JP5583884B2 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP5583884B2
JP5583884B2 JP2007172474A JP2007172474A JP5583884B2 JP 5583884 B2 JP5583884 B2 JP 5583884B2 JP 2007172474 A JP2007172474 A JP 2007172474A JP 2007172474 A JP2007172474 A JP 2007172474A JP 5583884 B2 JP5583884 B2 JP 5583884B2
Authority
JP
Japan
Prior art keywords
weight
parts
rubber
copolymer
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007172474A
Other languages
Japanese (ja)
Other versions
JP2009007528A (en
Inventor
利恭 西岡
文敏 武田
克典 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2007172474A priority Critical patent/JP5583884B2/en
Publication of JP2009007528A publication Critical patent/JP2009007528A/en
Application granted granted Critical
Publication of JP5583884B2 publication Critical patent/JP5583884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は熱可塑性樹脂組成物に関するものである。詳しくは、耐衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れたポリ乳酸樹脂を含む熱可塑性樹脂組成物に関するものである。   The present invention relates to a thermoplastic resin composition. More specifically, the present invention relates to a thermoplastic resin composition containing a polylactic acid resin having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity.

近年、地球的規模での環境問題として、石油化学製品の使用増加による石油資源の将来性が危ぶまれている。例えば、ポリ乳酸樹脂は植物であるとうもろこしや芋類を原料として得られる乳酸からなる樹脂であり、石油を原料としない環境対応型の樹脂として知られている。しかしながら、ポリ乳酸樹脂は、ノッチ付き衝撃強度および、耐熱性に劣るといった欠点がある。
一方、ABS樹脂は優れた物性バランスおよび成形加工性を有しており、広範な分野に利用されているが、
原料は石油資源に依存している。これら両者の欠点を補うことを目的に下記の従来技術が提案されているが、耐衝撃強度、耐熱性、加工性、外観の均一性の諸物性を全て満足することはできず、改良が望まれている。
特開2000−327847号公報 特開2004−269720号公報 特開2005−171204号公報 特開2006−137908号公報 特開2006−161024号公報 特開2007−63368号公報 特開2007−126535号公報
In recent years, as an environmental problem on a global scale, the future of petroleum resources due to increased use of petrochemical products has been threatened. For example, polylactic acid resin is a resin made of lactic acid obtained from plant corn and potatoes as a raw material, and is known as an environmentally friendly resin that does not use petroleum as a raw material. However, the polylactic acid resin has the disadvantages that it is inferior in notched impact strength and heat resistance.
On the other hand, ABS resin has excellent physical property balance and molding processability and is used in a wide range of fields.
The raw material depends on petroleum resources. The following conventional technologies have been proposed to compensate for these disadvantages, but they cannot satisfy all of the physical properties of impact strength, heat resistance, workability, and uniformity of appearance, and improvements are desired. It is rare.
JP 2000-327847 A JP 2004-269720 A JP-A-2005-171204 JP 2006-137908 A JP 2006-161024 A JP 2007-63368 A JP 2007-126535 A

本発明は、上記課題を解決するために成されたもので、耐衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れたポリ乳酸樹脂を含む熱可塑性樹脂組成物を提供することを目的とするものである。   The present invention has been made to solve the above-mentioned problems, and provides a thermoplastic resin composition containing a polylactic acid resin having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity. It is intended.

すなわち本発明は、ポリ乳酸樹脂(L)5〜50重量部、ゴム含有グラフト共重合体(G)10〜60重量部、(メタ)アクリル酸エステル系重合体(M)15〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)5〜70重量部からなることを特徴とする熱可塑性樹脂組成物(ただし、(L)、(G)、(M)、(A)の合計は100重量部である。)を提供するものである。 That is, the present invention comprises polylactic acid resin (L) 5 to 50 parts by weight, rubber-containing graft copolymer (G) 10 to 60 parts by weight, (meth) acrylic ester polymer (M) 15 to 50 parts by weight, α-methylstyrene-acrylonitrile copolymer (A) comprising 5 to 70 parts by weight of a thermoplastic resin composition (however, the total of (L), (G), (M), (A) is 100 parts by weight).

本発明における熱可塑性樹脂組成物は、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れ、特に石油資源消費の抑制にも貢献できる環境対応型材料として、車両分野、家電分野、建材分野、サニタリー分野等に広く用いることができる。   The thermoplastic resin composition according to the present invention has an excellent balance of impact strength, heat resistance, processability, and uniformity of appearance, and particularly as an environmentally friendly material that can contribute to the suppression of petroleum resource consumption. It can be widely used in the field of building materials and sanitary.

以下、本発明の熱可塑性樹脂組成物につき詳細に説明する。
本発明において、ポリ乳酸樹脂は熱可塑性樹脂組成物の必須成分を構成する。市販されているポリ樹脂としては、例えば三井化学(株)製 商品名:レイシア、ユニチカ(株)製 商品名:テラマック等が挙げられるが、これらに限定されるものではない。
Hereinafter, the thermoplastic resin composition of the present invention will be described in detail.
In the present invention, the polylactic acid resin constitutes an essential component of the thermoplastic resin composition. Examples of the commercially available polyresin include, but are not limited to, product names: Lacia, manufactured by Mitsui Chemicals, Inc., and product names: Terramac, manufactured by Unitika Ltd.

