JP2009132776A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP2009132776A
JP2009132776A JP2007308774A JP2007308774A JP2009132776A JP 2009132776 A JP2009132776 A JP 2009132776A JP 2007308774 A JP2007308774 A JP 2007308774A JP 2007308774 A JP2007308774 A JP 2007308774A JP 2009132776 A JP2009132776 A JP 2009132776A
Authority
JP
Japan
Prior art keywords
weight
parts
polymerization
resin composition
methylstyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007308774A
Other languages
Japanese (ja)
Inventor
Toshitaka Nishioka
利恭 西岡
Katsunori Yano
克典 矢野
Tomoyoshi Akiyama
友良 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2007308774A priority Critical patent/JP2009132776A/en
Publication of JP2009132776A publication Critical patent/JP2009132776A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To attain improvement of balance of impact strength, heat-resistance, processability and uniformness of appearance of a thermoplastic resin composition containing a poly-lactic acid resin. <P>SOLUTION: The thermoplastic resin composition comprises 5-70 pts.wt. of the poly-lactic acid resin (L), 10-60 pts.wt. of a non-conjugated diene based rubber-containing graft copolymer (G), 1-50 pts.wt. of a (meth)acrylate based hard polymer (M) and 5-84 pts.wt. of an α-methylstyrene-acrylonitrile copolymer (A) comprising 60-80 wt.% of an α-methylstyrene and 20-40 wt.% of acrylonitrile (provided that total of (L), (G), (M) and (A) is 100 pts.wt.). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は熱可塑性樹脂組成物に関するものである。詳しくは、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れたポリ乳酸樹脂を含む熱可塑性樹脂組成物に関するものである。   The present invention relates to a thermoplastic resin composition. More specifically, the present invention relates to a thermoplastic resin composition containing a polylactic acid resin having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity.

近年、地球的規模での環境問題として、石油化学製品の使用増加による石油資源の将来性が危ぶまれている。例えば、ポリ乳酸樹脂は植物であるとうもろこしや芋類を原料として得られる乳酸からなる樹脂であり、石油を原料としない環境対応型の樹脂として知られている。しかしながら、ポリ乳酸樹脂は、ノッチ付き衝撃強度および、耐熱性に劣るといった欠点がある。
一方、ABS樹脂は優れた物性バランスおよび成形加工性を有しており、広範な分野に利用されているが、原料は石油資源に依存している。これら両者の欠点を補うことを目的に下記の従来技術が提案されているが、衝撃強度、耐熱性、加工性、外観の均一性の諸物性を全て満足することはできず、改良が望まれている。
特開2000−327847号公報 特開2004−269720号公報 特開2005−171204号公報 特開2006−137908号公報 特開2006−161024号公報 特開2007−63368号公報 特開2007−126535号公報
In recent years, as an environmental problem on a global scale, the future of petroleum resources due to increased use of petrochemical products has been threatened. For example, a polylactic acid resin is a resin made of lactic acid obtained from plant corn and potatoes as a raw material, and is known as an environmentally friendly resin that does not use petroleum as a raw material. However, the polylactic acid resin has the disadvantages that it is inferior in notched impact strength and heat resistance.
On the other hand, ABS resin has an excellent balance of physical properties and moldability and is used in a wide range of fields, but the raw material depends on petroleum resources. The following prior arts have been proposed for the purpose of compensating both of these drawbacks, but they cannot satisfy all physical properties such as impact strength, heat resistance, workability, and uniformity of appearance, and improvements are desired. ing.
JP 2000-327847 A JP 2004-269720 A JP-A-2005-171204 JP 2006-137908 A JP 2006-161024 A JP 2007-63368 A JP 2007-126535 A

本発明は、上記課題を解決するために成されたもので、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れたポリ乳酸樹脂を含む熱可塑性樹脂組成物を提供することを目的とするものである。   The present invention has been made to solve the above problems, and provides a thermoplastic resin composition containing a polylactic acid resin having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity. It is the purpose.

すなわち本発明は、ポリ乳酸樹脂(L)5〜70重量部、非共役ジエン系ゴム含有グラフト共重合体(G)10〜60重量部、(メタ)アクリル酸エステル系硬質重合体(M)1〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)5〜84重量部からなることを特徴とする熱可塑性樹脂組成物(ただし、(L)、(G)、(M)、(A)の合計は100重量部である)を提供するものである。   That is, the present invention relates to polylactic acid resin (L) 5 to 70 parts by weight, non-conjugated diene rubber-containing graft copolymer (G) 10 to 60 parts by weight, (meth) acrylic acid ester hard polymer (M) 1 -50 parts by weight, α-methylstyrene-acrylonitrile copolymer (A) 5 to 84 parts by weight thermoplastic resin composition (however, (L), (G), (M), ( The sum of A) is 100 parts by weight).

本発明における熱可塑性樹脂組成物は、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れ、特に石油資源消費の抑制にも貢献できる環境対応型材料として、車両分野、家電分野、建材分野、サニタリー分野等に広く用いることができる。   The thermoplastic resin composition according to the present invention has an excellent balance of impact strength, heat resistance, processability, and uniformity of appearance, and particularly as an environmentally friendly material that can contribute to the suppression of petroleum resource consumption. It can be widely used in the field of building materials and sanitary.

以下、本発明の熱可塑性樹脂組成物につき詳細に説明する。
本発明において、ポリ乳酸樹脂は熱可塑性樹脂組成物の必須成分を構成する。市販されているポリ樹脂としては、例えば三井化学(株)製 商品名:レイシア、ユニチカ(株)製 商品名:テラマック等が挙げられるが、これらに限定されるものではない。
Hereinafter, the thermoplastic resin composition of the present invention will be described in detail.
In the present invention, the polylactic acid resin constitutes an essential component of the thermoplastic resin composition. Examples of the commercially available polyresin include, but are not limited to, product names: Lacia, manufactured by Mitsui Chemicals, Inc., and product names: Terramac, manufactured by Unitika Ltd.

