JP5588603B2 - Fluorine-containing wet zinc smelting process titanium group element fluorine adsorbent for liquid treatment, and fluorine removal method - Google Patents

Fluorine-containing wet zinc smelting process titanium group element fluorine adsorbent for liquid treatment, and fluorine removal method Download PDF

Info

Publication number
JP5588603B2
JP5588603B2 JP2008138753A JP2008138753A JP5588603B2 JP 5588603 B2 JP5588603 B2 JP 5588603B2 JP 2008138753 A JP2008138753 A JP 2008138753A JP 2008138753 A JP2008138753 A JP 2008138753A JP 5588603 B2 JP5588603 B2 JP 5588603B2
Authority
JP
Japan
Prior art keywords
fluorine
adsorption
desorption
adsorbent
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008138753A
Other languages
Japanese (ja)
Other versions
JP2009285541A (en
Inventor
憲治 拝生
洋志 端
政民 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008138753A priority Critical patent/JP5588603B2/en
Publication of JP2009285541A publication Critical patent/JP2009285541A/en
Application granted granted Critical
Publication of JP5588603B2 publication Critical patent/JP5588603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本件発明は、フッ素を含む亜鉛含有物を溶解して得られるフッ素を高濃度で含む湿式亜鉛製錬用工程液を対象として、フッ素を吸着するフッ素吸着工程と、吸着したフッ素を脱離するフッ素脱離工程との繰り返し操作が可能なフッ素吸脱剤、および、そのフッ素吸脱剤を用いてフッ素を含む湿式亜鉛製錬用工程液からフッ素を除去する方法に関する。   The present invention is directed to a wet zinc smelting process liquid containing a high concentration of fluorine obtained by dissolving a fluorine-containing zinc-containing material, and a fluorine adsorption process that adsorbs fluorine and a fluorine that desorbs adsorbed fluorine. The present invention relates to a fluorine adsorbing / desorbing agent that can be repeatedly operated with a desorption step, and a method for removing fluorine from a process solution for wet zinc smelting containing fluorine using the fluorine adsorbing / desorbing agent.

一般的な湿式亜鉛製錬工程では、硫化亜鉛鉱を焙焼して、主成分である硫化亜鉛を酸化脱硫し、酸化亜鉛を主成分とした焼鉱を得ている。そして、この焼鉱を電解尾液と接触させて亜鉛を溶解浸出する。ここで用いる電解尾液とは、亜鉛電解槽で金属亜鉛の電解採取を実施した硫酸酸性溶液である。しかし、焼鉱を電解尾液で溶解浸出しても、鉄を含む硫化亜鉛鉱を高温で焙焼する際に形成されてしまうジンクフェライトは溶解しないため、シックナーやフィルタープレス等を用いて固液分離し、亜鉛浸出液を得る。   In a general wet zinc smelting process, zinc sulfide ore is roasted to oxidize and desulfurize zinc sulfide, which is the main component, to obtain a sinter containing zinc oxide as the main component. Then, this sinter is brought into contact with an electrolytic tail solution to dissolve and leach zinc. The electrolytic tail solution used here is a sulfuric acid acidic solution obtained by electrowinning metallic zinc in a zinc electrolytic cell. However, zinc ferrite, which is formed when zinc sulfide ore containing iron is roasted at a high temperature, does not dissolve even if the ore is dissolved and leached with electrolytic tail liquor. Separate and obtain zinc leachate.

しかし、上記亜鉛浸出液は、電解採取工程に悪影響を与える不純物(鉄など、主に亜鉛よりも電極電位が貴な金属)を含んでいる。そのため、亜鉛浸出液は、浄液工程において、前記不純物を除去して清浄液とする。電解採取工程では、循環している亜鉛電解液の亜鉛濃度を清浄液を用いて調整し、循環経路に設置された亜鉛電解槽で金属亜鉛を電解採取する。当該亜鉛電解槽には鉛系合金製のアノード板とアルミニウム製のカソード板とを配し、金属亜鉛をカソード板に電着させて採取する。そして、所定時間の電解採取を実施した時点でカソード板を亜鉛電解槽から取り外し、電着した亜鉛を剥ぎ取って電気亜鉛を得る。本件発明では、湿式亜鉛製錬工程に係わる硫酸酸性溶液である、上記電解尾液、亜鉛電解液、亜鉛浸出液、および、清浄液を総称して「湿式亜鉛製錬用工程液」と称する。   However, the zinc leaching solution contains impurities that adversely affect the electrowinning process (such as iron, which is mainly a metal having a higher electrode potential than zinc). Therefore, the zinc leaching solution is used as a cleaning solution by removing the impurities in the cleaning step. In the electrowinning step, the zinc concentration of the circulating zinc electrolyte is adjusted using a cleaning liquid, and the zinc metal is electrowinned in a zinc electrolyzer installed in the circulation path. The zinc electrolytic cell is provided with an anode plate made of a lead alloy and an aluminum cathode plate, and metal zinc is electrodeposited on the cathode plate and collected. Then, at the time when electrolytic collection is performed for a predetermined time, the cathode plate is removed from the zinc electrolytic cell, and the electrodeposited zinc is peeled off to obtain electrozinc. In the present invention, the above-mentioned electrolytic tail solution, zinc electrolyte solution, zinc leaching solution, and cleaning solution, which are sulfuric acid acidic solutions related to the wet zinc smelting step, are collectively referred to as “wet zinc smelting step solution”.

一方、近年は、製鋼所の製鋼過程で排出される製鋼ダストや、亜鉛めっき工程で発生する亜鉛滓類を再生処理し、粗酸化亜鉛などの亜鉛含有物として回収している。そして、湿式亜鉛製錬工程では、これらの亜鉛含有物を、前述の焼鉱と混合して使用する方法も採用されている。しかし、この亜鉛含有物はハロゲン元素を含有しているため、亜鉛含有物を焼鉱と同様に取り扱うと、湿式亜鉛製錬用工程液中のハロゲン元素濃度が上昇し、湿式亜鉛製錬工程において種々の不具合が発生する原因となる。そして、ハロゲン元素の中でも、湿式亜鉛製錬工程において、特に重大な問題を引き起こすのがフッ素である。   On the other hand, in recent years, steelmaking dust discharged in the steelmaking process of steelworks and zinc soot generated in the galvanizing process are regenerated and recovered as zinc-containing materials such as crude zinc oxide. And in a wet zinc smelting process, the method of mixing and using these zinc containing materials with the above-mentioned calcination is also adopted. However, since this zinc-containing material contains a halogen element, if the zinc-containing material is handled in the same manner as sinter, the halogen element concentration in the process solution for wet zinc smelting increases, and in the wet zinc smelting process, It causes various troubles. Of the halogen elements, fluorine causes a particularly serious problem in the wet zinc smelting process.

前記亜鉛電解液中におけるフッ素濃度の許容範囲は、一般的には20mg/Lが上限とされている。亜鉛電解液中のフッ素濃度が20mg/Lを超えると、亜鉛を電着させるカソードであるアルミニウム板が腐食される傾向が現れる。すると、電着した亜鉛をカソード板から剥ぎ取ることができない、いわゆる密着板が発生することになる。密着板が発生すると、電解採取工程の連続操業を維持するために、密着板を連続ラインから系外に抜き取り、代替のカソード板と入れ替えるという操作が必要になる。即ち、この密着板をオフラインで処理する手間が発生し、カソード板には腐食や機械的ダメージが生じる。よって、湿式亜鉛製錬用工程液中のフッ素管理は、湿式亜鉛製錬の安定操業の維持とコスト管理上の重要事項である。   The upper limit of the allowable range of the fluorine concentration in the zinc electrolyte is generally 20 mg / L. When the fluorine concentration in the zinc electrolyte exceeds 20 mg / L, the aluminum plate, which is a cathode for electrodepositing zinc, tends to be corroded. As a result, a so-called contact plate is generated in which the electrodeposited zinc cannot be peeled off from the cathode plate. When the contact plate is generated, in order to maintain the continuous operation of the electrowinning process, it is necessary to remove the contact plate from the continuous line and replace it with an alternative cathode plate. That is, the trouble of processing this contact plate offline occurs, and the cathode plate is corroded and mechanically damaged. Therefore, fluorine management in the process liquid for wet zinc smelting is an important matter in maintaining stable operation and cost management of wet zinc smelting.