本発明におけるゴム含有グラフト共重合体(G)とは、ゴム状重合体にビニル系単量体を重合して得られるものであり、該ゴム状重合体としては、ポリブタジエン、ポリイソプレン、ブタジエンースチレン共重合体、イソプレン−スチレン共重合体、ブタジエン−アクリロニトリル共重合体、ブタジエン−イソプレン−スチレン共重合体、ポリクロロプレンなどのジエン系ゴム、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン−1−非共役ジエン共重合体、またポリブチルアクリレートなどのアクリル系ゴム、ポリオルガノシロキサン系ゴム、さらにはこれらの2種以上のゴムからなる複合ゴム等が挙げられ、一種又は二種以上用いることができる。これらのうち、特に共役ジエン系ゴムが衝撃強度発現性の観点から好ましい。
ゴム含有グラフト共重合体の製造に好適に用いられるビニル系単量体としては、スチレン系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体が挙げられる。
スチレン系単量体としては、スチレン、α−メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、一種又は二種以上用いることができる。特にスチレン、α−メチルスチレンが好ましい。
シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられる。特にアクリロニトリルが好ましい。
(メタ)アクリル酸エステル系単量体としては、メチルアクリレート、メチルアクリレート等が挙げられる。特にメチルメタクリレートが好ましい。
また、上記ビニル系単量体と共に無水マレイン酸、マレイン酸ジメチル等の不飽和酸系単量体、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体などを用いることも可能である。
上記のゴム含有グラフト共重合体を構成する各成分の組成割合については特に制限はないが、好ましくはゴム状重合体5〜70重量%およびスチレン系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体から選ばれたビニル系単量体30〜95重量%である。
また、ゴム含有グラフト共重合体の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができるが、高温高湿環境下における経時安定性維持の観点から、ゴム含有グラフト共重合体に含有されるアルカリ金属の含有量が0.01重量%以下であることが好ましい。
The rubber-containing graft copolymer (G) in the present invention is obtained by polymerizing a vinyl monomer to a rubber-like polymer. Examples of the rubber-like polymer include polybutadiene, polyisoprene, and butadiene. Diene rubber such as styrene copolymer, isoprene-styrene copolymer, butadiene-acrylonitrile copolymer, butadiene-isoprene-styrene copolymer, polychloroprene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene Examples thereof include copolymers, ethylene-butene-1-nonconjugated diene copolymers, acrylic rubbers such as polybutyl acrylate, polyorganosiloxane rubbers, and composite rubbers composed of two or more of these rubbers. 1 type, or 2 or more types can be used. Among these, conjugated diene rubber is particularly preferable from the viewpoint of impact strength development.
Examples of the vinyl monomer suitably used for the production of the rubber-containing graft copolymer include a styrene monomer, a vinyl cyanide monomer, and a (meth) acrylic acid ester monomer.
Examples of the styrene monomer include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like, and one or two or more types can be used. In particular, styrene and α-methylstyrene are preferable.
Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile. Particularly preferred is acrylonitrile.
Examples of the (meth) acrylic acid ester monomer include methyl acrylate and methyl acrylate. Particularly preferred is methyl methacrylate.
Moreover, it is also possible to use an unsaturated acid monomer such as maleic anhydride and dimethyl maleate, a maleimide monomer such as N-phenylmaleimide, N-cyclohexylmaleimide, and the like together with the vinyl monomer. .
The composition ratio of each component constituting the rubber-containing graft copolymer is not particularly limited, but preferably 5 to 70% by weight of a rubbery polymer and a styrene monomer, a vinyl cyanide monomer, It is 30 to 95% by weight of a vinyl monomer selected from (meth) acrylic acid ester monomers.
The polymerization method of the rubber-containing graft copolymer is not particularly limited, and can be produced by emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof, but is stable over time in a high temperature and high humidity environment. From the viewpoint of maintaining the property, the content of the alkali metal contained in the rubber-containing graft copolymer is preferably 0.01% by weight or less.

本発明における(メタ)アクリル酸エステル系重合体(M)の製造に好適に用いられる単量体としてはメチルメタクリレート、メチルアクリレート、エチルアクリレート、ブチルアクリレートなどが上げられ、特にメチルメタクリレート単独もしくは、メチルメタクリレートを主にメチルアクリレート等との併用が好ましい。また、必要に応じてスチレン系単量体やシアン化ビニル単量体の他の単量体を併用しても差し支えないが、(メタ)アクリル酸エステル系重合体に占めるそれら他の単量体の共重合比率は20重量%未満、更に好ましくは10重量%であることが好ましい。   Examples of the monomer suitably used for the production of the (meth) acrylic acid ester polymer (M) in the present invention include methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, etc., and particularly methyl methacrylate alone or methyl It is preferable to use methacrylate in combination with mainly methyl acrylate. Also, if necessary, other monomers may be used in combination with other monomers such as styrene monomers and vinyl cyanide monomers, but these other monomers in the (meth) acrylate polymer Is preferably less than 20% by weight, more preferably 10% by weight.