本発明における非共役ジエン系ゴム含有グラフト共重合体(G)とは、非共役ジエン系ゴム状重合体にビニル系単量体を重合して得られるものであり、該非共役ジエン系ゴム状重合体としては、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン−1−非共役ジエン共重合体等のエチレン−プロピレン系ゴム状重合体やアクリル系ゴム状重合体が例示されるが、特にアクリル系ゴム状重合体が好ましい。
該アクリル系ゴム状重合体は、メチルアルコールを除くアルキルアルコールの(メタ)アクリル酸エステルを90〜99重量%、複数のビニル基を有する単量体を1〜10重量%、その他共重合可能なビニル系単量体0〜9重量%から構成される。メチルアルコールを除くアルキルアルコールの(メタ)アクリル酸エステルとしては、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレートなどが挙げられる。特にブチルアクリレートが好ましい。また複数のビニル基を有する単量体としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ヘキサンジオール−1,6−ジメタクリレートなどの多価アルコールの(メタ)アクリル酸エステル類、アリルアクリレート、アリルメタクリレートなどのアリルアルコールの(メタ)アクリル酸エステル類、ジビニルベンゼンなどが挙げられる。
また、該ゴム状重合体を構成するその他共重合可能な単量体としては、スチレン系単量体、シアン化ビニル系単量体、(メタ)アクリル酸メチル単量体などが挙げられる。スチレン系単量体の中ではスチレンとαメチルスチレンが、シアン化ビニル系単量体の中ではアクリロニトリルが特に好ましい。
The non-conjugated diene rubber-containing graft copolymer (G) in the present invention is obtained by polymerizing a vinyl monomer on a non-conjugated diene rubber-like polymer. Examples of the polymer include ethylene-propylene rubber polymers such as ethylene-propylene copolymers, ethylene-propylene-nonconjugated diene copolymers, and ethylene-butene-1-nonconjugated diene copolymers, and acrylic rubber-like heavy polymers. A coalescence is exemplified, but an acrylic rubber-like polymer is particularly preferable.
The acrylic rubbery polymer is 90 to 99% by weight of (meth) acrylic acid ester of alkyl alcohol excluding methyl alcohol, 1 to 10% by weight of monomers having a plurality of vinyl groups, and other copolymerizable It is composed of 0 to 9% by weight of a vinyl monomer. Examples of (meth) acrylic acid esters of alkyl alcohol excluding methyl alcohol include ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. In particular, butyl acrylate is preferred. The monomers having a plurality of vinyl groups include (meth) acrylic acid esters of polyhydric alcohols such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, hexanediol-1,6-dimethacrylate, allyl acrylate, allyl. (Meth) acrylic acid esters of allyl alcohol such as methacrylate, divinylbenzene and the like.
Examples of other copolymerizable monomers constituting the rubbery polymer include styrene monomers, vinyl cyanide monomers, methyl (meth) acrylate monomers, and the like. Among the styrene monomers, styrene and α-methylstyrene are particularly preferable, and among the vinyl cyanide monomers, acrylonitrile is particularly preferable.

非共役ジエン系ゴム含有グラフト共重合体(G)のグラフト重合に用いられるビニル系単量体としては、スチレン系単量体、シアン化ビニル系単量体、(メタ)アクリル酸メチル単量体などが挙げられる。
スチレン系単量体としては、スチレン、αメチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、一種又は二種以上用いることができる。特にスチレン、αメチルスチレンが好ましい。
シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられる。特にアクリロニトリルが好ましい。
(メタ)アクリル酸メチル単量体は、メチルアクリレートとメチルアクリレートであるが。特にメチルメタクリレートが好ましい。
また、上記ビニル系単量体と共に無水マレイン酸、マレイン酸ジメチル等の不飽和酸系単量体、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体などを用いることも可能である。
上記の非共役ジエン系ゴム含有グラフト共重合体(G)を構成するゴム状重合体とグラフト重合に使用されるビニル系単量体の割合については特に制限はないが、好ましくはゴム状重合体5〜70重量%およびスチレン系単量体、シアン化ビニル系単量体、(メタ)アクリル酸メチル単量体から選ばれたビニル系単量体30〜95重量%である。
また、非共役ジエン系ゴム含有グラフト共重合体(G)の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができるが、高温高湿環境下における経時安定性維持の観点から、ゴム含有グラフト共重合体に含有されるアルカリ金属の含有量が0.01重量%以下であることが好ましい。
Examples of vinyl monomers used for graft polymerization of the non-conjugated diene rubber-containing graft copolymer (G) include styrene monomers, vinyl cyanide monomers, and methyl (meth) acrylate monomers. Etc.
Examples of the styrenic monomer include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like, and one or more of them can be used. In particular, styrene and α-methylstyrene are preferable.
Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile. Particularly preferred is acrylonitrile.
The (meth) acrylic acid methyl monomers are methyl acrylate and methyl acrylate. Particularly preferred is methyl methacrylate.
Moreover, it is also possible to use an unsaturated acid monomer such as maleic anhydride and dimethyl maleate, a maleimide monomer such as N-phenylmaleimide, N-cyclohexylmaleimide, and the like together with the vinyl monomer. .
The ratio of the rubber-like polymer constituting the non-conjugated diene rubber-containing graft copolymer (G) and the vinyl monomer used for the graft polymerization is not particularly limited, but is preferably a rubber-like polymer. 5 to 70% by weight and 30 to 95% by weight of a vinyl monomer selected from a styrene monomer, a vinyl cyanide monomer, and a methyl (meth) acrylate monomer.
The polymerization method of the non-conjugated diene rubber-containing graft copolymer (G) is not particularly limited and can be produced by emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof. From the viewpoint of maintaining stability over time in a high humidity environment, the content of alkali metal contained in the rubber-containing graft copolymer is preferably 0.01% by weight or less.

