JP2005298776A - Heat resistance-imparting material and resin composition using the same - Google Patents

Heat resistance-imparting material and resin composition using the same Download PDF

Info

Publication number
JP2005298776A
JP2005298776A JP2004121133A JP2004121133A JP2005298776A JP 2005298776 A JP2005298776 A JP 2005298776A JP 2004121133 A JP2004121133 A JP 2004121133A JP 2004121133 A JP2004121133 A JP 2004121133A JP 2005298776 A JP2005298776 A JP 2005298776A
Authority
JP
Japan
Prior art keywords
copolymer
mass
resin
heat
aromatic vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004121133A
Other languages
Japanese (ja)
Inventor
Isao Taki
勲 多喜
Masamichi Endo
正道 遠藤
Tetsumi Ikeda
哲美 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004121133A priority Critical patent/JP2005298776A/en
Publication of JP2005298776A publication Critical patent/JP2005298776A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heat-resistant ABS-based resin having a composition of specific components, capable of widely choosing molding condition widths in injection molding, scarcely generating odor when molded and capable of providing a product having good appearance, and to provide its molded product. <P>SOLUTION: The resin composition is obtained by kneading and mixing a heat-resistance-imparting material having a specific Tg and a specific parameter with an ABS(acrylonitrile-butadiene styrene)-based resin having a specific rubber component content. The heat-resistance-imparting material is composed of (a) 85-60 mass% aromatic vinyl-maleimide-based copolymer having a specific weight average molecular weight and (b) 15-40 mass% AS-based copolymer having a specific weight-average molecular weight and containing AN (acrylonitrile) and ST (styrene) in a specific ratio. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂の耐熱性を改良するための耐熱付与材、これを用いた樹脂組成物に関し、特に本発明の耐熱付与材を用いることにより、耐熱性ABS系樹脂組成物を簡便かつ効率的に得ることができ、また良好な外観性を有し、且つ衝撃強度に優れた物性により、自動車部品、電気・電子部品、雑貨等の分野に適用することができる。   The present invention relates to a heat resistance imparting material for improving the heat resistance of a resin and a resin composition using the same, and in particular, by using the heat resistance imparting material of the present invention, a heat resistant ABS resin composition can be easily and efficiently used. In addition, it can be applied to the fields of automobile parts, electrical / electronic parts, general merchandise, etc. because of its excellent appearance and excellent physical properties.

従来、マレイミド系共重合体変性の耐熱性ABS樹脂は、マレイミド系共重合体とABS系グラフト共重合体及びAS系共重合体を同時に混練混合するか、マレイミド系共重合体とABS樹脂とを混練り混合してマレイミド系共重合体変性の耐熱ABS系樹脂を製造していた(例えば特許文献1を参照)。
この場合、マレイミド変性の耐熱性ABS樹脂を得る為の押出条件として混練性の強い2軸押出機を用いないとマレイミド系共重合体の分散性が不十分となる恐れがあったが、強い混練での押出製造条件に伴う剪断発熱での熱分解によってガスの発生及び臭気問題等があった。またマレイミド系共重合体の分散が不十分であると、成形した際の成形品表面にヘアライン等が発生する外観性の低下や衝撃強度の低下等良好な物性が得にくいという欠点があった。
Conventionally, a heat-resistant ABS resin modified with a maleimide copolymer is prepared by kneading and mixing a maleimide copolymer and an ABS graft copolymer and an AS copolymer at the same time, or by mixing a maleimide copolymer and an ABS resin. A heat-resistant ABS resin modified with a maleimide copolymer was produced by kneading and mixing (for example, see Patent Document 1).
In this case, there was a risk that the dispersibility of the maleimide copolymer would be insufficient unless a twin screw extruder with strong kneading properties was used as an extrusion condition for obtaining a heat-resistant ABS resin modified with maleimide. There were gas generation and odor problems due to thermal decomposition with shearing heat generation accompanying the extrusion production conditions in the factory. Further, when the maleimide copolymer is insufficiently dispersed, there is a drawback that it is difficult to obtain good physical properties such as a decrease in appearance and hair strength on the surface of the molded product when it is molded.

このため、これらの欠点を解消するため、耐熱性マスターバッチ樹脂とABS系樹脂とを混練混合する方法が提案された。しかしながら、これら製造方法では、耐熱性樹脂組成物を得るための耐熱性マスターバッチ樹脂の耐熱付与効果としては、不十分なため、耐熱性マスターバッチ樹脂を多く配合する必要があった(例えば特許文献2、特許文献3を参照)。   For this reason, in order to eliminate these drawbacks, a method of kneading and mixing a heat-resistant masterbatch resin and an ABS resin has been proposed. However, in these production methods, the heat resistance imparting effect of the heat resistant masterbatch resin for obtaining the heat resistant resin composition is insufficient, so that it is necessary to blend a large amount of the heat resistant masterbatch resin (for example, Patent Documents). 2, see Patent Document 3).

特公平2−41544号公報Japanese Patent Publication No. 2-41544 特開平7−316384号公報JP 7-316384 A 特開平10−36614号公報JP 10-36614 A

本発明は、樹脂と特定のマスターバッチ樹脂組成物から耐熱性ABS系樹脂を製造する際、押出製造時にガスの発生や臭気が少なく、その製造押出条件及び得られた樹脂ペレットを成形する際の成形条件の条件幅を広げ、成形時の臭気が少なく、良好な外観を持つ耐熱性ABS系樹脂を提供することを可能とする耐熱性マスターバッチ樹脂組成物、その成型体を提供することである。   When producing a heat-resistant ABS resin from a resin and a specific masterbatch resin composition, the present invention has less gas generation and odor during extrusion production, and the production extrusion conditions and the resulting resin pellets are molded. The present invention is to provide a heat-resistant masterbatch resin composition that can provide a heat-resistant ABS-based resin having a good appearance with a wide range of molding conditions, less odor during molding, and a molded body thereof. .

即ち、本発明は、重量平均分子量が11万〜16万である芳香族ビニル−マレイミド系共重合体(a)85〜60質量%、重量平均分子量が13万〜17万で、アクリロニトリル含有量が21〜29質量%であるAS系共重合体(b)15〜40質量%からなり、該樹脂組成物の高温側のガラス転移温度が140〜170℃であり、および前記式1で計算されるパラメーターk値が0.4〜0.6であることを特徴とする耐熱付与材(A)10〜50質量%とゴム成分含有量が11質量%〜25質量%であるABS樹脂、AES樹脂、AAS樹脂、及びMBS樹脂からなる群から選ばれた1種または2種以上の樹脂(B)90〜50質量%とを混練混合してなる耐熱性組成物(C)であり、更にその成形体に関するものである。
ここでABS樹脂、AES樹脂、AAS樹脂およびMBS樹脂を樹脂と以降は略称する。
That is, the present invention is an aromatic vinyl-maleimide copolymer (a) having a weight average molecular weight of 110,000 to 160,000 (85) to 60% by mass, a weight average molecular weight of 130,000 to 170,000, and an acrylonitrile content. It consists of 15-40 mass% AS type copolymer (b) which is 21-29 mass%, the glass transition temperature of the high temperature side of this resin composition is 140-170 degreeC, and is calculated by the said Formula 1. A heat resistance imparting material (A) characterized in that a parameter k value is 0.4 to 0.6, and an ABS resin, an AES resin having a rubber component content of 11% to 25% by mass, A heat-resistant composition (C) obtained by kneading and mixing 90% to 50% by mass of one or more resins (B) selected from the group consisting of an AAS resin and an MBS resin, and a molded product thereof It is about.
Here, ABS resin, AES resin, AAS resin, and MBS resin are abbreviated as resin hereinafter.

また、本発明は好ましくは、芳香族ビニル−マレイミド系共重合体(a)が芳香族ビニル単量体40〜70質量%、不飽和ジカルボン酸イミド誘導体23〜59.9質量%及び不飽和ジカルボン酸無水物単量体0.01〜7質量%からなる共重合体である耐熱付与材(A)を用いた耐熱性組成物(C)であり、芳香族ビニル−マレイミド系共重合体(a)とAS系共重合体(b)を混練混合して得られた耐熱付与材(A)の残存スチレンモノマー量が300ppm以下である組成物(C)である。   In the present invention, the aromatic vinyl-maleimide copolymer (a) is preferably an aromatic vinyl monomer of 40 to 70% by mass, an unsaturated dicarboxylic imide derivative of 23 to 59.9% by mass, and an unsaturated dicarboxylic acid. A heat-resistant composition (C) using a heat-resistance imparting material (A) which is a copolymer comprising 0.01 to 7% by mass of an acid anhydride monomer, and an aromatic vinyl-maleimide copolymer (a ) And AS copolymer (b) kneaded and mixed, the composition (C) has a residual styrene monomer content of 300 ppm or less in the heat-resistance imparting material (A).