本発明におけるα−メチルスチレン−アクリロニトリル共重合体(A)の組成割合としては、特にα−メチルスチレン60〜80重量%およびアクリロニトリル20〜40重量%であることが好ましい。
また、α−メチルスチレン−アクリロニトリル共重合体(A)の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができる。
The composition ratio of the α-methylstyrene-acrylonitrile copolymer (A) in the present invention is particularly preferably 60 to 80% by weight of α-methylstyrene and 20 to 40% by weight of acrylonitrile.
Moreover, there is no restriction | limiting in particular also about the polymerization method of (alpha) -methylstyrene acrylonitrile copolymer (A), It can manufacture by emulsion polymerization, suspension polymerization, block polymerization, solution polymerization, or these combination.

本発明の熱可塑性樹脂組成物は、ポリ乳酸樹脂(L)5〜70重量部、ゴム含有グラフト共重合体(G)10〜60重量部、(メタ)アクリル酸エステル系重合体(M)1〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)5〜84重量部からなるものである(ただし、(L)、(G)、(M)、(A)の合計は100重量部である。)。
ポリ乳酸樹脂(L)の配合比率が5重量部未満では、原料の殆どを石油資源に依存しているという環境負荷は低減されず、70重量部を超えると耐熱性が低下する。好ましくは10〜60重量部、更に好ましくは15〜50重量部である。
ゴム含有グラフト共重合体(G)の配合比率が10重量部未満では衝撃強度が劣り、60重量部を超えると加工性や耐熱性が低下する。好ましくは10〜55重量部、更に好ましくは15〜55重量部である。
(メタ)アクリル酸エステル系重合体(M)の配合比率が1重量部未満では外観の均一性が劣り、50重量部を超えると耐熱性や衝撃強度が低下する。好ましくは10〜45重量部、更に好ましくは15〜40重量部である。
α−メチルスチレン−アクリロニトリル共重合体(A)の配合比率が5重量部未満では耐熱性が劣り、84重量部を超えると衝撃強度が低下する。好ましくは10〜70重量部、更に好ましくは10〜60重量部である。
The thermoplastic resin composition of the present invention comprises a polylactic acid resin (L) 5 to 70 parts by weight, a rubber-containing graft copolymer (G) 10 to 60 parts by weight, and a (meth) acrylic acid ester polymer (M) 1 To 50 parts by weight, α-methylstyrene-acrylonitrile copolymer (A) 5 to 84 parts by weight (however, the total of (L), (G), (M), (A) is 100 weights) Part.)
When the blending ratio of the polylactic acid resin (L) is less than 5 parts by weight, the environmental burden that most of the raw material depends on petroleum resources is not reduced, and when it exceeds 70 parts by weight, the heat resistance is lowered. Preferably it is 10-60 weight part, More preferably, it is 15-50 weight part.
When the blending ratio of the rubber-containing graft copolymer (G) is less than 10 parts by weight, the impact strength is inferior, and when it exceeds 60 parts by weight, workability and heat resistance are lowered. Preferably it is 10-55 weight part, More preferably, it is 15-55 weight part.
If the blending ratio of the (meth) acrylic acid ester polymer (M) is less than 1 part by weight, the uniformity of the appearance is poor, and if it exceeds 50 parts by weight, the heat resistance and impact strength are lowered. Preferably it is 10-45 weight part, More preferably, it is 15-40 weight part.
When the blending ratio of the α-methylstyrene-acrylonitrile copolymer (A) is less than 5 parts by weight, the heat resistance is poor, and when it exceeds 84 parts by weight, the impact strength is lowered. Preferably it is 10-70 weight part, More preferably, it is 10-60 weight part.

また、本発明における熱可塑性樹脂組成物には、上記各成分の他に、その物性を損なわない限りにおいて、その目的に応じて樹脂の混合時、成形時等に安定剤、顔料、染料、補強剤(タルク、マイカ、クレー、ガラス繊維等)、着色剤(カーボンブラック、酸化チタン等)、紫外線吸収剤、酸化防止剤、滑剤、離型剤、可塑剤、帯電防止剤、無機および有機系抗菌剤等の公知の添加剤を配合することができる。   In addition to the above components, the thermoplastic resin composition according to the present invention includes stabilizers, pigments, dyes, reinforcements at the time of resin mixing and molding depending on the purpose, as long as the physical properties are not impaired. Agents (talc, mica, clay, glass fiber, etc.), colorants (carbon black, titanium oxide, etc.), UV absorbers, antioxidants, lubricants, mold release agents, plasticizers, antistatic agents, inorganic and organic antibacterials Known additives such as an agent can be blended.