本発明における(メタ)アクリル酸エステル系硬質重合体(M)の製造に好適に用いられる単量体としては、メチルメタクリレート、メチルアクリレート、エチルアクリレート、ブチルアクリレートなどが上げられ、特にメチルメタクリレート単独もしくは、メチルメタクリレートを主にメチルアクリレート等との併用が好ましい。エチルアクリレート、ブチルアクリレートなども少量使用できるが、(メタ)アクリル酸エステル系重合体(M)を構成する単量体のうち、耐熱性の観点から10重量%以下に制限されることが望ましい。また、必要に応じてスチレン系単量体やシアン化ビニル単量体の他の単量体を併用しても差し支えないが、(メタ)アクリル酸エステル系硬質重合体(M)を構成する単量体のうち、他の単量体の共重合比率は20重量%未満、更に好ましくは10重量%であることが好ましい。
また、(メタ)アクリル酸エステル系硬質重合体(M)の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができる。
Examples of the monomer suitably used for the production of the (meth) acrylic ester hard polymer (M) in the present invention include methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, etc., and particularly methyl methacrylate alone or The combined use of methyl methacrylate mainly with methyl acrylate and the like is preferable. Ethyl acrylate, butyl acrylate, and the like can be used in a small amount, but it is desirable that the monomer constituting the (meth) acrylic ester polymer (M) is limited to 10% by weight or less from the viewpoint of heat resistance. In addition, if necessary, other monomers such as styrene monomers and vinyl cyanide monomers may be used in combination, but the monomer constituting the (meth) acrylate hard polymer (M). Among the monomers, the copolymerization ratio of other monomers is preferably less than 20% by weight, more preferably 10% by weight.
Moreover, there is no restriction | limiting in particular also about the polymerization method of a (meth) acrylic-ester type hard polymer (M), It can manufacture by emulsion polymerization, suspension polymerization, block polymerization, solution polymerization, or these combination.

本発明におけるα−メチルスチレン−アクリロニトリル共重合体(A)の組成割合としては、特にα−メチルスチレン60〜80重量%およびアクリロニトリル20〜40重量%であることが好ましい。
また、α−メチルスチレン−アクリロニトリル共重合体(A)の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができる。
The composition ratio of the α-methylstyrene-acrylonitrile copolymer (A) in the present invention is particularly preferably 60 to 80% by weight of α-methylstyrene and 20 to 40% by weight of acrylonitrile.
Moreover, there is no restriction | limiting in particular also about the polymerization method of (alpha) -methylstyrene acrylonitrile copolymer (A), It can manufacture by emulsion polymerization, suspension polymerization, block polymerization, solution polymerization, or these combination.

本発明の熱可塑性樹脂組成物は、ポリ乳酸樹脂(L)5〜70重量部、非共役ジエン系ゴム含有グラフト共重合体(G)10〜60重量部、(メタ)アクリル酸エステル系硬質重合体(M)1〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)5〜84重量部からなるものである(ただし、(L)、(G)、(M)、(A)の合計は100重量部である。)。
ポリ乳酸樹脂(L)の配合比率が5重量部未満では、原料の殆どを石油資源に依存しているという環境負荷は低減されず、70重量部を超えると衝撃強度や耐熱性が低下する。好ましくは10〜60重量部、更に好ましくは15〜55重量部である。
非共役ジエン系ゴム含有グラフト共重合体(G)の配合比率が10重量部未満では衝撃強度が劣り、60重量部を超えると加工性や耐熱性が低下する。好ましくは10〜55重量部、更に好ましくは15〜50重量部である。
(メタ)アクリル酸エステル系硬質重合体(M)の配合比率が1重量部未満では外観の均一性が劣り、50重量部を超えると耐熱性が低下する。好ましくは10〜45重量部、更に好ましくは10〜40重量部である。
α−メチルスチレン−アクリロニトリル共重合体(A)の配合比率が5重量部未満では耐熱性が劣り、84重量部を超えると衝撃強度が低下する。好ましくは10〜70重量部、更に好ましくは10〜60重量部である。
The thermoplastic resin composition of the present invention comprises 5 to 70 parts by weight of a polylactic acid resin (L), 10 to 60 parts by weight of a non-conjugated diene rubber-containing graft copolymer (G), and a (meth) acrylic acid ester-based hard heavy. 1 to 50 parts by weight of the union (M) and 5 to 84 parts by weight of the α-methylstyrene-acrylonitrile copolymer (A) (however, (L), (G), (M), (A) Is 100 parts by weight.)
If the blending ratio of the polylactic acid resin (L) is less than 5 parts by weight, the environmental load that most of the raw materials depend on petroleum resources is not reduced, and if it exceeds 70 parts by weight, impact strength and heat resistance are reduced. Preferably it is 10-60 weight part, More preferably, it is 15-55 weight part.
When the blending ratio of the non-conjugated diene rubber-containing graft copolymer (G) is less than 10 parts by weight, the impact strength is inferior, and when it exceeds 60 parts by weight, workability and heat resistance are lowered. Preferably it is 10-55 weight part, More preferably, it is 15-50 weight part.
If the blending ratio of the (meth) acrylic ester hard polymer (M) is less than 1 part by weight, the uniformity of the appearance is poor, and if it exceeds 50 parts by weight, the heat resistance is lowered. Preferably it is 10-45 weight part, More preferably, it is 10-40 weight part.
When the blending ratio of the α-methylstyrene-acrylonitrile copolymer (A) is less than 5 parts by weight, the heat resistance is poor, and when it exceeds 84 parts by weight, the impact strength is lowered. Preferably it is 10-70 weight part, More preferably, it is 10-60 weight part.

