kgf/cm、5分保持
(e)焼結:電気炉
昇温速度 1℃/分
焼結温度 1300℃
焼結時間 20時間
焼結雰囲気 酸素雰囲気
冷却速度 0.3℃/分
(f)後処理:還元条件下での熱処理(還元処理)は行わなかった。
(g)加工:厚さ6mmの焼結体を厚さ5mmに研削・研磨した。
尚、上下面・側辺をダイヤモンドカッターで切断して、表面を平面研削盤で研削して表面粗さRaが5μm以下のターゲット素材とした。
(h)得られたターゲット用焼結体のうち1個を、深部測定用に厚み2.5mmの部位で切断した。
(i)得られたターゲット用焼結体の表面をエアーブローし、さらに3分間超音波洗浄を行なった後、インジウム半田にて無酸素銅製のバッキングプレートにボンディングしてターゲットとした。ターゲットの表面粗さRaは0.5μm以下であり、方向性のない研削面を備えていた。
(A) Raw material In 2 O 3 purity 4N, manufactured by Asian Physical Materials Co., Ltd. Ga 2 O 3 purity 4N, manufactured by Asian Physical Materials Co., Ltd. ZnO purity 4N, manufactured by High Purity Chemical Co., Ltd. (b) Mixing: Ball mill Mixed for 24 hours.
(C) Granulation: natural drying (d) molding:
Press molding, surface pressure 400 kgf / cm 2 , 1 minute hold CIP (hydrostatic pressure press), surface pressure 2200 kgf / cm 2 , 5 minute hold (e) Sintering: Electric furnace Temperature rising rate 1 ° C./min Sintering temperature 1300 ° C
Sintering time 20 hours Sintering atmosphere Oxygen atmosphere Cooling rate 0.3 ° C./min (f) Post-treatment: No heat treatment (reduction treatment) under reducing conditions was performed.
(G) Processing: A sintered body having a thickness of 6 mm was ground and polished to a thickness of 5 mm.
The upper and lower surfaces and sides were cut with a diamond cutter, and the surface was ground with a surface grinder to obtain a target material having a surface roughness Ra of 5 μm or less.
(H) One of the obtained sintered bodies for a target was cut at a site having a thickness of 2.5 mm for deep measurement.
(I) The surface of the obtained sintered body for target was blown with air and further subjected to ultrasonic cleaning for 3 minutes, and then bonded to a backing plate made of oxygen-free copper with indium solder to obtain a target. The surface roughness Ra of the target was 0.5 μm or less and had a ground surface with no directionality.

(2)ターゲット用焼結体の評価
得られたターゲット用焼結体の評価は下記の方法で行った。
(2) Evaluation of target sintered body The obtained target sintered body was evaluated by the following method.

(a)比抵抗
抵抗率計(三菱化学(株)製、ロレスタ)を使用し四探針法(JIS R 1637)に基づき測定、10箇所の平均値を抵抗率値とした。得られたターゲット用焼結体表面の比抵抗(R1)及び内部の比抵抗(R2)から、比(R1/R2)を算出した。
(A) Specific resistance Measured based on a four-probe method (JIS R 1637) using a resistivity meter (Mitsubishi Chemical Co., Ltd., Loresta), and the average value at 10 locations was defined as the resistivity value. The ratio (R1 / R2) was calculated from the specific resistance (R1) on the surface of the obtained sintered body for the target and the internal specific resistance (R2).

(b)X線回折測定(XRD)
ターゲット用焼結体及びその切断片を下記条件で直接測定し、結晶型を決定した。
・装置:(株)リガク製Ultima−III
・X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ−θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリット DS、SS:2/3°、RS:0.6mm
(B) X-ray diffraction measurement (XRD)
The target sintered body and its cut piece were directly measured under the following conditions to determine the crystal type.
・ Device: ULTIMA-III manufactured by Rigaku Corporation
-X-ray: Cu-Kα ray (wavelength 1.5406mm, monochromatized with graphite monochromator)
・ 2θ-θ reflection method, continuous scan (1.0 ° / min)
・ Sampling interval: 0.02 °
・ Slit DS, SS: 2/3 °, RS: 0.6 mm

酸化物焼結体中に含まれる化合物の結晶型は、表3に示すJCPDSカードと照合することによって決定した。   The crystal form of the compound contained in the oxide sintered body was determined by collating with the JCPDS card shown in Table 3.