本発明における熱可塑性樹脂組成物の混合方法としては、バンバリーミキサー、押出機等公知の混練機を用いる方法が挙げられる。また、混合順序にも何ら制限はなく、4成分の一括混練はもちろんのこと、予め任意の2ないし3成分を混合した後に残る成分を混合することも可能である。   Examples of the method for mixing the thermoplastic resin composition in the present invention include a method using a known kneader such as a Banbury mixer or an extruder. Further, there is no limitation on the mixing order, and it is possible to mix the remaining components after mixing two to three components in advance, as well as batch mixing of the four components.

〔実施例〕
以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。
また、特段の断りが無い限り、%や部は重量を基準とする。
〔Example〕
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by these.
Unless otherwise specified,% and parts are based on weight.

ポリ乳酸樹脂(L)
ポリ乳酸樹脂(L)として、三井化学株式会社製LACEA H−400を用いた。
Polylactic acid resin (L)
LACEA H-400 manufactured by Mitsui Chemicals, Inc. was used as the polylactic acid resin (L).

ゴム含有グラフト共重合体G1〜G3の作製
ゴム含有グラフト共重合体G1:ステンレス製耐圧重合反応機に、減圧下で純水21.9部、オレイン酸カリウム1.0部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.5部、水酸化ナトリウム0.15部、ゴム状重合体としてブタジエン−スチレン共重合体ラテックス(スチレン含有量10重量%、ゲル含有量85重量%、重量平均粒子径430nm)を固形分で65部、t−ドデシルメルカプタン0.25部、ブドウ糖0.08部、硫酸第一鉄0.002部を仕込んで十分攪拌しながら67℃に昇温した後、t−ブチルハイドロパーオキサイド0.08部を仕込み67℃で重合を開始した。開始直後からスチレン27部とアクリロニトリル8部の単量体混合物を2時間にわたって連続添加し、重合転化率が63%を越えた時点でt−ブチルハイドロパーオキサイド0.04部を仕込み、反応温度を72℃に上げて反応を2時間継続し、重合転化率が97%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたラテックス状のゴム含有グラフト共重合体を多量のメタノール中に投入して沈殿させ、100メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で残留するメタノールを除去し、85℃の熱風オーブン中で含水率が1重量%以下になるまで乾燥させ、パウダー状のゴム含有グラフト共重合体G1を得た。
得られたゴム含有グラフト共重合体G1を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定したところ、0.002重量%であった。
Preparation of rubber-containing graft copolymers G1 to G3 Rubber-containing graft copolymer G1: In a pressure-resistant polymerization reactor made of stainless steel, 21.9 parts of pure water, 1.0 part of potassium oleate, and sodium naphthalenesulfonate were added under reduced pressure. Formalin condensate 0.5 part, sodium hydroxide 0.15 part, butadiene-styrene copolymer latex (styrene content 10 wt%, gel content 85 wt%, weight average particle size 430 nm) as rubber-like polymer 65 parts in solids, 0.25 part of t-dodecyl mercaptan, 0.08 part of glucose and 0.002 part of ferrous sulfate were charged and heated to 67 ° C. with sufficient stirring, and then t-butyl hydroperoxide 0.08 part was charged and polymerization was started at 67 ° C. Immediately after the start, a monomer mixture of 27 parts of styrene and 8 parts of acrylonitrile was continuously added over 2 hours. When the polymerization conversion rate exceeded 63%, 0.04 part of t-butyl hydroperoxide was added, and the reaction temperature was adjusted. The temperature was raised to 72 ° C and the reaction was continued for 2 hours. After confirming that the polymerization conversion rate exceeded 97%, the temperature in the tank was cooled to 40 ° C or lower. The obtained latex-like rubber-containing graft copolymer was poured into a large amount of methanol, precipitated, poured into a 100-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Thereafter, methanol remaining under reduced pressure was removed and dried in a hot air oven at 85 ° C. until the water content became 1% by weight or less to obtain a powdery rubber-containing graft copolymer G1.
The obtained rubber-containing graft copolymer G1 was incinerated and then dissolved in an acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption spectroscopy. As a result, it was 0.002% by weight.