本発明の耐熱付与材(A)は樹脂(B)へ容易に分散性させることができ、マスターバッチ樹脂組成物として使用することが可能である。これを用いて耐熱性ABS系樹脂を製造すると押出製造時にガスの発生や臭気が少なく、押出製造条件幅や、また、インジェクション成形において成形条件幅を広く取ることができ、成形時の臭気が少なく外観性良好な製品が得られる。又、マスターバッチ樹脂組成物の製造に用いる芳香族ビニル−マレイミド樹脂を規定することにより、優れた物性バランスを有する耐熱性ABS系樹脂が得られる。従って、従来から耐熱性ABS系樹脂が用いられてきた自動車部品、電気・電子部品、家電製品、雑貨等のあらゆる分野へ優れた品質の製品を提供できる。   The heat-resistance imparting material (A) of the present invention can be easily dispersible in the resin (B), and can be used as a masterbatch resin composition. When heat-resistant ABS resin is produced using this, there is little generation of gas and odor during extrusion production, wide range of extrusion production conditions, and wide range of molding conditions in injection molding, less odor during molding A product with good appearance can be obtained. Further, by defining the aromatic vinyl-maleimide resin used for the production of the masterbatch resin composition, a heat-resistant ABS resin having an excellent physical property balance can be obtained. Therefore, it is possible to provide products of excellent quality to various fields such as automobile parts, electric / electronic parts, home appliances, and miscellaneous goods for which heat-resistant ABS resins have been conventionally used.

耐熱付与材(A)に使用する芳香族ビニル−マレイミド系共重合体(a)について説明する。   The aromatic vinyl-maleimide copolymer (a) used for the heat resistance imparting material (A) will be described.

第一の製法として、芳香族ビニル単量体、不飽和ジカルボン酸イミド誘導体および必要に応じてその他共重合可能なビニル共重合体からなる単量体混合物を共重合させる方法によって、芳香族ビニル−マレイミド系共重合体を得ることができる。   As a first production method, an aromatic vinyl monomer, an unsaturated dicarboxylic imide derivative, and, if necessary, a monomer mixture comprising a copolymerizable vinyl copolymer are copolymerized, A maleimide copolymer can be obtained.

第二の製法として、芳香族ビニル単量体、不飽和ジカルボン酸無水物及び必要に応じてその他共重合可能なビニル単量体からなる単量体混合物を共重合させた後、アンモニア及び/又は第一級アミンを反応させて酸無水物基をイミド基に変換させる方法が挙げられ、いずれの方法によっても芳香族ビニル−マレイミド系共重合体を得ることができる。   As a second production method, after copolymerizing a monomer mixture comprising an aromatic vinyl monomer, an unsaturated dicarboxylic acid anhydride, and other copolymerizable vinyl monomers as necessary, ammonia and / or Examples include a method in which a primary amine is reacted to convert an acid anhydride group into an imide group, and an aromatic vinyl-maleimide copolymer can be obtained by any method.

第一の製法及び第二の製法のいずれの製法においても用いる芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレン、t−ブチルスチレン、クロルスチレン等のスチレン単量体が挙げられ、これらの中でも特にスチレンが好ましい。   As the aromatic vinyl monomer used in either of the first production method and the second production method, styrene such as styrene, α-methylstyrene, vinyltoluene, p-methylstyrene, t-butylstyrene, chlorostyrene, etc. A monomer is mentioned, Among these, styrene is especially preferable.

第一の製法で用いられる不飽和ジカルボン酸イミド誘導体としては、マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド等のN−アルキルマレイミド、及びN−アリールマレイミド(アリール基としては、例えばフェニル、クロルフェニル、メチルフェニル、メトキシフェニル、トリブロモフェニル等が挙げられる)等のマレイミド誘導体が挙げられ、これらの中で特にN−フェニルマレイミドが好ましい。又、これらの誘導体は2種以上混合して用いることも出来る。   Examples of unsaturated dicarboxylic imide derivatives used in the first production method include N-alkylmaleimides such as maleimide, N-methylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, and N-arylmaleimide (as aryl groups, And maleimide derivatives such as phenyl, chlorophenyl, methylphenyl, methoxyphenyl, tribromophenyl, etc.). Among these, N-phenylmaleimide is particularly preferable. These derivatives can also be used as a mixture of two or more.

第二の製法で用いられる不飽和ジカルボン酸無水物としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の無水物が挙げられ、これらの中では特に無水マレイン酸が好ましい。   Examples of the unsaturated dicarboxylic acid anhydride used in the second production method include anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Among these, maleic anhydride is particularly preferable.

又、第一の製法及び第二の製法のいずれの製法においても、その他共重合可能なビニル単量体としては、アクリロニトリル、メタクリロニリル等のシアン化ビニル単量体、メチルアクリル酸エステル、エチルアクリル酸エステル等のアクリル酸エステル単量体、メチルメタクリル酸、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のビニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド等の単量体が挙げられる。
又、第一の製法では無水マレイン酸も挙げられ、第二の製法では、マレイミド基へ転換されずに残った無水マレイン酸基も共重合体中に導入することができる。
Further, in any of the first production method and the second production method, other copolymerizable vinyl monomers include vinyl cyanide monomers such as acrylonitrile and methacrylonyl, methyl acrylate, and ethyl acrylic acid. Acrylic ester monomers such as esters, methacrylic ester monomers such as methyl methacrylic acid and ethyl methacrylate, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, acrylic amides and methacrylic amides Monomer.
In the first production method, maleic anhydride is also mentioned, and in the second production method, the maleic anhydride groups remaining without being converted into maleimide groups can be introduced into the copolymer.

第二の製法で用いるアンモニアや第一級アミンは無水または水溶液のいずれの状態であってもよく、第一級アミンの例としては、メチルアミン、エチルアミン、ブチルアミン、シクロヘキシルアミン等のアルキルアミン、アニリン、トルイジン、クロルアニリン、メトキシアニリン、トリブロモアニリン等の芳香族アミンが挙げられ、これらの中で特にアニリンが好ましい。   Ammonia and primary amine used in the second production method may be either anhydrous or in an aqueous solution. Examples of primary amines include alkylamines such as methylamine, ethylamine, butylamine, cyclohexylamine, and aniline. , Aromatic amines such as toluidine, chloraniline, methoxyaniline, tribromoaniline and the like, among which aniline is particularly preferable.

第一の製法の場合は、懸濁重合、乳化重合、溶液重合、塊状重合等いずれも公知の重合法を用いることが出来る。第二の製法は、塊状−懸濁重合、溶液重合、塊状重合等を好適に採用できる。   In the case of the first production method, a known polymerization method can be used for any of suspension polymerization, emulsion polymerization, solution polymerization, bulk polymerization and the like. As the second production method, bulk-suspension polymerization, solution polymerization, bulk polymerization and the like can be suitably employed.

芳香族ビニル−マレイミド系共重合体(a)は、芳香族ビニル単量体40〜70質量%、不飽和ジカルボン酸イミド誘導体23〜59.99質量%及び不飽和ジカルボン酸無水物単量体0.01〜7質量%からなる共重合体が好ましい。不飽和ジカルボン酸イミド誘導体が23質量%未満であると耐熱性の付与効果が低く、AS系共重合体等他の成分との相溶性が劣り、耐衝撃性の低下を招く。又、不飽和ジカルボン酸イミド誘導体が59.9質量を越えると強度が低くなり、AS系共重合体等他成分との相溶性も低下する。より好ましい範囲は、芳香族ビニル単量体40〜65質量%、不飽和ジカルボン酸イミド誘導体28〜59.99質量%及び不飽和ジカルボン酸無水物単量体0.01〜7質量%である。特に好ましい範囲は、芳香族ビニル単量体40〜65質量%、不飽和ジカルボン酸イミド誘導体30〜58質量%及び不飽和ジカルボン酸無水物単量体2〜5質量%である。不飽和ジカルボン酸無水物単量体が0質量%であると、その芳香族ビニル−マレイミド系共重合体(a)を用いて耐熱性樹脂(B)として配合したとき、衝撃強度が若干低くなる。特に高い耐熱性を付与させる為に多く配合させた場合、衝撃強度の低下が顕著である。また、不飽和ジカルボン酸無水物単量体が7質量%を超えると熱安定性が悪くなり、熱加工時にガス発生量が多くなり、その芳香族ビニル−マレイミド系共重合体(a)を用いた耐熱性樹脂(B)の成形体に焼け、スジ不良等の外観不良を生じて易くなる。   The aromatic vinyl-maleimide copolymer (a) is composed of 40 to 70% by weight of an aromatic vinyl monomer, 23 to 59.99% by weight of an unsaturated dicarboxylic acid imide derivative and 0% of an unsaturated dicarboxylic acid anhydride monomer. A copolymer comprising 0.01 to 7% by mass is preferred. When the unsaturated dicarboxylic acid imide derivative is less than 23% by mass, the effect of imparting heat resistance is low, the compatibility with other components such as an AS copolymer is inferior, and impact resistance is reduced. On the other hand, if the unsaturated dicarboxylic imide derivative exceeds 59.9 mass, the strength is lowered, and the compatibility with other components such as an AS copolymer is also lowered. A more preferable range is 40 to 65% by mass of an aromatic vinyl monomer, 28 to 59.99% by mass of an unsaturated dicarboxylic imide derivative, and 0.01 to 7% by mass of an unsaturated dicarboxylic acid anhydride monomer. A particularly preferable range is 40 to 65% by mass of an aromatic vinyl monomer, 30 to 58% by mass of an unsaturated dicarboxylic acid imide derivative, and 2 to 5% by mass of an unsaturated dicarboxylic acid anhydride monomer. When the unsaturated dicarboxylic acid anhydride monomer is 0% by mass, the impact strength is slightly lowered when the aromatic vinyl-maleimide copolymer (a) is used as the heat resistant resin (B). . In particular, when a large amount is added to impart high heat resistance, the impact strength is significantly reduced. Further, when the unsaturated dicarboxylic acid anhydride monomer exceeds 7% by mass, the thermal stability is deteriorated, and the amount of gas generated at the time of heat processing increases, and the aromatic vinyl-maleimide copolymer (a) is used. The molded product of the heat resistant resin (B) that has been burned is likely to cause appearance defects such as streak defects.