(c)粒径(μm)
酸化物結晶の粒径は、電子プローブマイクロアナライザ(EPMA)で測定し、表1に平均粒径で示す。
(d)組成比(原子比)
ターゲットから試料を採取し、誘導プラズマ発光分析装置(ICP−AES)で分析して原子比を求めた。
(C) Particle size (μm)
The particle diameter of the oxide crystal was measured with an electron probe microanalyzer (EPMA) and is shown in Table 1 as an average particle diameter.
(D) Composition ratio (atomic ratio)
A sample was taken from the target and analyzed with an induction plasma emission analyzer (ICP-AES) to determine the atomic ratio.

結晶型の同一性は、XRDで同定された結晶型について、一方にしか含まれない結晶型が無い(同定された結晶型が全て一致する)場合を「同一」と判定し、一方にしか含まれない結晶型が有る場合を「同一でない」と判定した(前記を満たせばピーク強度に差があるもの(±50%程度)も同一と判断した)。
また、ターゲット用焼結体表面及び内部の元素組成比(原子比)の同一性は、各金属元素について±0.01以内を同一と判断した。
ターゲット用焼結体表面及び内部の粒径の同一性は、ともに5μm以内である場合を同一と判断した。
ターゲット用焼結体表面及び内部の比抵抗の同一性は、±50%以内を同一と判断した。
元素組成比の同一性は、表面及び内部(切断後の表面)から試料を採取し、ICP分析法で分析して組成比(原子比)を比較し判断した。
The identity of the crystal type is determined to be “identical” when there is no crystal type included in only one of the crystal types identified by XRD (all identified crystal types match), and included in only one of them. The case where there was a crystal form that was not determined was determined to be “not identical” (if the above was satisfied, a difference in peak intensity (about ± 50%) was also determined to be the same).
Moreover, the identity of the element composition ratio (atomic ratio) on the surface of the sintered body for the target and the inside was determined to be the same within ± 0.01 for each metal element.
It was judged that the same in both the target sintered body surface and the internal particle size were within 5 μm.
The identity of the specific resistance on the surface of the target sintered body and inside was judged to be the same within ± 50%.
The identity of the elemental composition ratio was judged by taking samples from the surface and the inside (the surface after cutting) and analyzing by ICP analysis to compare the composition ratio (atomic ratio).

(3)TFTの作製
完成したスパッタリングターゲットを用いて、図1のチャンネルストッパー型薄膜トランジスタ(逆スタガ型薄膜トランジスタ)を作製し、評価した。
(3) Production of TFT Using the completed sputtering target, the channel stopper type thin film transistor (reverse stagger type thin film transistor) of FIG. 1 was produced and evaluated.

基板10は、ガラス基板(Corning 1737)を用いた。まず、基板10上に電子ビーム蒸着法により、厚さ10nmのMoと厚さ80nmのAlと厚さ10nmのMoをこの順で積層した。積層膜をフォトリソグラフィー法とリフトオフ法を用いて、ゲート電極20を形成した。   As the substrate 10, a glass substrate (Corning 1737) was used. First, 10 nm thick Mo, 80 nm thick Al, and 10 nm thick Mo were laminated in this order on the substrate 10 by electron beam evaporation. A gate electrode 20 was formed on the laminated film by using a photolithography method and a lift-off method.

ゲート電極20及び基板10上に、厚さ200nmのSiO膜をTEOS−CVD法により成膜し、ゲート絶縁層30を形成した。尚、ゲート絶縁層の成膜はスパッタ法でもよいが、TEOS(テトラエトキシシラン)−CVD法やプラズマ化学気相成長法(PECVD)法等のCVD法で形成することが好ましい。スパッタ法ではオフ電流が高くなるおそれがある。 A 200 nm thick SiO 2 film was formed on the gate electrode 20 and the substrate 10 by the TEOS-CVD method to form the gate insulating layer 30. The gate insulating layer may be formed by sputtering, but is preferably formed by CVD such as TEOS (tetraethoxysilane) -CVD or plasma enhanced chemical vapor deposition (PECVD). In the sputtering method, off current may be increased.

続いて、RFスパッタ法により、上記(1)で作製したターゲットを使用して、厚さ50nmの半導体膜40(チャネル層)を形成した。その後、大気中300℃で60分間熱処理した。   Subsequently, a semiconductor film 40 (channel layer) having a thickness of 50 nm was formed by RF sputtering using the target prepared in (1) above. Then, it heat-processed for 60 minutes at 300 degreeC in air | atmosphere.