また、本発明における熱可塑性樹脂組成物には、上記各成分の他に、その物性を損なわない限りにおいて、その目的に応じて樹脂の混合時、成形時等に安定剤、顔料、染料、補強剤(タルク、マイカ、クレー、ガラス繊維等)、着色剤(カーボンブラック、酸化チタン等)、紫外線吸収剤、酸化防止剤、難燃剤、滑剤、離型剤、可塑剤、帯電防止剤、無機および有機系抗菌剤等の公知の添加剤を配合することができる。   In addition to the above components, the thermoplastic resin composition according to the present invention includes stabilizers, pigments, dyes, reinforcements at the time of resin mixing and molding depending on the purpose, as long as the physical properties are not impaired. Agent (talc, mica, clay, glass fiber, etc.), colorant (carbon black, titanium oxide, etc.), UV absorber, antioxidant, flame retardant, lubricant, mold release agent, plasticizer, antistatic agent, inorganic and Known additives such as organic antibacterial agents can be blended.

本発明における熱可塑性樹脂組成物の混合方法としては、バンバリーミキサー、押出機等公知の混練機を用いる方法が挙げられる。また、混合順序にも何ら制限はなく、4成分の一括混練はもちろんのこと、予め任意の2ないし3成分を混合した後に残る成分を混合することも可能である。   Examples of the method for mixing the thermoplastic resin composition in the present invention include a method using a known kneader such as a Banbury mixer or an extruder. Further, there is no limitation on the mixing order, and it is possible to mix the remaining components after mixing two to three components in advance, as well as batch mixing of the four components.

〔実施例〕
以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。
また、特段の断りが無い限り、%や部は重量を基準とする。
〔Example〕
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by these.
Unless otherwise specified,% and parts are based on weight.

ポリ乳酸樹脂(L)
ポリ乳酸樹脂(L)として、三井化学株式会社製LACEA H−400を用いた。
Polylactic acid resin (L)
LACEA H-400 manufactured by Mitsui Chemicals, Inc. was used as the polylactic acid resin (L).

ゴム状重合体1〜2の作製
ゴム状重合体1:ステンレス製耐圧重合反応機に、減圧下で純水130部、アルケニルコハク酸カリウム0.8部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.2部、水酸化カリウム0.05部、ブチルアクリレート93部、メチルメタクリレート3部、アリルメタクリレート2部、t−ドデシルメルカプタン0.18部、ブドウ糖0.08部、硫酸第一鉄0.005部を仕込んで撹拌しながら53℃に昇温した後、過硫酸カリウム0.3部を仕込み53℃で重合を開始した。重合開始から210分かけて反応温度を63℃に上げて反応を継続し、重合転化率67%を越えた時点で、ブドウ糖0.02部とt−ブチルハイドロパーオキサイド0.05部を添加し、70℃に昇温して反応を継続した。重合転化率が98%を超えたことを確認して槽内温度を35℃以下に冷却し、燐酸アグロメ法によって重合体粒子を肥大化させ、ラテックス状のゴム状重合体1を得た。その固形分濃度は38.0重量%、pH9.7、平均粒子径は290mであった。
Preparation of rubbery polymers 1-2 Rubbery polymer 1: A formalin condensate of 130 parts of pure water, 0.8 parts of potassium alkenyl succinate and sodium naphthalenesulfonate in a pressure-resistant polymerization reactor made of stainless steel under reduced pressure. 2 parts, potassium hydroxide 0.05 parts, butyl acrylate 93 parts, methyl methacrylate 3 parts, allyl methacrylate 2 parts, t-dodecyl mercaptan 0.18 parts, glucose 0.08 parts, ferrous sulfate 0.005 parts After charging and heating to 53 ° C. while stirring, 0.3 part of potassium persulfate was charged and polymerization was started at 53 ° C. The reaction temperature was raised to 63 ° C. over 210 minutes from the start of polymerization, and the reaction was continued. When the polymerization conversion rate exceeded 67%, 0.02 part of glucose and 0.05 part of t-butyl hydroperoxide were added. The temperature was raised to 70 ° C. and the reaction was continued. After confirming that the polymerization conversion rate exceeded 98%, the temperature in the tank was cooled to 35 ° C. or less, and the polymer particles were enlarged by the phosphoric acid agglomeration method to obtain a latex-like rubbery polymer 1. The solid content concentration was 38.0% by weight, pH 9.7, and the average particle size was 290 m.

ゴム状重合体2:ステンレス製耐圧重合反応機に、減圧下で純水135部、アルケニルコハク酸カリウム1.1部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.2部、水酸化カリウム0.03部、ブチルアクリレート92部、スチレン5部、アリルメタクリレート3部、t−ドデシルメルカプタン0.25部、ブドウ糖0.15部、硫酸第一鉄0.005部を仕込んで撹拌しながら62℃に昇温した後、t−ブチルハイドロパーオキサイド0.1部を仕込み62℃で重合を開始した。62℃に温度を保ちながら反応を継続し、重合転化率65%を越えた時点で、ブドウ糖0.02部とクメンハイドロパーオキサイド0.05部を添加し、70℃に昇温して反応を継続した。重合転化率が98%を超えたことを確認して槽内温度を35℃以下に冷却し、燐酸アグロメ法によって重合体粒子を肥大化させ、ラテックス状のゴム状重合体2を得た。その固形分濃度は37.2重量%、pH9.4、平均粒子径は380nmであった。   Rubbery polymer 2: In a stainless steel pressure-resistant polymerization reactor, 135 parts of pure water, 1.1 parts of potassium alkenyl succinate, 0.2 parts of formalin condensate of sodium naphthalenesulfonate, 0.03 potassium hydroxide Part, butyl acrylate 92 parts, styrene 5 parts, allyl methacrylate 3 parts, t-dodecyl mercaptan 0.25 part, glucose 0.15 part, ferrous sulfate 0.005 part Then, 0.1 part of t-butyl hydroperoxide was charged and polymerization was started at 62 ° C. The reaction was continued while maintaining the temperature at 62 ° C, and when the polymerization conversion rate exceeded 65%, 0.02 part of glucose and 0.05 part of cumene hydroperoxide were added, and the temperature was raised to 70 ° C to react. Continued. After confirming that the polymerization conversion rate exceeded 98%, the temperature in the tank was cooled to 35 ° C. or less, and the polymer particles were enlarged by the phosphoric acid agglomeration method to obtain a latex-like rubber-like polymer 2. The solid content concentration was 37.2% by weight, pH 9.4, and the average particle size was 380 nm.