芳香族ビニル−マレイミド系共重合体(a)は、重量平均分子量11万〜16万の1種の芳香族ビニル−マレイミド系共重合体でもよく、又重量平均分子量が異なる2種以上の芳香族ビニル−マレイミド系共重合体を組み合わせた混合物で、その混合物の重量平均分子量が11万〜16万の範囲にあるものであればその芳香族ビニル−マレイミド系共重合体の混合物を使用することができる。   The aromatic vinyl-maleimide copolymer (a) may be one aromatic vinyl-maleimide copolymer having a weight average molecular weight of 110,000 to 160,000, or two or more aromatics having different weight average molecular weights. If the mixture is a combination of vinyl-maleimide copolymers, and the weight average molecular weight of the mixture is in the range of 110,000 to 160,000, the mixture of the aromatic vinyl-maleimide copolymers can be used. it can.

芳香族ビニル−マレイミド系共重合体(a)としては、重量平均分子量が、11万〜16万、更に好ましくは12万〜15万の範囲である。重量平均分子量16万を越える芳香族ビニル−マレイミド系共重合体を用いて得られた耐熱性を改良するためのマスターバッチ樹脂組成物は、樹脂(B)への分散性が悪く、耐熱性ABS系樹脂として流動性の低下、外観不良を生じやすく、適用できるABS系樹脂が限定される。又、重量平均分子量が11万未満の芳香族ビニル−マレイミド系共重合体を用いた場合、耐熱性ABS系樹脂としての衝撃性に劣る。   The aromatic vinyl-maleimide copolymer (a) has a weight average molecular weight of 110,000 to 160,000, more preferably 120,000 to 150,000. The masterbatch resin composition for improving heat resistance obtained by using an aromatic vinyl-maleimide copolymer having a weight average molecular weight exceeding 160,000 has poor dispersibility in the resin (B), and is heat resistant ABS. As the base resin, the flowability is deteriorated and the appearance is easily deteriorated, and the applicable ABS base resin is limited. Further, when an aromatic vinyl-maleimide copolymer having a weight average molecular weight of less than 110,000 is used, the impact resistance as a heat-resistant ABS resin is poor.

AS系共重合体(b)について説明する。AS系共重合体は、芳香族ビニル単量体、シアン化ビニル単量体及び必要に応じて用いるその他共重合可能なビニル単量体からなる共重合体である。   The AS copolymer (b) will be described. The AS copolymer is a copolymer composed of an aromatic vinyl monomer, a vinyl cyanide monomer, and other copolymerizable vinyl monomers used as necessary.

芳香族ビニル単量体としては、前記の芳香族−マレイミド系共重合体(a)で用いられる芳香族ビニル単量体として挙げた同じ単量体種が挙げられ、これらの中でスチレン及び/又はα−メチルスチレンが特に好ましい。   Examples of the aromatic vinyl monomer include the same monomer species listed as the aromatic vinyl monomer used in the aromatic-maleimide copolymer (a). Among these, styrene and / or Or α-methylstyrene is particularly preferred.

シアン化ビニル単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられ、これらの中では特にアクリロニトリルが好ましい。   Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile. Among these, acrylonitrile is particularly preferable.

又、その他共重合可能なビニル単量体としては、メチルアクリル酸エステル、エチルアクリル酸エステル、ブチルアクリル酸エステル等のアクリル酸エステル単量体、メチルメタクリル酸、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のビニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド等の単量体、並びにN−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド等のN−アルキルマレイミド、及びN−アリールマレイミド(アリール基としては、例えばフェニル、クロルフェニル、メチルフェニル、メトキシフェニル、トリブロモフェニル等が挙げられる)等のマレイミド誘導体が挙げられる。これらの中でアクリル酸エステル、メタクリル酸エステル、アクリル酸、メタクリル酸などの単量体が好ましい。   Other copolymerizable vinyl monomers include acrylate monomers such as methyl acrylate, ethyl acrylate and butyl acrylate, and methacrylic esters such as methyl methacrylic acid and ethyl methacrylic ester. Monomers, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, monomers such as acrylic amide and methacrylic acid amide, and N- such as N-methylmaleimide, N-butylmaleimide and N-cyclohexylmaleimide Examples thereof include maleimide derivatives such as alkylmaleimide and N-arylmaleimide (the aryl group includes, for example, phenyl, chlorophenyl, methylphenyl, methoxyphenyl, tribromophenyl and the like). Among these, monomers such as acrylic acid ester, methacrylic acid ester, acrylic acid and methacrylic acid are preferable.

AS系共重合体(b)は、芳香族ビニル単量体単位79〜71質量%、シアン化ビニル単量体単位21〜29質量%及びその他共重合可能なビニル単量体単位0〜4質量%からなる共重合体が好ましい。シアン化ビニル成分が21質量%未満であると芳香族−マレイミド系共重合体との相溶性が劣り、耐熱ABS系樹脂にした際にその成形品にヘアライン不良などの外観不良が発生し、また衝撃強度が劣る。またシアン化ビニル成分が29質量%を越えても芳香族−マレイミド系共重合体との相溶性が劣り、耐熱ABS系樹脂にした際にその成形品にヘアライン不良などの外観不良が発生する。より好ましい範囲は、芳香族ビニル単量体75〜71質量%、シアン化ビニル単量体25〜29質量%である。特に好ましくは芳香族ビニル単量体75〜71.1質量%、シアン化ビニル単量体25〜28.9質量%である
又、AS系共重合体の重量平均分子量は13万〜17万が好ましい。更に好ましくは14万〜16万の範囲である。13万未満であると耐熱ABS化した際の衝撃強度が劣る。17万を越えるとABS樹脂への分散性が劣り、耐熱ABS化した際の外観にヘアライン不良が発生する。又、耐熱ABSとしての成形性も劣る。
The AS copolymer (b) is composed of 79 to 71% by mass of aromatic vinyl monomer units, 21 to 29% by mass of vinyl cyanide monomer units, and 0 to 4% of other vinyl monomer units that can be copolymerized. % Copolymer is preferred. If the vinyl cyanide component is less than 21% by mass, the compatibility with the aromatic-maleimide copolymer is inferior, and when it is made into a heat-resistant ABS resin, appearance defects such as defective hairlines occur in the molded product. Impact strength is inferior. Even if the vinyl cyanide component exceeds 29% by mass, the compatibility with the aromatic-maleimide copolymer is poor, and when it is made into a heat-resistant ABS resin, appearance defects such as hairline defects occur in the molded product. A more preferable range is 75 to 71% by mass of an aromatic vinyl monomer and 25 to 29% by mass of a vinyl cyanide monomer. The aromatic vinyl monomer is particularly preferably 75 to 71.1% by mass, and the vinyl cyanide monomer is 25 to 28.9% by mass. The weight average molecular weight of the AS copolymer is 130,000 to 170,000. preferable. More preferably, it is the range of 140,000 to 160,000. If it is less than 130,000, the impact strength when heat-resistant ABS is achieved is poor. If it exceeds 170,000, the dispersibility in ABS resin is inferior, and the appearance of the heat-resistant ABS is poor. Moreover, the moldability as heat-resistant ABS is also inferior.

AS系共重合体(b)は、通常の重合方法で製造できる。例えば塊状重合、懸濁重合、溶液重合、乳化重合等の重合方法が挙げられる。   The AS copolymer (b) can be produced by a usual polymerization method. Examples thereof include polymerization methods such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization.

耐熱付与材(A)は、ガラス転移温度が140〜170℃の範囲である。好ましくは145〜165℃、特に好ましくは150〜165℃である。ガラス転移温度が140℃未満では、耐熱性が低いため、マスターバッチ樹脂組成物として使用する際、所望の耐熱ABS系樹脂を得るために高価格なマスターバッチ樹脂組成物の添加量を多く必要とするため、経済的でない。又、170℃を越える場合、マスターバッチ樹脂組成物を添加して耐熱ABS系樹脂を得る為の押出条件及び得られた耐熱ABS系樹脂をインジェクション成形する際の成形条件に制限がある。芳香族ビニル−マレイミド系共重合体をABS系樹脂へ良好に分散するために押出機、成形機のシリンダー温度を高く設定するとABS系共重合体中のゴム状重合体が熱劣化し、耐衝撃性の低下を招く。又、それを防ぐため、押出機、成形機のシリンダー温度を低く設定すると芳香族ビニル−マレイミド系共重合体のABS系樹脂への分散が不十分となり、外観不良を発生しやく、
また耐衝撃性強度の低下を招く。
The heat imparting material (A) has a glass transition temperature in the range of 140 to 170 ° C. Preferably it is 145-165 degreeC, Most preferably, it is 150-165 degreeC. When the glass transition temperature is less than 140 ° C., the heat resistance is low, so when used as a masterbatch resin composition, a large amount of an expensive masterbatch resin composition needs to be added in order to obtain a desired heat-resistant ABS resin. It is not economical. Moreover, when it exceeds 170 degreeC, there exists a restriction | limiting in the extrusion conditions for adding a masterbatch resin composition and obtaining heat-resistant ABS type resin, and the molding conditions at the time of injection-molding the obtained heat-resistant ABS type resin. In order to disperse the aromatic vinyl-maleimide copolymer into the ABS resin well, if the cylinder temperature of the extruder or molding machine is set high, the rubbery polymer in the ABS copolymer will be thermally deteriorated and impact resistance It causes a decline in sex. In order to prevent this, if the cylinder temperature of the extruder and the molding machine is set low, the dispersion of the aromatic vinyl-maleimide copolymer to the ABS resin becomes insufficient, and it tends to cause poor appearance.
In addition, the impact strength is reduced.