半導体膜40の上に、スパッタ法によりエッチングストッパー層60(保護膜)としてSiO膜を堆積した。尚、保護膜の成膜方法はCVD法でもよい。 A SiO 2 film was deposited on the semiconductor film 40 as an etching stopper layer 60 (protective film) by sputtering. The protective film may be formed by a CVD method.

本実施例では、投入RFパワーは200Wとした。成膜時の雰囲気は、全圧0.4Paであり、その際のガス流量比はAr:O=95:5であった。また、基板温度は50℃であった。堆積させた酸化物半導体膜と保護膜は、フォトリソグラフィー法及びエッチング法により、適当な大きさに加工した。 In this embodiment, the input RF power was 200 W. The atmosphere during the film formation was a total pressure of 0.4 Pa, and the gas flow rate ratio at that time was Ar: O 2 = 95: 5. The substrate temperature was 50 ° C. The deposited oxide semiconductor film and protective film were processed into appropriate sizes by a photolithography method and an etching method.

エッチングストッパー層60の形成後に、厚さ5nmのMoと厚さ50nmのAlと厚さ5nmのMoをこの順で積層し、フォトリソグラフィー法とドライエッチングにより、ソース電極50及びドレイン電極52を形成した。   After the formation of the etching stopper layer 60, Mo having a thickness of 5 nm, Al having a thickness of 50 nm, and Mo having a thickness of 5 nm were laminated in this order, and the source electrode 50 and the drain electrode 52 were formed by photolithography and dry etching. .

その後、大気中300℃で60分間熱処理し、チャネル長が20μmで、チャネル幅が20μmのトランジスタを得た。   After that, heat treatment was performed at 300 ° C. for 60 minutes in the atmosphere to obtain a transistor having a channel length of 20 μm and a channel width of 20 μm.

(4)TFTの評価
薄膜トランジスタの評価は、以下のように実施した。
(a)移動度(電界効果移動度(μ))
半導体パラメーターアナライザー(ケースレー4200)を用い、室温、遮光環境下で測定した。
(4) Evaluation of TFT Evaluation of the thin film transistor was performed as follows.
(A) Mobility (field effect mobility (μ))
Using a semiconductor parameter analyzer (Keutley 4200), the measurement was performed at room temperature in a light-shielded environment.

(b)S値(V/decade)
半導体パラメーターアナライザー(ケースレー4200)を用い、室温、遮光環境下で測定した。
(B) S value (V / decade)
Using a semiconductor parameter analyzer (Keutley 4200), the measurement was performed at room temperature in a light-shielded environment.

(c)混酸耐性
(i)混酸耐性評価用簡易素子の作製
シャドーマスクを用い簡易素子を作製した。熱酸化膜(100nm)付シリコン基板に半導体層形成用のシャドーマスクを付け、上記(3)と同様の条件で半導体膜を成膜した。次にソース・ドレイン電極形成用のシャドーマスクを付け、金電極をスパッタリングで成膜しソース・ドレイン電極とし、チャンネル長(L)200μm、チャンネル幅(W)1000μmの混酸耐性評価用簡易素子(TFT)とした。
(C) Mixed acid resistance
(i) Preparation of simple element for evaluating mixed acid resistance A simple element was prepared using a shadow mask. A shadow mask for forming a semiconductor layer was attached to a silicon substrate with a thermal oxide film (100 nm), and a semiconductor film was formed under the same conditions as in (3) above. Next, a shadow mask for forming a source / drain electrode is attached, and a gold electrode is formed by sputtering to form a source / drain electrode. A simple element for evaluating mixed acid resistance (TFT) having a channel length (L) of 200 μm and a channel width (W) of 1000 μm. ).

(ii)混酸耐性の評価
駆動を確認できた混酸耐性評価用簡易素子(TFT)を混酸(リン酸系水溶液、30℃)に10秒間浸けた後、ドライエアー及び150℃15分で乾燥させた後TFT特性を測定した。ゲート電(Vg)15V、ドレイン電圧(Vd)15Vで10−6A以上のドレイン電流(Id)が確認できたものをA、できなかったものをBとして2段階で評価した。
(ii) Evaluation of mixed acid resistance A simple element (TFT) for evaluating mixed acid resistance whose driving was confirmed was immersed in mixed acid (phosphoric acid aqueous solution, 30 ° C.) for 10 seconds, and then dried at 15 ° C. for 15 minutes with dry air. Later, TFT characteristics were measured. A gate current (Vg) of 15 V and a drain voltage (Vd) of 15 V were evaluated in two stages, with A indicating a drain current (Id) of 10 −6 A or more and A indicating no drain current (Id).