特許文献1には、フッ素を高レベルで含有する亜鉛含有物を溶解して得られた湿式亜鉛浸出液に蓄積されるフッ素を液中から除去することを目的として、固形物である鉄化合物又は亜鉛化合物をフッ素吸脱剤として用いる技術が開示されている。この技術は、亜鉛含有物溶液からフッ素を目標管理値以下まで亜鉛電解前に除去するものである。特許文献1に開示の技術によれば、所定の鉄化合物又は亜鉛化合物は、酸性領域にてフッ素を吸着し、アルカリ領域にてフッ素を脱離する性質を利用して、亜鉛含有物溶解液(元液)からフッ素を吸着除去できる。このため、フッ素を吸着したフッ素吸脱剤をアルカリ溶液で処理し、フッ素を脱離しフッ素吸脱剤を再生可能とできる技術である。   Patent Document 1 discloses a solid iron compound or zinc for the purpose of removing fluorine accumulated in a wet zinc leaching solution obtained by dissolving a zinc-containing material containing fluorine at a high level. A technique using a compound as a fluorine adsorbent / desorbent is disclosed. This technology removes fluorine from a zinc-containing material solution to a target control value or less before zinc electrolysis. According to the technique disclosed in Patent Document 1, a predetermined iron compound or zinc compound uses a property of adsorbing fluorine in an acidic region and desorbing fluorine in an alkaline region, so that a zinc-containing material solution ( Fluorine can be adsorbed and removed from the original solution. For this reason, it is a technique that can treat the fluorine adsorbing / desorbing agent adsorbing fluorine with an alkaline solution, desorbing the fluorine, and regenerating the fluorine absorbing / desorbing agent.

特許文献2には、フッ素を高レベルで含有する亜鉛含有物を溶解して得られた湿式亜鉛浸出液に蓄積されるフッ素を液中から除去する方法を提供することを目的として、固形物であるアルミニウム化合物をフッ素吸脱剤として用い、このアルミニウム系フッ素吸脱剤を用いてフッ素を吸着することによって亜鉛浸出液中のフッ素濃度を目標範囲に管理でき、またこのアルミニウム系フッ素吸脱剤は脱離処理により再生され繰り返し使用できることが開示されている。特許文献2の実施例によれば、フッ素濃度295mg/Lの亜鉛浸出液に対して、バイアライト(β−Al(OH))をフッ素吸脱剤として用い、フッ素吸脱剤の再生使用の適否を確認するために吸着と脱離とを5サイクル繰り返し、再生後の使用が十分可能であることを確認できたとしている。 Patent Document 2 is a solid material for the purpose of providing a method for removing fluorine accumulated in a wet zinc leaching solution obtained by dissolving a zinc-containing material containing fluorine at a high level from the solution. By using an aluminum compound as the fluorine adsorbent, and adsorbing fluorine using this aluminum-based fluorine adsorbent, the concentration of fluorine in the zinc leachate can be controlled within the target range. It is disclosed that it can be regenerated and used repeatedly by processing. According to the example of Patent Document 2, with respect to a zinc leaching solution having a fluorine concentration of 295 mg / L, viaite (β-Al (OH) 3 ) is used as a fluorine adsorbing / desorbing agent. In order to confirm this, the adsorption and desorption are repeated 5 cycles, and it is confirmed that the use after regeneration is sufficiently possible.

特開2006−55834号公報JP 2006-55834 A 特開2007−177278号公報JP 2007-177278 A

湿式亜鉛製錬用工程液では、フッ素吸着操作中の鉄化合物の溶出が重大な関心事である。鉄は亜鉛よりも電極電位が貴な金属であるため、湿式亜鉛製錬用工程液中に溶出した鉄イオンが存在すれば、後の亜鉛の電解採取工程で電流効率の大幅な低下と、鉄の混入による電気亜鉛の品位の低下を招く。鉄の溶出があるとすれば、特許文献1に開示の技術は、フッ素を含む湿式亜鉛製錬用工程液に適用すると、湿式亜鉛製錬用工程液から鉄を除去する操作、いわゆる脱鉄処理が後工程で必要となる技術である。   In the process solution for wet zinc smelting, the elution of iron compounds during the fluorine adsorption operation is a major concern. Since iron is a metal with a higher electrode potential than zinc, if iron ions eluted in the process liquid for hydrozinc smelting exist, current efficiency will be significantly reduced in the subsequent zinc electrowinning process, The quality of electrozinc is reduced due to the contamination. If there is iron elution, the technique disclosed in Patent Document 1 is an operation for removing iron from a wet zinc smelting process liquid, so-called deironing treatment, when applied to a wet zinc smelting process liquid. Is a technology that is required in the subsequent process.

特許文献2のアルミニウム化合物系フッ素吸脱剤は、pH3〜pH7の範囲においてフッ素を吸着することができるものであり、安定的にフッ素を吸着できる領域は、pH4以上の領域である。アルミニウムは、チタン族元素と同様に亜鉛よりも卑な金属であることから、亜鉛浸出液からフッ素を吸着する際に吸脱剤自体の溶解が発生した場合にも、亜鉛電解採取に悪影響は及ぼさない。また、亜鉛浸出液からのフッ素吸着処理は、pH1以上pH4未満で実施することも想定されるが、この領域においては、アルミニウム系化合物は、良好なフッ素吸着能力を示さない。更に、pH3以下では、吸脱剤自体の溶解が発生することになる。   The aluminum compound-based fluorine adsorbent / desorbent of Patent Document 2 can adsorb fluorine in the range of pH 3 to pH 7, and the region where fluorine can be adsorbed stably is the region of pH 4 or higher. Since aluminum is a base metal rather than zinc as well as titanium group elements, even when the adsorption / desorption agent itself dissolves when adsorbing fluorine from zinc leachate, it does not adversely affect zinc electrowinning. . Moreover, although it is assumed that the fluorine adsorption treatment from the zinc leaching solution is carried out at a pH of 1 or more and less than pH 4, in this region, the aluminum compound does not exhibit a good fluorine adsorption ability. Further, at pH 3 or less, dissolution of the adsorbent / desorbent itself occurs.

その他、一般的な工業用廃水処理(廃液処理)に適用されるフッ素の除去技術として、水溶性金属化合物としてカルシウムを添加し、フッ素をフッ化カルシウムとして沈殿させてフッ素を除去する方法等もよく知られている。しかし、該方法を硫酸根の含有量が多い湿式亜鉛製錬用工程液に用いても、硫酸根濃度の影響から、フッ素濃度を目的とする20mg/L以下にすることは困難である。   In addition, as a fluorine removal technique applied to general industrial wastewater treatment (waste liquid treatment), a method of removing calcium by adding calcium as a water-soluble metal compound and precipitating fluorine as calcium fluoride is also good. Are known. However, even if this method is used in a process solution for hydrometallurgical smelting with a high sulfate group content, it is difficult to reduce the fluorine concentration to 20 mg / L or less because of the effect of the sulfate group concentration.

上述のように、湿式亜鉛製錬の原料として、安価なフッ素を含む亜鉛含有物を活用する際に、設備費やランニングコストなどの増加を少なくし、原料のもたらすコストダウンの効果を十分に発揮でき、且つ、工程管理も容易な、フッ素を含む湿式亜鉛製錬用工程液からフッ素を除去する方法が必要とされていた。   As mentioned above, when using zinc-containing materials containing inexpensive fluorine as raw materials for wet zinc smelting, the increase in equipment costs and running costs is reduced and the cost reduction effect brought about by the raw materials is fully demonstrated. There has been a need for a method for removing fluorine from a process solution for hydrometallurgical zinc smelting that can be easily performed and can be easily managed.