ゴム含有グラフト共重合体G2:ステンレス製耐圧重合反応機に、減圧下で純水65.7部、オレイン酸カリウム1.5部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.8部、水酸化カリウム0.20部、ゴム状重合体としてブタジエン−アクリロニトリル共重合体ラテックス(アクリロニトリル含有量2重量%、ゲル含有量90重量%、重量平均粒子径370nm)を固形分で40部、t−ドデシルメルカプタン0.20部、ブドウ糖0.05部、硫酸第一鉄0.003部を仕込んで十分攪拌しながら65℃に昇温した後、t−ブチルハイドロパーオキサイド0.07部を仕込み65℃で重合を開始した。開始直後からスチレン30部、アクリロニトリル10部、メチルメタクリレート20部の単量体混合物を4時間にわたって連続転化し、転化率が65%を越えた時点でクメンハイドロパーオキサイド0.06部を仕込み、反応温度を70℃に上げて反応を2時間継続し、重合転化率が97%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたラテックス状のゴム含有グラフト共重合体を多量のメタノール中に投入して沈殿させ、100メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で残留するメタノールを除去し、85℃の熱風オーブン中で含水率が1重量%以下になるまで乾燥させ、パウダー状のゴム含有グラフト共重合体G2を得た。
得られたゴム含有グラフト共重合体G2を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定したところ、0.004重量%であった。
Rubber-containing graft copolymer G2: In stainless steel pressure-resistant polymerization reactor, 65.7 parts pure water, 1.5 parts potassium oleate, 0.8 parts formalin condensate of sodium naphthalenesulfonate under reduced pressure, potassium hydroxide 0.20 parts, butadiene-acrylonitrile copolymer latex (acrylonitrile content 2% by weight, gel content 90% by weight, weight average particle size 370 nm) as a rubbery polymer, 40 parts by solids, t-dodecyl mercaptan 0 20 parts, 0.05 parts of glucose and 0.003 part of ferrous sulfate were added and the temperature was raised to 65 ° C. with sufficient stirring, followed by 0.07 parts of t-butyl hydroperoxide and polymerization at 65 ° C. Started. Immediately after the start, a monomer mixture of 30 parts of styrene, 10 parts of acrylonitrile and 20 parts of methyl methacrylate was continuously converted over 4 hours, and when the conversion rate exceeded 65%, 0.06 part of cumene hydroperoxide was charged and reacted. The temperature was raised to 70 ° C. and the reaction was continued for 2 hours. After confirming that the polymerization conversion rate exceeded 97%, the temperature in the tank was cooled to 40 ° C. or lower. The obtained latex-like rubber-containing graft copolymer was poured into a large amount of methanol, precipitated, poured into a 100-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Thereafter, the remaining methanol was removed under reduced pressure, and it was dried in a hot air oven at 85 ° C. until the water content became 1% by weight or less to obtain a powdery rubber-containing graft copolymer G2.
The obtained rubber-containing graft copolymer G2 was incinerated, dissolved in an acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption spectroscopy. As a result, it was 0.004% by weight.

ゴム含有グラフト共重合体G3:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。プラグフロー塔型反応槽が粒子形成工程を、第2反応器である1基目の完全混合槽が粒子径調整工程を、第3反応器が後重合工程を構成する。
プラグフロー塔型反応槽にエチルベンゼン22重量部、スチレン49.1重量部、アクリロニトリル16.4重量部、ジエン系ゴム状重合体として、日本ゼオン社製Nipol NS320Sを12.5重量部、t−ドデシルメルカプタン0.20重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.045重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時10kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてゴム含有グラフト共重合体G3を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、ジエン系ゴム成分25重量%、スチレン単量体成分56重量%、アクリロニトリル単量体成分19重量%であった。
得られたゴム含有グラフト共重合体G3を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定したところ、0.0005重量%であった。
Rubber-containing graft copolymer G3: A continuous block polymerization apparatus in which two 10-liter complete mixing tanks were connected in series to a plug flow tower type reaction tank having a volume of 15 liters was used. The plug flow tower type reaction vessel constitutes the particle formation step, the first complete mixing vessel as the second reactor constitutes the particle size adjustment step, and the third reactor constitutes the post-polymerization step.
In a plug flow column reactor, 22 parts by weight of ethylbenzene, 49.1 parts by weight of styrene, 16.4 parts by weight of acrylonitrile, 12.5 parts by weight of Nipol NS320S manufactured by Nippon Zeon Co., Ltd. as a diene rubbery polymer, t-dodecyl A raw material consisting of 0.20 part by weight of mercaptan, 0.045 part by weight of 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane was prepared, and this raw material was added to a three-stage stirred polymerization tank row The monomer was polymerized by continuously feeding the reactor at 10 kg / hr. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain a rubber-containing graft copolymer G3 as granular pellets. When the composition analysis of the pellets was performed by pyrolysis chromatography, the diene rubber component was 25% by weight, the styrene monomer component was 56% by weight, and the acrylonitrile monomer component was 19% by weight.
The obtained rubber-containing graft copolymer G3 was incinerated and then dissolved in an acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption spectrometry. As a result, it was 0.0005% by weight.

(メタ)アクリル酸エステル系共重合体M1〜M2の製造
(メタ)アクリル酸エステル系共重合体M1:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。
プラグフロー塔型反応槽にエチルベンゼン20重量部、メチルメタクリレート72重量部、メチルアクリレート8重量部、t−ドデシルメルカプタン0.15重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.050重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時12kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとして(メタ)アクリル酸エステル系共重合体M1を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、メチルメタクリレート単量体成分90重量%、メチルアクリレート単量体成分10重量%であった。
Production of (meth) acrylic acid ester copolymers M1 and M2 (Meth) acrylic acid ester copolymer M1: Two 10 liter complete mixing tanks are connected in series to a 15 liter plug flow tower type reaction tank. A connected continuous bulk polymerization apparatus was used.
20 parts by weight of ethylbenzene, 72 parts by weight of methyl methacrylate, 8 parts by weight of methyl acrylate, 0.15 parts by weight of t-dodecyl mercaptan, 1,1-bis (t-butylperoxy) 3, 3, A raw material consisting of 0.050 part by weight of 5-trimethylcyclohexane was prepared, and this raw material was continuously fed to a three-stage stirred polymerization tank train reactor at 12 kg / hour to polymerize the monomer. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain a (meth) acrylate copolymer M1 as granular pellets. When the composition analysis of the pellets was performed by pyrolysis chromatography, the methyl methacrylate monomer component was 90% by weight and the methyl acrylate monomer component was 10% by weight.