(d)光電流の評価
光照射下と遮光環境下の測定を比較し、閾値電圧(Vth)の変動が2V未満のものをA、2V以上のものをBとして2段階で評価した。
(D) Evaluation of photocurrent Measurements under light irradiation and light-shielding environment were compared, and the threshold voltage (Vth) variation was evaluated in two stages, with A being less than 2V and A being 2V or more.

(5)スパッタリングターゲットの長期使用時の安定性の評価
(a)成膜速度の安定性(変動)
1000時間連続放電(成膜)前後の成膜速度を比較した。
変動が5%未満のものをA、5%以上10%未満のものをB、10%以上のものをCと評価した。
(5) Evaluation of stability during long-term use of sputtering target (a) Stability of film formation rate (variation)
The film formation rates before and after 1000 hours of continuous discharge (film formation) were compared.
A variation of less than 5% was evaluated as A, 5% or more but less than 10% was evaluated as B, and 10% or more was evaluated as C.

成膜速度(スパッタレート)は、触針式表面形状測定器 Dectak(アルバック(株)社製)で測定した膜厚を成膜時間で割ることで求めた。   The film formation rate (sputter rate) was determined by dividing the film thickness measured by a stylus type surface shape measuring device Decak (manufactured by ULVAC, Inc.) by the film formation time.

(b)TFT特性の安定性(変動)
1000時間連続放電(成膜)前後にTFTを作製し、TFT特性(オン電流)の変動を評価した。変動が10%未満のものをA、10%以上20%未満のものをB、20%以上のものをCと評価した。
(B) Stability (variation) of TFT characteristics
A TFT was fabricated before and after 1000 hours of continuous discharge (film formation), and the variation in TFT characteristics (on-current) was evaluated. A sample having a variation of less than 10% was evaluated as A, a sample having a variation of 10% or more and less than 20% was evaluated as B, and a sample having a variation of 20% or more was evaluated as C.

(6)その他
電子プローブマイクロアナライザ(EPMA)による組成分布の測定で、表面、深部ともにインジウムリッチ部分は周囲よりも酸素含有量が少ないことが確認できた。
同様に作製した薄膜を用いてターゲットとの組成比の違いを評価した。組成比はICP分析法で分析して求めた。ターゲットと薄膜の組成比はほぼ同一(薄膜の各元素の組成比がターゲットの各元素の組成比の±2%以内)であった。
(6) Others It was confirmed by measuring the composition distribution using an electron probe microanalyzer (EPMA) that the indium-rich portion of the surface and deep portions had a lower oxygen content than the surroundings.
Similarly, the difference in composition ratio with the target was evaluated using the thin film produced. The composition ratio was determined by analysis by ICP analysis. The composition ratio of the target and the thin film was almost the same (the composition ratio of each element of the thin film was within ± 2% of the composition ratio of each element of the target).

実施例2〜9及び比較例1〜8
表2−1及び表2−2に示す組成及び条件とした以外は実施例1と同様にして酸化物焼結体、スパッタリングターゲット及びTFTを作製し、評価した。結果を表2−1及び表2−2に示す。
尚、実施例3及び後述する参考例1〜3、5及び6で用いたSn化合物は下記の通りである。
SnO 純度4N、高純度化学(株)製
尚、実施例8において、XRDから求めたInのビックスバイト構造の格子定数は、格子定数a=10.074であった。
Examples 2-9 and Comparative Examples 1-8
An oxide sintered body, a sputtering target, and a TFT were prepared and evaluated in the same manner as in Example 1 except that the compositions and conditions shown in Table 2-1 and Table 2-2 were used. The results are shown in Table 2-1 and Table 2-2.
In addition, the Sn compound used in Example 3 and Reference Examples 1-3, 5 and 6 described later is as follows.
SnO 2 purity 4N, manufactured by High Purity Chemical Co., Ltd. In Example 8, the lattice constant of the bixbite structure of In 2 O 3 obtained from XRD was lattice constant a = 10.074.