本件発明者等は、上記課題を解決すべく鋭意研究の結果、フッ素を含む湿式亜鉛製錬用工程液からフッ素を吸着除去するためのフッ素吸脱剤として、アナターゼ型又はルチル型のチタン族元素酸化物、特には、アナターゼ型又はルチル型の酸化チタン、アナターゼ型又はルチル型の酸化ジルコニウムおよびアナターゼ型又はルチル型の酸化ハフニウムから選択される1種又は2種以上の混合物を用いることに想到した。そして、当該フッ素吸脱剤を用いて含F工程液からフッ素を除去する方法では、フッ素吸着工程でフッ素を含む湿式亜鉛製錬用工程液とフッ素吸脱剤とを酸性領域で接触させてフッ素吸脱剤にフッ素を吸着させた後固液分離し、フッ素を吸着したフッ素吸脱剤は、フッ素脱離工程でアルカリ性溶液と接触させてフッ素吸脱剤からフッ素を脱離後固液分離してフッ素吸脱剤として再使用する。また、当該フッ素吸着工程では、湿式亜鉛製錬用工程液が含むフッ素量と接触させるアナターゼ型又はルチル型のチタン族元素酸化物が含むチタン族元素量との比[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値を20〜600とする。 As a result of diligent research to solve the above problems, the present inventors have made anatase or rutile type titanium group element as a fluorine adsorbent / desorbent for adsorbing and removing fluorine from a process liquid for hydrometallurgical zinc smelting. It was conceived to use one or a mixture of two or more oxides selected from oxides, in particular, anatase or rutile titanium oxide, anatase or rutile zirconium oxide and anatase or rutile hafnium oxide. . In the method of removing fluorine from the F-containing process liquid using the fluorine adsorbent / desorbent, the fluorine-containing wet zinc smelting process liquid and the fluorine adsorbent / desorbent are brought into contact in an acidic region in the fluorine adsorption process. Fluorine adsorbent / desorbent that adsorbs fluorine after adsorbing fluorine to the adsorbent / desorbent is brought into contact with an alkaline solution in the fluorine desorption process, and then separated from the fluorine adsorbent / desorbent after solid-liquid separation. Reuse as fluorine adsorbent. Further, in the fluorine adsorption step, the ratio of the amount of titanium group element contained in the anatase type or rutile type titanium group element oxide to be brought into contact with the amount of fluorine contained in the process liquid for hydrozinc smelting [(titanium group element amount: mg / L) / (fluorine content: mg / L)] is set to 20 to 600.

フッ素を含む亜鉛製錬用工程液のフッ素濃度を20mg/L以下にできる。   The fluorine concentration of the process liquid for zinc smelting containing fluorine can be 20 mg / L or less.

以下、含F工程液からフッ素を除去するためのフッ素吸脱剤と、該フッ素吸脱剤を用いたフッ素除去方法とについて説明する。   Hereinafter, a fluorine adsorption / desorption agent for removing fluorine from the F-containing process solution and a fluorine removal method using the fluorine adsorption / desorption agent will be described.

本件発明に係るフッ素吸脱剤の形態: 本件発明に係るフッ素吸脱剤は、含F工程液からフッ素を除去するためのフッ素吸脱剤であって、アナターゼ型又はルチル型のチタン族元素酸化物である。チタン族元素は周期律表上のIVa族に属する元素でありチタン、ジルコニウム、ハフニウムで構成されている。特にチタンは、潜在的な存在量が多いことが知られている元素であり、用途が拡大するに従い生産量も増加し、価格も低下している。また、チタン族元素は亜鉛よりも電極電位が卑な金属であるため、後述するフッ素吸脱操作で湿式亜鉛製錬用工程液に溶出しても、金属亜鉛の電解採取に影響を与えることがない。 Form of fluorine adsorbent / desorbent according to the present invention: The fluorine adsorbent / desorbent according to the present invention is a fluorine adsorbent / desorbent for removing fluorine from an F-containing process solution, and anatase type or rutile type titanium group element oxidation. It is a thing. The titanium group element is an element belonging to group IVa on the periodic table, and is composed of titanium, zirconium, and hafnium. In particular, titanium is an element that is known to have a large amount of potential abundance, and as the use expands, the production amount increases and the price also decreases. In addition, since the titanium group element is a metal whose electrode potential is lower than that of zinc, even if it elutes into the process liquid for wet zinc smelting by the fluorine adsorption / desorption operation described later, it may affect the electrowinning of metallic zinc. Absent.

本件発明に係るフッ素吸脱剤においては、前記アナターゼ型又はルチル型のチタン族元素酸化物は、アナターゼ型又はルチル型の酸化チタン、アナターゼ型又はルチル型の酸化ジルコニウムおよびアナターゼ型又はルチル型の酸化ハフニウムから選択される1種又は2種以上の混合物である。アナターゼ型又はルチル型のチタン族元素酸化物は、強酸や強アルカリに対して難溶性であるため、フッ素吸脱操作中の化学的な消耗をほとんど考慮する必要がない。そして、アナターゼ型又はルチル型のチタン族元素酸化物は、必要に応じて酸化チタンと酸化ジルコニウムや酸化ハフニウムを混合して使用することもできる。 In the fluorine adsorbent / desorbent according to the present invention, the anatase-type or rutile-type titanium group element oxide includes anatase-type or rutile-type titanium oxide, anatase-type or rutile-type zirconium oxide, and anatase-type or rutile-type oxide. One or a mixture of two or more selected from hafnium. Since anatase type or rutile type titanium group element oxides are hardly soluble in strong acids and strong alkalis, it is not necessary to consider the chemical consumption during the fluorine adsorption / desorption operation. The anatase-type or rutile-type titanium group element oxide can be used by mixing titanium oxide with zirconium oxide or hafnium oxide as necessary.

また、アナターゼ型又はルチル型のチタン族元素酸化物は、セラミックスの基礎素材等として多くの種類が市販されており、粉末特性の作り込み技術も確立されている。従って、好適な特性を備える酸化物を選択して用いれば、安定したフッ素吸脱操作が可能である。中でも、酸化チタンが、コスト、および、粉末形状の選択肢が広く好ましい。酸化チタンでは、アナターゼ型とルチル型の2種類が主に市販されているが、いずれの酸化チタンを用いても構わない。そして、酸化ジルコニウムや酸化ハフニウムについても同様である。この様に、市販されているアナターゼ型又はルチル型のチタン族元素酸化物を用いれば、品質が安定しており、自身でフッ素吸脱剤を作成する必要もなく、コスト上のメリットも大きい。 Further, many types of anatase type or rutile type titanium group element oxides are commercially available as basic materials for ceramics, and techniques for making powder characteristics have been established. Therefore, if an oxide having suitable characteristics is selected and used, stable fluorine adsorption / desorption operation is possible. Among these, titanium oxide is widely preferred because of its choice of cost and powder shape. Two types of titanium oxide, anatase type and rutile type, are commercially available, but any titanium oxide may be used. The same applies to zirconium oxide and hafnium oxide. As described above, when a commercially available anatase type or rutile type titanium group element oxide is used, the quality is stable, and it is not necessary to prepare a fluorine adsorbent / desorbent by itself.

本件発明に係る含F工程液からフッ素を除去する方法の形態: 本件発明に係る含F工程液からフッ素を除去する方法は、前記フッ素吸脱剤を用いて含F工程液からフッ素を除去する方法であって、以下のフッ素吸着工程〜フッ素吸脱剤再使用工程を含んでいる。以下、工程毎に説明する。 Form of method for removing fluorine from F-containing process liquid according to the present invention: The method for removing fluorine from the F-containing process liquid according to the present invention removes fluorine from the F-containing process liquid using the fluorine adsorbent / desorbent. It is a method, Comprising: The following fluorine adsorption process-fluorine adsorption / desorption agent reuse process is included. Hereinafter, it demonstrates for every process.

フッ素吸着工程は、含F工程液とフッ素吸脱剤とを接触させてフッ素吸着スラリーとし、含F工程液が含むフッ素をフッ素吸脱剤に吸着させる工程である。ここで含F工程液とフッ素吸脱剤とを混合する方法には、特に限定はない。そして、フッ素吸着操作は、アナターゼ型又はルチル型のチタン族元素酸化物が良好な吸着性能を示すpH1.0を超えてpH7.0未満の酸性領域で実施する。フッ素がアナターゼ型又はルチル型のチタン族元素酸化物に吸着する現象は化学吸着であり、具体的にはフッ素イオンがアナターゼ型又はルチル型のチタン族元素酸化物に吸着する。しかし、溶液pHが1.0以下になると、吸着能力が低下する傾向が現れる上に、アナターゼ型又はルチル型のチタン族元素酸化物の溶解傾向が大きくなるため好ましくない。一方、溶液pHが7.0以上になると、アナターゼ型又はルチル型のチタン族元素酸化物への吸着能力が低下するため好ましくない。 The fluorine adsorption process is a process in which the F-containing process liquid and the fluorine adsorption / desorption agent are brought into contact with each other to form a fluorine adsorption slurry, and the fluorine contained in the F-containing process liquid is adsorbed on the fluorine adsorption / desorption agent. Here, the method for mixing the F-containing process liquid and the fluorine adsorbent / desorbent is not particularly limited. Then, the fluorine adsorption operation is carried out in an acidic region exceeding pH 1.0 and lower than pH 7.0, in which anatase type or rutile type titanium group element oxide exhibits good adsorption performance. The phenomenon in which fluorine is adsorbed on anatase-type or rutile-type titanium group element oxide is chemical adsorption. Specifically, fluorine ions are adsorbed on anatase-type or rutile-type titanium group element oxide. However, when the pH of the solution is 1.0 or less, the adsorption ability tends to decrease, and the anatase type or rutile type titanium group element oxide tends to dissolve, which is not preferable. On the other hand, when the solution pH is 7.0 or more, the adsorption ability to the anatase type or rutile type titanium group element oxide is lowered, which is not preferable.