ゴム含有グラフト共重合体G1〜G2の作製
ゴム含有グラフト共重合体G1:ステンレス製耐圧重合反応機に、減圧下で純水33.9部、ロジン酸カリウム0.3部、オレイン酸カリウム1.0部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.5部、水酸化ナトリウム0.15部、ゴム状重合体1を固形分で65部、ブドウ糖0.08部、硫酸第一鉄0.004部を仕込んで十分攪拌しながら63℃に昇温した後、t−ブチルハイドロパーオキサイド0.08部を仕込み63℃で重合を開始した。開始直後からスチレン27部とアクリロニトリル8部、t−ドデシルメルカプタン0.25部の混合物を2時間にわたって連続添加し、重合転化率が65%を越えた時点でt−ブチルハイドロパーオキサイド0.04部を仕込み、反応温度を70℃に上げて反応を1時間以上継続し、重合転化率が97%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたラテックス状のゴム含有グラフト共重合体を多量のメタノール中に投入して沈殿させ、150メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で含水率が1重量%以下になるまで乾燥させ、パウダー状のゴム含有グラフト共重合体G1を得た。
得られたゴム含有グラフト共重合体G1を灰化後、純水に溶解してICP法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.003重量%であった。
Preparation of rubber-containing graft copolymers G1 to G2 Rubber-containing graft copolymer G1: In a stainless steel pressure-resistant polymerization reactor, 33.9 parts of pure water, 0.3 parts of potassium rosinate, and 1. 0 parts, 0.5 parts of formalin condensate of sodium naphthalenesulfonate, 0.15 parts of sodium hydroxide, 65 parts of solid polymer 1 in solid content, 0.08 parts of glucose, 0.004 parts of ferrous sulfate Was added, and the temperature was raised to 63 ° C. with sufficient stirring. Then, 0.08 part of t-butyl hydroperoxide was added and polymerization was started at 63 ° C. Immediately after the start, a mixture of 27 parts of styrene, 8 parts of acrylonitrile and 0.25 part of t-dodecyl mercaptan was continuously added over 2 hours. When the polymerization conversion exceeded 65%, 0.04 part of t-butyl hydroperoxide was added. The reaction temperature was raised to 70 ° C. and the reaction was continued for 1 hour or longer. After confirming that the polymerization conversion rate exceeded 97%, the temperature in the tank was cooled to 40 ° C. or lower. The obtained latex-like rubber-containing graft copolymer was poured into a large amount of methanol, precipitated, poured into a 150-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Then, it was dried until the water content became 1% by weight or less under reduced pressure to obtain a powdery rubber-containing graft copolymer G1.
The obtained rubber-containing graft copolymer G1 was incinerated, dissolved in pure water, and the alkali metal content was measured by ICP method and atomic absorption method. The result was 0.003% by weight.

ゴム含有グラフト共重合体G2:ステンレス製耐圧重合反応機に、減圧下で純水47.2部、オレイン酸カリウム1.5部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.8部、水酸化カリウム0.20部、ゴム状重合体2を固形分で55部、ブドウ糖0.10部、硫酸第一鉄0.005部を仕込んで十分攪拌しながら65℃に昇温した後、クメンハイドロパーオキサイド0.07部を仕込み65℃で重合を開始した。開始直後からスチレン30部とメチルメタクリレート5部、アクリロニトリル10部、t−ドデシルメルカプタン0.20部の混合物を3時間にわたって連続添加し、重合転化率が66%を越えた時点でt−ブチルハイドロパーオキサイド0.05部を仕込み、反応温度を70℃に上げて反応を2時間以上継続し、重合転化率が98%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたラテックス状のゴム含有グラフト共重合体を多量のメタノール中に投入して沈殿させ、150メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で含水率が1重量%以下になるまで乾燥させ、パウダー状のゴム含有グラフト共重合体G2を得た。
得られたゴム含有グラフト共重合体G2を灰化後、純水に溶解してICP法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.004重量%であった。
Rubber-containing graft copolymer G2: In a stainless steel pressure-resistant polymerization reactor, 47.2 parts pure water, 1.5 parts potassium oleate, 0.8 parts formalin condensate of sodium naphthalenesulfonate under reduced pressure, potassium hydroxide After adding 0.20 part, 55 parts of rubbery polymer 2 in solid content, 0.10 part of glucose, and 0.005 part of ferrous sulfate and heating to 65 ° C. with sufficient stirring, cumene hydroperoxide 0.07 part was charged and polymerization was started at 65 ° C. Immediately after the start, a mixture of 30 parts of styrene, 5 parts of methyl methacrylate, 10 parts of acrylonitrile and 0.20 part of t-dodecyl mercaptan was continuously added over 3 hours. When the polymerization conversion exceeded 66%, t-butyl hydroper 0.05 parts of oxide was added, the reaction temperature was raised to 70 ° C., and the reaction was continued for 2 hours or more. After confirming that the polymerization conversion rate exceeded 98%, the temperature in the tank was cooled to 40 ° C. or less. The obtained latex-like rubber-containing graft copolymer was poured into a large amount of methanol, precipitated, poured into a 150-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Then, it was dried until the water content became 1% by weight or less under reduced pressure to obtain a powdery rubber-containing graft copolymer G2.
The obtained rubber-containing graft copolymer G2 was incinerated, dissolved in pure water, and the alkali metal content was measured by ICP method and atomic absorption method. The result was 0.004% by weight.