実施例10及び11
半導体膜50nmで作製した場合には、ノーマリーオンとなったため、半導体膜を15nmとしてTFTを作製した。半導体膜の厚みを15nmとし、表2−1に示す組成及び条件とした以外は実施例1と同様にして酸化物焼結体、スパッタリングターゲット及びTFTを作製し、評価した。結果を表2−1に示す。
Examples 10 and 11
When the semiconductor film was formed with a thickness of 50 nm, it was normally on, so a TFT was manufactured with the semiconductor film as 15 nm. An oxide sintered body, a sputtering target, and a TFT were prepared and evaluated in the same manner as in Example 1 except that the thickness of the semiconductor film was 15 nm and the composition and conditions shown in Table 2-1 were used. The results are shown in Table 2-1.

尚、EPMAによる測定で、表面、深部ともに実施例10及び11のInの含有量が多い組織は周囲よりも酸素含有量が少ないことが確認できた。
また、EPMAによる測定で、表面、深部ともに実施例3のInの含有量が多い組織は周囲よりも錫(Sn)含有量が多いことが確認できた。
In addition, by the measurement by EPMA, it has confirmed that the structure | tissue with much In content of Example 10 and 11 of the surface and the deep part had less oxygen content than the circumference | surroundings.
Moreover, the measurement by EPMA has confirmed that the structure | tissue with much In content of Example 3 in both the surface and the deep part has more tin (Sn) content than the circumference | surroundings.

参考例1〜6
表2−3に、Gaを含まない焼結体の参考例を示した。Gaを含まない焼結体は、ターゲットの厚み方向の結晶型の変動が起りにくいことがわかる。この結果から、本発明の長期に渡る安定性という課題は、Gaを含む焼結体の場合(酸化インジウム、酸化ガリウム及び酸化亜鉛を原料として含むスパッタリングターゲットの場合)に顕著となる課題であることが確認できる。
Reference Examples 1-6
Table 2-3 shows reference examples of sintered bodies not containing Ga. It can be seen that the sintered body containing no Ga hardly changes in the crystal type in the thickness direction of the target. From this result, the long-term stability problem of the present invention is a prominent problem in the case of a sintered body containing Ga (in the case of a sputtering target containing indium oxide, gallium oxide and zinc oxide as raw materials). Can be confirmed.

実施例1及び比較例1で作製したターゲット用焼結体の元素組成比(原子比)、粒径及び比抵抗を表1に示す。
実施例、比較例及び参考例で作製したターゲット用焼結体及びTFTの各種特性等を表2−1〜2−3に示す。尚、ターゲットの結晶型における「△」は、微量成分(不純物成分、メインピークの高さが主成分のメインピークの高さの50%以下)を意味する。
結晶型とJCPDSカードNo.の対比を表3に示す。
Table 1 shows the elemental composition ratio (atomic ratio), particle size, and specific resistance of the target sintered bodies produced in Example 1 and Comparative Example 1.
Tables 2-1 to 2-3 show various characteristics and the like of target sintered bodies and TFTs prepared in Examples, Comparative Examples, and Reference Examples. “Δ” in the crystal form of the target means a trace component (impurity component, main peak height is 50% or less of main component main peak height).
Crystal type and JCPDS card No. Table 3 shows the comparison.

本発明によれば、長期に渡る成膜を行った際に、得られる薄膜の特性の安定性に優れたスパッタリングターゲットを提供することができる。
本発明によれば、安定したTFT特性を有する薄膜トランジスタを効率的に提供することができる。
According to the present invention, it is possible to provide a sputtering target that is excellent in stability of characteristics of a thin film obtained when film formation is performed over a long period of time.
According to the present invention, a thin film transistor having stable TFT characteristics can be efficiently provided.

1 チャンネルストッパー型薄膜トランジスタ
10 基板
20 ゲート電極
30 ゲート絶縁層
40 半導体層(チャンネル層)
50 ソース電極
52 ドレイン電極
60 エッチングストッパー層(保護膜)
1 channel stopper type thin film transistor 10 substrate 20 gate electrode 30 gate insulating layer 40 semiconductor layer (channel layer)
50 Source electrode 52 Drain electrode 60 Etching stopper layer (protective film)

Claims (7)

