JP2004346148A - Master batch resin composition and heat-resistant resin composition using the same - Google Patents

Master batch resin composition and heat-resistant resin composition using the same Download PDF

Info

Publication number
JP2004346148A
JP2004346148A JP2003143219A JP2003143219A JP2004346148A JP 2004346148 A JP2004346148 A JP 2004346148A JP 2003143219 A JP2003143219 A JP 2003143219A JP 2003143219 A JP2003143219 A JP 2003143219A JP 2004346148 A JP2004346148 A JP 2004346148A
Authority
JP
Japan
Prior art keywords
mass
resin composition
resin
copolymer
aromatic vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143219A
Other languages
Japanese (ja)
Inventor
Tetsumi Ikeda
哲美 池田
Isao Taki
勲 多喜
Masamichi Endo
正道 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003143219A priority Critical patent/JP2004346148A/en
Publication of JP2004346148A publication Critical patent/JP2004346148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heat-resistant ABS-based resin having excellent strength and appearance in producing the heat-resistant ABS (acrylonitrile-butadiene-styrene)-based resin from an ABS-based resin and a specific master batch resin composition by expanding condition width of a molding condition in extrusion and molding of obtained pellets. <P>SOLUTION: The master batch resin composition for improving heat resistance of a resin is a resin composition which comprises 40-60 mass % of an aromatic vinyl-maleimide-based copolymer (a) having 100,000-160,000 weight-average molecular weight, 20-60 mass % of an ABS-based graft copolymer (b), 0-40 mass % of an AS-based copolymer (c) and 0.5-3 mass % of a plasticizer (d) having 50-150°C melting point and has 100 mass % of the total of the components (a)-(d). The resin composition has 135-145°C glass transition temperature of a high-temperature side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂の耐熱性を改良するためのマスターバッチ樹脂組成物、及びこれを用いた耐熱性樹脂組成物に関し、特に本発明のマスターバッチ樹脂組成物を用いるこにより、耐熱性ABS系樹脂組成物を簡便かつ効率的に得ることができ、また強度に優れた物性及び良好な外観性より、自動車部品、電気・電子部品、雑貨等の分野に適用することができる。
【0002】
【従来の技術】
従来、マレイミド系共重合体変性の耐熱性ABS樹脂は、マレイミド系共重合体とABS系グラフト共重合体及びAS系共重合体を同時に混練混合し、マレイミド系共重合体変性の耐熱ABS系樹脂を製造していた(例えば特許文献1を参照。)。
この場合、各耐熱レベルに応じて異なった樹脂ペレットを必要とするため、品質管理、在庫管理が煩雑であり、又、マレイミド変性の耐熱性ABS樹脂を得る為の押出条件として混練性の強い2軸押出機を用いないとマレイミド系共重合体の分散性が不十分となり、成形した際の成形品の外観性の低下や衝撃強度の低下等良好な物性が得にくいという欠点があった。
このため、これらの欠点を解消するため、耐熱性マスターバッチ樹脂とABS系樹脂とを混練混合する方法が提案された。しかしながら、これら製造方法では、耐熱性樹脂組成物を得るための押出し条件、樹脂成形体を得る為の成形条件に制限があり、その制限を逸脱すると成形外観の低下、物性の低下を招き、必ずしも十分とは言えなかった。(例えば特許文献2、特許文献3を参照)
【0003】
【特許文献1】
特公平2−41544公報
【特許文献2】
特開平7−316384公報
【特許文献3】
特公平10−36614公報
【0004】
【発明が解決しようとする課題】
本発明の目的は、ABS系樹脂と特定のマスターバッチ樹脂組成物から耐熱性ABS系樹脂を製造する際、その押出し条件及び得られた樹脂ペレットを成形する際の成形条件の条件幅を広げ、良好な強度、外観を持つ耐熱性ABS系樹脂を提供することを可能とする耐熱性マスターバッチ樹脂組成物を提供することである。
【0005】
【課題を解決するための手段】
即ち、本発明は、重量平均分子量が10万〜16万である芳香族ビニル−マレイミド系共重合体(a)40〜60質量%、ABS系グラフト共重合体(b)20〜57質量%、AS系共重合体(c)0〜40質量%、及び融点が50〜150℃である可塑剤(d)を0.5〜3質量%からなり、かつ(a)〜(d)が合計で100質量%である樹脂組成物であって、該樹脂組成物の高温側のガラス転移温度が135〜145℃であることを特徴とする樹脂の耐熱性を改良するためのマスターバッチ樹脂組成物である。
【0006】
また、本発明は、好ましくは芳香族ビニル−マレイミド系共重合体(a)が芳香族ビニル単量体40〜70質量%、不飽和ジカルボン酸イミド誘導体30〜60質量%及びその他共重合可能なビニル単量体0〜20質量%からなる共重合体、ABS系グラフト共重合体(b)がゴム状重合体30〜70質量部の存在下に芳香族ビニル単量体65〜80質量%、シアン化ビニル単量体20〜35質量%及びその他共重合可能なビニル単量体0〜10質量%からなる単量体混合物30〜70質量部をグラフト共重合して得られる共重合体、及びAS系共重合体(c)が芳香族ビニル単量体65〜80質量%、シアン化ビニル単量体20〜35質量%およびその他共重合可能なビニル単量体0〜10質量%からなる共重合体であることを特徴とする樹脂の耐熱性を改良するためのマスターバッチ樹脂組成物である。
【0007】
また本発明は、上記記載のマスターバッチ樹脂組成物10〜70質量%とABS樹脂、AES樹脂、AAS樹脂およびMBS樹脂からなる群から選ばれた一種以上の樹脂30〜90質量%とを混練混合してなる耐熱性樹脂組成物である。
ここでABS樹脂、AES樹脂、AAS樹脂およびMBS樹脂をABS系樹脂と以降は略称する。
【0008】
【発明の実施の形態】
まず、本発明のマスターバッチ樹脂組成物に使用する芳香族ビニル−マレイミド系共重合体(a)について説明する。
第一の製法として、芳香族ビニル単量体、不飽和ジカルボン酸イミド誘導体および必要に応じてその他共重合可能なビニル共重合体からなる単量体混合物を共重合させる方法によって、芳香族ビニル−マレイミド系共重合体を得ることができる。
【0009】
第二の製法として、芳香族ビニル単量体、不飽和ジカルボン酸無水物及び必要に応じてその他共重合可能なビニル単量体からなる単量体混合物を共重合させた後、アンモニア及び/又は第一級アミンを反応させて酸無水物基をイミド基に変換させる方法が挙げられ、いずれの方法によっても芳香族ビニル−マレイミド系共重合体を得ることができる。
【0010】
第一の製法及び第二の製法のいずれの製法においても用いる芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレン、t−ブチルスチレン、クロルスチレン等のスチレン単量体が挙げられ、これらの中でも特にスチレンが好ましい。
第一の製法で用いられる不飽和ジカルボン酸イミド誘導体としては、マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド等のN−アルキルマレイミド、及びN−アリールマレイミド(アリール基としては、例えばフェニル、クロルフェニル、メチルフェニル、メトキシフェニル、トリブロモフェニル等が挙げられる)等のマレイミド誘導体が挙げられ、これらの中で特にN−フェニルマレイミドが好ましい。又、これらの誘導体は2種以上混合して用いることも出来る。
【0011】
第二の製法で用いられる不飽和ジカルボン酸無水物としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の無水物が挙げられ、これらの中では特に無水マレイン酸が好ましい。
又、第一の製法及び第二の製法のいずれの製法においても、その他共重合可能なビニル単量体としては、アクリロニトリル、メタクリロニリル等のシアン化ビニル単量体、メチルアクリル酸エステル、エチルアクリル酸エステル等のアクリル酸エステル単量体、メチルメタクリル酸、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のビニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド等の単量体が挙げられる。
又、第一の製法では無水マレイン酸も挙げられ、第二の製法では、マレイミド基へ転換されずに残った無水マレイン酸基も共重合体中に導入することができる。
【0012】