(メタ)アクリル酸エステル系共重合体M2:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。
プラグフロー塔型反応槽にエチルベンゼン25重量部、メチルメタクリレート67.5重量部、メチルアクリレート1.5重量部、スチレン3重量部、アクリロニトリル3重量部、t−ドデシルメルカプタン0.20重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.042重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時10kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとして(メタ)アクリル酸エステル系共重合体M1を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、メチルメタクリレート単量体成分90重量%、メチルアクリレート単量体成分2重量%、スチレン単量体成分4重量%、アクリロニトリル単量体成分4重量%であった。
(Meth) acrylic ester copolymer M2: A continuous bulk polymerization apparatus in which two 10 liter complete mixing tanks were connected in series to a 15 liter plug flow column reactor.
In a plug flow tower type reaction vessel, ethylbenzene 25 parts by weight, methyl methacrylate 67.5 parts by weight, methyl acrylate 1.5 parts by weight, styrene 3 parts by weight, acrylonitrile 3 parts by weight, t-dodecyl mercaptan 0.20 parts by weight, A raw material consisting of 0.042 parts by weight of 1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane was prepared, and this raw material was continuously supplied to a three-stage stirred polymerization tank train reactor at 10 kg / h. The monomer was polymerized by feeding. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain a (meth) acrylate copolymer M1 as granular pellets. The composition of the pellet was analyzed by pyrolysis chromatography. As a result, 90% by weight of the methyl methacrylate monomer component, 2% by weight of the methyl acrylate monomer component, 4% by weight of the styrene monomer component, and 4% of the acrylonitrile monomer component. % By weight.

α−メチルスチレン−アクリロニトリル共重合体A1〜A2の製造
α−メチルスチレン−アクリロニトリル共重合体A1:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。
プラグフロー塔型反応槽にエチルベンゼン25重量部、α−メチルスチレン52.5重量部、アクリロニトリル22.5重量部、t−ドデシルメルカプタン0.10重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.090重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時10kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてα−メチルスチレン−アクリロニトリル共重合体A1を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、α−メチルスチレン単量体成分70重量%、アクリロニトリル単量体成分30重量%であった。
Production of α-methylstyrene-acrylonitrile copolymers A1 to A2 α-methylstyrene-acrylonitrile copolymer A1: Two 10-liter complete mixing tanks were connected in series to a 15-liter plug flow column reactor. A continuous bulk polymerization apparatus was used.
In a plug flow column type reaction vessel, 25 parts by weight of ethylbenzene, 52.5 parts by weight of α-methylstyrene, 22.5 parts by weight of acrylonitrile, 0.10 parts by weight of t-dodecyl mercaptan, 1,1-bis (t-butylperoxy ) A raw material consisting of 0.090 parts by weight of 3,3,5-trimethylcyclohexane was prepared, and this raw material was continuously fed to a three-stage stirred polymerization tank train reactor at 10 kg / h to polymerize the monomer. went. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain α-methylstyrene-acrylonitrile copolymer A1 as granular pellets. The composition analysis of the pellets was carried out by pyrolysis chromatography. As a result, the α-methylstyrene monomer component was 70% by weight and the acrylonitrile monomer component was 30% by weight.

α−メチルスチレン−アクリロニトリル共重合体A2:ステンレス製耐圧重合反応機に、減圧下で純水155部、乳化剤としてロジン酸カリウム3.0部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.7部、水酸化ナトリウム0.08部、α−メチルスチレン75部、アクリロニトリル25部、t−ドデシルメルカプタン0.18部を加えて十分攪拌ながら72℃に昇温した後、過硫酸カリウム0.5部を仕込み72℃で重合を開始した。重合転化率が63%を越えた時点で反応温度を77℃に上げて反応を継続し、重合転化率が97%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたα−メチルスチレン−アクリロニトリル共重合体を硫酸マグネシウム水溶液を使って塩析し、洗浄後に90℃の熱風オーブン中で含水率が1重量%以下になるまで乾燥させ、パウダー状のα−メチルスチレン−アクリロニトリル共重合体A2を得た。   α-methylstyrene-acrylonitrile copolymer A2: In a pressure-resistant polymerization reactor made of stainless steel, 155 parts of pure water under reduced pressure, 3.0 parts of potassium rosinate as an emulsifier, 0.7 parts of formalin condensate of sodium naphthalenesulfonate, 0.08 parts of sodium hydroxide, 75 parts of α-methylstyrene, 25 parts of acrylonitrile and 0.18 parts of t-dodecyl mercaptan were added and the mixture was heated to 72 ° C. with sufficient stirring, and then charged with 0.5 parts of potassium persulfate. Polymerization was started at 72 ° C. When the polymerization conversion rate exceeded 63%, the reaction temperature was raised to 77 ° C. and the reaction was continued. After confirming that the polymerization conversion rate exceeded 97%, the temperature in the tank was cooled to 40 ° C. or less. The obtained α-methylstyrene-acrylonitrile copolymer was salted out using an aqueous magnesium sulfate solution, and after washing, dried in a hot air oven at 90 ° C. until the water content became 1% by weight or less. A methylstyrene-acrylonitrile copolymer A2 was obtained.