In、Zn、及びGaを含み、
表面と内部の化合物の結晶型が同一である酸化物焼結体からなるスパッタリングターゲットであって、
前記酸化物焼結体のIn、Zn、及びGaの組成比(原子比)が、下記領域〜6のいずれかを満た
前記同一の結晶型が、2θ=7.0°〜8.4°、30.6°〜32.0°、33.8°〜35.8°、53.5°〜56.5°及び56.5°〜59.5°にCukα線のX線回折ピークを有する結晶構造を含む、スパッタリングターゲット。
領域4
0.00<Ga/(In+Ga+Zn)<0.15
0.20≦In/(In+Zn)<0.51
0.58<In/(In+Ga)
領域5
0.00<Ga/(In+Ga+Zn)≦0.20
0.51≦In/(In+Zn)≦0.85
領域6
0.15≦Ga/(In+Ga+Zn)
In/(In+Zn)<0.51
0.58<In/(In+Ga)
Including In, Zn, and Ga,
A sputtering target composed of an oxide sintered body in which the crystal types of the surface and internal compounds are the same,
The In of the oxide sintered body, Zn, and the composition ratio of Ga is (atomic ratio), meets one of the following regions 4-6,
The same crystal type is 2θ = 7.0 ° to 8.4 °, 30.6 ° to 32.0 °, 33.8 ° to 35.8 °, 53.5 ° to 56.5 ° and 56. A sputtering target comprising a crystal structure having an X-ray diffraction peak of Cukα rays at .5 ° to 59.5 °.
Region 4
0.00 <Ga / (In + Ga + Zn) <0.15
0.20 ≦ In / (In + Zn) <0.51
0.58 <In / (In + Ga)
Region 5
0.00 <Ga / (In + Ga + Zn) ≦ 0.20
0.51 ≦ In / (In + Zn) ≦ 0.85
Region 6
0.15 ≦ Ga / (In + Ga + Zn)
In / (In + Zn) <0.51
0.58 <In / (In + Ga)
前記酸化物焼結体の表面の比抵抗(R1)と表面からt/2mmの深部の比抵抗(R2)の比R1/R2が、0.4以上2.5以下である、請求項1に記載のスパッタリングターゲット。   The ratio R1 / R2 between the specific resistance (R1) of the surface of the oxide sintered body and the specific resistance (R2) at a depth of t / 2 mm from the surface is 0.4 or more and 2.5 or less. The sputtering target described. 前記同一の結晶型が、一種類の結晶型のみからなる、請求項1に記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein the same crystal type is composed of only one type of crystal type. 前記領域4の組成比を満たす、請求項3に記載のスパッタリングターゲット。 The sputtering target according to claim 3, wherein the composition ratio of the region 4 is satisfied. 前記同一の結晶型が、さらにInで表されるビックスバイト結晶構造を含み、かつ前記領域5の組成比を満たす、請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, wherein the same crystal type further includes a bixbite crystal structure represented by In 2 O 3 and satisfies the composition ratio of the region 5. 前記同一の結晶型が、さらにInGaO(ZnO)で表されるホモロガス結晶構造を含み、かつ上記領域6の組成比を満たす、請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, wherein the same crystal type further includes a homologous crystal structure represented by InGaO 3 (ZnO) and satisfies the composition ratio of the region 6. 下記(a)〜(e)の工程を含む請求項3に記載のスパッタリングターゲットの製造方法。
(a)原料化合物粉末を混合して混合物を調製する工程、
(b)前記混合物を成形して厚み6.0mm以上の成形体を調製する工程、
(c)雰囲気を昇温速度3℃/分以下で昇温する工程、
(d)前記昇温した成形体をさらに1280℃以上1520℃以下で2時間以上96時間以下焼結し、厚み5.5mm以上の焼結体を得る工程、
(e)前記焼結体の表面を0.25mm以上研削する工程
The manufacturing method of the sputtering target of Claim 3 including the process of following (a)-(e).
(A) A step of preparing a mixture by mixing raw material compound powders,
(B) forming the mixture to prepare a molded body having a thickness of 6.0 mm or more;
(C) a step of heating the atmosphere at a heating rate of 3 ° C./min or less,
(D) a step of further sintering the heated body at 1280 ° C. to 1520 ° C. for 2 hours to 96 hours to obtain a sintered body having a thickness of 5.5 mm or more,
(E) Grinding the surface of the sintered body by 0.25 mm or more
JP2009264086A 2009-11-19 2009-11-19 In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation Active JP5591523B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009264086A JP5591523B2 (en) 2009-11-19 2009-11-19 In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation
KR1020177022621A KR102027127B1 (en) 2009-11-19 2010-11-18 In-Ga-Zn-O-BASED OXIDE SINTERED BODY SPUTTERING TARGET WITH EXCELLENT STABILITY DURING LONG-TERM DEPOSITION
CN201080048855.1A CN102597302B (en) 2009-11-19 2010-11-18 In-Ga-Zn-O oxide sintered body sputtering target having excellent stability In long-term film formation
US13/510,933 US20120228133A1 (en) 2009-11-19 2010-11-18 In-ga-zn-o-based oxide sintered body sputtering target with excellent stability during long-term deposition
PCT/JP2010/006761 WO2011061938A1 (en) 2009-11-19 2010-11-18 In-Ga-Zn-O-BASED OXIDE SINTERED BODY SPUTTERING TARGET WITH EXCELLENT STABILITY DURING LONG-TERM DEPOSITION
EP10831337.0A EP2503019A4 (en) 2009-11-19 2010-11-18 In-Ga-Zn-O-BASED OXIDE SINTERED BODY SPUTTERING TARGET WITH EXCELLENT STABILITY DURING LONG-TERM DEPOSITION
KR1020127012752A KR20120084767A (en) 2009-11-19 2010-11-18 In-ga-zn-o-based oxide sintered body sputtering target with excellent stability during long-term deposition
TW099140075A TWI498436B (en) 2009-11-19 2010-11-19 InGa-Zn-O oxide sintered body sputtering target with excellent stability at long time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264086A JP5591523B2 (en) 2009-11-19 2009-11-19 In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation

Publications (2)

Publication Number Publication Date
JP2011106003A JP2011106003A (en) 2011-06-02
JP5591523B2 true JP5591523B2 (en) 2014-09-17

Family

ID=44059425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264086A Active JP5591523B2 (en) 2009-11-19 2009-11-19 In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation

Country Status (7)

Country Link
US (1) US20120228133A1 (en)
EP (1) EP2503019A4 (en)
JP (1) JP5591523B2 (en)
KR (2) KR102027127B1 (en)
CN (1) CN102597302B (en)
TW (1) TWI498436B (en)
WO (1) WO2011061938A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089257B (en) * 2008-07-15 2016-03-30 东曹株式会社 The manufacture method of the manufacture method of composite oxide sintered body, composite oxide sintered body, sputtering target and film
JP5526904B2 (en) * 2010-03-23 2014-06-18 住友電気工業株式会社 Conductive oxide sintered body and manufacturing method thereof
JP2012052227A (en) * 2010-08-05 2012-03-15 Mitsubishi Materials Corp Method for manufacturing sputtering target, and sputtering target
JP2013193945A (en) * 2012-03-22 2013-09-30 Sumitomo Metal Mining Co Ltd SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM
US9553201B2 (en) * 2012-04-02 2017-01-24 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel, and manufacturing method of thin film transistor
JP6006055B2 (en) * 2012-09-07 2016-10-12 出光興産株式会社 Sputtering target
JP5883368B2 (en) * 2012-09-14 2016-03-15 株式会社コベルコ科研 Oxide sintered body and sputtering target
JP5883990B2 (en) * 2013-03-29 2016-03-15 Jx金属株式会社 IGZO sputtering target
KR20140125181A (en) * 2013-04-18 2014-10-28 삼성디스플레이 주식회사 Back palne of flat panel display and manufacturing method for the same
JP6409324B2 (en) * 2014-05-08 2018-10-24 住友電気工業株式会社 Oxide sintered body and manufacturing method of semiconductor device
JP5735190B1 (en) * 2015-01-22 2015-06-17 Jx日鉱日石金属株式会社 Oxide sintered body, sputtering target, and oxide thin film
KR101932369B1 (en) * 2015-02-27 2018-12-24 제이엑스금속주식회사 Oxide sintered body and sputtering target comprising oxide sintered body
CN107428617B (en) * 2015-03-23 2020-11-03 捷客斯金属株式会社 Oxide sintered body and sputtering target comprising same
JP6308191B2 (en) * 2015-09-16 2018-04-11 住友電気工業株式会社 Oxide sintered body and method for manufacturing the same, sputter target, and method for manufacturing semiconductor device
US11530134B2 (en) * 2017-03-13 2022-12-20 Semiconductor Energy Laboratory Co., Ltd. Composite oxide comprising In and Zn, and transistor
WO2018179556A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Sputtering target and production method therefor
KR102142268B1 (en) 2018-06-25 2020-08-12 삼성전자 주식회사 Thin film transistor and vertical non-volatile memory device including transition metal-induced polycrystalline metal oxide channel layer
KR102076057B1 (en) * 2018-07-30 2020-02-11 한양대학교 산학협력단 Thin film transistor and vertical non-volatile memory device including transition metal-induced polycrystalline metal oxide channel layer and aluminium oxide layer
WO2020261748A1 (en) * 2019-06-28 2020-12-30 株式会社アルバック Sputtering target and sputtering target production method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944805A (en) 1982-09-06 1984-03-13 株式会社富士電機総合研究所 Voltage nonlinear resistance porcelain
JP3644647B2 (en) 1995-04-25 2005-05-11 Hoya株式会社 Conductive oxide and electrode using the same
JP4092764B2 (en) * 1998-03-13 2008-05-28 住友金属鉱山株式会社 ZnO-based sintered body
JPH11302835A (en) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd Production of zinc oxide base sintered compact
JP2000026119A (en) * 1998-07-09 2000-01-25 Hoya Corp Article having transparent electrically conductive oxide thin film and its manufacture
KR101002504B1 (en) * 2001-08-02 2010-12-17 이데미쓰 고산 가부시키가이샤 Sputtering target, transparent conductive film, and their manufacturing method
JP4611198B2 (en) 2003-03-04 2011-01-12 Jx日鉱日石金属株式会社 Sputtering target for forming amorphous protective film for optical information recording medium, amorphous protective film for optical information recording medium, and manufacturing method thereof
JP5058469B2 (en) * 2005-09-06 2012-10-24 キヤノン株式会社 Sputtering target and method for forming a thin film using the target
JP5205696B2 (en) * 2006-02-24 2013-06-05 住友金属鉱山株式会社 Gallium oxide based sintered body and method for producing the same
JP5127183B2 (en) 2006-08-23 2013-01-23 キヤノン株式会社 Thin film transistor manufacturing method using amorphous oxide semiconductor film
JP5237558B2 (en) * 2007-01-05 2013-07-17 出光興産株式会社 Sputtering target and oxide semiconductor film
WO2008072486A1 (en) 2006-12-13 2008-06-19 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
JP5522889B2 (en) * 2007-05-11 2014-06-18 出光興産株式会社 In-Ga-Zn-Sn-based oxide sintered body and target for physical film formation
KR100889688B1 (en) * 2007-07-16 2009-03-19 삼성모바일디스플레이주식회사 Method of manufacturing semiconductor active layer, method of manufacturing thin film transistor using the same and thin film transistor having semiconductor active layer
KR101228160B1 (en) * 2007-12-27 2013-01-30 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Process for producing thin film of a-igzo oxide
CN102131953B (en) * 2008-06-27 2014-07-09 出光兴产株式会社 From InGaO3Sputtering target for oxide semiconductor comprising (ZnO) crystal phase and method for producing same
JP4875135B2 (en) * 2009-11-18 2012-02-15 出光興産株式会社 In-Ga-Zn-O-based sputtering target
JP4843083B2 (en) * 2009-11-19 2011-12-21 出光興産株式会社 In-Ga-Zn-based oxide sputtering target

Also Published As

Publication number Publication date
KR20170097231A (en) 2017-08-25
TWI498436B (en) 2015-09-01
EP2503019A4 (en) 2014-06-04
EP2503019A1 (en) 2012-09-26
KR20120084767A (en) 2012-07-30
TW201124551A (en) 2011-07-16
JP2011106003A (en) 2011-06-02
WO2011061938A1 (en) 2011-05-26
CN102597302B (en) 2015-02-25
KR102027127B1 (en) 2019-10-01
US20120228133A1 (en) 2012-09-13
CN102597302A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5591523B2 (en) In-Ga-Zn-O-based oxide sintered sputtering target excellent in stability during long-term film formation
US8858844B2 (en) In—Ga—Zn—O type sputtering target
US8641930B2 (en) In—Ga—Zn type oxide sputtering target
US8999208B2 (en) In-Ga-Sn oxide sinter, target, oxide semiconductor film, and semiconductor element
JP5596963B2 (en) Sputtering target and thin film transistor using the same
WO2009142289A1 (en) Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
JP2015157755A (en) Composite oxide sintered body and sputtering target composed of the same
KR101107844B1 (en) In-ga-zn-type oxide, oxide sintered body, and sputtering target
JP5501306B2 (en) In-Ga-Zn-O-based sputtering target
JP5414632B2 (en) Sputtering target
JP2012017258A (en) In-Ga-Zn BASED OXIDE SPUTTERING TARGET
JP2012056842A (en) In-Ga-Zn OXIDE, OXIDE SINTERED COMPACT, AND SPUTTERING TARGET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150