本件発明に係る含F工程液からフッ素を除去する方法においては、前記フッ素吸着工程で、前記含F工程液が含むフッ素量と、接触させるアナターゼ型又はルチル型のチタン族元素酸化物が含むチタン族元素量との比[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値を20〜600とする。[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値が20を下回ると、処理工程液中のフッ素濃度を20mg/L以下にできない場合がある。一方、[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値を600以上とすると、スラリー濃度が高くなりすぎ、処理後分離した吸脱剤に付着する処理液量が増加するため好ましくない。そこで、実際のフッ素吸着操作に当たっては、フッ素除去の対象とする含F工程液と、フッ素の吸脱に用いるアナターゼ型又はルチル型のチタン族元素酸化物とでビーカースケールの予察試験を行い、処理工程液中のフッ素濃度を20mg/L以下にするために最適な、[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値を求めておく。しかし、フッ素濃度が200mg/L程度の含F工程液に対しては、用いるチタン族元素による違いは若干あるものの、通常は[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値を150〜450とすれば、処理工程液中のフッ素濃度を20mg/L以下にできる。 In the method for removing fluorine from the F-containing process solution according to the present invention, in the fluorine adsorption step, the amount of fluorine contained in the F-containing process solution and titanium contained in the anatase-type or rutile-type titanium group element oxide to be contacted The value of the ratio [(titanium group element amount: mg / L) / (fluorine amount: mg / L)] to the group element amount is set to 20 to 600. When the value of [(titanium group element amount: mg / L) / (fluorine amount: mg / L)] is less than 20, the fluorine concentration in the treatment process liquid may not be 20 mg / L or less. On the other hand, when the value of [(titanium group element amount: mg / L) / (fluorine amount: mg / L)] is 600 or more, the slurry concentration becomes too high, and the treatment liquid adheres to the adsorbed / desorbed agent separated after the treatment. Since the amount increases, it is not preferable. Therefore, in the actual fluorine adsorption operation, a beaker-scale preliminary test is conducted with an F-containing process solution to be removed by fluorine and an anatase type or rutile type titanium group element oxide used for fluorine adsorption / desorption. An optimum value of [(titanium group element amount: mg / L) / (fluorine amount: mg / L)] is obtained in order to make the fluorine concentration in the process liquid 20 mg / L or less. However, for an F-containing process solution having a fluorine concentration of about 200 mg / L, although there is a slight difference depending on the titanium group element used, usually [(titanium group element amount: mg / L) / (fluorine amount: mg / If the value of L)] is 150 to 450, the fluorine concentration in the treatment process liquid can be reduced to 20 mg / L or less.

第1固液分離工程は、前記フッ素吸着スラリーを固液分離して、含Fフッ素吸脱剤と処理工程液とを得る工程である。この工程では、遠心分離、沈降分離や濾過等のいずれの手段を用いても固液分離できる。   The first solid-liquid separation step is a step of solid-liquid separation of the fluorine adsorption slurry to obtain an F-containing fluorine adsorption / desorption agent and a treatment step liquid. In this step, solid-liquid separation can be performed using any means such as centrifugation, sedimentation separation, and filtration.

フッ素脱離工程は、第1固液分離工程で分離した、含Fフッ素吸脱剤をアルカリ性溶液と混合し、含Fフッ素吸脱剤からFを脱離する工程である。この工程で含Fフッ素吸脱剤とアルカリ性溶液とを混合する方法に特に限定はない。良好な攪拌状態を維持して60分以上維持すれば、ほぼ100%に近い脱離率で脱離操作を実施できる。   The fluorine desorption step is a step of desorbing F from the F-containing fluorine adsorption / desorption agent by mixing the F-containing fluorine adsorption / desorption agent separated in the first solid-liquid separation step with an alkaline solution. There is no particular limitation on the method of mixing the fluorine-containing fluorine adsorbent / desorbent and the alkaline solution in this step. If a good stirring state is maintained and maintained for 60 minutes or longer, the desorption operation can be carried out with a desorption rate of nearly 100%.

上記フッ素脱離操作は、pH7.0以上pH14以下のアルカリ性領域で実施する。溶液pHが7.0を下回ると、アナターゼ型又はルチル型のチタン族元素酸化物へのフッ素の吸着が見られるようになるため好ましくない。一方、溶液pHが12を超える領域ではフッ素の脱離を促進する効果は僅かである反面、pH調整に必要な薬品量が多くなる。また、pHが10以下になるとフッ素の脱離率が低下する傾向が現れる。すると、フッ素吸脱剤が吸脱出来るフッ素量が減少し、多くのフッ素吸脱剤を必要とする。従って、フッ素脱離操作を行う際の溶液pHは、10.5〜12.0とすることがより好ましい。 The fluorine desorption operation is performed in an alkaline region of pH 7.0 or higher and pH 14 or lower. When the solution pH is less than 7.0, the adsorption of fluorine to the anatase-type or rutile-type titanium group element oxide is observed, which is not preferable. On the other hand, in the region where the solution pH exceeds 12, the effect of promoting the elimination of fluorine is slight, but the amount of chemicals necessary for pH adjustment increases. Moreover, when pH becomes 10 or less, the tendency for the desorption rate of fluorine to appear appears. Then, the amount of fluorine that can be adsorbed / desorbed by the fluorine adsorbing / desorbing agent decreases, and a large amount of fluorine adsorbing / desorbing agent is required. Therefore, the solution pH when performing the fluorine desorption operation is more preferably 10.5 to 12.0.

第2固液分離工程は、フッ素脱離スラリーを固液分離して、再生フッ素吸脱剤とF脱離液とを得る工程である。この工程では、第1固液分離工程と同様、遠心分離、沈降分離や濾過等のいずれの手段を用いても固液分離できる。   The second solid-liquid separation step is a step of solid-liquid separation of the fluorine desorption slurry to obtain a regenerated fluorine adsorption / desorption agent and an F desorption solution. In this step, as in the first solid-liquid separation step, solid-liquid separation can be performed using any means such as centrifugal separation, sedimentation separation, and filtration.

フッ素吸脱剤再使用工程は、第2固液分離工程で得られた再生フッ素吸脱剤を、後のフッ素吸着工程で用いるフッ素吸脱剤としてフィードバックする工程である。第2固液分離工程で得られた再生フッ素吸脱剤は、新たに投入するフッ素吸脱剤と同等のフッ素吸脱能力を備えている。即ち、再生フッ素吸脱剤を用いて、同等の効率でフッ素吸脱処理を繰り返し実施できることになる。   The fluorine adsorption / desorption agent reuse step is a step of feeding back the regenerated fluorine adsorption / desorption agent obtained in the second solid-liquid separation step as a fluorine adsorption / desorption agent used in the subsequent fluorine adsorption step. The regenerated fluorine adsorbent / desorbent obtained in the second solid-liquid separation step has a fluorine adsorbing / desorbing ability equivalent to that of a newly introduced fluorine adsorbent / desorbent. That is, using the regenerated fluorine adsorption / desorption agent, the fluorine adsorption / desorption treatment can be repeatedly performed with the same efficiency.

実施例1では、フッ素吸脱剤として、一般的に市場で入手可能な酸化チタン粉、および、酸化ジルコニウム粉を用い、含F工程液が含むフッ素の吸着に要する時間を調査した。   In Example 1, as a fluorine adsorbent / desorbent, titanium oxide powder and zirconium oxide powder that are generally available on the market were used, and the time required for adsorption of fluorine contained in the F-containing process liquid was investigated.

[酸化チタン]
酸化チタン粉を用いたフッ素吸着試験では、フッ素吸着の対象とする含F工程液に、フッ素濃度が160mg/Lの亜鉛浸出液を用いた。具体的には、容量200mLのプラスチック容器に亜鉛浸出液を100mL投入し、希硫酸を用いてpHを3.0に調整し、液温を60℃に維持しつつマグネチック・スターラーで攪拌した。この含F工程液に[(チタン量)/(フッ素量)]の値が400になるように前記酸化チタン粉を10.6g投入してスラリーとし、攪拌を継続した。そして、酸化チタン粉を投入してから15分後、30分後、60分後にスラリーを5mLサンプリングし、該サンプルスラリーをヌッチェを用いて吸引濾過し、フッ素濃度分析用の処理工程液を得た。得られた処理工程液中のフッ素濃度は、15分後が16.2mg/L、30分後が14.1mg/L、60分後が13.5mg/Lであった。そして、60分間で処理工程液中に溶出したチタンの濃度は、ICP分析装置を用いて分析したところ、26mg/Lであった。上記結果を纏めて表1に示す。なお、上記フッ素濃度の分析では、試料の処理工程液を純水で希釈し、金属イオンを錯化剤でマスキング後フッ素イオン電極で電位を測定し、予め作成しておいた検量線と照合してフッ素濃度を算定している。
[Titanium oxide]
In the fluorine adsorption test using titanium oxide powder, a zinc leaching solution having a fluorine concentration of 160 mg / L was used as the F-containing process solution to be subjected to fluorine adsorption. Specifically, 100 mL of zinc leachate was put into a 200 mL capacity plastic container, the pH was adjusted to 3.0 using dilute sulfuric acid, and the mixture was stirred with a magnetic stirrer while maintaining the liquid temperature at 60 ° C. 10.6 g of the titanium oxide powder was added to the F-containing process solution so that the value of [(titanium content) / (fluorine content)] was 400, and the mixture was made into a slurry and stirring was continued. Then, 15 mL, 30 minutes, and 60 minutes after adding the titanium oxide powder, 5 mL of the slurry was sampled, and the sample slurry was subjected to suction filtration using a Nutsche to obtain a processing solution for fluorine concentration analysis. . The fluorine concentration in the obtained treatment solution was 16.2 mg / L after 15 minutes, 14.1 mg / L after 30 minutes, and 13.5 mg / L after 60 minutes. And the density | concentration of the titanium eluted in the process liquid for 60 minutes was 26 mg / L when analyzed using the ICP analyzer. The results are summarized in Table 1. In the analysis of the fluorine concentration, the sample processing solution is diluted with pure water, the metal ions are masked with a complexing agent, the potential is measured with a fluorine ion electrode, and the calibration curve prepared in advance is collated. The fluorine concentration is calculated.

[酸化ジルコニウム]
酸化ジルコニウム粉を用いたフッ素吸着試験では、[(ジルコニウム量)/(フッ素量)]の値を370にした以外は、酸化チタン粉を用いた試験と同様にして実施した。その結果、得られた処理工程液中のフッ素濃度は15分後が21.3mg/L、30分後が17.5mg/L、60分後が16.1mg/Lであった。そして、60分間で処理工程液中に溶出したジルコニウムの濃度は、ICP分析装置を用いて分析したところ、2mg/Lであった。上記結果を纏めて表1に示す。更に、表1のフッ素濃度の推移をグラフ化して図1に示す。
[Zirconium oxide]
The fluorine adsorption test using zirconium oxide powder was carried out in the same manner as the test using titanium oxide powder except that the value of [(zirconium content) / (fluorine content)] was 370. As a result, the fluorine concentration in the obtained treatment process liquid was 21.3 mg / L after 15 minutes, 17.5 mg / L after 30 minutes, and 16.1 mg / L after 60 minutes. And the density | concentration of the zirconium eluted in the process liquid for 60 minutes was 2 mg / L when analyzed using the ICP analyzer. The results are summarized in Table 1. Furthermore, the transition of the fluorine concentration in Table 1 is graphed and shown in FIG.

Figure 0005588603
Figure 0005588603

実施例2では、含F工程液にフッ素濃度が200mg/Lの亜鉛浸出液を用い、フッ素吸脱剤に実施例1と同じ酸化チタン粉を用いて、フッ素吸脱剤の繰り返し使用の可否について検討した。用いた含F工程液の組成を表2に示す。   In Example 2, a zinc leaching solution having a fluorine concentration of 200 mg / L was used as the F-containing process solution, and the same titanium oxide powder as in Example 1 was used as the fluorine adsorbing / desorbing agent. did. Table 2 shows the composition of the F-containing process liquid used.

具体的には、上記フッ素吸脱剤を用い、含F工程液中のフッ素の吸脱操作を5回繰り返し実施した。第1回目のフッ素吸着工程では、容量2Lの容器に含F工程液を1L投入し、希硫酸を用いてpHを3.0に調整し、液温を60℃にしてパドル式攪拌機で攪拌した。この含F工程液に前記酸化チタン粉末80gを投入してフッ素吸着スラリーとし、液温を60℃に維持しつつ攪拌を継続し、1時間維持した。このときの[(チタン量)/(フッ素量)]の値は240である。そして、1時間経過後、ヌッチェを用いて第1固液分離工程を実施し、含F酸化チタンケーキと処理工程液とを得た。第1固液分離工程で得られた処理工程液中のフッ素濃度は18.8mg/Lであり、目標値である20mg/Lを下回っていた。   Specifically, the fluorine adsorption / desorption operation in the F-containing process solution was repeated 5 times using the fluorine adsorption / desorption agent. In the first fluorine adsorption process, 1 L of the F-containing process solution was charged into a 2 L container, the pH was adjusted to 3.0 using dilute sulfuric acid, the solution temperature was set to 60 ° C., and the mixture was stirred with a paddle type stirrer. . 80 g of the titanium oxide powder was added to the F-containing step solution to form a fluorine adsorption slurry, and stirring was continued for 1 hour while maintaining the liquid temperature at 60 ° C. The value of [(titanium content) / (fluorine content)] at this time is 240. And after 1 hour progress, the 1st solid-liquid separation process was implemented using Nutsche, and the F-containing titanium oxide cake and the process liquid were obtained. The fluorine concentration in the treatment process liquid obtained in the first solid-liquid separation process was 18.8 mg / L, which was lower than the target value of 20 mg / L.

フッ素脱離工程では、水酸化ナトリウムを用いてpHを約11に調整した水溶液1Lを容量2Lの容器に入れ、液温を60℃にしてパドル式攪拌機で攪拌した。この水溶液に、上記第1固液分離工程で得られた含F酸化チタンケーキを投入してフッ素脱離スラリーとし、液温を60℃に維持しつつ攪拌を継続し、2時間維持した。2時間経過後、ヌッチェを用いて第2固液分離工程を実施し、再生フッ素吸脱剤とF脱離液とを得た。第2固液分離工程で得られた、F脱離液のフッ素濃度は138mg/Lであり、フッ素脱離率は96%であった。   In the fluorine desorption process, 1 L of an aqueous solution adjusted to a pH of about 11 using sodium hydroxide was placed in a container with a capacity of 2 L, and the liquid temperature was set to 60 ° C. and stirred with a paddle type stirrer. To this aqueous solution, the F-containing titanium oxide cake obtained in the first solid-liquid separation step was added to obtain a fluorine desorption slurry, and stirring was continued for 2 hours while maintaining the liquid temperature at 60 ° C. After the elapse of 2 hours, a second solid-liquid separation step was performed using a Nutsche to obtain a regenerated fluorine adsorbent / desorbent and an F desorbent. The fluorine concentration of the F desorption solution obtained in the second solid-liquid separation step was 138 mg / L, and the fluorine desorption rate was 96%.

第2回目のフッ素吸脱操作では、上記第1回目のフッ素吸脱操作で得られた再生フッ素吸脱剤をフッ素吸脱剤に用いた以外は、第1回目のフッ素吸脱操作と同様に実施した。このとき、実施例1では処理工程液へのチタンの溶出が極微量であったため、酸化チタン粉の追加はしていない。この点は、第3回目以降も同様である。その結果、第2回目のフッ素吸脱操作では、処理工程液中のフッ素濃度/F脱離液中のフッ素濃度/フッ素脱離率(以下、単位省略)はそれぞれ、19.5/140/93であった。同様にしてフッ素吸脱操作を繰り返し実施した結果、第3回目ではそれぞれ、16.1/201/94、第4回目ではそれぞれ、14.6/125/78、第5回目ではそれぞれ、15.9/160/99であった。上記結果を纏めて表2に示す。   The second fluorine adsorption / desorption operation is the same as the first fluorine adsorption / desorption operation except that the regenerated fluorine adsorption / desorption agent obtained in the first fluorine adsorption / desorption operation is used as the fluorine adsorption / desorption agent. Carried out. At this time, in Example 1, since the elution of titanium into the treatment process solution was extremely small, no titanium oxide powder was added. This also applies to the third and subsequent times. As a result, in the second fluorine adsorption / desorption operation, the fluorine concentration in the treatment process liquid / the fluorine concentration in the F desorption liquid / the fluorine desorption rate (hereinafter, unit omitted) was 19.5 / 140/93, respectively. Met. As a result of repeatedly performing the fluorine adsorption / desorption operation in the same manner, the third time was 16.1 / 201/94, the fourth time was 14.6 / 125/78, and the fifth time was 15.9. / 160/99. The results are summarized in Table 2.

Figure 0005588603
Figure 0005588603

実施例3では、含F工程液にフッ素濃度が160mg/Lの亜鉛浸出液を用い、フッ素吸脱剤には実施例1と同じ酸化ジルコニウム粉を用いて、[(ジルコニウム量)/(フッ素量)]の値を370にした以外は実施例2と同様にして、フッ素吸脱剤の繰り返し使用の可否について検討した。   In Example 3, a zinc leaching solution having a fluorine concentration of 160 mg / L was used as the F-containing process solution, and the same zirconium oxide powder as in Example 1 was used as the fluorine adsorbent, and [(zirconium amount) / (fluorine amount)]. ] The value of 370 was changed to 370, and the possibility of repeated use of the fluorine adsorbent was examined in the same manner as in Example 2.

具体的には、含F工程液1Lに対して前記酸化ジルコニウム粉を100g投入してフッ素吸着スラリーとし、実施例2と同様液温を60℃に維持しつつ攪拌を継続し、1時間維持した。1時間経過後、ヌッチェを用いて第1固液分離工程を実施し、含F酸化ジルコニウムケーキと処理工程液とを得た。第1固液分離工程で得られた、処理工程液中のフッ素濃度は15.3mg/Lであり、目標値である20mg/Lを下回っていた。   Specifically, 100 g of the zirconium oxide powder was added to 1 L of the F-containing process liquid to form a fluorine adsorption slurry, and the stirring was continued for 1 hour while maintaining the liquid temperature at 60 ° C. as in Example 2. . After 1 hour, the first solid-liquid separation step was performed using Nutsche to obtain an F-containing zirconium oxide cake and a treatment step solution. The fluorine concentration in the treatment process liquid obtained in the first solid-liquid separation process was 15.3 mg / L, which was lower than the target value of 20 mg / L.

フッ素脱離工程は、実施例2と同様、アルカリ性溶液に上記第1固液分離工程で得られた含F酸化ジルコニウムケーキを投入してフッ素脱離スラリーとし、液温を60℃に維持しつつ攪拌を継続し、2時間維持した。2時間経過後、ヌッチェを用いて第2固液分離工程を実施し、再生フッ素吸脱剤とF脱離液とを得た。第2固液分離工程で得られた、F脱離液中のフッ素濃度は139mg/Lであり、フッ素脱離率は98%であった。   In the fluorine desorption step, as in Example 2, the F-containing zirconium oxide cake obtained in the first solid-liquid separation step was put into an alkaline solution to form a fluorine desorption slurry, and the liquid temperature was maintained at 60 ° C. Stirring was continued and maintained for 2 hours. After the elapse of 2 hours, a second solid-liquid separation step was performed using a Nutsche to obtain a regenerated fluorine adsorbent / desorbent and an F desorbent. The fluorine concentration in the F desorption solution obtained in the second solid-liquid separation step was 139 mg / L, and the fluorine desorption rate was 98%.

第2回目のフッ素吸脱操作では、上記第2固液分離工程で得られた再生フッ素吸脱剤をフッ素吸脱剤に用いた以外は、第1回目のフッ素吸脱操作と同様に実施した。その結果、第2回目のフッ素吸脱操作では、処理工程液中のフッ素濃度/F脱離液中のフッ素濃度/フッ素脱離率(以下、単位省略)はそれぞれ、15.7/138/97であった。同様にしてフッ素吸脱操作を繰り返し実施した結果、第3回目ではそれぞれ、16.3/125/88、第4回目ではそれぞれ、14.5/115/81、第5回目ではそれぞれ、17.2/142/98であった。上記結果を纏めて表3に示す。   The second fluorine adsorption / desorption operation was performed in the same manner as the first fluorine adsorption / desorption operation except that the regenerated fluorine adsorption / desorption agent obtained in the second solid-liquid separation step was used as the fluorine adsorption / desorption agent. . As a result, in the second fluorine adsorption / desorption operation, the fluorine concentration in the treatment process liquid / the fluorine concentration in the F desorption liquid / the fluorine desorption rate (hereinafter, unit omitted) is 15.7 / 138/97, respectively. Met. As a result of repeatedly performing the fluorine adsorption / desorption operation in the same manner, 16.3 / 125/88 at the third time, 14.5 / 115/81 at the fourth time, and 17.2 at the fifth time, respectively. / 142/98. The results are summarized in Table 3.

Figure 0005588603
Figure 0005588603

実施例4では、電解尾液に亜鉛含有物を溶解した亜鉛含有物抽出液を、フッ素吸着の対象とする含F工程液とした。亜鉛含有物抽出液が含むフッ素の濃度は282mg/L、鉄濃度は1mg/Lであった。この亜鉛含有物抽出液を用い、[(チタン量)/(フッ素量)]の値を267にした以外は実施例1と同様にしてフッ素吸着試験を実施した。得られた処理工程液中のフッ素濃度は、15分後が16.2mg/L、30分後が17.3mg/L、60分後が16.4mg/Lであった。そして、60分間で処理工程液中に溶出した処理工程液中のチタンの濃度は、ICP分析装置を用いて分析したところ、実施例1と同じ26mg/Lであった。上記結果を、比較例の結果と併せて表4に示す。   In Example 4, the zinc-containing material extract obtained by dissolving the zinc-containing material in the electrolytic tail solution was used as the F-containing step solution for fluorine adsorption. The concentration of fluorine contained in the zinc-containing product extract was 282 mg / L, and the iron concentration was 1 mg / L. Using this zinc-containing extract, a fluorine adsorption test was carried out in the same manner as in Example 1 except that the value of [(titanium content) / (fluorine content)] was changed to 267. The fluorine concentration in the obtained treatment solution was 16.2 mg / L after 15 minutes, 17.3 mg / L after 30 minutes, and 16.4 mg / L after 60 minutes. And the density | concentration of the titanium in the processing-process liquid eluted in the processing-process liquid in 60 minutes was 26 mg / L which was the same as Example 1 when analyzed using the ICP analyzer. The results are shown in Table 4 together with the results of the comparative example.

表4では、フッ素吸脱剤から処理工程液中にチタン族元素が溶出しているが、溶存するチタン族元素が亜鉛の電解採取工程に影響しないことは、既に説明済みである。即ち、アナターゼ型又はルチル型のチタン族元素酸化物をフッ素吸脱剤に用いれば、鉄系化合物をフッ素吸脱剤に用いた場合のような、処理工程液からの脱鉄操作が必要ない。従って、アナターゼ型又はルチル型のチタン族元素酸化物をフッ素吸脱剤として用いれば、含F工程液の脱フッ素操作は、必要最小限の設備で効果を発揮できる。 In Table 4, the titanium group element is eluted from the fluorine adsorbent in the treatment process liquid, but it has already been explained that the dissolved titanium group element does not affect the zinc electrowinning process. That is, if an anatase type or rutile type titanium group element oxide is used for the fluorine adsorbent / desorbent, there is no need for a deironing operation from the treatment process liquid as in the case where an iron-based compound is used for the fluorine adsorbent / desorbent. Therefore, if anatase-type or rutile-type titanium group element oxide is used as the fluorine adsorbent / desorbent, the defluorination operation of the F-containing process solution can exhibit the effect with the minimum necessary equipment.

更に、実施例4の結果によれば、F含有工程液のフッ素濃度が高くても処理工程液中のフッ素濃度を20mg/L以下とできる。   Furthermore, according to the result of Example 4, even if the fluorine concentration of the F-containing process liquid is high, the fluorine concentration in the treatment process liquid can be 20 mg / L or less.

比較例Comparative example

比較例では、鉄系のフッ素吸脱剤であるアカガネアイトを用い、[(鉄量)/(フッ素量)]値を実施例4の[(チタン量)/(フッ素量)]値と一致させた以外は実施例4と同様にしてフッ素吸着試験を実施した。得られた処理工程液中のフッ素濃度は、15分後が18.2mg/L、30分後が14.1mg/L、60分後が18.4mg/Lであった。そして、60分間で処理工程液中に溶出した鉄の濃度は、ICP分析装置を用いて分析したところ11mg/Lであった。上記結果を、実施例4の結果と併せて表4に示す。   In the comparative example, akaganeite, which is an iron-based fluorine adsorption / desorption agent, was used, and the [(iron content) / (fluorine content)] value was matched with the [(titanium content) / (fluorine content)] value of Example 4. Except for the above, a fluorine adsorption test was carried out in the same manner as in Example 4. The fluorine concentration in the resulting treatment process liquid was 18.2 mg / L after 15 minutes, 14.1 mg / L after 30 minutes, and 18.4 mg / L after 60 minutes. And the density | concentration of the iron eluted in the process liquid for 60 minutes was 11 mg / L when analyzed using the ICP analyzer. The results are shown in Table 4 together with the results of Example 4.

Figure 0005588603
Figure 0005588603

[実施例4と比較例との対比]
実施例4と比較例とをフッ素の吸着能力の点で対比すると、共に良好であり、酸化チタンとアカガネアイトとは、フッ素吸脱剤としては同等の機能を備えることが判る。ところが、比較例では、鉄濃度が1mg/Lの亜鉛含有物抽出液を対象としてフッ素吸着処理を行ったにもかかわらず、60分間のフッ素吸着操作時点で、処理工程液中の鉄濃度が11mg/Lとなった。即ち、フッ素吸脱剤であるアカガネアイトの構成成分である鉄が、処理工程液中に溶出している。そして、この処理工程液をそのまま用いて亜鉛電解液を調整すると、後の電解採取工程では電流効率の低下や析出異常が発生し、生産コストの上昇をきたすことになる。従って、アカガネアイトをフッ素吸脱剤として用いてフッ素の吸脱操作を行う場合には、後処理工程として脱鉄処理が必須である。一方、アナターゼ型又はルチル型のチタン族元素酸化物をフッ素吸脱剤に用いた場合には、鉄系化合物をフッ素吸脱剤に用いた場合と比べ、同等のフッ素吸着効果が得られるが、フッ素吸脱剤が溶出しても悪影響を与えないため、後処理工程を必要としない。即ち、アナターゼ型又はルチル型のチタン族元素酸化物を用いれば、低コストで含F工程液からの脱フッ素操作が可能である。
[Contrast between Example 4 and Comparative Example]
When Example 4 and Comparative Example are compared in terms of fluorine adsorption capacity, both are good, and it can be seen that titanium oxide and akaganeite have equivalent functions as fluorine adsorbents. However, in the comparative example, the iron concentration in the treatment process liquid was 11 mg at the time of the fluorine adsorption operation for 60 minutes, even though the fluorine adsorption treatment was performed on the zinc-containing product extract having an iron concentration of 1 mg / L. / L. That is, iron, which is a constituent component of akaganeite, which is a fluorine adsorbent / desorbent, is eluted in the treatment process liquid. If the zinc electrolyte is adjusted using this treatment process solution as it is, current efficiency is reduced and precipitation abnormality occurs in the subsequent electrowinning process, resulting in an increase in production cost. Therefore, in the case where fluorine adsorption / desorption operation is performed using akaganeite as a fluorine adsorption / desorption agent, iron removal treatment is essential as a post-treatment step. On the other hand, when anatase-type or rutile-type titanium group element oxide is used for the fluorine adsorbent / desorbent, an equivalent fluorine adsorption effect can be obtained as compared with the case where an iron-based compound is used for the fluorine adsorbent / desorbent, Even if the fluorine adsorbing / desorbing agent is eluted, there is no adverse effect, so no post-treatment step is required. That is, if an anatase type or rutile type titanium group element oxide is used, the defluorination operation from the F-containing process liquid can be performed at low cost.

フッ素を含む亜鉛製錬用工程液からフッ素を除去するために、アナターゼ型又はルチル型の酸化チタン、アナターゼ型又はルチル型の酸化ジルコニウムおよびアナターゼ型又はルチル型の酸化ハフニウムから選択される1種又は2種以上の混合物をフッ素吸脱剤に用いて、フッ素吸着工程でフッ素吸脱剤にフッ素を吸着させ、フッ素脱離工程で吸着したフッ素を脱離し、フッ素吸脱剤として再使用する。前記フッ素吸着工程では、湿式亜鉛製錬用工程液が含むフッ素量と、接触させるアナターゼ型又はルチル型のチタン族元素酸化物が含むチタン族元素量との比[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値を20〜600として接触させれば、処理工程液中のフッ素濃度を20mg/L以下にできる。本件発明の方法によれば、処理工程液中のフッ素濃度を、低コストで容易に目標範囲に管理でき、廃水処理にも適用可能である。 To remove fluorine from a zinc smelting process solution containing fluorine, one selected from anatase or rutile type titanium oxide, anatase type or rutile type zirconium oxide and anatase or rutile hafnium or Two or more kinds of mixtures are used for the fluorine adsorbent / desorbent, fluorine is adsorbed to the fluorine adsorbent / desorbent in the fluorine adsorption step, the fluorine adsorbed in the fluorine desorption step is desorbed, and reused as the fluorine adsorbent / desorbent. In the fluorine adsorption step, the ratio of the amount of fluorine contained in the process liquid for hydrozinc smelting to the amount of titanium group element contained in the anatase-type or rutile-type titanium group element oxide [(titanium group element amount: mg / If the value of (L) / (fluorine amount: mg / L)] is 20 to 600, the fluorine concentration in the treatment process liquid can be reduced to 20 mg / L or less. According to the method of the present invention, the fluorine concentration in the treatment process liquid can be easily managed within the target range at low cost, and can be applied to wastewater treatment.

実施例1で得られた表1のデータをグラフ化した図である。It is the figure which made the data of Table 1 obtained in Example 1 into a graph.

Claims (5)