〔実施例1〜5、比較例1〜6〕
上記、ポリ乳酸樹脂(L)、ゴム含有グラフト共重合体(G1〜G3)、(メタ)アクリル酸エステル系共重合体(M1〜M2)、α−メチルスチレン−アクリロニトリル共重合体(A1〜A2)を表1に示す配合割合で混合し、30mmニ軸押出機を用いて220℃から250℃で溶融混合し、ペレット化した後、射出成形機にて各種試験片を作成して物性を評価した。それぞれの評価方法を以下に示し、評価結果を表1にまとめた。
[Examples 1-5, Comparative Examples 1-6]
Polylactic acid resin (L), rubber-containing graft copolymer (G1 to G3), (meth) acrylic acid ester copolymer (M1 to M2), α-methylstyrene-acrylonitrile copolymer (A1 to A2) ) At a blending ratio shown in Table 1, melt mixed at 220 ° C. to 250 ° C. using a 30 mm twin screw extruder, pelletized, and various physical properties were evaluated by preparing various test pieces with an injection molding machine. did. Each evaluation method is shown below, and the evaluation results are summarized in Table 1.

各物性の評価方法
加工性:ISO 1133に基づき220℃、10Kgの条件でメルトインデックスを測定した。単位はg/10分。得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):40以上
○(良好):20以上〜40未満
△(微劣):5以上〜20未満
×(不良):5未満
Evaluation method of each physical property Workability: Melt index was measured at 220 ° C. and 10 kg based on ISO 1133. The unit is g / 10 minutes. Based on the measurement results obtained, relative classification was performed as follows.
◎ (excellent): 40 or more ○ (good): 20 or more to less than 40 △ (slightly inferior): 5 or more to less than 20 × (defect): less than 5

衝撃強度:ISO 179に準拠し、ノッチ付きのシャルピー衝撃値を測定した。単位はkJ/m2。
得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):15以上
○(良好):10以上〜15未満
△(微劣):5以上10未満
×(不良):5未満
Impact strength: Based on ISO 179, a Charpy impact value with a notch was measured. The unit is kJ / m2.
Based on the measurement results obtained, relative classification was performed as follows.
◎ (Excellent): 15 or more ○ (Good): 10 or more and less than 15 △ (Slightly inferior): 5 or more and less than 10 × (Bad): Less than 5

耐熱性:ISO 75に準拠し、荷重1.8MPaの荷重たわみ温度を測定した。単位は℃。
得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):75℃以上
○(良好):70℃以上〜75℃未満
△(微劣):65℃以上〜70℃未満
×(不良):65℃未満
Heat resistance: Based on ISO 75, the deflection temperature under load of 1.8 MPa was measured. The unit is ° C.
Based on the measurement results obtained, relative classification was performed as follows.
◎ (excellent): 75 ° C or higher ○ (good): 70 ° C or higher to lower than 75 ° C △ (slightly inferior): 65 ° C or higher to lower than 70 ° C × (defect): lower than 65 ° C

外観の均一性:2箇所にゲートをもつデュポンインパクト測定用テストピースを肉眼で判定し、
下記の様に相対区分した。
◎(優秀):まったくウェルドラインが観察されず、表面光沢も良好。
○(良好):明確なウェルドラインは認められないが、テストピース中央の光沢がやや不均一。
△(微劣):ウェルドラインが認められ、光沢も不均一。
×(不良):明確なウェルドラインが認められる。
Appearance uniformity: The test piece for measuring DuPont impact with two gates is judged with the naked eye,
The relative classification was as follows.
◎ (Excellent): No weld line is observed and surface gloss is good.
○ (Good): No clear weld line is observed, but the gloss at the center of the test piece is slightly uneven.
Δ (slightly inferior): Weld line is observed and gloss is not uniform.
X (defect): A clear weld line is recognized.

Figure 0005583884
Figure 0005583884

以上のように、本発明は、耐衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れた熱可塑性樹脂組成物が得られるものであり、車両分野、家電分野、建材分野、サニタリー分野等に広く用いることができる。
また、石油資源消費の抑制にも貢献できる環境対応型材料である。
As described above, the present invention provides a thermoplastic resin composition having an excellent balance of impact strength, heat resistance, workability, and uniformity of appearance, and includes the vehicle field, home appliance field, building material field, and sanitary. It can be widely used in fields.
It is also an environmentally friendly material that can contribute to the reduction of petroleum resource consumption.