第二の製法で用いるアンモニアや第一級アミンは無水または水溶液のいずれの状態であってもよく、第一級アミンの例としては、メチルアミン、エチルアミン、ブチルアミン、シクロヘキシルアミン等のアルキルアミン、アニリン、トルイジン、クロルアニリン、メトキシアニリン、トリブロモアニリン等の芳香族アミンが挙げられ、これらの中で特にアニリンが好ましい。
第一の製法の場合は、懸濁重合、乳化重合、溶液重合、塊状重合等いずれも公知の重合法を用いることが出来る。第二の製法は、塊状−懸濁重合、溶液重合、塊状重合等を好適に採用できる。
【0013】
芳香族ビニル−マレイミド系共重合体(a)は、芳香族ビニル単量体40〜70質量%、不飽和ジカルボン酸イミド誘導体30〜60質量%及びその他共重合可能なビニル単量体0〜20質量%からなる共重合体が好ましい。不飽和ジカルボン酸イミド誘導体が30質量%未満であると耐熱性の付与効果が低く、AS系共重合体等他の成分との相溶性が劣り、耐衝撃性の低下を招く。又、不飽和ジカルボン酸イミド誘導体が60質量を越えると強度が低くなり、AS系共重合体等他成分との相溶性も低下する。より好ましい範囲は、芳香族ビニル単量体45〜65質量%、不飽和ジカルボン酸イミド誘導体35〜55質量%及びその他共重合可能なビニル単量体0〜15質量%である。
【0014】
本発明に用いる芳香族ビニル−マレイミド系共重合体(a)は、重量平均分子量10万〜16万の1種の芳香族ビニル−マレイミド系共重合体でもよく、又重量平均分子量が異なる2種以上の芳香族ビニル−マレイミド系共重合体を組み合わせた混合物で、その混合物の重量平均分子量が10万〜16万の範囲にあるものであればその芳香族ビニル−マレイミド系共重合体の混合物を使用することができる。
【0015】
本発明に用いる芳香族ビニル−マレイミド系共重合体(a)としては、重量平均分子量が、好ましくは12万〜15万の範囲である。重量平均分子量16万を越える芳香族ビニル−マレイミド系共重合体を用いて得られた耐熱性を改良するためのマスターバッチ樹脂組成物は、ABS系樹脂への分散性が悪く、耐熱性ABS系樹脂として流動性の低下、外観不良を生じやすく、適用できるABS系樹脂が限定される。又、重量平均分子量が10万未満の芳香族ビニル−マレイミド系共重合体を用いた場合、そのマスターバッチ樹脂組成物を製造する際、脆いため製造しにくく、耐熱性ABS系樹脂化した際も耐衝撃性に劣る。
【0016】
次に、ABS系グラフト共重合体(b)について説明する。
ABS系グラフト共重合体(b)は、ゴム状重合体の存在化に芳香族ビニル単量体、シアン化ビニル単量体及び必要に応じてその他共重合可能なビニル単量体からなる単量体混合物を共重合したグラフト共重合体である。
ゴム状重合体としては、ブタジエン重合体、ブタジエン−スチレン共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、アクリル酸エステル共重合体等が挙げられる。
芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレン、t−ブチルスチレン、クロルスチレン等のスチレン単量体が挙げられ、これらの中でも特にスチレンが好ましい。
シアン化ビニル単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられ、これらの中では特にアクリロニトリルが好ましい。
【0017】
又、その他共重合可能なビニル単量体としては、メチルアクリル酸エステル、エチルアクリル酸エステル、ブチルアクリル酸エステル等のアクリル酸エステル単量体、メチルメタクリル酸、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のビニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド等の単量体、並びにN−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド等のN−アルキルマレイミド、及びN−アリールマレイミド(アリール基としては、例えばフェニル、クロルフェニル、メチルフェニル、メトキシフェニル、トリブロモフェニル等が挙げられる)等のマレイミド誘導体が挙げられる。これらの中でアクリル酸エステル、メタクリル酸エステル、アクリル酸、メタクリル酸などの単量体が好ましい。
【0018】
ABS系グラフト共重合体(b)の製法は、ゴム状重合体30〜70質量部の存在下に、芳香族ビニル単量体65〜80質量%、シアン化ビニル単量体20〜35質量%及びその他共重合可能なビニル単量体0〜10質量%からなる単量体混合物30〜70質量部をグラフト共重合して得られることが好ましい。シアン化ビニル共重合体が20質量%未満であると耐薬品性や低下や芳香族ビニルマレイミド系共重合体との相溶性が劣り、耐衝撃性の低下を招く。又、シアン化ビニル共重合体が35質量%を越えると流動性が低下し、芳香族マレイミド系共重合体との相溶性が劣り、耐衝撃性の低下も招く。より好ましい範囲は、ゴム状重合体50〜70質量部の存在下に芳香族 ビニル単量体70〜75質量%、シアン化ビニル単量体25〜30質量%及びその他共重合可能なビニル単量体0〜5質量%からなる単量体混合物30〜50質量部をグラフト共重合して得られる範囲である。
【0019】
又、グラフト共重合体のグラフト率は、「(ゴム状重合体上にグラフトされている共重合体の質量/ゴム状重合体の質量)×100(%)」で表され、そのグラフト率の範囲は30〜70%が望ましい。グラフト率が30%未満では、ゴム状重合体が凝集しやすくなるために外観不良が出やすくなり、耐衝撃性の低下を招く。70%を越えると成型加工性の低下を招く。より好ましいグラフト率の範囲は40〜60%である。
グラフト重合は公知のいずれの重合技術も採用可能であって、例えば懸濁重合、乳化重合のごとき水性不均一重合、塊状重合、溶液重合がある。強度に影響のあるグラフト率を制御しやすい乳化重合が好ましい。
【0020】
次に必要に応じて用いることが出来るAS系共重合体(c)について説明する。AS系共重合体は、芳香族ビニル単量体、シアン化ビニル単量体及び必要に応じて用いるその他共重合可能なビニル単量体からなる共重合体である。
芳香族ビニル単量体としては、前記のABS系グラフト共重合体(b)で用いられる芳香族ビニル単量体として挙げた同じ単量体種が挙げられ、これらの中でスチレン及びα−メチルスチレンが特に好ましい。
シアン化ビニル単量体としては、前記のABS系グラフト共重合体(b)の製法で用いられるシアン化ビニル単量体として挙げた同じ単量体種が挙げられ、これらの中で特にアクリロニトリルが好ましい。
その他共重合可能な単量体としては、前記のABS系グラフト共重合体(b)の製法で用いるその他共重合可能なビニル単量体として挙げた同じ単量体種が挙げられる。
【0021】
AS系共重合体(c)は、芳香族ビニル単量体単位65〜80質量%、シアン化ビニル単量体単位20〜35質量%及びその他共重合可能なビニル単量体単位0〜10質量%からなる共重合体が好ましい。この範囲を逸脱すると、他成分との相溶性が劣り、耐衝撃性の低下を招く。より好ましい範囲は、芳香族ビニル単量体68〜78質量%、シアン化ビニル単量体22〜32質量%及びその他共重合可能なビニル単量体0〜10質量%である。
AS系共重合体(c)は、通常の重合方法で製造できる。例えば塊状重合、懸濁重合、溶液重合、乳化重合等の重合方法が挙げられる。
【0022】
添加する滑剤の種類の好ましい具体例としては、脂肪酸金属塩、脂肪酸アミド、脂肪酸エステル、硬化ひまし油等ABS系樹脂との相溶性が比較的良好なもので、かつ融点が50℃〜150℃のものが必須である。
好ましい滑剤として、脂肪酸の炭素数がC16以上である脂肪酸アミド類、ヒマシ硬化脂肪酸類、脂肪酸の炭素数がC16以上である脂肪酸エステル類である等が挙げられる。
融点が50℃より低いの滑剤を使用すると耐熱性の低下が大きく、かつ成形時の金型汚染を生じやすくなるため好ましくない。
又融点が150℃を越えると流動性の向上効果が低いのであり好ましくない。
添加する範囲は0.5〜3質量%であり、0.5質量%以下では、本発明のマスターバッチ樹脂組成物のABS系樹脂への分散性が低くなり、外観性が悪くなったり、芳香族ビニル−マレイミド系共重合体の添加量が制限され、十分な耐熱付与効果が得られない。又、3質量%を越えると耐熱の低下が大きく、かつ成形時の金型汚染を生じやすくなるため好ましくない。
【0023】
本発明のマスターバッチ樹脂組成物は、高温側のガラス転移温度(本発明のマスターバッチ樹脂組成物が有する最も高いガラス転移温度)が135〜145℃の範囲である。高温側ガラス転移温度が135℃未満では、マスターバッチ樹脂組成物の耐熱性が低いため、所望の耐熱ABS系樹脂を得るために高価格なマスターバッチ樹脂組成物の添加量を多く必要とするため、経済的でない。又、145℃を越える場合、マスターバッチ樹脂組成物を添加して耐熱ABS系樹脂を得る為の押出条件及び得られた耐熱ABS系樹脂をインジェクション成形する際の成形条件に制限があり、芳香族ビニル−マレイミド系共重合体をABS系樹脂へ良好に分散するために押出機、成形機のシリンダー温度を高く設定するとABS系共重合体中のゴム状重合体が熱劣化し、強度の低下を招く。又、それを防ぐため、押出機、成形機のシリンダー温度を低く設定すると芳香族ビニル−マレイミド系共重合体のABS系樹脂への分散が不十分となり、外観不良を発生しやすい。
【0024】
本発明のマスターバッチ樹脂組成物の組成は、芳香族−マレイミド系共重合体(a)40〜60質量%、ABS系グラフト共重合体(b)20〜57質量%、AS系共重合体(c)0〜40質量%、及び融点が50〜150℃である可塑剤を0.5〜3質量%からなる樹脂組成物である。
芳香族−マレイミド系共重合体(a)が40質量%未満であるとマスターバッチ樹脂組成物としての耐熱性が不十分である。又、芳香族−マレイミド系共重合体が60質量%を越えると耐熱性マスターバッチ樹脂を製造する際、脆くなりすぎ、製造しがたく、衝撃強度あるいは成形性が低下して良好な物性が得られない。
【0025】
ABS系樹脂としては、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、耐熱ABS樹脂(アクリロニトリル−ブタジエン−スチレン−α−メチルスチレン)、AES樹脂(アクリロニトリル−EPDM−スチレン)樹脂、AAS(アクリロニトリル−アクリレート−スチレン)樹脂及びMBS樹脂(メチルメタクルリレート−ブタジエン−スチレン)等が挙げられる。
【0026】
本発明のマスターバッチ樹脂組成物とABS系樹脂の混練混合の手段として、単軸押出機及び二軸押出機を好適に用いることが出来る。特に本発明のマスターバッチ樹脂組成物を用いると混練性の弱い単軸押出機を使用してもABS系樹脂への分散性は良好である。又、押出機にて混練する前の予備混合には、ヘンシェルミキサーやタンブラーミキサー等の公知の装置を用いることが出来る。
【0027】
本発明のマスターバッチ樹脂組成物や、それとABS系樹脂を混練混合してなる耐熱性樹脂組成物には、酸化防止剤、紫外線吸収剤、着色剤、可塑剤、滑剤、難燃剤、ガラス繊維、カーボン繊維、炭酸カルシウム、タルク、マイカ等を目的に合わせて添加することができる。
【0028】
【実施例】
以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例中の部、%はいずれも質量基準で表した。
【0029】
(1)原料樹脂
(イ)芳香族ビニル−マレイミド系共重合体(a)
以下に使用したマレイミド系共重合体(a)の参考例を示す。
参考例1(共重合体SMI−1の製造)
攪拌機を備えたオートクレーブ中にスチレン60部、α−メチルスチレンダイマー0.1部、メチルエチルケトン100部を仕込み、系内を窒素ガスで置換した後、温度を85℃に昇温し、無水マレイン酸40部とベンゾイルパーオキサイド0.15部をメチルエチルケトン200部に溶解した溶液を8時間で連続的に添加した。添加後、更に3時間温度を85℃に保った。粘稠な反応液の一部をサンプリングしてしてガスクロマトグラフイーにより未反応単量体の定量を行った結果、重合率はスチレン99%、無水マレイン酸98%であった。ここで得られた共重合体溶液にアニリン38部、トリエチルアミン0.6部を加え140℃で7時間反応させた。反応液をベント付き二軸押出機に供給し、脱揮してマレイミド系共重合体を得た。C−13NMR分析より無水マレイン基のイミド基への転化率は93%であった。このマレイミド系共重合体は不飽和ジカルボン酸イミド誘導体としてのN−フェニルマレイミド単位を51%含む共重合体であり、これをSMI−1とした。ゲルパーミエーション(GPC)分析より、ポリスチレン換算の重量平均分子量は140,000であった。
【0030】
参考例2(共重合体SMI−2の製造)
α−メチルスチレンダイマー1.5部を用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位51%、スチレン単位47%、無水マレイン酸単位2%からなる重量平均分子量70,000の共重合体を得た。これを共重合体SMI−2とした。
【0031】
参考例3(共重合体SMI−3の製造)
α−メチルスチレンダイマー0.2部を用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位51%、スチレン単位47%、無水マレイン酸単位2%からなる重量平均分子量120,000の共重合体を得た。これを共重合体SMI−3とした。
【0032】
参考例4(共重合体SMI−4の製造)
α−メチルスチレンダイマー0.02部を用いた以外は製造例1と同様な方法でN−フェニルマレイミド単位51%、スチレン単位47%、無水マレイン酸単位2%からなる重量平均分子量190,000の共重合体を得た。これを共重合体SMI−4とした。
【0033】
上記の使用したマレイミド系共重合体(a)の成分組成比とゲルパーミエーションクロマトグラフー(GPC)測定による重量平均分子量を表1に示す。
【0034】
尚、GPC測定は以下のうな条件で実施した。
装 置;Shodex製、「SYSTEM−21」
カラム;PLgel MIXED−B
温 度;40℃
溶 媒;テトラヒドロフラン
検 出;RI
濃 度;0.2%
注入量;100μl
検量線;標準ポリスチレン(Polymer Laboratories製)を用い、溶離時間と溶出量との関係を分子量と変換して各種平均分子量を求めた。
【0035】
【表1】

Figure 2004346148
【0036】
(ロ)ABS系グラフト共重合体(b)
以下に使用したABS系グラフト共重合体(b)の参考例を示す。
参考例5(ABS系グラフト共重合体G−1の製造)
攪拌機を備えた反応缶中にポリブタジエンラッテクス114部(固形分35%、重量平均径0.3μm、ゲル含有率90%)、スチレン−ブタジエンラテックス15部(固形分67%、重量平均径0.5μm、ゲル含有率15%)、ステアリン酸ソーダ1部、ソジウムホルムアルデヒドスルホキシレート0.2部、テトラソジウムエチレンジアミンテトラアセチックアシッド0.01部、硫酸第一鉄0.005部、及び純水150部を仕込み、温度を50℃に加熱し、これにスチレン70%及びアクリロニトリル30%よりなる単量体混合物50部、t−ドデシルメルカプタン1.0部、キュメンハイドロパーオキサイド0.15部を6時間かけて連続添加し、更に添加後65℃に昇温し2時間重合した。重合率は97%に達した。得られたラテックスにイルガノックス1076(チバスペシャリティケミカル社製)を0.3部添加した後、5%塩化カルシウム水溶液300部を添加して凝固、水洗、乾燥後白色粉末としてグラフト共重合体を得た。これを共重合体G−1とした。
上記の使用したABS系グラフト共重合体(b)の成分組成比、グラフト率を表2に示す。
【0037】
本発明のグラフト共重合体のグラフト率は、次の方法で求めた。
グラフト共重合体ラテックス約20gをメタノール100mlで析出、凝固させ、凝固物を濾紙を用いて吸引濾過する。濾過物は真空乾燥機で24時間、室温で乾燥させる。得られた試料の約1.2gを100ml三角フラスコに取り、メチルエチルケトン(MEK)30gを加えた後、温度23℃で24時間攪拌し、その後遠心分離器機でメチルエチルケトン(MEK)に対する不溶分の分離を実施し、遠心分離操作後30分静置した。この遠心分離器の操作条件を次の通り設定した。
温度:−9℃
回転数:20,000rpm
時間:60分
遠心分離させた溶液の上澄液と沈殿物とを分離し、沈殿物は真空乾燥機で乾燥し、不溶分Xとした。さらに、この不溶分の試料を用いてケルダール窒素法によって定量したアクリロニトリル単量体の質量Yと熱分解ガスクロマトグラフィーにより定量したスチレン単量体の質量Zを求め、
グラフト率(%)=100×(Y+Z)/{X−(Y+Z)}の式から計算した。
【0038】
【表2】
Figure 2004346148
【0039】
(ハ)AS系共重合体(c)
以下に使用したAS系共重合体(c)の参考例を示す。
参考例6(AS系共重合体AS−1の製造)
攪拌機を備えた反応缶中にスチレン70部、アクリロニトリル30部、第三リン酸カルシウム2.5部、t−ドデシルメルカプタン0.35部、ベンゾイルパーオキサイド0.2部及び水250部を仕込み、70℃に昇温し重合を開始させた。重合開始から7時間後に温度を75℃に昇温して3時間保ち重合を簡潔させた。重合率は97%に達した。得られた反応液に5%塩酸水溶液200部を添加し析出させ、脱水、乾燥後白色ビーズ状の共重合体を得た。これを共重合体AS−1とした。
上記の使用したAS系共重合体(c)の成分組成比とGPC測定による重量平均分子量を表3に示す。
【0040】
【表3】
Figure 2004346148
【0041】
(2)マスターバッチ樹脂組成物の製造方法
マスターバッチ樹脂組成物を作成するために東芝機械(株)製2軸押出機TEM−35B(スクリュー系37mm、L/D=32)にて、シリンダー温度280℃、スクリュー回転数200rpm、原料フィード量20kg/hrの条件にて混練混合を実施した。尚、可塑剤を使用する場合は、花王社製カオーワックスEB−P(エチレンビスステアリン酸アマイド:融点143℃)、花王社製カオーワックス85(硬化ひまし油P:融点86℃)、花王社製エキセパールS(ステアリルステアレートS:融点62℃)、花王社製マンニトール(マンニトール花王:融点168℃)、花王社製エキセパールBS(ブチルステアレート:融点23℃)を用いた。
【0042】
作成したマスターバッチ樹脂組成物の配合比、高温側のガラス転移温度を表4及び表5に示す。ガラス転移温度及び滑剤の剤の融点はDSC測定機「DSC−220C」(セイコー電子(株)社製)にて測定した。
測マスターバッチ樹脂は予めプレスして厚さ5mmの薄板上に成形してから測定に用いた。滑剤は10mgを精秤して用いた。
測定条件は以下のとおりである。
温度範囲:室温〜200℃
昇温速度:10℃/min
雰囲気:窒素気流化
【0043】
【表4】
Figure 2004346148
【0044】
【表5】
Figure 2004346148
【0045】
マスターバッチ樹脂組成物とABS系樹脂を混練混合してなる耐熱性樹脂組成物を製造する際に、ABS系樹脂として市販のABS樹脂「デンカGR−2000」を用いた
【0046】
(3)マスターバッチ樹脂組成物で変性された耐熱性樹脂組成物の製造方法
耐熱性樹脂組成物作成のための混練混合は、池貝鉄工所製単軸押出機FS40−28(スクリュー径40mm、L/D=32)にて、シリンダー設定温度260℃、スクリュー回転数100rpm、吐出量20kg/hrの条件で製造した。
【0047】
【実施例1〜5及び比較例1〜7】
本発明に従って作成した耐熱性樹脂組成物の配合比とその物性を実施例1〜5及び比較例1〜7として、表6及び表7に示す。
【0048】
【表6】
Figure 2004346148
【0049】
【表7】
Figure 2004346148
【0050】
なお、各種の物性測定試験方法は下記の条件で行った。
1)シャルピー衝撃強度:厚み4.0mm、幅10.0mmでノッチ付きのISO多目的射出成形試験片を用いてISO179に準じて測定した。
2)VSP(ビカット軟化点):厚み4.0mmの試験片を用いて荷重50NでISO306に準じて測定した。
3)MFR:温度265℃、荷重98Nで、ISO1133に準じて測定した。
4)外観性評価は、縦90mm、横55mm、厚さ2mmのプレートを使用した。この成形品のゲートは横側面の中心に設置されている。
【0051】
プレートの成形は川口鉄工社K−125を用い、以下の成形条件で行った。
シリンダー設定温度:210℃
射出圧力:最小充填圧力+5kg/cm2G
射出速度:70%
金型温度:50℃
【0052】
マスターバッチ樹脂組成物がABS樹脂中に均一に分散していない場合、ヘアライン状の外観不良が発生する。
この不良現象が一目で確認できるのを×、不良減少を凝視して確認できるのを△、不良現象がなく、外観良好なものを○とした。
【0053】
【発明の効果】
本発明のマスターバッチ樹脂組成物は、ABS系樹脂へ容易に分散性させることができ、これを用いて得られた耐熱性ABS系樹脂は、特にインジェクション成形において成形条件幅を広く取ることができ、外観性良好な製品が得られる。又、マスターバッチ樹脂組成物の製造に用いる芳香族ビニル−マレイミド系樹脂を規定することにより、優れた物性バランスを有する耐熱性ABS系樹脂が得られる。このことより、従来から耐熱性ABS系樹脂が用いられてきた自動車部品、電気・電子部品、家電製品、雑貨等の分野へ優れた品質の製品を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a masterbatch resin composition for improving the heat resistance of a resin, and a heat-resistant resin composition using the same. In particular, by using the masterbatch resin composition of the present invention, a heat-resistant ABS resin The composition can be obtained easily and efficiently, and can be applied to the fields of automobile parts, electric / electronic parts, miscellaneous goods and the like due to excellent physical properties and excellent appearance.
[0002]
[Prior art]
Conventionally, a maleimide-based copolymer-modified heat-resistant ABS resin is obtained by kneading and mixing a maleimide-based copolymer, an ABS-based graft copolymer, and an AS-based copolymer at the same time, and forming a maleimide-based copolymer-modified heat-resistant ABS resin. (For example, see Patent Document 1).
In this case, since different resin pellets are required according to each heat resistance level, quality control and inventory control are complicated, and kneadability is high as an extrusion condition for obtaining a maleimide-modified heat-resistant ABS resin. If a screw extruder is not used, the dispersibility of the maleimide-based copolymer becomes insufficient, and there is a disadvantage that it is difficult to obtain good physical properties such as a decrease in appearance of a molded product and a decrease in impact strength when molded.
Therefore, in order to solve these disadvantages, a method of kneading and mixing a heat-resistant masterbatch resin and an ABS resin has been proposed. However, in these production methods, there are limitations on extrusion conditions for obtaining a heat-resistant resin composition and molding conditions for obtaining a resin molded body. Not enough. (See, for example, Patent Documents 2 and 3)
[0003]
[Patent Document 1]
Japanese Patent Publication No. 2-44544
[Patent Document 2]
JP-A-7-316384
[Patent Document 3]
Japanese Patent Publication No. 10-36614
[0004]
[Problems to be solved by the invention]
The object of the present invention, when producing a heat-resistant ABS resin from an ABS resin and a specific masterbatch resin composition, to broaden the range of conditions for the extrusion conditions and molding conditions for molding the obtained resin pellets, An object of the present invention is to provide a heat-resistant masterbatch resin composition capable of providing a heat-resistant ABS resin having good strength and appearance.
[0005]
[Means for Solving the Problems]
That is, the present invention provides an aromatic vinyl-maleimide-based copolymer (a) having a weight average molecular weight of 100,000 to 160,000, 40 to 60% by mass, an ABS-based graft copolymer (b) 20 to 57% by mass, The AS-based copolymer (c) comprises 0.5 to 3% by mass of a plasticizer (d) having a melting point of 50 to 150 ° C and 0 to 40% by mass, and (a) to (d) constitute a total. A master batch resin composition for improving heat resistance of a resin, which is a resin composition of 100% by mass, wherein the glass transition temperature on the high temperature side of the resin composition is 135 to 145 ° C. is there.
[0006]
In the present invention, the aromatic vinyl-maleimide copolymer (a) is preferably composed of 40 to 70% by mass of an aromatic vinyl monomer, 30 to 60% by mass of an unsaturated dicarboxylic acid imide derivative, and other copolymerizable compounds. A copolymer composed of 0 to 20% by mass of a vinyl monomer, an ABS graft copolymer (b) having 65 to 80% by mass of an aromatic vinyl monomer in the presence of 30 to 70 parts by mass of a rubbery polymer; A copolymer obtained by graft copolymerizing 30 to 70 parts by mass of a monomer mixture consisting of 20 to 35% by mass of a vinyl cyanide monomer and 0 to 10% by mass of another copolymerizable vinyl monomer, and The AS copolymer (c) comprises 65 to 80% by mass of an aromatic vinyl monomer, 20 to 35% by mass of a vinyl cyanide monomer and 0 to 10% by mass of another copolymerizable vinyl monomer. Characterized by being a polymer A masterbatch resin composition for improving the heat resistance of the fat.
[0007]
Further, the present invention provides a method of kneading and mixing 10 to 70% by mass of the master batch resin composition described above and 30 to 90% by mass of one or more resins selected from the group consisting of ABS resin, AES resin, AAS resin and MBS resin. It is a heat-resistant resin composition obtained by this.
Here, the ABS resin, the AES resin, the AAS resin, and the MBS resin are abbreviated as ABS resin hereinafter.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the aromatic vinyl-maleimide copolymer (a) used in the masterbatch resin composition of the present invention will be described.
As a first production method, an aromatic vinyl monomer, an unsaturated dicarboxylic acid imide derivative and, if necessary, a monomer mixture comprising a copolymerizable vinyl copolymer are copolymerized to obtain an aromatic vinyl monomer. A maleimide-based copolymer can be obtained.
[0009]
As a second production method, after copolymerizing a monomer mixture composed of an aromatic vinyl monomer, an unsaturated dicarboxylic anhydride and other copolymerizable vinyl monomers as necessary, ammonia and / or A method in which a primary amine is reacted to convert an acid anhydride group into an imide group is mentioned, and an aromatic vinyl-maleimide-based copolymer can be obtained by any method.
[0010]
As the aromatic vinyl monomer used in any of the first production method and the second production method, styrene such as styrene, α-methylstyrene, vinyltoluene, p-methylstyrene, t-butylstyrene, chlorostyrene, etc. Monomers are exemplified, and among these, styrene is particularly preferred.
Examples of the unsaturated dicarboxylic acid imide derivative used in the first production method include maleimide, N-methylmaleimide, N-butylmaleimide, N-alkylmaleimide such as N-cyclohexylmaleimide, and N-arylmaleimide (as the aryl group, Examples thereof include maleimide derivatives such as phenyl, chlorophenyl, methylphenyl, methoxyphenyl, and tribromophenyl. Among them, N-phenylmaleimide is particularly preferable. These derivatives can be used as a mixture of two or more kinds.
[0011]
Examples of the unsaturated dicarboxylic anhydride used in the second production method include anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Of these, maleic anhydride is particularly preferred.
In any of the first and second production methods, other copolymerizable vinyl monomers include vinyl cyanide monomers such as acrylonitrile and methacrylonilyl, methyl acrylate, and ethyl acrylate. Acrylic ester monomers such as esters, methyl methacrylic acid, methacrylic acid ester monomers such as ethyl methacrylic acid ester, acrylic acid, vinyl carboxylic acid monomers such as methacrylic acid, acrylic acid amide, methacrylic acid amide and the like Monomers.
In the first production method, maleic anhydride can also be used, and in the second production method, a maleic anhydride group remaining without being converted to a maleimide group can be introduced into the copolymer.
[0012]
Ammonia and primary amine used in the second production method may be in any state of anhydrous or aqueous solution. Examples of primary amine include alkylamine such as methylamine, ethylamine, butylamine, cyclohexylamine, aniline And aromatic amines such as toluidine, chloroaniline, methoxyaniline and tribromoaniline, of which aniline is particularly preferred.
In the case of the first production method, a known polymerization method can be used for any of suspension polymerization, emulsion polymerization, solution polymerization, bulk polymerization and the like. The second production method can suitably employ bulk-suspension polymerization, solution polymerization, bulk polymerization, and the like.
[0013]
The aromatic vinyl-maleimide copolymer (a) is composed of 40 to 70% by mass of an aromatic vinyl monomer, 30 to 60% by mass of an unsaturated dicarboxylic imide derivative, and 0 to 20 of other copolymerizable vinyl monomers. A copolymer consisting of% by mass is preferred. If the amount of the unsaturated dicarboxylic acid imide derivative is less than 30% by mass, the effect of imparting heat resistance is low, the compatibility with other components such as an AS copolymer is poor, and the impact resistance is reduced. On the other hand, when the amount of the unsaturated dicarboxylic acid imide derivative exceeds 60 mass, the strength becomes low, and the compatibility with other components such as an AS-based copolymer also decreases. A more preferred range is 45 to 65% by mass of an aromatic vinyl monomer, 35 to 55% by mass of an unsaturated dicarboxylic acid imide derivative, and 0 to 15% by mass of a copolymerizable vinyl monomer.
[0014]
The aromatic vinyl-maleimide copolymer (a) used in the present invention may be one kind of aromatic vinyl-maleimide copolymer having a weight average molecular weight of 100,000 to 160,000, or two kinds having different weight average molecular weights. A mixture obtained by combining the above aromatic vinyl-maleimide copolymers, if the weight average molecular weight of the mixture is in the range of 100,000 to 160,000, the mixture of the aromatic vinyl-maleimide copolymers is used. Can be used.
[0015]
The weight average molecular weight of the aromatic vinyl-maleimide copolymer (a) used in the present invention is preferably in the range of 120,000 to 150,000. A masterbatch resin composition for improving heat resistance obtained using an aromatic vinyl-maleimide copolymer having a weight-average molecular weight of more than 160,000 has poor dispersibility in ABS resin and is resistant to heat resistance. As a resin, a decrease in fluidity and poor appearance are likely to occur, and applicable ABS resins are limited. Further, when an aromatic vinyl-maleimide copolymer having a weight average molecular weight of less than 100,000 is used, when the master batch resin composition is produced, it is difficult to produce because of brittleness, and when a heat-resistant ABS resin is used. Poor impact resistance.
[0016]
Next, the ABS-based graft copolymer (b) will be described.
The ABS-based graft copolymer (b) is a monomer composed of an aromatic vinyl monomer, a vinyl cyanide monomer and, if necessary, another copolymerizable vinyl monomer in the presence of a rubbery polymer. It is a graft copolymer obtained by copolymerizing a polymer mixture.
Examples of the rubbery polymer include a butadiene polymer, a butadiene-styrene copolymer, an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, and an acrylate copolymer.
Examples of the aromatic vinyl monomer include styrene monomers such as styrene, α-methylstyrene, vinyltoluene, p-methylstyrene, t-butylstyrene, and chlorostyrene. Among them, styrene is particularly preferable.
Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile, and among these, acrylonitrile is particularly preferable.
[0017]
Other copolymerizable vinyl monomers include acrylate monomers such as methyl acrylate, ethyl acrylate and butyl acrylate, and methacrylates such as methyl methacrylate and ethyl methacrylate. Monomers, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, monomers such as acrylamide and methacrylamide, and N- such as N-methylmaleimide, N-butylmaleimide and N-cyclohexylmaleimide. Maleimide derivatives such as alkylmaleimides and N-arylmaleimides (aryl groups include, for example, phenyl, chlorophenyl, methylphenyl, methoxyphenyl, tribromophenyl, etc.). Among them, monomers such as acrylic acid ester, methacrylic acid ester, acrylic acid and methacrylic acid are preferred.
[0018]
The method for producing the ABS-based graft copolymer (b) is as follows: in the presence of 30 to 70 parts by mass of a rubbery polymer, 65 to 80% by mass of an aromatic vinyl monomer and 20 to 35% by mass of a vinyl cyanide monomer. And 30 to 70 parts by mass of a monomer mixture composed of 0 to 10% by mass of a copolymerizable vinyl monomer, and is preferably obtained by graft copolymerization. If the content of the vinyl cyanide copolymer is less than 20% by mass, the chemical resistance and the decrease, and the compatibility with the aromatic vinyl maleimide copolymer are inferior, and the impact resistance is reduced. On the other hand, when the content of the vinyl cyanide copolymer exceeds 35% by mass, the fluidity is reduced, the compatibility with the aromatic maleimide copolymer is deteriorated, and the impact resistance is also reduced. More preferred ranges are 70 to 75% by mass of an aromatic vinyl monomer, 25 to 30% by mass of a vinyl cyanide monomer, and other copolymerizable vinyl monomers in the presence of 50 to 70 parts by mass of a rubbery polymer. It is a range obtained by graft copolymerizing 30 to 50 parts by mass of a monomer mixture composed of 0 to 5% by mass.
[0019]
The graft ratio of the graft copolymer is represented by “(mass of copolymer grafted on rubber-like polymer / mass of rubber-like polymer) × 100 (%)”. The range is desirably 30 to 70%. If the graft ratio is less than 30%, the rubber-like polymer is likely to be agglomerated, so that the appearance is likely to be poor and the impact resistance is reduced. If it exceeds 70%, the moldability will be reduced. A more preferred range of the graft ratio is 40 to 60%.
For the graft polymerization, any known polymerization technique can be adopted, and examples thereof include aqueous heterogeneous polymerization such as suspension polymerization and emulsion polymerization, bulk polymerization, and solution polymerization. Emulsion polymerization that easily controls the graft ratio that affects the strength is preferred.
[0020]
Next, the AS-based copolymer (c) that can be used as required will be described. The AS copolymer is a copolymer composed of an aromatic vinyl monomer, a vinyl cyanide monomer, and other copolymerizable vinyl monomers used as needed.
Examples of the aromatic vinyl monomer include the same monomer species as those described above as the aromatic vinyl monomer used in the ABS-based graft copolymer (b), and among these, styrene and α-methyl Styrene is particularly preferred.
Examples of the vinyl cyanide monomer include the same monomer species as those described above as the vinyl cyanide monomer used in the method for producing the ABS-based graft copolymer (b), and among these, acrylonitrile is particularly preferable. preferable.
Examples of the other copolymerizable monomer include the same monomer species as the other copolymerizable vinyl monomer used in the method for producing the ABS-based graft copolymer (b).
[0021]
The AS-based copolymer (c) comprises 65 to 80% by mass of an aromatic vinyl monomer unit, 20 to 35% by mass of a vinyl cyanide monomer unit and 0 to 10% by mass of another copolymerizable vinyl monomer unit. % Is preferred. If the ratio is out of this range, the compatibility with other components becomes poor, and the impact resistance is lowered. A more preferable range is 68 to 78% by mass of an aromatic vinyl monomer, 22 to 32% by mass of a vinyl cyanide monomer, and 0 to 10% by mass of a copolymerizable vinyl monomer.
The AS copolymer (c) can be produced by a usual polymerization method. For example, polymerization methods such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization are exemplified.
[0022]
Preferred specific examples of the type of lubricant to be added include those having relatively good compatibility with ABS resins such as fatty acid metal salts, fatty acid amides, fatty acid esters, and hydrogenated castor oil, and having a melting point of 50 ° C to 150 ° C. Is required.
Preferred lubricants include fatty acid amides in which the fatty acid has C16 or more carbon atoms, castor hardened fatty acids, and fatty acid esters in which the fatty acid has C16 or more carbon atoms.
It is not preferable to use a lubricant having a melting point lower than 50 ° C., because the heat resistance is greatly reduced and the mold is easily contaminated during molding.
On the other hand, if the melting point exceeds 150 ° C., the effect of improving the fluidity is low, which is not preferable.
The range to be added is 0.5 to 3% by mass, and when it is 0.5% by mass or less, the dispersibility of the masterbatch resin composition of the present invention in the ABS resin becomes low, the appearance becomes poor, and the aromatic The addition amount of the vinyl group-maleimide copolymer is limited, and a sufficient heat resistance-imparting effect cannot be obtained. On the other hand, if it exceeds 3% by mass, the heat resistance is greatly reduced and the mold tends to be contaminated during molding.
[0023]
The master batch resin composition of the present invention has a glass transition temperature on the high temperature side (the highest glass transition temperature of the master batch resin composition of the present invention) in the range of 135 to 145 ° C. When the glass transition temperature on the high temperature side is lower than 135 ° C., the heat resistance of the master batch resin composition is low, so that a large amount of the expensive master batch resin composition is required to obtain a desired heat resistant ABS resin. Not economic. When the temperature exceeds 145 ° C., there are limitations on extrusion conditions for adding a masterbatch resin composition to obtain a heat-resistant ABS resin and molding conditions for injection-molding the obtained heat-resistant ABS resin. When the cylinder temperature of the extruder and the molding machine is set high to disperse the vinyl-maleimide copolymer in the ABS resin well, the rubbery polymer in the ABS copolymer is thermally degraded and the strength is reduced. Invite. If the cylinder temperature of an extruder or a molding machine is set low to prevent this, the dispersion of the aromatic vinyl-maleimide copolymer in the ABS resin becomes insufficient, and the appearance tends to be poor.
[0024]
The composition of the masterbatch resin composition of the present invention is as follows: the aromatic-maleimide copolymer (a) is 40 to 60% by mass, the ABS graft copolymer (b) is 20 to 57% by mass, and the AS copolymer ( c) A resin composition comprising 0 to 40% by mass and 0.5 to 3% by mass of a plasticizer having a melting point of 50 to 150 ° C.
When the amount of the aromatic-maleimide-based copolymer (a) is less than 40% by mass, the heat resistance of the masterbatch resin composition is insufficient. On the other hand, if the aromatic-maleimide-based copolymer exceeds 60% by mass, the heat-resistant masterbatch resin becomes too brittle at the time of producing the heat-resistant masterbatch resin, it is difficult to produce, and the impact strength or the moldability is lowered to obtain good physical properties. I can't.
[0025]
Examples of ABS resins include ABS (acrylonitrile-butadiene-styrene) resin, heat-resistant ABS resin (acrylonitrile-butadiene-styrene-α-methylstyrene), AES resin (acrylonitrile-EPDM-styrene) resin, and AAS (acrylonitrile-acrylate-styrene). ) Resins and MBS resins (methyl methacrylate-butadiene-styrene) and the like.
[0026]
As a means for kneading and mixing the master batch resin composition of the present invention and the ABS resin, a single screw extruder and a twin screw extruder can be suitably used. In particular, when the masterbatch resin composition of the present invention is used, the dispersibility in the ABS resin is good even when a single screw extruder having low kneading properties is used. In addition, a known device such as a Henschel mixer or a tumbler mixer can be used for preliminary mixing before kneading with an extruder.
[0027]
The masterbatch resin composition of the present invention and the heat-resistant resin composition obtained by kneading and mixing the ABS resin with the masterbatch resin include an antioxidant, an ultraviolet absorber, a coloring agent, a plasticizer, a lubricant, a flame retardant, a glass fiber, Carbon fiber, calcium carbonate, talc, mica and the like can be added according to the purpose.
[0028]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. All parts and percentages in the examples are expressed on a mass basis.
[0029]
(1) Raw material resin
(A) Aromatic vinyl-maleimide copolymer (a)
Hereinafter, reference examples of the maleimide-based copolymer (a) used are shown.
Reference Example 1 (Production of copolymer SMI-1)
60 parts of styrene, 0.1 part of α-methylstyrene dimer, and 100 parts of methyl ethyl ketone were charged into an autoclave equipped with a stirrer, and the system was purged with nitrogen gas. And a solution prepared by dissolving 0.15 parts of benzoyl peroxide in 200 parts of methyl ethyl ketone were continuously added over 8 hours. After the addition, the temperature was kept at 85 ° C. for a further 3 hours. As a result of sampling a part of the viscous reaction solution and quantifying the unreacted monomer by gas chromatography, the polymerization rate was 99% for styrene and 98% for maleic anhydride. 38 parts of aniline and 0.6 parts of triethylamine were added to the obtained copolymer solution and reacted at 140 ° C. for 7 hours. The reaction solution was supplied to a twin-screw extruder equipped with a vent, and devolatilized to obtain a maleimide-based copolymer. C-13 NMR analysis revealed that the conversion of the maleic anhydride group to the imide group was 93%. This maleimide-based copolymer was a copolymer containing 51% of an N-phenylmaleimide unit as an unsaturated dicarboxylic acid imide derivative, and was designated as SMI-1. According to gel permeation (GPC) analysis, the weight average molecular weight in terms of polystyrene was 140,000.
[0030]
Reference Example 2 (Production of copolymer SMI-2)
Except that 1.5 parts of α-methylstyrene dimer was used, a method having a weight average molecular weight of 70,000 comprising 51% of N-phenylmaleimide units, 47% of styrene units, and 2% of maleic anhydride units was conducted in the same manner as in Production Example 1. A copolymer was obtained. This was designated as copolymer SMI-2.
[0031]
Reference Example 3 (Production of copolymer SMI-3)
Except that 0.2 part of α-methylstyrene dimer was used, a method similar to that of Production Example 1 was employed, having a weight average molecular weight of 120,000 comprising 51% of N-phenylmaleimide unit, 47% of styrene unit and 2% of maleic anhydride unit. A copolymer was obtained. This was designated as copolymer SMI-3.
[0032]
Reference Example 4 (Production of copolymer SMI-4)
Except that 0.02 part of α-methylstyrene dimer was used, a method having a weight average molecular weight of 190,000 comprising 51% of N-phenylmaleimide units, 47% of styrene units and 2% of maleic anhydride units was conducted in the same manner as in Production Example 1. A copolymer was obtained. This was designated as copolymer SMI-4.
[0033]
Table 1 shows the component composition ratio of the maleimide copolymer (a) used and the weight average molecular weight determined by gel permeation chromatography (GPC).
[0034]
The GPC measurement was performed under the following conditions.
Apparatus; Shodex “SYSTEM-21”
Column; PLgel MIXED-B
Temperature; 40 ° C
Solvent: tetrahydrofuran
Detection; RI
Concentration: 0.2%
Injection volume; 100 μl
Calibration curve: Using a standard polystyrene (manufactured by Polymer Laboratories), the relationship between the elution time and the elution amount was converted into a molecular weight to obtain various average molecular weights.
[0035]
[Table 1]
Figure 2004346148
[0036]
(B) ABS-based graft copolymer (b)
A reference example of the ABS-based graft copolymer (b) used is shown below.
Reference Example 5 (Production of ABS graft copolymer G-1)
In a reaction vessel equipped with a stirrer, 114 parts of polybutadiene latex (solid content 35%, weight average diameter 0.3 μm, gel content 90%), styrene-butadiene latex 15 parts (solid content 67%, weight average diameter 0.5 μm) , Gel content 15%), 1 part of sodium stearate, 0.2 part of sodium formaldehyde sulfoxylate, 0.01 part of tetrasodium ethylenediamine tetraacetylic acid, 0.005 part of ferrous sulfate, and pure water 150 parts of the mixture were heated to a temperature of 50 ° C., and 50 parts of a monomer mixture composed of 70% of styrene and 30% of acrylonitrile, 1.0 part of t-dodecyl mercaptan, and 0.15 part of cumene hydroperoxide were added to 6 parts of the mixture. It was added continuously over a period of time, and after the addition, the temperature was raised to 65 ° C., and polymerization was performed for 2 hours. The conversion reached 97%. 0.3 parts of Irganox 1076 (manufactured by Ciba Specialty Chemical Co.) was added to the obtained latex, and then 300 parts of a 5% calcium chloride aqueous solution was added, followed by coagulation, washing and drying to obtain a graft copolymer as a white powder. Was. This was designated as copolymer G-1.
Table 2 shows the component composition ratio and the graft ratio of the ABS graft copolymer (b) used above.
[0037]
The graft ratio of the graft copolymer of the present invention was determined by the following method.
About 20 g of the graft copolymer latex is precipitated and coagulated with 100 ml of methanol, and the coagulated product is subjected to suction filtration using a filter paper. The filtrate is dried in a vacuum dryer for 24 hours at room temperature. About 1.2 g of the obtained sample was placed in a 100 ml Erlenmeyer flask, 30 g of methyl ethyl ketone (MEK) was added, and the mixture was stirred at a temperature of 23 ° C. for 24 hours. Then, the insoluble matter in methyl ethyl ketone (MEK) was separated by a centrifuge. The centrifugation operation was performed and the mixture was allowed to stand for 30 minutes. The operating conditions of this centrifuge were set as follows.
Temperature: -9 ° C
Rotation speed: 20,000 rpm
Time: 60 minutes
The supernatant of the solution subjected to centrifugation was separated from the precipitate, and the precipitate was dried with a vacuum drier to obtain an insoluble content X. Furthermore, the mass Y of the acrylonitrile monomer quantified by the Kjeldahl nitrogen method using the sample of the insoluble matter and the mass Z of the styrene monomer quantified by pyrolysis gas chromatography were determined,
Graft ratio (%) = 100 × (Y + Z) / {X− (Y + Z)}.
[0038]
[Table 2]
Figure 2004346148
[0039]
(C) AS-based copolymer (c)
A reference example of the AS copolymer (c) used is shown below.
Reference Example 6 (Production of AS-based copolymer AS-1)
70 parts of styrene, 30 parts of acrylonitrile, 2.5 parts of tribasic calcium phosphate, 0.35 part of t-dodecylmercaptan, 0.2 part of benzoyl peroxide and 250 parts of water were charged into a reaction vessel equipped with a stirrer, and the mixture was heated to 70 ° C. The temperature was raised to initiate polymerization. Seven hours after the start of the polymerization, the temperature was raised to 75 ° C. and kept for 3 hours to simplify the polymerization. The conversion reached 97%. 200 parts of a 5% hydrochloric acid aqueous solution was added to the obtained reaction solution to cause precipitation, dehydration and drying, and a white bead-like copolymer was obtained. This was designated as copolymer AS-1.
Table 3 shows the component composition ratio of the AS copolymer (c) used and the weight average molecular weight measured by GPC.
[0040]
[Table 3]
Figure 2004346148
[0041]
(2) Method for producing master batch resin composition
In order to prepare a master batch resin composition, a cylinder temperature of 280 ° C., a screw rotation speed of 200 rpm, and a raw material feed amount were measured with a twin screw extruder TEM-35B (screw system, 37 mm, L / D = 32) manufactured by Toshiba Machine Co., Ltd. The kneading and mixing were performed under the conditions of 20 kg / hr. When a plasticizer is used, Kao wax EB-P (ethylene bisstearic acid amide: melting point: 143 ° C.) manufactured by Kao Corporation, Kaowax 85 (hardened castor oil P: melting point: 86 ° C.) manufactured by Kao Corporation, Exepearl manufactured by Kao Corporation S (stearyl stearate S: melting point 62 ° C.), mannitol manufactured by Kao Corporation (mannitol Kao: melting point 168 ° C.), and exepal BS manufactured by Kao Corporation (butyl stearate: melting point 23 ° C.) were used.
[0042]
Tables 4 and 5 show the mixing ratio of the prepared masterbatch resin composition and the glass transition temperature on the high temperature side. The glass transition temperature and the melting point of the lubricant agent were measured with a DSC measuring instrument “DSC-220C” (manufactured by Seiko Electronics Co., Ltd.).
The masterbatch measurement resin was pressed in advance and formed on a thin plate having a thickness of 5 mm, and then used for measurement. The lubricant was precisely weighed at 10 mg and used.
The measurement conditions are as follows.
Temperature range: room temperature to 200 ° C
Heating rate: 10 ° C / min
Atmosphere: Nitrogen stream
[0043]
[Table 4]
Figure 2004346148
[0044]
[Table 5]
Figure 2004346148
[0045]
When producing a heat-resistant resin composition obtained by kneading and mixing a master batch resin composition and an ABS resin, a commercially available ABS resin “DENKA GR-2000” was used as the ABS resin.
[0046]
(3) Method for producing heat-resistant resin composition modified with masterbatch resin composition
The kneading and mixing for preparing the heat-resistant resin composition was performed using a single screw extruder FS40-28 (screw diameter: 40 mm, L / D = 32) manufactured by Ikegai Iron Works, cylinder set temperature: 260 ° C., screw rotation speed: 100 rpm, discharge. It was manufactured under the condition of an amount of 20 kg / hr.
[0047]
Examples 1 to 5 and Comparative Examples 1 to 7
Tables 6 and 7 show the compounding ratio of the heat-resistant resin composition prepared according to the present invention and the physical properties thereof as Examples 1 to 5 and Comparative Examples 1 to 7.
[0048]
[Table 6]
Figure 2004346148
[0049]
[Table 7]
Figure 2004346148
[0050]
In addition, various physical property measurement test methods were performed under the following conditions.
1) Charpy impact strength: Measured according to ISO179 using a notched ISO multipurpose injection molded test piece having a thickness of 4.0 mm and a width of 10.0 mm.
2) VSP (Vicat softening point): Measured according to ISO 306 using a test piece having a thickness of 4.0 mm at a load of 50 N.
3) MFR: Measured according to ISO 1133 at a temperature of 265 ° C. and a load of 98 N.
4) For evaluation of appearance, a plate having a length of 90 mm, a width of 55 mm, and a thickness of 2 mm was used. The gate of this molded product is installed at the center of the lateral side.
[0051]
The plate was molded under the following molding conditions using K-125 Kawaguchi Iron Works.
Cylinder set temperature: 210 ° C
Injection pressure: minimum filling pressure + 5 kg / cm2G
Injection speed: 70%
Mold temperature: 50 ° C
[0052]
If the masterbatch resin composition is not uniformly dispersed in the ABS resin, a hairline-like appearance defect occurs.
X indicates that the defect phenomenon can be confirmed at a glance, Δ indicates that the defect reduction can be confirmed by staring, and ○ indicates that there is no defect phenomenon and the appearance is good.
[0053]
【The invention's effect】
The masterbatch resin composition of the present invention can be easily dispersed in an ABS resin, and a heat-resistant ABS resin obtained by using the same can have a wide range of molding conditions particularly in injection molding. Thus, a product having good appearance can be obtained. Also, by defining the aromatic vinyl-maleimide resin used for the production of the master batch resin composition, a heat-resistant ABS resin having an excellent balance of physical properties can be obtained. From this, it is possible to provide products of excellent quality to the fields of automobile parts, electric / electronic parts, home electric appliances, miscellaneous goods and the like in which the heat-resistant ABS resin is conventionally used.

Claims (4)

重量平均分子量が10万〜16万である芳香族ビニル−マレイミド系共重合体(a)40〜60質量%、ABS系グラフト共重合体(b)20〜57質量%、AS系共重合体(c)0〜40質量%、及び融点が50〜150℃である滑剤(d)を0.5〜3質量%からなり、かつ(a)〜(d)が合計で100質量%である樹脂組成物であって、該樹脂組成物の高温側のガラス転移温度が135〜145℃であることを特徴とする樹脂の耐熱性を改良するためのマスターバッチ樹脂組成物。Aromatic vinyl-maleimide-based copolymer (a) having a weight average molecular weight of 100,000 to 160,000, 40 to 60% by mass, ABS-based graft copolymer (b) 20 to 57% by mass, AS-based copolymer ( c) A resin composition comprising 0.5 to 3% by mass of a lubricant (d) having a melting point of 50 to 150 ° C and 0 to 40% by mass, and a total of (a) to (d) being 100% by mass. A master batch resin composition for improving heat resistance of a resin, wherein the glass transition temperature on the high temperature side of the resin composition is 135 to 145 ° C. 滑剤(d)が脂肪酸の炭素数がC16以上である脂肪酸アミド類、ヒマシ硬化脂肪酸類及び脂肪酸エステル類から選ばれた一種以上であることを特徴とする請求項1記載の樹脂の耐熱性を改良するためのマスターバッチ樹脂組成物。The heat resistance of the resin according to claim 1, wherein the lubricant (d) is at least one selected from fatty acid amides, castor-hardened fatty acids and fatty acid esters having fatty acids having C16 or more carbon atoms. A masterbatch resin composition. 芳香族ビニル−マレイミド系共重合体(a)が芳香族ビニル単量体40〜70質量%、不飽和ジカルボン酸イミド誘導体30〜60質量%及びその他共重合可能なビニル単量体0〜20質量%からなる共重合体、ABS系グラフト共重合体(b)がゴム状重合体30〜70質量部の存在下に芳香族ビニル単量体65〜80質量%、シアン化ビニル単量体20〜35質量%及びその他共重合可能なビニル単量体0〜10質量%からなる単量体混合物30〜70質量部をグラフト共重合して得られる共重合体、及びAS系共重合体(c)が芳香族ビニル単量体65〜80質量%、シアン化ビニル単量体20〜35質量%およびその他共重合可能なビニル単量体0〜10質量%からなる共重合体であることを特徴とする請求項1又は2記載の樹脂の耐熱性を改良するためのマスターバッチ樹脂組成物。The aromatic vinyl-maleimide copolymer (a) is composed of 40 to 70% by mass of an aromatic vinyl monomer, 30 to 60% by mass of an unsaturated dicarboxylic acid imide derivative, and 0 to 20% by mass of another copolymerizable vinyl monomer. % Of an aromatic vinyl monomer in the presence of 30 to 70 parts by mass of a rubbery polymer, 65 to 80% by mass of an aromatic vinyl monomer and 20 to A copolymer obtained by graft copolymerizing 30 to 70 parts by mass of a monomer mixture comprising 35% by mass and 0 to 10% by mass of another copolymerizable vinyl monomer, and an AS-based copolymer (c) Is a copolymer consisting of 65 to 80% by mass of an aromatic vinyl monomer, 20 to 35% by mass of a vinyl cyanide monomer, and 0 to 10% by mass of another copolymerizable vinyl monomer. The resin according to claim 1 or 2, Masterbatch resin composition for improving the heat resistance. 請求項1〜3いずれかに記載の樹脂の耐熱性を改良するためのマスターバッチ樹脂組成物10〜70質量%とABS樹脂、AES樹脂、AAS樹脂およびMBS樹脂からなる群から選ばれた一種以上の樹脂30〜90質量%とを混練混合してなる耐熱性樹脂組成物。A master batch resin composition for improving the heat resistance of the resin according to any one of claims 1 to 3, and 10 to 70% by mass and at least one selected from the group consisting of ABS resin, AES resin, AAS resin, and MBS resin. A heat-resistant resin composition obtained by kneading and mixing 30 to 90% by mass of the above resin.
JP2003143219A 2003-05-21 2003-05-21 Master batch resin composition and heat-resistant resin composition using the same Pending JP2004346148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143219A JP2004346148A (en) 2003-05-21 2003-05-21 Master batch resin composition and heat-resistant resin composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143219A JP2004346148A (en) 2003-05-21 2003-05-21 Master batch resin composition and heat-resistant resin composition using the same

Publications (1)

Publication Number Publication Date
JP2004346148A true JP2004346148A (en) 2004-12-09

Family

ID=33531067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143219A Pending JP2004346148A (en) 2003-05-21 2003-05-21 Master batch resin composition and heat-resistant resin composition using the same

Country Status (1)

Country Link
JP (1) JP2004346148A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679552B1 (en) 2006-04-27 2007-02-06 이창호 Abs complex material manufacturing method and abs complex material thereby
WO2008026554A1 (en) * 2006-08-28 2008-03-06 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and molded body thereof
JP2011169048A (en) * 2010-02-19 2011-09-01 Sekisui Jushi Co Ltd Method of attachment of road marking sheet, and road marking sheet
WO2022054676A1 (en) * 2020-09-09 2022-03-17 デンカ株式会社 Heat resistance resin composition and injection molded body thereof
WO2022071050A1 (en) * 2020-09-29 2022-04-07 デンカ株式会社 Production method for heat-resistant resin composition
WO2022075170A1 (en) * 2020-10-07 2022-04-14 デンカ株式会社 Heat-resistant resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679552B1 (en) 2006-04-27 2007-02-06 이창호 Abs complex material manufacturing method and abs complex material thereby
WO2008026554A1 (en) * 2006-08-28 2008-03-06 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and molded body thereof
JPWO2008026554A1 (en) * 2006-08-28 2010-01-21 電気化学工業株式会社 Resin composition and molded body thereof
JP2011169048A (en) * 2010-02-19 2011-09-01 Sekisui Jushi Co Ltd Method of attachment of road marking sheet, and road marking sheet
WO2022054676A1 (en) * 2020-09-09 2022-03-17 デンカ株式会社 Heat resistance resin composition and injection molded body thereof
WO2022071050A1 (en) * 2020-09-29 2022-04-07 デンカ株式会社 Production method for heat-resistant resin composition
WO2022075170A1 (en) * 2020-10-07 2022-04-14 デンカ株式会社 Heat-resistant resin composition
CN116323798A (en) * 2020-10-07 2023-06-23 电化株式会社 Heat-resistant resin composition

Similar Documents

Publication Publication Date Title
JPH0725982B2 (en) Heat resistant, impact resistant thermoplastic resin composition
WO1988004309A1 (en) Heat and impact resistant resin composition
JP2004346148A (en) Master batch resin composition and heat-resistant resin composition using the same
JP2005298776A (en) Heat resistance-imparting material and resin composition using the same
JPS604544A (en) Thermoplastic resin composition
JP4166331B2 (en) Thermoplastic resin composition
JP3652788B2 (en) Method for producing molded thermoplastic resin
JP3561088B2 (en) Styrene resin composition using rubber-containing resin composition
JPH08319327A (en) Rubbery polymer and abs-based resin using the same
JP3698822B2 (en) Heat-resistant masterbatch resin, heat-resistant resin molded product and method for producing the same
JP2005298774A (en) Resin composition and heat-resistant resin composition using the same
JP4739489B2 (en) Heat resistant thermoplastic resin composition and method for producing the same
JP6844753B1 (en) Polydimethylsiloxane gum mixture and a thermoplastic resin composition containing polydimethylsiloxane gum to which it is added.
JPH1036614A (en) Heat-resistant masterbatch resin, heat-resistant resin molding prepared therefrom and production thereof
JP3754763B2 (en) Method for producing heat-resistant resin molded body
JPH1135760A (en) Thermoplastic resin composition, molded article and its production
JP3652790B2 (en) Method for producing molded thermoplastic resin
JP3791970B2 (en) Thermoplastic resin composition, molded article and method for producing the same
JPH0790159A (en) Rubber-modified styrene resin composition
JP4299502B2 (en) Thermoplastic resin composition
JP2001234023A (en) Thermoplastic resin composition
JP3311137B2 (en) Thermoplastic resin composition
JPH1143578A (en) Rubber-modified styrenic resin composition
JP6376020B2 (en) Thermoplastic resin composition and molded article thereof
JPH10298375A (en) Rubber-modified heat-resistant styrene-based resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A02