(メタ)アクリル酸エステル系硬質重合体M1〜M2の製造
(メタ)アクリル酸エステル系硬質重合体M1:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。
プラグフロー塔型反応槽にエチルベンゼン20重量部、メチルメタクリレート72重量部、メチルアクリレート8重量部、t−ドデシルメルカプタン0.15重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.050重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時12kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとして(メタ)アクリル酸エステル系硬質共重合体M1を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、メチルメタクリレート単量体成分90重量%、メチルアクリレート単量体成分10重量%であった。
Production of (meth) acrylic ester hard polymers M1 and M2 (meth) acrylic ester hard polymer M1: Two 10 liter complete mixing tanks in series in a 15 liter plug flow column reactor A connected continuous bulk polymerization apparatus was used.
20 parts by weight of ethylbenzene, 72 parts by weight of methyl methacrylate, 8 parts by weight of methyl acrylate, 0.15 parts by weight of t-dodecyl mercaptan, 1,1-bis (t-butylperoxy) 3, 3, A raw material consisting of 0.050 part by weight of 5-trimethylcyclohexane was prepared, and this raw material was continuously fed to a three-stage stirred polymerization tank train reactor at 12 kg / hour to polymerize the monomer. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin discharged from the recovery step was subjected to an extrusion step to obtain a (meth) acrylate hard copolymer M1 as granular pellets. When the composition analysis of the pellets was performed by pyrolysis chromatography, the methyl methacrylate monomer component was 90% by weight and the methyl acrylate monomer component was 10% by weight.

(メタ)アクリル酸エステル系硬質重合体M2:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。
プラグフロー塔型反応槽にエチルベンゼン25重量部、メチルメタクリレート67.5重量部、メチルアクリレート1.5重量部、スチレン3重量部、アクリロニトリル3重量部、t−ドデシルメルカプタン0.20重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.042重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時10kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとして(メタ)アクリル酸エステル系硬質共重合体M2を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、メチルメタクリレート単量体成分90重量%、メチルアクリレート単量体成分2重量%、スチレン単量体成分4重量%、アクリロニトリル単量体成分4重量%であった。
(Meth) acrylic ester hard polymer M2: A continuous bulk polymerization apparatus in which two 10 liter complete mixing tanks were connected in series to a plug flow tower type reaction tank having a volume of 15 liters was used.
In a plug flow tower type reaction vessel, ethylbenzene 25 parts by weight, methyl methacrylate 67.5 parts by weight, methyl acrylate 1.5 parts by weight, styrene 3 parts by weight, acrylonitrile 3 parts by weight, t-dodecyl mercaptan 0.20 parts by weight, A raw material consisting of 0.042 parts by weight of 1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane was prepared, and this raw material was continuously supplied to a three-stage stirred polymerization tank train reactor at 10 kg / h. The monomer was polymerized by feeding. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery process was subjected to an extrusion process to obtain a (meth) acrylate hard copolymer M2 as granular pellets. The composition of the pellet was analyzed by pyrolysis chromatography. As a result, 90% by weight of the methyl methacrylate monomer component, 2% by weight of the methyl acrylate monomer component, 4% by weight of the styrene monomer component, and 4% of the acrylonitrile monomer component. % By weight.

α−メチルスチレン−アクリロニトリル共重合体A1〜A2の製造
α−メチルスチレン−アクリロニトリル共重合体A1:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。
プラグフロー塔型反応槽にエチルベンゼン25重量部、α−メチルスチレン52.5重量部、アクリロニトリル22.5重量部、t−ドデシルメルカプタン0.10重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.090重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時10kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてα−メチルスチレン−アクリロニトリル共重合体
A1を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、α−メチルスチレン単量体成分70重量%、アクリロニトリル単量体成分30重量%であった。
Production of α-methylstyrene-acrylonitrile copolymers A1 to A2 α-methylstyrene-acrylonitrile copolymer A1: Two 10-liter complete mixing tanks were connected in series to a 15-liter plug flow column reactor. A continuous bulk polymerization apparatus was used.
In a plug flow column type reaction vessel, 25 parts by weight of ethylbenzene, 52.5 parts by weight of α-methylstyrene, 22.5 parts by weight of acrylonitrile, 0.10 parts by weight of t-dodecyl mercaptan, 1,1-bis (t-butylperoxy ) A raw material consisting of 0.090 parts by weight of 3,3,5-trimethylcyclohexane was prepared, and this raw material was continuously fed to a three-stage stirred polymerization tank train reactor at 10 kg / h to polymerize the monomer. went. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain α-methylstyrene-acrylonitrile copolymer A1 as granular pellets. The composition analysis of the pellets was carried out by pyrolysis chromatography. As a result, the α-methylstyrene monomer component was 70% by weight and the acrylonitrile monomer component was 30% by weight.

α−メチルスチレン−アクリロニトリル共重合体A2:ステンレス製耐圧重合反応機に、減圧下で純水155部、乳化剤としてロジン酸カリウム3.0部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.7部、水酸化ナトリウム0.08部、α−メチルスチレン75部、アクリロニトリル25部、t−ドデシルメルカプタン0.18部を加えて十分攪拌ながら72℃に昇温した後、過硫酸カリウム0.5部を仕込み72℃で重合を開始した。重合転化率が63%を越えた時点で反応温度を77℃に上げて反応を継続し、重合転化率が97%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたα−メチルスチレン−アクリロニトリル共重合体を硫酸マグネシウム水溶液を使って塩析し、洗浄後に80℃の熱風オーブン中で含水率が1重量%以下になるまで乾燥させ、パウダー状のα−メチルスチレン−アクリロニトリル共重合体A2を得た。   α-methylstyrene-acrylonitrile copolymer A2: In a pressure-resistant polymerization reactor made of stainless steel, 155 parts of pure water under reduced pressure, 3.0 parts of potassium rosinate as an emulsifier, 0.7 parts of formalin condensate of sodium naphthalenesulfonate, 0.08 parts of sodium hydroxide, 75 parts of α-methylstyrene, 25 parts of acrylonitrile and 0.18 parts of t-dodecyl mercaptan were added and the mixture was heated to 72 ° C. with sufficient stirring, and then charged with 0.5 parts of potassium persulfate. Polymerization was started at 72 ° C. When the polymerization conversion rate exceeded 63%, the reaction temperature was raised to 77 ° C. and the reaction was continued. After confirming that the polymerization conversion rate exceeded 97%, the temperature in the tank was cooled to 40 ° C. or less. The obtained α-methylstyrene-acrylonitrile copolymer was salted out using an aqueous magnesium sulfate solution, and after washing, dried in a hot air oven at 80 ° C. until the water content became 1% by weight or less. A methylstyrene-acrylonitrile copolymer A2 was obtained.

〔実施例1〜4、比較例1〜6〕
上記、ポリ乳酸樹脂(L)、ゴム含有グラフト共重合体(G1〜G2)、(メタ)アクリル酸エステル系共重合体(M1〜M2)、α−メチルスチレン−アクリロニトリル共重合体(A1〜A2)を表1に示す配合割合で混合し、30mmニ軸押出機を用いて230℃から250℃で溶融混合し、ペレット化した後、射出成形機にて各種試験片を作成して物性を評価した。それぞれの評価方法を以下に示し、評価結果を表1にまとめた。
[Examples 1 to 4, Comparative Examples 1 to 6]
Polylactic acid resin (L), rubber-containing graft copolymer (G1 to G2), (meth) acrylic acid ester copolymer (M1 to M2), α-methylstyrene-acrylonitrile copolymer (A1 to A2) ) At a blending ratio shown in Table 1, melt mixed at 230 ° C. to 250 ° C. using a 30 mm twin screw extruder, pelletized, and various physical properties were evaluated by making various test pieces with an injection molding machine. did. Each evaluation method is shown below, and the evaluation results are summarized in Table 1.

各物性の評価方法
加工性:ISO 1133に基づき220℃、10Kgの条件でメルトインデックスを測定した。単位はg/10分。得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):40以上
○(良好):20以上〜40未満
△(微劣):5以上〜20未満
×(不良):5未満
Evaluation method of each physical property Workability: Melt index was measured at 220 ° C. and 10 kg based on ISO 1133. The unit is g / 10 minutes. Based on the measurement results obtained, relative classification was performed as follows.
◎ (excellent): 40 or more ○ (good): 20 or more to less than 40 △ (slightly inferior): 5 or more to less than 20 × (defect): less than 5

衝撃強度:ISO 179に準拠し、ノッチ付きのシャルピー衝撃値を測定した。単位はkJ/m
得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):15以上
○(良好):10以上〜15未満
△(微劣):5以上10未満
×(不良):5未満
Impact strength: Based on ISO 179, a Charpy impact value with a notch was measured. Unit is kJ / m 2.
Based on the measurement results obtained, relative classification was performed as follows.
◎ (Excellent): 15 or more ○ (Good): 10 or more and less than 15 △ (Slightly inferior): 5 or more and less than 10 × (Bad): Less than 5

耐熱性:ISO 75に準拠し、荷重1.8MPaの荷重たわみ温度を測定した。単位は℃。
得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):75℃以上
○(良好):70℃以上〜75℃未満
△(微劣):65℃以上〜70℃未満
×(不良):65℃未満
Heat resistance: Based on ISO 75, the deflection temperature under load of 1.8 MPa was measured. The unit is ° C.
Based on the measurement results obtained, relative classification was performed as follows.
◎ (excellent): 75 ° C or higher ○ (good): 70 ° C or higher to lower than 75 ° C △ (slightly inferior): 65 ° C or higher to lower than 70 ° C

外観の均一性:2箇所にゲートをもつデュポンインパクト測定用テストピースを肉眼で判定し、下記の様に相対区分した。
◎(優秀):まったくウェルドラインが観察されず、表面光沢も良好。
○(良好):明確なウェルドラインは認められないが、テストピース中央の光沢がやや不均一。
△(微劣):ウェルドラインが認められ、光沢も不均一。
×(不良):明確なウェルドラインが認められる。
Appearance uniformity: DuPont impact measurement test pieces having gates at two locations were judged with the naked eye, and were classified relative to each other as follows.
◎ (Excellent): No weld line is observed and surface gloss is good.
○ (Good): No clear weld line is observed, but the gloss at the center of the test piece is slightly uneven.
Δ (slightly inferior): Weld line is observed and gloss is not uniform.
X (defect): A clear weld line is recognized.

Figure 2009132776
Figure 2009132776

以上のように、本発明は、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れた熱可塑性樹脂組成物が得られるものであり、車両分野、家電分野、建材分野、サニタリー分野等に広く用いることができる。
また、石油資源消費の抑制にも貢献できる環境対応型材料である。
As described above, the present invention provides a thermoplastic resin composition having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity, and is used in the vehicle field, home appliance field, building material field, and sanitary field. Can be used widely.
It is also an environmentally friendly material that can contribute to the reduction of petroleum resource consumption.