また本発明の耐熱付与材(A)において下記数2から計算されるパラメーターk値は0.4〜0.6であることが必要である。更に好ましくはパラメーターk値が0.4〜0.59、特に好ましくは0.4〜0.56である。パラメーターk値が0.4未満では芳香族−マレイミド系共重合体(a)とAS系共重合体(b)の混練混合性が十分に得られないため、強度や剛性特性にバラツキが生じたり、またヘアライン不良などの成型外観不良が発生するので好ましくない。またパラメーターk値が0.6を超えると混練状態が厳しく、混練時の剪断による発熱が発生しやすく解重合等での残存モノマー量が増加するため品質上好ましくない。

Figure 2005298776
Further, in the heat resistance imparting material (A) of the present invention, the parameter k value calculated from the following formula 2 needs to be 0.4 to 0.6. More preferably, the parameter k value is 0.4 to 0.59, particularly preferably 0.4 to 0.56. If the parameter k value is less than 0.4, the kneading and mixing properties of the aromatic-maleimide copolymer (a) and the AS copolymer (b) cannot be sufficiently obtained, resulting in variations in strength and rigidity characteristics. In addition, it is not preferable because molding appearance defects such as defective hairlines occur. On the other hand, when the parameter k value exceeds 0.6, the kneading state is severe and heat generation due to shearing during kneading is likely to occur, and the amount of residual monomer in depolymerization and the like increases, which is not preferable in terms of quality.
Figure 2005298776

耐熱付与材(A)は芳香族−マレイミド系共重合体(a)85〜60質量%、AS系共重合体(b)15〜40質量%からなる樹脂組成物である。
芳香族−マレイミド系共重合体が60質量%未満であるとマスターバッチ樹脂組成物としての耐熱性が不十分である。又、芳香族−マレイミド系共重合体が85質量%を越えると耐熱性マスターバッチ樹脂としてのABS系樹脂への分散性が不十分となり、衝撃強度あるいは成形性が低下して良好な物性が得られない。
The heat resistance-imparting material (A) is a resin composition comprising an aromatic-maleimide copolymer (a) 85 to 60% by mass and an AS copolymer (b) 15 to 40% by mass.
When the aromatic-maleimide copolymer is less than 60% by mass, the heat resistance as the masterbatch resin composition is insufficient. On the other hand, if the aromatic-maleimide copolymer exceeds 85% by mass, the dispersibility of the heat-resistant masterbatch resin in the ABS resin becomes insufficient, and the impact strength or moldability is lowered to obtain good physical properties. I can't.

耐熱付与材(A)の残存スチレン濃度について特に規定されないが、押出製造時、また、加工成形時の臭気等の環境問題もあり300ppm以下であることが好ましい。特に好ましくは250ppm以下である。尚、残存スチレン濃度の測定は通常のガスクロマト法により定量を行った。   The residual styrene concentration of the heat-resistance-imparting material (A) is not particularly specified, but it is preferably 300 ppm or less because of environmental problems such as odor during extrusion production and processing and molding. Especially preferably, it is 250 ppm or less. The residual styrene concentration was quantified by ordinary gas chromatography.

樹脂(B)としては、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、耐熱ABS樹脂(アクリロニトリル−ブタジエン−スチレン−α−メチルスチレン)、AES樹脂(アクリロニトリル−EPDM−スチレン)樹脂、AAS(アクリロニトリル−アクリレート−スチレン)樹脂及びMBS樹脂(メチルメタクルリレート−ブタジエン−スチレン)等が挙げられる。   Examples of the resin (B) include ABS (acrylonitrile-butadiene-styrene) resin, heat-resistant ABS resin (acrylonitrile-butadiene-styrene-α-methylstyrene), AES resin (acrylonitrile-EPDM-styrene) resin, AAS (acrylonitrile-acrylate-). Styrene) resin and MBS resin (methyl methacrylate) -butadiene-styrene.

また、樹脂(B)中のゴム含有成分量としては、11質量%〜29質量%がよく、11質量%〜25質量%が好ましい。更に好ましくは12質量%〜28質量%、特に好ましくは13質量%〜20質量%である。樹脂(B)中のゴム含有量が11質量%未満の場合、得られる耐熱ABS系樹脂の耐衝撃性が低い。樹脂(B)のゴム含有量が25質量%を超える場合は、得られる耐熱性ABS系樹脂の成形性や耐熱性が低くなる。   Moreover, as a rubber-containing component amount in resin (B), 11 mass%-29 mass% are good, and 11 mass%-25 mass% are preferable. More preferably, it is 12 mass%-28 mass%, Most preferably, it is 13 mass%-20 mass%. When the rubber content in the resin (B) is less than 11% by mass, the resulting heat resistant ABS resin has low impact resistance. When the rubber content of the resin (B) exceeds 25% by mass, the moldability and heat resistance of the resulting heat-resistant ABS resin are lowered.

耐熱付与材(A)と樹脂(B)の混合については特に規定はされないが、混練混合が好ましく、本発明の組成物(C)を得ることができる。混練混合の手段として、単軸押出機及び二軸押出機を好適に用いることが出来る。特に本発明のマスターバッチ樹脂組成物を用いると混練性の弱い単軸押出機を使用しても樹脂(B)への分散性は良好である。又、押出機にて混練する前の予備混合には、ヘンシェルミキサーやタンブラーミキサー等の公知の装置を用いることが出来る。   The mixing of the heat resistance-imparting material (A) and the resin (B) is not particularly defined, but kneading and mixing are preferable, and the composition (C) of the present invention can be obtained. As the kneading and mixing means, a single screw extruder and a twin screw extruder can be suitably used. In particular, when the masterbatch resin composition of the present invention is used, the dispersibility in the resin (B) is good even if a single screw extruder with weak kneading properties is used. Moreover, well-known apparatuses, such as a Henschel mixer and a tumbler mixer, can be used for the preliminary mixing before kneading with an extruder.

耐熱付与材(A)や、それと樹脂(B)を混練混合してなる耐熱性樹脂組成物(組成物(C))には、酸化防止剤、紫外線吸収剤、着色剤、可塑剤、滑剤、難燃剤、ガラス繊維、カーボン繊維、炭酸カルシウム、タルク、マイカ等を目的に合わせて添加することができる。   The heat resistance imparting material (A) and the heat resistant resin composition (composition (C)) obtained by kneading and mixing it with the resin (B) include an antioxidant, an ultraviolet absorber, a colorant, a plasticizer, a lubricant, Flame retardants, glass fibers, carbon fibers, calcium carbonate, talc, mica and the like can be added according to the purpose.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例中の部、%はいずれも質量基準で表した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. All parts and% in the examples are expressed on a mass basis.

(1)原料樹脂
(イ)芳香族ビニル−マレイミド系共重合体(a)
以下に使用したマレイミド系共重合体(a)の参考例を示す。
参考例1(共重合体SMI−1の製造)
攪拌機を備えたオートクレーブ中にスチレン60部、α−メチルスチレンダイマー0.1部、メチルエチルケトン100部を仕込み、系内を窒素ガスで置換した後、温度を85℃に昇温し、無水マレイン酸40部とベンゾイルパーオキサイド0.15部をメチルエチルケトン200部に溶解した溶液を8時間で連続的に添加した。添加後、更に3時間温度を85℃に保った。粘稠な反応液の一部をサンプリングしてしてガスクロマトグラフイーにより未反応単量体の定量を行った結果、重合率はスチレン99%、無水マレイン酸98%であった。ここで得られた共重合体溶液にアニリン36部、トリエチルアミン0.6部を加え140℃で7時間反応させた。反応液をベント付き二軸押出機に供給し、脱揮してマレイミド系共重合体を得た。C−13NMR分析より無水マレイン基のイミド基への転化率は94%であった。このマレイミド系共重合体は不飽和ジカルボン酸イミド誘導体としてのN−フェニルマレイミド単位を51%、スチレン単位47%、無水マレイン酸単位2%を含む共重合体であり、これをSMI−1とした。
(1) Raw material resin (a) Aromatic vinyl-maleimide copolymer (a)
Reference examples of the maleimide copolymer (a) used are shown below.
Reference Example 1 (Production of copolymer SMI-1)
In an autoclave equipped with a stirrer, 60 parts of styrene, 0.1 part of α-methylstyrene dimer and 100 parts of methyl ethyl ketone were charged, the inside of the system was replaced with nitrogen gas, the temperature was raised to 85 ° C., and maleic anhydride 40 And a solution of 0.15 part of benzoyl peroxide in 200 parts of methyl ethyl ketone were continuously added over 8 hours. After the addition, the temperature was kept at 85 ° C. for an additional 3 hours. As a result of sampling a part of the viscous reaction liquid and quantifying the unreacted monomer by gas chromatography, the polymerization rate was 99% styrene and 98% maleic anhydride. 36 parts of aniline and 0.6 part of triethylamine were added to the copolymer solution obtained here and reacted at 140 ° C. for 7 hours. The reaction solution was supplied to a vented twin screw extruder and devolatilized to obtain a maleimide copolymer. From the C-13 NMR analysis, the conversion ratio of anhydrous maleic group to imide group was 94%. This maleimide-based copolymer is a copolymer containing 51% of N-phenylmaleimide units as unsaturated dicarboxylic imide derivatives, 47% of styrene units, and 2% of maleic anhydride units, and this was designated as SMI-1. .

参考例2(共重合体SMI−2の製造)
α−メチルスチレンダイマー0.2部を用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位51%、スチレン単位47%、無水マレイン酸単位2%からなる重量平均分子量120,000の共重合体を得た。これを共重合体SMI−3とした。
Reference Example 2 (Production of copolymer SMI-2)
A weight average molecular weight of 120,000 consisting of 51% N-phenylmaleimide units, 47% styrene units and 2% maleic anhydride units was prepared in the same manner as in Production Example 1 except that 0.2 parts of α-methylstyrene dimer was used. A copolymer was obtained. This was designated as copolymer SMI-3.

参考例3(共重合体SMI−3の製造)
α−メチルスチレンダイマー1.5部を用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位51%、スチレン単位47%、無水マレイン酸単位2%からなる重量平均分子量70,000の共重合体を得た。これを共重合体SMI−2とした。
Reference Example 3 (Production of copolymer SMI-3)
A weight average molecular weight of 70,000 consisting of 51% N-phenylmaleimide units, 47% styrene units and 2% maleic anhydride units was prepared in the same manner as in Production Example 1 except that 1.5 parts of α-methylstyrene dimer was used. A copolymer was obtained. This was designated as copolymer SMI-2.

参考例4(共重合体SMI−4の製造)
α−メチルスチレンダイマー0.02部を用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位51%、スチレン単位47%、無水マレイン酸単位2%からなる重量平均分子量190,000の共重合体を得た。これを共重合体SMI−4とした。
Reference Example 4 (Production of copolymer SMI-4)
A weight average molecular weight of 190,000 consisting of 51% N-phenylmaleimide units, 47% styrene units and 2% maleic anhydride units was prepared in the same manner as in Production Example 1 except that 0.02 part of α-methylstyrene dimer was used. A copolymer was obtained. This was designated as copolymer SMI-4.

参考例5(共重合体SMI−5の製造)
攪拌機を備えたオートクレーブ中にスチレン49部、α−メチルスチレンダイマー1.7部、メチルエチルケトン100部を仕込み、系内を窒素ガスで置換した後、温度を85℃に昇温し、無水マレイン酸51部とベンゾイルパーオキサイド0.15部をメチルエチルケトン200部に溶解した溶液を8時間で連続的に添加した。添加後、更に3時間温度を85℃に保った。粘稠な反応液の一部をサンプリングしてしてガスクロマトグラフイーにより未反応単量体の定量を行った結果、重合率はスチレン99%、無水マレイン酸98%であった。ここで得られた共重合体溶液にアニリン46部、トリエチルアミン0.7部を加え140℃で7時間反応させた。反応液をベント付き二軸押出機に供給し、脱揮してマレイミド系共重合体を得た。C−13NMR分析より無水マレイン基のイミド基への転化率は95%であった。このマレイミド系共重合体は不飽和ジカルボン酸イミド誘導体としてのN−フェニルマレイミド単位を62%、スチレン単位36%、無水マレイン酸単位2%を含む共重合体であり、これをSMI−5とした。
Reference Example 5 (Production of copolymer SMI-5)
In an autoclave equipped with a stirrer, 49 parts of styrene, 1.7 parts of α-methylstyrene dimer and 100 parts of methyl ethyl ketone were charged, and the system was purged with nitrogen gas, then the temperature was raised to 85 ° C. and maleic anhydride 51 And a solution of 0.15 part of benzoyl peroxide in 200 parts of methyl ethyl ketone were continuously added over 8 hours. After the addition, the temperature was kept at 85 ° C. for an additional 3 hours. As a result of sampling a part of the viscous reaction liquid and quantifying the unreacted monomer by gas chromatography, the polymerization rate was 99% styrene and 98% maleic anhydride. 46 parts of aniline and 0.7 part of triethylamine were added to the copolymer solution obtained here and reacted at 140 ° C. for 7 hours. The reaction solution was supplied to a vented twin screw extruder and devolatilized to obtain a maleimide copolymer. From the C-13 NMR analysis, the conversion ratio of the anhydrous maleic group to the imide group was 95%. This maleimide copolymer is a copolymer containing 62% N-phenylmaleimide units as unsaturated dicarboxylic imide derivatives, 36% styrene units, and 2% maleic anhydride units, and this was designated as SMI-5. .

参考例6(共重合体SMI−6の製造)
攪拌機を備えたオートクレーブ中にスチレン81部、α−メチルスチレンダイマー0.1部、メチルエチルケトン100部を仕込み、系内を窒素ガスで置換した後、温度を85℃に昇温し、無水マレイン酸19部とベンゾイルパーオキサイド0.15部をメチルエチルケトン200部に溶解した溶液を8時間で連続的に添加した。添加後、更に3時間温度を85℃に保った。粘稠な反応液の一部をサンプリングしてガスクロマトグラフイーにより未反応単量体の定量を行った結果、重合率はスチレン99%、無水マレイン酸98%であった。ここで得られた共重合体溶液にアニリン17部、トリエチルアミン0.3部を加え140℃で7時間反応させた。反応液をベント付き二軸押出機に供給し、脱揮してマレイミド系共重合体を得た。C−13NMR分析より無水マレイン基のイミド基への転化率は94%であった。このマレイミド系共重合体は不飽和ジカルボン酸イミド誘導体としてのN−フェニルマレイミド単位を28%、スチレン単位71%、無水マレイン酸単位2%を含む共重合体であり、これをSMI−6とした。
Reference Example 6 (Production of copolymer SMI-6)
In an autoclave equipped with a stirrer, 81 parts of styrene, 0.1 part of α-methylstyrene dimer and 100 parts of methyl ethyl ketone were charged, and the system was replaced with nitrogen gas. The temperature was then raised to 85 ° C., and maleic anhydride 19 And a solution of 0.15 part of benzoyl peroxide in 200 parts of methyl ethyl ketone were continuously added over 8 hours. After the addition, the temperature was kept at 85 ° C. for an additional 3 hours. As a result of sampling a part of the viscous reaction liquid and quantifying the unreacted monomer by gas chromatography, the polymerization rate was 99% styrene and 98% maleic anhydride. To the copolymer solution obtained here, 17 parts of aniline and 0.3 part of triethylamine were added and reacted at 140 ° C. for 7 hours. The reaction solution was supplied to a vented twin screw extruder and devolatilized to obtain a maleimide copolymer. From the C-13 NMR analysis, the conversion ratio of anhydrous maleic group to imide group was 94%. This maleimide-based copolymer is a copolymer containing 28% of N-phenylmaleimide units as unsaturated dicarboxylic imide derivatives, 71% of styrene units and 2% of maleic anhydride units, and this was designated as SMI-6. .

参考例7(共重合体SMI−7の製造)
アニリン37部用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位52%、スチレン単位47%、無水マレイン酸単位1%からなる重量平均分子量140,000の共重合体を得た。無水マレイン基のイミド基への転化率は97%であった。これを共重合体SMI−7とした。
Reference Example 7 (Production of copolymer SMI-7)
A copolymer having a weight average molecular weight of 140,000 consisting of 52% N-phenylmaleimide units, 47% styrene units and 1% maleic anhydride units was obtained in the same manner as in Production Example 1 except that 37 parts of aniline was used. The conversion ratio of anhydrous maleic group to imide group was 97%. This was designated as copolymer SMI-7.

参考例8(共重合体SMI−8の製造)
アニリン33部用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位49%、スチレン単位47%、無水マレイン酸単位4%からなる重量平均分子量142,000の共重合体を得た。無水マレイン基のイミド基への転化率は90%であった。これを共重合体SMI−8とした。
Reference Example 8 (Production of copolymer SMI-8)
A copolymer having a weight average molecular weight of 142,000 comprising 49% of N-phenylmaleimide units, 47% of styrene units and 4% of maleic anhydride units was obtained in the same manner as in Production Example 1, except that 33 parts of aniline was used. The conversion ratio of anhydrous maleic group to imide group was 90%. This was designated as copolymer SMI-8.

参考例9(共重合体SMI−9の製造)
アニリン38部用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位53%、スチレン単位47%からなる重量平均分子量140,000の共重合体を得た。無水マレイン基のイミド基への転化率は100%であった。これを共重合体SMI−9とした。
Reference Example 9 (Production of copolymer SMI-9)
A copolymer having a weight average molecular weight of 140,000 consisting of 53% N-phenylmaleimide units and 47% styrene units was obtained in the same manner as in Production Example 1 except that 38 parts of aniline was used. The conversion ratio of anhydrous maleic group to imide group was 100%. This was designated as copolymer SMI-9.

参考例10(共重合体SMI−10の製造)
アニリン26部用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位43%、スチレン単位47%、無水マレイン酸単位10%からなる重量平均分子量140,000の共重合体を得た。無水マレイン基のイミド基への転化率は73%であった。これを共重合体SMI−10とした。
Reference Example 10 (Production of copolymer SMI-10)
A copolymer having a weight average molecular weight of 140,000 consisting of 43% N-phenylmaleimide units, 47% styrene units and 10% maleic anhydride units was obtained in the same manner as in Production Example 1 except that 26 parts of aniline were used. The conversion ratio of anhydrous maleic group to imide group was 73%. This was designated as copolymer SMI-10.

上記に使用したマレイミド系共重合体(a)の成分組成比とゲルパーミエーションクロマトグラフー(GPC)測定による重量平均分子量を表1に示す。     Table 1 shows the component composition ratio of the maleimide copolymer (a) used above and the weight average molecular weight determined by gel permeation chromatography (GPC).

尚、GPC測定は以下のような条件で実施した。
装 置;Shodex製、「SYSTEM−21」
カラム;PLgel MIXED−B
温 度;40℃
溶 媒;テトラヒドロフラン
検 出;RI
濃 度;0.2%
注入量;100μl
検量線;標準ポリスチレン(Polymer Laboratories製)を用い、溶離時間と溶出量との関係を分子量と変換して各種平均分子量を求めた。
The GPC measurement was performed under the following conditions.
Equipment: “SYSTEM-21” manufactured by Shodex
Column; PLgel MIXED-B
Temperature: 40 ° C
Solvent; Tetrahydrofuran detection; RI
Concentration: 0.2%
Injection volume: 100 μl
Calibration curve: Standard polystyrene (manufactured by Polymer Laboratories) was used, and the relationship between elution time and elution amount was converted to molecular weight to obtain various average molecular weights.

Figure 2005298776
Figure 2005298776

(ロ)AS系共重合体(c)
以下に使用したAS系共重合体(c)の参考例を示す。
参考例6(AS系共重合体AS−1の製造)
攪拌機を備えた反応缶中にスチレン74部、アクリロニトリル26部、第三リン酸カルシウム2.5部、t−ドデシルメルカプタン0.26部、t−ブチルパーオキシアセテート0.2部及び水250部を仕込み、70℃に昇温し重合を開始させた。重合開始から7時間後に温度を75℃に昇温して3時間保ち重合を完結させた。重合率は97%に達した。得られた反応液に5%塩酸水溶液200部を添加し析出させ、脱水、乾燥後白色ビーズ状の共重合体を得た。これを共重合体AS−1とした。
上記の使用したAS系共重合体(c)の成分組成比とGPC測定による重量平均分子量を表2に示す。
参考例7(AS系共重合体AS−2の製造)
スチレン71.5部、アクリロニトリル28.5部用いた以外は参考例6と同様な方法でAS系共重合体を得た。これを共重合体AS−2とした。
上記の使用したAS系共重合体(c)の成分組成比とGPC測定による重量平均分子量を表2に示す。
参考例8(AS系共重合体AS−2の製造)
スチレン75部、アクリロニトリル20部用いた以外は参考例6と同様な方法でAS系共重合体を得た。これを共重合体AS−3とした。
上記の使用したAS系共重合体(c)の成分組成比とGPC測定による重量平均分子量を表2に示す。
参考例9(AS系共重合体AS−3の製造)
スチレン75部、アクリロニトリル35部用いた以外は参考例6と同様な方法でAS系共重合体を得た。これを共重合体AS−4とした。
上記の使用したAS系共重合体(c)の成分組成比とGPC測定による重量平均分子量を表2に示す。
参考例10(AS系共重合体AS−4の製造)
t−ドデシルメルカプタンの量を0.50部とする以外は参考例6と同様な方法でAS系共重合体を得た。これを共重合体AS−5とした。
上記の使用したAS系共重合体(c)の成分組成比とGPC測定による重量平均分子量を表2に示す。
参考例11(AS系共重合体AS−6の製造)
t−ドデシルメルカプタンの量を0.10部とする以外は参考例6と同様な方法でAS系共重合体を得た。これを共重合体AS−6とした。
上記の使用したAS系共重合体(c)の成分組成比とGPC測定による重量平均分子量を表2に示す。
(B) AS copolymer (c)
Reference examples of the AS copolymer (c) used are shown below.
Reference Example 6 (Production of AS copolymer AS-1)
In a reaction vessel equipped with a stirrer, 74 parts of styrene, 26 parts of acrylonitrile, 2.5 parts of tricalcium phosphate, 0.26 parts of t-dodecyl mercaptan, 0.2 part of t-butyl peroxyacetate and 250 parts of water were charged. The temperature was raised to 70 ° C. to initiate polymerization. Seven hours after the start of polymerization, the temperature was raised to 75 ° C. and maintained for 3 hours to complete the polymerization. The polymerization rate reached 97%. 200 parts of a 5% aqueous hydrochloric acid solution was added to the obtained reaction solution for precipitation, and after dehydration and drying, a white bead copolymer was obtained. This was designated as copolymer AS-1.
Table 2 shows the component composition ratio of the used AS-based copolymer (c) and the weight average molecular weight determined by GPC measurement.
Reference Example 7 (Production of AS copolymer AS-2)
An AS copolymer was obtained in the same manner as in Reference Example 6 except that 71.5 parts of styrene and 28.5 parts of acrylonitrile were used. This was designated as copolymer AS-2.
Table 2 shows the component composition ratio of the used AS-based copolymer (c) and the weight average molecular weight determined by GPC measurement.
Reference Example 8 (Production of AS copolymer AS-2)
An AS copolymer was obtained in the same manner as in Reference Example 6 except that 75 parts of styrene and 20 parts of acrylonitrile were used. This was designated as copolymer AS-3.
Table 2 shows the component composition ratio of the used AS-based copolymer (c) and the weight average molecular weight determined by GPC measurement.
Reference Example 9 (Production of AS copolymer AS-3)
An AS copolymer was obtained in the same manner as in Reference Example 6 except that 75 parts of styrene and 35 parts of acrylonitrile were used. This was designated as copolymer AS-4.
Table 2 shows the component composition ratio of the used AS-based copolymer (c) and the weight average molecular weight determined by GPC measurement.
Reference Example 10 (Production of AS copolymer AS-4)
An AS copolymer was obtained in the same manner as in Reference Example 6 except that the amount of t-dodecyl mercaptan was changed to 0.50 part. This was designated as copolymer AS-5.
Table 2 shows the component composition ratio of the used AS-based copolymer (c) and the weight average molecular weight determined by GPC measurement.
Reference Example 11 (Production of AS Copolymer AS-6)
An AS copolymer was obtained in the same manner as in Reference Example 6 except that the amount of t-dodecyl mercaptan was changed to 0.10 parts. This was designated as copolymer AS-6.
Table 2 shows the component composition ratio of the used AS-based copolymer (c) and the weight average molecular weight determined by GPC measurement.

Figure 2005298776
Figure 2005298776

(2)耐熱付与材(A)の製造方法
耐熱付与材を作成するために東芝機械(株)製2軸押出機TEM−35B(スクリュー系37mm、L/D=32)にて、シリンダー温度280℃、スクリュー回転数200rpm、原料フィード量20kg/hrの条件にて混練混合を実施した。
(2) Manufacturing method of heat resistance imparting material (A) In order to create a heat resistance imparting material, a cylinder temperature of 280 with a twin-screw extruder TEM-35B (screw system 37 mm, L / D = 32) manufactured by Toshiba Machine Co., Ltd. Kneading and mixing were performed under the conditions of ° C., screw rotation speed of 200 rpm, and raw material feed rate of 20 kg / hr.

作成した耐熱付与材の配合比、高温側のガラス転移温度を表3に示す。ガラス転移温度はDSC測定機「DSC−220C」(セイコー電子(株)社製)にて測定した。耐熱付与材樹脂は予めプレスして厚さ5mmの薄板上に成形してから測定に用いた。耐熱付与材樹脂は10mgを精秤して用いた。
測定条件は以下のとおりである。
温度範囲:室温〜200℃
昇温速度:10℃/min
雰囲気:窒素気流化
Table 3 shows the blending ratio of the heat-resistance imparting material thus prepared and the glass transition temperature on the high temperature side. The glass transition temperature was measured with a DSC measuring instrument “DSC-220C” (manufactured by Seiko Electronics Co., Ltd.). The heat resistance imparting material resin was previously pressed and molded on a thin plate having a thickness of 5 mm, and then used for measurement. The heat resistance imparting material resin was used by accurately weighing 10 mg.
The measurement conditions are as follows.
Temperature range: room temperature to 200 ° C
Temperature increase rate: 10 ° C / min
Atmosphere: Nitrogen flow

Figure 2005298776
Figure 2005298776

(3)樹脂(B)の製造方法
マスターバッチ樹脂組成物と樹脂(B)を混練混合してなる下記の耐熱性樹脂組成物を製造する際に用いた、樹脂(B)は、ABS系グラフト共重合体とAS系樹脂を混練することにより製造した。
(3) Manufacturing method of resin (B) Resin (B) used when manufacturing the following heat resistant resin composition formed by kneading and mixing the masterbatch resin composition and resin (B) is an ABS graft. It was produced by kneading the copolymer and AS resin.

(ハ)ABS系グラフト共重合体(b)
以下に使用したABS系グラフト共重合体(b)の参考例を示す。
参考例5(ABS系グラフト共重合体G−1の製造)
攪拌機を備えた反応缶中にポリブタジエンラッテクス114部(固形分35%、重量平均径0.3μm、ゲル含有率90%)、スチレン−ブタジエンラテックス15部(固形分67%、重量平均径0.5μm、ゲル含有率15%)、ステアリン酸ソーダ1部、ソジウムホルムアルデヒドスルホキシレート0.2部、テトラソジウムエチレンジアミンテトラアセチックアシッド0.01部、硫酸第一鉄0.005部、及び純水150部を仕込み、温度を50℃に加熱し、これにスチレン70%及びアクリロニトリル30%よりなる単量体混合物50部、t−ドデシルメルカプタン1.0部、キュメンハイドロパーオキサイド0.15部を6時間かけて連続添加し、更に添加後65℃に昇温し2時間重合した。重合率は97%に達した。得られたラテックスにイルガノックス1076(チバスペシャリティケミカル社製)を0.3部添加した後、5%塩化カルシウム水溶液300部を添加して凝固、水洗、乾燥後白色粉末としてグラフト共重合体を得た。これを共重合体G−1とした。
(C) ABS graft copolymer (b)
Reference examples of the ABS graft copolymer (b) used are shown below.
Reference Example 5 (Production of ABS Graft Copolymer G-1)
In a reaction vessel equipped with a stirrer, 114 parts of polybutadiene latex (solid content 35%, weight average diameter 0.3 μm, gel content 90%), styrene-butadiene latex 15 parts (solid content 67%, weight average diameter 0.5 μm) , Gel content 15%), sodium stearate 1 part, sodium formaldehyde sulfoxylate 0.2 part, tetrasodium ethylenediamine tetraacetic acid 0.01 part, ferrous sulfate 0.005 part, and pure water 150 parts are charged and the temperature is heated to 50 ° C., and 50 parts of a monomer mixture composed of 70% styrene and 30% acrylonitrile, 1.0 part t-dodecyl mercaptan, and 0.15 part cumene hydroperoxide are added. The addition was continued over time, and after addition, the temperature was raised to 65 ° C. and polymerization was conducted for 2 hours. The polymerization rate reached 97%. 0.3 parts of Irganox 1076 (manufactured by Ciba Specialty Chemicals Co., Ltd.) is added to the obtained latex, and then 300 parts of 5% aqueous calcium chloride solution is added to coagulate, rinse with water, and dry to obtain a graft copolymer as a white powder. It was. This was designated as copolymer G-1.

AS系樹脂は前記記載のAS−1を用いた。   The AS resin described above was used as the AS resin.

樹脂(B)組成物作成のための混練混合は、池貝鉄工所製単軸押出機FS40−28(スクリュー径40mm、L/D=32)にて、シリンダー設定温度220℃、スクリュー回転数100rpm、吐出量20kg/hrの条件で製造した。
作成した樹脂(B)の詳細を表4に示す。
The kneading and mixing for preparing the resin (B) composition was performed by a single screw extruder FS40-28 (screw diameter 40 mm, L / D = 32) manufactured by Ikekai Iron Works, cylinder set temperature 220 ° C., screw rotation speed 100 rpm, It was manufactured under the condition of a discharge rate of 20 kg / hr.
Table 4 shows details of the prepared resin (B).

Figure 2005298776
Figure 2005298776

尚、成分組成比は、熱分解ガスクロマトグラフィーを用いて測定した。
熱分解装置:日本分析工業社製 JPS−220
熱分解温度:590℃
ガスクロマトグラフィー:ヒューレットパッカード製 5890SERIESII
カラム:微極性カラム DB−5
キャリアガス:He 圧力 2psi
温度条件:50℃で5分保持後18℃/分で250℃まで昇温し、250℃で7分保持
検出:FID
0.3mg秤量して測定にかける。検出された3成分のピーク面積比をとった。
The component composition ratio was measured using pyrolysis gas chromatography.
Thermal decomposition apparatus: JPS-220 manufactured by Nippon Analytical Industries
Thermal decomposition temperature: 590 ° C
Gas chromatography: 5890SERIESII made by Hewlett-Packard
Column: Micropolar column DB-5
Carrier gas: He pressure 2 psi
Temperature condition: held at 50 ° C. for 5 minutes, then heated to 250 ° C. at 18 ° C./minute, held at 250 ° C. for 7 minutes Detection: FID
0.3 mg is weighed and measured. The peak area ratio of the detected three components was taken.

(4)マスターバッチ樹脂組成物で変性された耐熱性樹脂組成物の製造方法
耐熱性樹脂組成物作成のための混練混合は、池貝鉄工所製単軸押出機FS40−28(スクリュー径40mm、L/D=32)にて、シリンダー設定温度260℃、スクリュー回転数100rpm、吐出量20kg/hrの条件で製造した。
(4) Manufacturing method of heat-resistant resin composition modified with masterbatch resin composition The kneading and mixing for preparing the heat-resistant resin composition is a single screw extruder FS40-28 (screw diameter 40 mm, L / D = 32) at a cylinder set temperature of 260 ° C., a screw speed of 100 rpm, and a discharge rate of 20 kg / hr.

本発明に従って作成した耐熱性組成物(C)の配合比とその物性を実施例1〜7及び比較例1〜19として、表5に示す。   The blending ratio and physical properties of the heat-resistant composition (C) prepared according to the present invention are shown in Table 5 as Examples 1 to 7 and Comparative Examples 1 to 19.

Figure 2005298776
Figure 2005298776

なお、各種の物性測定試験方法は下記の条件で行った。
1)シャルピー衝撃強度:厚み4.0mm、幅10.0mmでノッチ付きのISO多目的射出成形試験片を用いてISO179に準じて測定した。
2)VSP(ビカット軟化点):厚み4.0mmの試験片を用いて荷重50NでISO306に準じて測定した。
3)MFR:温度265℃、荷重98Nで、ISO1133に準じて測定した。
Various physical property measurement test methods were performed under the following conditions.
1) Charpy impact strength: Measured according to ISO 179 using an ISO multipurpose injection-molded test piece having a thickness of 4.0 mm, a width of 10.0 mm and a notch.
2) VSP (Vicat softening point): Measured according to ISO 306 at a load of 50 N using a test piece having a thickness of 4.0 mm.
3) MFR: Measured according to ISO 1133 at a temperature of 265 ° C. and a load of 98 N.

耐熱付与効率の評価は、MB添加量によるビカット軟化点の向上を+0.5(℃)/MB添加量(%)と設定し、MB配合量から計算される想定耐熱向上温度と、請求項1を満足するABS系樹脂のビカット軟化点を足した値を「目標ビカット軟化点」とし、この値と同等もしくは超えた場合を○、下回った場合を×とした。   The heat resistance imparting efficiency is evaluated by setting the Vicat softening point improvement by MB addition amount to +0.5 (° C.) / MB addition amount (%), and the assumed heat resistance improvement temperature calculated from the MB blending amount. The value obtained by adding the Vicat softening point of the ABS resin satisfying the above condition was defined as “target Vicat softening point”, and the case where the value was equal to or exceeded this value was indicated as “◯”, and the case where the value was lower than this was indicated as “X”.

強度発現性の評価は、MB添加に伴い、MBの配合相手材である樹脂(B)単体の衝撃強度の保持率が70%を保持、もしくは超える場合を○、下回った場合を×とした。   In the evaluation of strength development, along with the addition of MB, the case where the retention rate of the impact strength of the resin (B) alone, which is the MB compounding partner, is maintained or exceeded 70%, and the case where the impact strength is below is evaluated as x.

外観性評価は、縦90mm、横55mm、厚さ2mmのプレートを使用した。この成形品のゲートは横側面の中心に設置されている。
プレートの成形は川口鉄工社K−125を用い、以下の成形条件で行った。
シリンダー設定温度:210℃
射出圧力:最小充填圧力+5kg/cm2G
射出速度:70%
金型温度:50℃
マスターバッチ樹脂組成物(A)がABS樹脂(B)中に均一に分散していない場合、耐熱性組成物(C)にヘアライン状の外観不良が発生する。この不良現象が一目で確認できるのを×、不良減少を凝視して確認できるのを△、不良現象がなく、外観良好なものを○とした。
For the appearance evaluation, a plate having a length of 90 mm, a width of 55 mm, and a thickness of 2 mm was used. The gate of this molded product is installed in the center of the lateral surface.
The plate was formed using the Kawaguchi Iron Works K-125 under the following forming conditions.
Cylinder set temperature: 210 ° C
Injection pressure: Minimum filling pressure + 5kg / cm2G
Injection speed: 70%
Mold temperature: 50 ℃
When the masterbatch resin composition (A) is not uniformly dispersed in the ABS resin (B), a hairline-like appearance defect occurs in the heat-resistant composition (C). This failure phenomenon can be confirmed at a glance x, the failure reduction can be confirmed by △, and there is no defect phenomenon and the appearance is good.

本発明の実施例1から実施例5では、耐熱マスターバッチ樹脂と汎用ABS樹脂を単軸押出機を用いて押出して所望する物性の耐熱ABS樹脂が得られている。又、低いシリンダー温度での成形条件でも外観評価は良好である。MB−15の製造時とMB−15を用いた比較例11、及びMB−21の製造時とMB−21を用いた比較例19では若干の臭気があった。   In Example 1 to Example 5 of the present invention, a heat-resistant ABS resin having desired physical properties is obtained by extruding a heat-resistant masterbatch resin and a general-purpose ABS resin using a single-screw extruder. The appearance evaluation is good even under molding conditions at a low cylinder temperature. There was a slight odor at the time of production of MB-15 and Comparative Example 11 using MB-15, and at the time of production of MB-21 and Comparative Example 19 using MB-21.