フッ素を含む湿式亜鉛製錬用工程液からフッ素を吸着除去するためのフッ素吸脱剤であって、アナターゼ型又はルチル型のチタン族元素酸化物であることを特徴とするチタン属元素系フッ素吸脱剤。 A fluorine adsorption / desorption agent for adsorbing and removing fluorine from a hydrozinc hydrometallurgical process liquid, which is an anatase type or rutile type titanium group element oxide, De-agent. 前記アナターゼ型又はルチル型のチタン族元素酸化物はアナターゼ型又はルチル型の酸化チタン、アナターゼ型又はルチル型の酸化ジルコニウムおよびアナターゼ型又はルチル型の酸化ハフニウムから選択される1種又は2種以上の混合物である請求項1に記載のフッ素吸脱剤。 The anatase-type or titanium group element oxide rutile anatase or rutile type titanium oxide, one or more selected from anatase type or rutile type zirconium oxide and anatase or rutile hafnium The fluorine adsorbent / desorbent according to claim 1, which is a mixture. 請求項1又は請求項2に記載のフッ素吸脱剤を用いてフッ素を含む湿式亜鉛製錬用工程液からフッ素を除去する方法であって、
以下の工程を含むことを特徴とするフッ素を含む湿式亜鉛製錬用工程液からフッ素を除去する方法。
フッ素吸着工程: フッ素を含む湿式亜鉛製錬用工程液とフッ素吸脱剤とを接触させてフッ素吸着スラリーとし、フッ素を含む湿式亜鉛製錬用工程液が含むフッ素をフッ素吸脱剤に吸着させる工程。
第1固液分離工程: 前記フッ素吸着スラリーを固液分離して、フッ素を吸着したフッ素吸脱剤とフッ素含有量を減じた湿式亜鉛製錬用工程液とを得る工程。
フッ素脱離工程: 第1固液分離工程で得られた、フッ素を吸着したフッ素吸脱剤をアルカリ性溶液と接触させてフッ素脱離スラリーとし、フッ素を吸着したフッ素吸脱剤からフッ素を脱離する工程。
第2固液分離工程: フッ素脱離スラリーを固液分離して、フッ素を脱離したフッ素吸脱剤とフッ素を含むアルカリ性溶液とを得る工程。
フッ素吸脱剤再使用工程: 第2固液分離工程で得られた、フッ素を脱離したフッ素吸脱剤を、後のフッ素吸着工程で用いるフッ素吸脱剤として再使用する工程。
A method for removing fluorine from a process liquid for wet zinc smelting containing fluorine using the fluorine adsorbent / desorbent according to claim 1,
A method for removing fluorine from a process liquid for wet zinc smelting containing fluorine, comprising the following steps.
Fluorine adsorption process: A wet zinc smelting process liquid containing fluorine and a fluorine adsorbent / desorbent are brought into contact with each other to form a fluorine adsorption slurry, and the fluorine contained in the wet zinc smelting process liquid is adsorbed on the fluorine adsorbent / desorbent. Process.
First solid-liquid separation step: A step of solid-liquid separation of the fluorine adsorption slurry to obtain a fluorine adsorption / desorption agent that has adsorbed fluorine and a process solution for wet zinc smelting with reduced fluorine content.
Fluorine desorption process: Fluorine adsorption / desorption agent adsorbing fluorine obtained in the first solid-liquid separation step is brought into contact with an alkaline solution to form a fluorine desorption slurry, and fluorine is desorbed from the fluorine adsorption / desorption agent adsorbing fluorine. Process.
Second solid-liquid separation step: A step of solid-liquid separation of the fluorine desorption slurry to obtain a fluorine adsorbent / desorbent from which fluorine has been desorbed and an alkaline solution containing fluorine.
Fluorine adsorption / desorption agent reuse step: A step of reusing the fluorine adsorption / desorption agent desorbed from the fluorine obtained in the second solid-liquid separation step as a fluorine adsorption / desorption agent used in the subsequent fluorine adsorption step.
前記フッ素吸着工程ではフッ素を含む湿式亜鉛製錬用工程液のpH領域をpH1.0を超えpH7.0未満の酸性領域としてフッ素吸脱剤と接触させ、前記フッ素脱離工程ではフッ素を吸着したフッ素吸脱剤をpH領域がpH7.0以上pH14.0以下のアルカリ性溶液と接触させる請求項3に記載のフッ素を含む湿式亜鉛製錬用工程液からフッ素を除去する方法。 In the fluorine adsorption step, the pH region of the hydrozinc hydrometallurgical process solution containing fluorine is brought into contact with the fluorine adsorbent as an acidic region exceeding pH 1.0 and less than 7.0, and fluorine is adsorbed in the fluorine desorption step. The method for removing fluorine from a process solution for hydrozinc containing zinc according to claim 3, wherein the fluorine adsorbent is brought into contact with an alkaline solution having a pH range of 7.0 to 14.0. 前記フッ素吸着工程で、フッ素を含む湿式亜鉛製錬用工程液が含むフッ素量と、接触させるアナターゼ型又はルチル型のチタン族元素酸化物が含むチタン族元素量との比[(チタン族元素量:mg/L)/(フッ素量:mg/L)]の値を20〜600とする、請求項3又は請求項4に記載のフッ素を含む湿式亜鉛製錬用工程液からフッ素を除去する方法。 In the fluorine adsorption step, the ratio of the amount of fluorine contained in the hydrous zinc refining process liquid containing fluorine to the amount of titanium group element contained in the anatase-type or rutile-type titanium group element oxide to be contacted [(titanium group element amount : Mg / L) / (fluorine amount: mg / L)] is set to 20 to 600, and the fluorine is removed from the process liquid for hydrozinc containing zinc according to claim 3 or claim 4. .
JP2008138753A 2008-05-27 2008-05-27 Fluorine-containing wet zinc smelting process titanium group element fluorine adsorbent for liquid treatment, and fluorine removal method Active JP5588603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138753A JP5588603B2 (en) 2008-05-27 2008-05-27 Fluorine-containing wet zinc smelting process titanium group element fluorine adsorbent for liquid treatment, and fluorine removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138753A JP5588603B2 (en) 2008-05-27 2008-05-27 Fluorine-containing wet zinc smelting process titanium group element fluorine adsorbent for liquid treatment, and fluorine removal method

Publications (2)

Publication Number Publication Date
JP2009285541A JP2009285541A (en) 2009-12-10
JP5588603B2 true JP5588603B2 (en) 2014-09-10

Family

ID=41455292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138753A Active JP5588603B2 (en) 2008-05-27 2008-05-27 Fluorine-containing wet zinc smelting process titanium group element fluorine adsorbent for liquid treatment, and fluorine removal method

Country Status (1)

Country Link
JP (1) JP5588603B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124666B (en) * 2012-12-20 2014-11-28 Outotec Finland Oy A method and system for removing fluoride from sulfate solutions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153940A (en) * 1984-01-25 1985-08-13 Asahi Chem Ind Co Ltd Adsorbent of dissolved fluorine ion
JPH04317738A (en) * 1991-04-16 1992-11-09 Agency Of Ind Science & Technol Production of fluoride ion adsorbing material
JP3754274B2 (en) * 2000-06-07 2006-03-08 独立行政法人科学技術振興機構 Method for removing fluorine from waste liquid
JP2002038038A (en) * 2000-07-28 2002-02-06 Rengo Co Ltd Molded product of hydrous zirconium oxide composite hydrophilic polymer, its manufacturing method and its uses
JP2006000818A (en) * 2004-06-21 2006-01-05 Asahi Kasei Corp Adsorbent
JP3740491B1 (en) * 2004-07-23 2006-02-01 三井金属鉱業株式会社 Fluorine adsorption / desorption agent capable of adsorbing and desorbing fluorine in electrolyte in zinc electrolytic smelting, and fluorine removal method using the fluorine adsorption / desorption agent
JP4907985B2 (en) * 2005-12-27 2012-04-04 三井金属鉱業株式会社 Fluorine removal method

Also Published As

Publication number Publication date
JP2009285541A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP3740491B1 (en) Fluorine adsorption / desorption agent capable of adsorbing and desorbing fluorine in electrolyte in zinc electrolytic smelting, and fluorine removal method using the fluorine adsorption / desorption agent
JP5749461B2 (en) Wastewater treatment method for wastewater containing aluminum, magnesium and manganese
RU2591903C2 (en) Method of extracting zinc oxide
JP4816897B2 (en) Electrolytic extraction method of metal manganese and high purity metal manganese
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
WO2016159001A1 (en) Method for removing iron from iron-containing solution, and method for recovering valuable metals
JP5588603B2 (en) Fluorine-containing wet zinc smelting process titanium group element fluorine adsorbent for liquid treatment, and fluorine removal method
JP4907985B2 (en) Fluorine removal method
CN103221557A (en) Method for producing nickel-ontaining acidic solution
JP7383550B2 (en) Manganese ion removal method
JP2010202457A (en) Method for removing chlorine in acidic liquid
JP2008196039A (en) Method of removing fluorine from processing liquid used in wet zinc smelting
JP2011106010A (en) Method for separating indium from tin by using organic solvent
JP2013095984A (en) Method for leaching arsenic from nonferrous smelting smoke ash
JP4862191B2 (en) Method for treating selenium-containing water
JP3690989B2 (en) Methods for removing antimony from tantalum, niobium, and other collection and purification solutions
US20240003029A1 (en) Zinc production method
JP2007284757A (en) Method for removing fluorine from sulfuric acid/acidic zinc sulfate solution
AU2014101275A4 (en) Process for purifying zinc oxide
CN109536714A (en) A kind of synthetical recovery zinc method of iron content cobalt zinc waste residue
CN115074784A (en) Method for efficiently removing arsenic through electrolysis in refined copper electrolyte
JPS62256996A (en) Starting material for zinc plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5588603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250