Claims (4)

ポリ乳酸樹脂(L)5〜70重量部、非共役ジエン系ゴム含有グラフト共重合体(G)10〜60重量部、(メタ)アクリル酸エステル系硬質重合体(M)1〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)5〜84重量部からなることを特徴とする熱可塑性樹脂組成物(ただし、(L)、(G)、(M)、(A)の合計は100重量部である)。   5 to 70 parts by weight of a polylactic acid resin (L), 10 to 60 parts by weight of a non-conjugated diene rubber-containing graft copolymer (G), 1 to 50 parts by weight of a (meth) acrylate hard polymer (M), α-methylstyrene-acrylonitrile copolymer (A) comprising 5 to 84 parts by weight of a thermoplastic resin composition (however, the total of (L), (G), (M), (A) is 100 parts by weight). α−メチルスチレン−アクリロニトリル共重合体(A)が、α−メチルスチレン60〜80重量%およびアクリロニトリル20〜40重量%からなる共重合体である請求項1に記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1, wherein the α-methylstyrene-acrylonitrile copolymer (A) is a copolymer comprising 60 to 80% by weight of α-methylstyrene and 20 to 40% by weight of acrylonitrile. 非共役ジエン系ゴム含有グラフト共重合体(G)のゴム状重合体がアクリル系ゴム状重合体である請求項1又は2に記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1 or 2, wherein the rubber-like polymer of the non-conjugated diene rubber-containing graft copolymer (G) is an acrylic rubber-like polymer. 非共役ジエン系ゴム含有グラフト共重合体(G)のアルカリ金属含有量が0.01重量%以下である請求項1〜3何れかに記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to any one of claims 1 to 3, wherein the non-conjugated diene rubber-containing graft copolymer (G) has an alkali metal content of 0.01% by weight or less.
JP2007308774A 2007-11-29 2007-11-29 Thermoplastic resin composition Pending JP2009132776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308774A JP2009132776A (en) 2007-11-29 2007-11-29 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308774A JP2009132776A (en) 2007-11-29 2007-11-29 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JP2009132776A true JP2009132776A (en) 2009-06-18

Family

ID=40864981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308774A Pending JP2009132776A (en) 2007-11-29 2007-11-29 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2009132776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021894A1 (en) * 2017-07-28 2019-01-31 テクノUmg株式会社 Thermoplastic resin composition and molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286646A (en) * 1988-09-21 1990-03-27 Sumitomo Naugatuck Co Ltd Molding resin composition
JP2005239823A (en) * 2004-02-25 2005-09-08 Nippon A & L Kk Resin composition for hot plate fusion and lamp housing molded article for lighting fitting for vehicle
JP2006045486A (en) * 2004-07-02 2006-02-16 Nippon A & L Kk Thermoplastic resin composition
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286646A (en) * 1988-09-21 1990-03-27 Sumitomo Naugatuck Co Ltd Molding resin composition
JP2005239823A (en) * 2004-02-25 2005-09-08 Nippon A & L Kk Resin composition for hot plate fusion and lamp housing molded article for lighting fitting for vehicle
JP2006045486A (en) * 2004-07-02 2006-02-16 Nippon A & L Kk Thermoplastic resin composition
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021894A1 (en) * 2017-07-28 2019-01-31 テクノUmg株式会社 Thermoplastic resin composition and molded article
JP2019026722A (en) * 2017-07-28 2019-02-21 テクノUmg株式会社 Thermoplastic resin composition and molded article
CN110741043A (en) * 2017-07-28 2020-01-31 大科能宇菱通株式会社 Thermoplastic resin composition and molded article
CN110741043B (en) * 2017-07-28 2022-04-15 大科能宇菱通株式会社 Thermoplastic resin composition and molded article
US11866573B2 (en) 2017-07-28 2024-01-09 Techno-Umg Co., Ltd. Thermoplastic resin composition and molded article

Similar Documents

Publication Publication Date Title
JP6616019B2 (en) Method for producing ASA graft copolymer, method for producing thermoplastic resin composition containing the same, and method for producing molded article
JP2011219558A (en) Thermoplastic resin composition and molding
JP2006241283A (en) Thermoplastic resin composition and resin molded product composed of the same
JP2006045486A (en) Thermoplastic resin composition
JP2006045485A (en) Thermoplastic resin composition
JP5742994B1 (en) Thermoplastic resin composition and resin molded product
JP4618692B2 (en) Rubber-containing graft polymer and thermoplastic resin composition
JP2009019083A (en) Thermoplastic resin composition
JP2007211206A (en) Thermoplastic resin composition
JP5583884B2 (en) Thermoplastic resin composition
JP2009132776A (en) Thermoplastic resin composition
JP5214955B2 (en) Thermoplastic resin composition
JP2006056961A (en) Thermoplastic resin composition and resin molding composed of the same
JP2012136644A (en) Rubber-reinforced thermoplastic resin composition
JP2009132778A (en) Thermoplastic resin composition
JPH11116767A (en) Thermoplastic resin composition excellent in coloring property
JP5547795B2 (en) Thermoplastic resin composition and molded article
JP5457573B2 (en) Thermoplastic resin composition and molded article
JP3338557B2 (en) Thermoplastic resin composition
JP4727116B2 (en) Rubber-modified copolymer resin composition
JPH107873A (en) Low rigid styrenic resin composition excellent in pigment dispersibility
WO2017104508A1 (en) Thermoplastic resin composition
JP3926343B2 (en) Vinyl chloride resin composition
JP2006241417A (en) Thermoplastic resin composition
JP2007126532A (en) Thermoplastic resin composition and resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Effective date: 20111212

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Effective date: 20130118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212