Claims (6)

重量平均分子量が11万〜16万である芳香族ビニル−マレイミド系共重合体(a)85〜60質量%、重量平均分子量が13万〜17万で、アクリロニトリル含有量が21〜29質量%であるAS系共重合体(b)15〜40質量%からなり、高温側のガラス転移温度が140〜170℃であり、下記数1で計算されるパラメーターk値が0.4〜0.6であることを特徴とする耐熱付与材(A)10〜50質量%とゴム成分含有量が11質量%〜25質量%であるABS樹脂、AES樹脂、AAS樹脂、及びMBS樹脂からなる群から選ばれた1種または2種以上の樹脂(B)90〜50質量%とを混練混合してなる組成物(C)。
Figure 2005298776
Tg :耐熱付与材のガラス転移温度(K)
Tg1 :AS系共重合体(b)のガラス転移温度(K)
Tg2 :芳香族ビニル−マレイミド系共重合体(a)のガラス転移温度(K)
w1 :AS系共重合体(b)の配合比(質量%)
w2 :芳香族ビニル−マレイミド系共重合体(a)の配合比(質量%)
Aromatic vinyl-maleimide copolymer (a) having a weight average molecular weight of 110,000 to 160,000 (85) to 60% by mass, a weight average molecular weight of 130,000 to 170,000, and an acrylonitrile content of 21 to 29% by mass A certain AS copolymer (b) consists of 15 to 40% by mass, the glass transition temperature on the high temperature side is 140 to 170 ° C., and the parameter k value calculated by the following equation 1 is 0.4 to 0.6. It is selected from the group consisting of ABS resin, AES resin, AAS resin, and MBS resin having a heat resistance imparting material (A) of 10 to 50 mass% and a rubber component content of 11 mass% to 25 mass% A composition (C) obtained by kneading and mixing one or more resins (B) 90 to 50% by mass.
Figure 2005298776
Tg: Glass transition temperature (K) of the heat resistance imparting material
Tg1: Glass transition temperature (K) of AS copolymer (b)
Tg2: Glass transition temperature (K) of the aromatic vinyl-maleimide copolymer (a)
w1: Compounding ratio (mass%) of AS copolymer (b)
w2: Compounding ratio (% by mass) of the aromatic vinyl-maleimide copolymer (a)
芳香族ビニル−マレイミド系共重合体(a)が、芳香族ビニル単量体40〜70質量%、不飽和ジカルボン酸イミド誘導体23〜59.9質量%、不飽和ジカルボン酸無水物単量体0.01〜7質量%からなる共重合体であることを特徴とする請求項1記載の耐熱付与材(A)を用いた組成物(C)。 The aromatic vinyl-maleimide copolymer (a) is 40 to 70% by weight of an aromatic vinyl monomer, 23 to 59.9% by weight of an unsaturated dicarboxylic acid imide derivative, 0% of an unsaturated dicarboxylic acid anhydride monomer. A composition (C) using the heat-resistance-imparting material (A) according to claim 1, which is a copolymer comprising 0.01 to 7% by mass. 芳香族ビニル−マレイミド系共重合体(a)とAS系共重合体(b)を混練混合してなることを特徴とする請求項1または請求項2記載の耐熱付与材(A)。 The heat resistance-imparting material (A) according to claim 1 or 2, wherein the aromatic vinyl-maleimide copolymer (a) and the AS copolymer (b) are kneaded and mixed. 耐熱付与材(A)の残存芳香族ビニル単量体量が300ppm以下であることを特徴とする請求項1または請求項2に記載の組成物(C)。 The composition (C) according to claim 1 or 2, wherein the amount of residual aromatic vinyl monomer in the heat resistance imparting material (A) is 300 ppm or less. 耐熱付与材(A)の芳香族ビニル単量体がスチレンであり、不飽和ジカルボン酸イミド誘導体がN−フェニルマレイミド、不飽和ジカルボン酸無水物単量体が無水マレイン酸であることを特徴とする請求項1、請求項2、請求項4のいずれか一項記載の組成物(C)。 The aromatic vinyl monomer of the heat imparting material (A) is styrene, the unsaturated dicarboxylic imide derivative is N-phenylmaleimide, and the unsaturated dicarboxylic anhydride monomer is maleic anhydride. The composition (C) according to any one of claims 1, 2, and 4. 請求項1、請求項2、請求項4、請求項5のいずれか1項に記載の組成物(C)を用いてなる成形体。 The molded object which uses the composition (C) of any one of Claim 1, Claim 2, Claim 4, and Claim 5.
JP2004121133A 2004-04-16 2004-04-16 Heat resistance-imparting material and resin composition using the same Withdrawn JP2005298776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121133A JP2005298776A (en) 2004-04-16 2004-04-16 Heat resistance-imparting material and resin composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121133A JP2005298776A (en) 2004-04-16 2004-04-16 Heat resistance-imparting material and resin composition using the same

Publications (1)

Publication Number Publication Date
JP2005298776A true JP2005298776A (en) 2005-10-27

Family

ID=35330705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121133A Withdrawn JP2005298776A (en) 2004-04-16 2004-04-16 Heat resistance-imparting material and resin composition using the same

Country Status (1)

Country Link
JP (1) JP2005298776A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026554A1 (en) * 2006-08-28 2008-03-06 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and molded body thereof
KR100822152B1 (en) 2005-10-21 2008-04-14 주식회사 엘지화학 Method for preparation of weather resistance acrylonitrile-ethylene-propylene-rubber-styrene with high heat resistance and impact resistance
WO2009060917A1 (en) 2007-11-09 2009-05-14 Asahi Kasei Chemicals Corporation Thermoplastic resin composition, and molded body and sheet made of the composition
WO2015068739A1 (en) 2013-11-11 2015-05-14 旭化成ケミカルズ株式会社 Automobile-interior component
JPWO2016186142A1 (en) * 2015-05-19 2018-03-08 デンカ株式会社 Copolymer and resin composition for polymer blend compatibilizer
JP2020073809A (en) * 2017-09-29 2020-05-14 積水化学工業株式会社 Foaming pipe joint and piping structure
WO2022054676A1 (en) * 2020-09-09 2022-03-17 デンカ株式会社 Heat resistance resin composition and injection molded body thereof
WO2022075170A1 (en) 2020-10-07 2022-04-14 デンカ株式会社 Heat-resistant resin composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822152B1 (en) 2005-10-21 2008-04-14 주식회사 엘지화학 Method for preparation of weather resistance acrylonitrile-ethylene-propylene-rubber-styrene with high heat resistance and impact resistance
WO2008026554A1 (en) * 2006-08-28 2008-03-06 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and molded body thereof
JPWO2008026554A1 (en) * 2006-08-28 2010-01-21 電気化学工業株式会社 Resin composition and molded body thereof
WO2009060917A1 (en) 2007-11-09 2009-05-14 Asahi Kasei Chemicals Corporation Thermoplastic resin composition, and molded body and sheet made of the composition
US8367755B2 (en) 2007-11-09 2013-02-05 Asahi Kasei Chemicals Corporation Thermoplastic resin composition, and molded product and sheet comprising the composition
US9758664B2 (en) 2013-11-11 2017-09-12 Asahi Kasei Kabushiki Kaisha Automotive interior parts
WO2015068739A1 (en) 2013-11-11 2015-05-14 旭化成ケミカルズ株式会社 Automobile-interior component
JPWO2016186142A1 (en) * 2015-05-19 2018-03-08 デンカ株式会社 Copolymer and resin composition for polymer blend compatibilizer
JP2020073809A (en) * 2017-09-29 2020-05-14 積水化学工業株式会社 Foaming pipe joint and piping structure
US11530309B2 (en) 2017-09-29 2022-12-20 Sekisui Chemical Co., Ltd. Foamed resin molded article
JP7272903B2 (en) 2017-09-29 2023-05-12 積水化学工業株式会社 Foam pipe fittings and piping structure
WO2022054676A1 (en) * 2020-09-09 2022-03-17 デンカ株式会社 Heat resistance resin composition and injection molded body thereof
WO2022075170A1 (en) 2020-10-07 2022-04-14 デンカ株式会社 Heat-resistant resin composition
KR20230083312A (en) 2020-10-07 2023-06-09 덴카 주식회사 heat resistant resin composition
CN116323798A (en) * 2020-10-07 2023-06-23 电化株式会社 Heat-resistant resin composition

Similar Documents

Publication Publication Date Title
KR101676124B1 (en) Thermoplastic resin composition having exellent chemical resistantce and molded article prepared therefrom
JP2009535476A (en) Resin composition with excellent scratch resistance
EP0293490A1 (en) Heat and impact resistant resin composition.
JP2005298776A (en) Heat resistance-imparting material and resin composition using the same
US20230250270A1 (en) Resin composition and molded resin articles
JP3652788B2 (en) Method for producing molded thermoplastic resin
JP3405478B2 (en) Thermoplastic resin composition
JP2006045337A (en) Thermoplastic resin composition and its molded product
JP2004346148A (en) Master batch resin composition and heat-resistant resin composition using the same
JP2000017170A (en) Thermoplastic resin composition
JP2005298774A (en) Resin composition and heat-resistant resin composition using the same
KR20130068871A (en) Heat-resistant abs resin composition with excellent processability and resistance for discoloration at high temperature and method for preparing the same
JPH047347A (en) Flame-retarding resin composition
JP3745476B2 (en) Thermoplastic resin composition
JP3698822B2 (en) Heat-resistant masterbatch resin, heat-resistant resin molded product and method for producing the same
JP2009007528A (en) Thermoplastic resin composition
JP2007217621A (en) Resin composition and molded article thereof
JP4363734B2 (en) Thermoplastic resin composition
JPH1036614A (en) Heat-resistant masterbatch resin, heat-resistant resin molding prepared therefrom and production thereof
JPH1135760A (en) Thermoplastic resin composition, molded article and its production
JPH0441548A (en) Thermoplastic resin composition
JP3311137B2 (en) Thermoplastic resin composition
JP3503907B2 (en) Thermoplastic resin composition
WO2023171531A1 (en) Thermoplastic resin composition, molded thermoplastic-resin article, and coated component
JP2005314456A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061116