Claims (4)

ポリ乳酸樹脂(L)5〜50重量部、ゴム含有グラフト共重合体(G)10〜60重量部、(メタ)アクリル酸エステル系重合体(M)15〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)5〜70重量部からなることを特徴とする熱可塑性樹脂組成物(ただし、(L)、(G)、(M)、(A)の合計は100重量部である。)。
5 to 50 parts by weight of polylactic acid resin (L), 10 to 60 parts by weight of rubber-containing graft copolymer (G), 15 to 50 parts by weight of (meth) acrylate polymer (M), α-methylstyrene A thermoplastic resin composition comprising 5 to 70 parts by weight of the acrylonitrile copolymer (A) (provided that the total of (L), (G), (M) and (A) is 100 parts by weight. .)
α−メチルスチレン−アクリロニトリル共重合体(A)が、α−メチルスチレン60〜80重量%およびアクリロニトリル20〜40重量%からなる共重合体である請求項1記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1, wherein the α-methylstyrene-acrylonitrile copolymer (A) is a copolymer comprising 60 to 80% by weight of α-methylstyrene and 20 to 40% by weight of acrylonitrile. ゴム含有グラフト共重合体(G)が共役ジエン系ゴム含有グラフト共重合体である請求項1又は2記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1 or 2, wherein the rubber-containing graft copolymer (G) is a conjugated diene rubber-containing graft copolymer. ゴム含有グラフト共重合体(G)のアルカリ金属含有量が0.01重量%以下である請求項1〜3何れかに記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to any one of claims 1 to 3, wherein the rubber-containing graft copolymer (G) has an alkali metal content of 0.01% by weight or less.
JP2007172474A 2007-06-29 2007-06-29 Thermoplastic resin composition Active JP5583884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172474A JP5583884B2 (en) 2007-06-29 2007-06-29 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172474A JP5583884B2 (en) 2007-06-29 2007-06-29 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2009007528A JP2009007528A (en) 2009-01-15
JP5583884B2 true JP5583884B2 (en) 2014-09-03

Family

ID=40322925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172474A Active JP5583884B2 (en) 2007-06-29 2007-06-29 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP5583884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184735B1 (en) 2010-04-22 2012-09-20 주식회사 엘지화학 Thermoplastic Resin Composition Having Improved Impact Resistance and Gloss
JP5718756B2 (en) * 2010-08-20 2015-05-13 テクノポリマー株式会社 Thermoplastic resin composition and molded article

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178742B2 (en) * 2000-11-20 2008-11-12 東レ株式会社 Thermoplastic composition and film comprising the same
WO2005123831A1 (en) * 2004-06-16 2005-12-29 Unitika Ltd. Polylactic acid-containing resin composition and molded body obtained from same
JP2006045486A (en) * 2004-07-02 2006-02-16 Nippon A & L Kk Thermoplastic resin composition
JP5352937B2 (en) * 2004-11-15 2013-11-27 ユーエムジー・エービーエス株式会社 Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
JP5396681B2 (en) * 2005-11-30 2014-01-22 ユーエムジー・エービーエス株式会社 Flame retardant polylactic acid-based thermoplastic resin composition and molded article thereof
JP5272283B2 (en) * 2005-12-13 2013-08-28 東レ株式会社 Styrenic resin composition

Also Published As

Publication number Publication date
JP2009007528A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
EP1778737B1 (en) Method for preparing rubber-reinforced thermoplastic resin, and rubber-reinforced themoplastic resin composition using the same
JP2006241283A (en) Thermoplastic resin composition and resin molded product composed of the same
US4879343A (en) Heat and impact resistant resin composition
JP2006045486A (en) Thermoplastic resin composition
KR20090119573A (en) Weatherable thermoplastic resin composition
JPH0725982B2 (en) Heat resistant, impact resistant thermoplastic resin composition
CN115667394A (en) Resin composition and resin molded article
JP5583884B2 (en) Thermoplastic resin composition
JP4618692B2 (en) Rubber-containing graft polymer and thermoplastic resin composition
JP2009019083A (en) Thermoplastic resin composition
JP2007211206A (en) Thermoplastic resin composition
JP4530123B2 (en) Thermoplastic resin composition
JP5214955B2 (en) Thermoplastic resin composition
JP2005298776A (en) Heat resistance-imparting material and resin composition using the same
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP3850504B2 (en) Thermoplastic resin composition
EP3187529A1 (en) Thermoplastic resin composition and product formed therefrom
JP2006056961A (en) Thermoplastic resin composition and resin molding composed of the same
JP3626288B2 (en) Low rigidity styrenic resin composition with excellent pigment dispersibility
JP2009132778A (en) Thermoplastic resin composition
JP2009132776A (en) Thermoplastic resin composition
JP3541512B2 (en) Low gloss and heat resistant resin composition with excellent flow / impact balance
JP3272658B2 (en) Styrene resin composition
JP5547795B2 (en) Thermoplastic resin composition and molded article
JP3338557B2 (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100628

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120904

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Effective date: 20140203

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5583884

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP