JP5581816B2 - Gas barrier film and organic element device using the same - Google Patents

Gas barrier film and organic element device using the same Download PDF

Info

Publication number
JP5581816B2
JP5581816B2 JP2010126610A JP2010126610A JP5581816B2 JP 5581816 B2 JP5581816 B2 JP 5581816B2 JP 2010126610 A JP2010126610 A JP 2010126610A JP 2010126610 A JP2010126610 A JP 2010126610A JP 5581816 B2 JP5581816 B2 JP 5581816B2
Authority
JP
Japan
Prior art keywords
layer
light
film
gas barrier
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010126610A
Other languages
Japanese (ja)
Other versions
JP2011251460A (en
Inventor
秀敏 江連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010126610A priority Critical patent/JP5581816B2/en
Publication of JP2011251460A publication Critical patent/JP2011251460A/en
Application granted granted Critical
Publication of JP5581816B2 publication Critical patent/JP5581816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、ガスバリア性フィルムとそれを用いた有機素子デバイスに関する。より詳しくは、屋外用途でも十分使用可能な耐候性や、素子性能を改善する光散乱性を有するガスバリア性フィルム、及びガスバリア性フィルムを用いた各種デバイス素子に関するものである。   The present invention relates to a gas barrier film and an organic element device using the same. More specifically, the present invention relates to a gas barrier film having a weather resistance that can be sufficiently used in outdoor applications, a light scattering property that improves element performance, and various device elements using the gas barrier film.

従来、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶表示素子、太陽電池、有機エレクトロルミネッセンス(EL)の各種デバイスの基板等で使用されている。   Conventionally, a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on the surface of a plastic substrate or film is used for packaging goods and foods that require blocking of various gases such as water vapor and oxygen. It is widely used in packaging applications to prevent the alteration of industrial products and pharmaceuticals. Moreover, it is used with the board | substrate of various devices, such as a liquid crystal display element, a solar cell, and organic electroluminescence (EL), besides the packaging use.

この様なガスバリア性フィルムを形成する方法として、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によりガスバリア層を形成する技術やポリシラザンを主成分とする塗布液を塗布し、表面処理をする技術が知られている(例えば、特許文献1〜3参照)。しかしながら、いずれの技術も、有機素子デバイス等のガスバリア層としての機能は不十分なものであり、特に屋外用途で使用される場合には、水蒸気透過率として、1×10−2g/(m・day)を大きく下回るような、更なるガスバリア性の改善が求められていた。 As a method for forming such a gas barrier film, a technique for forming a gas barrier layer by a plasma CVD method (Chemical Vapor Deposition method) or a coating liquid containing polysilazane as a main component is applied. Techniques for surface treatment are known (see, for example, Patent Documents 1 to 3). However, any of these techniques has an insufficient function as a gas barrier layer of an organic element device or the like, and particularly when used in outdoor applications, the water vapor transmission rate is 1 × 10 −2 g / (m There has been a demand for further improvement in gas barrier properties, which is much lower than 2 · day).

一方、屋外用途で使用される場合には、ガスバリア性以外にも耐候性等が必要であり、UVカット性を有するガスバリア性フィルムが提案されている(例えば、特許文献4参照)。しかしながら、樹脂基材にUV吸収剤を添加する上記技術は、有機系のUV吸収剤の場合UVカット機能として十分でなかったり、経時で表面にブリードアウトしたりして、耐候性が十分でない。一方、無機系のUV吸収剤を樹脂基材に添加すると、基材が脆くなり、デバイス素子用のガスバリア性フィルムとしては十分でない。   On the other hand, when used in outdoor applications, in addition to gas barrier properties, weather resistance and the like are necessary, and a gas barrier film having UV cut properties has been proposed (for example, see Patent Document 4). However, the above technique of adding a UV absorber to a resin substrate is not sufficient as a UV cut function in the case of an organic UV absorber, or bleeds out to the surface over time, so that the weather resistance is not sufficient. On the other hand, when an inorganic UV absorber is added to a resin base material, the base material becomes brittle and is not sufficient as a gas barrier film for a device element.

デバイス素子としては、ガスバリア性フィルムの他にも、表示性能を改善する光散乱性フィルムや、外部衝撃用フィルム等が使用されており、これらを複合化する技術が開示されている(例えば、特許文献5、6参照)。しかしながら、樹脂基材に光散乱性フィラーを添加する技術は、無機系のUV吸収剤同様、基材の透明性の劣化や脆弱性を促進し、デバイス素子用のガスバリア性フィルムとしては十分でない。また複合化しても、特許文献6のように基材に隣接する層がゲル状物質を使用すると、上記層の膜強度、耐水性や耐熱性が十分でなく、屋外用途で使用される場合には十分に保護することができないという問題があった。   As a device element, in addition to a gas barrier film, a light scattering film for improving display performance, a film for external impact, or the like is used, and a technique for combining these is disclosed (for example, a patent) References 5 and 6). However, the technique of adding a light-scattering filler to a resin base material promotes deterioration of the transparency and brittleness of the base material as in the case of inorganic UV absorbers, and is not sufficient as a gas barrier film for device elements. Moreover, even if it combines, when the layer adjacent to a base material uses a gel-like substance like patent document 6, the film | membrane intensity | strength of the said layer, water resistance, and heat resistance are not enough, and when it is used for an outdoor use. There was a problem that could not be adequately protected.

特開2004−66730号公報JP 2004-66730 A 特開2007−237588号公報JP 2007-237588 A 特表2009−503157号公報Special table 2009-503157 特開2009−212424号公報JP 2009-212424 A 特開2009−206010号公報JP 2009-206010 A 特開2009−90632号公報JP 2009-90632 A

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高いガスバリア性能と、デバイス素子用フィルムとして十分な耐水性、耐熱性とともに、UVカット性または光散乱性にも優れる多機能ガスバリア性フィルムを提供すること、及びそれを用いた有機素子デバイスを提供することである。   The present invention has been made in view of the above-mentioned problems and circumstances, and the solution to the problem is not only high gas barrier performance and sufficient water resistance and heat resistance as a film for device elements, but also UV-cutting properties or light-scattering properties. It is to provide an excellent multifunctional gas barrier film and to provide an organic element device using the same.

本発明の上記目的は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.基材の片面にガスバリア層を有するガスバリア性フィルムであって、該ガスバリア層とは反対面に、該基材に隣接して光散乱剤とUVカット剤とを含有する鉛筆硬度がH以上の層を有していることを特徴とするガスバリア性フィルム。 1. A gas barrier film having a gas barrier layer on one side of a substrate, the layer having a pencil hardness of H or more containing a light scattering agent and a UV-cutting agent adjacent to the substrate on the opposite side of the gas barrier layer It has gas barrier film characterized by having.

.前記ガスバリア層が、ポリシラザン含有液の塗布膜に改質処理を施して形成されることを特徴とする前記1に記載のガスバリア性フィルム。 2 . 2. The gas barrier film as described in 1 above, wherein the gas barrier layer is formed by subjecting a coating film of a polysilazane-containing liquid to a modification treatment.

.前記改質処理が、波長200nm以下の真空紫外光を照射する改質処理であることを特徴とする前記1又は2に記載のガスバリア性フィルム。 3 . 3. The gas barrier film as described in 1 or 2 above, wherein the modification treatment is a modification treatment of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.

.前記1〜のいずれか一項に記載のガスバリア性フィルムを用いたことを特徴とする有機素子デバイス。 4 . 4. An organic element device using the gas barrier film according to any one of 1 to 3 above.

本発明により、高いガス性能とデバイス素子用フィルムとして高い耐水性、耐熱性とともに、UVカット性または光散乱性にも優れる多機能ガスバリア性フィルムを提供することができる。また、それを用いた有機素子デバイスを提供することができる。   According to the present invention, it is possible to provide a multifunctional gas barrier film having high gas performance and high water resistance and heat resistance as a film for a device element, and excellent in UV cut property or light scattering property. Moreover, the organic element device using the same can be provided.

バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell which consists of a bulk heterojunction type organic photoelectric conversion element. p−i−nの3層の発電層を備えるバルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell which consists of a bulk heterojunction type organic photoelectric conversion element provided with the power generation layer of 3 layers of pin. タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell which consists of an organic photoelectric conversion element provided with a tandem-type bulk heterojunction layer.

以下、本発明を実施するための形態について詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

本発明者は、上記課題に鑑み鋭意検討を行った結果、基材の片面にガスバリア層を有するガスバリア性フィルムであって、該ガスバリア層とは反対面に、該基材に隣接して光散乱剤とUVカット剤とを含有する鉛筆硬度がH以上の層を有していることを特徴とするガスバリア性フィルムにより、高いガスバリア性能、とデバイス素子用フィルムとして高い耐水性、耐熱性とともに、UVカット性または光散乱性にも優れる多機能ガスバリア性フィルムを実現することができることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor is a gas barrier film having a gas barrier layer on one side of a substrate, and is light scattering adjacent to the substrate on the side opposite to the gas barrier layer. With a gas barrier film characterized in that it has a layer having a pencil hardness containing H agent and a UV cut agent having a hardness of H or higher, UV gas has high gas barrier performance and high water resistance and heat resistance as a device element film. It has been found that a multifunctional gas barrier film excellent in cutability or light scattering property can be realized, and as soon as the present invention has been achieved.

本発明の機構は不明であるが、基材に隣接する層に光散乱剤UVカット剤を有する層と、ガスバリア層とを基材の片面ずつにその機能を分担させることにより、高いガスバリア性と耐熱性、耐水性、及び光散乱性またはUVカット性を有するガスバリアフィルムが得られ、さらに前記光散乱剤UVカット剤を有する層の硬度をあるレベル以上にする、つまり光散乱剤またはUVカット剤の粒子をハードコート剤に添加することで、耐水性と耐熱性に加えて、光散乱性またはUVカット性とをより効果的に両立でき、反対面のガスバリア層との効果があいまって、有機素子デバイス用フィルムとして高い機能を発揮するものと思われる。
〔ガスバリア層〕
本発明に係るガスバリア性フィルムの少なくとも片面にはガスバリア層を有している。本発明に係るガスバリア層は、水蒸気と酸素に対するガスバリア性の高い層である。このガスバリア層は特に高湿度による樹脂基材及び当該樹脂基材で保護される各種機能素子等の劣化を防止するためのものである。
Although the mechanism of the present invention is unknown, a layer having a light scattering agent and a UV-cutting agent in a layer adjacent to the base material and a gas barrier layer share the functions of each side of the base material, thereby providing high gas barrier properties. And a gas barrier film having heat resistance, water resistance, and light scattering or UV-cutting properties, and the hardness of the layer having the light-scattering agent and the UV-cutting agent is set to a certain level or more, that is, the light scattering agent or UV. By adding the particles of the cutting agent to the hard coating agent, in addition to water resistance and heat resistance, it is possible to more effectively achieve both light scattering and UV cutting properties, combined with the effect of the gas barrier layer on the opposite side. It seems that it exhibits a high function as a film for organic element devices.
[Gas barrier layer]
The gas barrier film according to the present invention has a gas barrier layer on at least one side. The gas barrier layer according to the present invention is a layer having a high gas barrier property against water vapor and oxygen. This gas barrier layer is particularly for preventing deterioration of the resin base material and various functional elements protected by the resin base material due to high humidity.

本発明において、ガスバリア性は、JIS K 7129−1992に準拠した方法で水蒸気透過度として測定することができる。酸素透過度は、JIS K 7126−1987に準拠した方法で酸素透過度として測定できる。水蒸気透過度(60±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下であれば、水蒸気透過度より、酸素透過度のほうが有機素子デバイスとして、問題になることは少ない。 In the present invention, the gas barrier property can be measured as water vapor permeability by a method based on JIS K 7129-1992. The oxygen permeability can be measured as the oxygen permeability by a method based on JIS K 7126-1987. If the water vapor transmission rate (60 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 × 10 −3 g / (m 2 · 24 h) or less, the water vapor transmission rate is higher than the oxygen transmission rate. However, it is less likely to become a problem as an organic element device.

ガスバリア層は、単層でも複数の同様な膜を積層してもよく、複数の層で、さらにガスバリア性を向上させることもできる。   As the gas barrier layer, a single layer or a plurality of similar films may be laminated, and the gas barrier property can be further improved by a plurality of layers.

本発明に係るガスバリア層に関しては、その形成方法において特に制約は無いが、原材料をスプレー法、スピンコート法、スパッタリング法、イオンアシスト法、プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法等を適用して形成することができる。この中で、プラズマCVD法、無機酸化物膜のセラミック前駆体を塗布した後に、塗布膜を加熱及び/または紫外線照射により、無機酸化物膜を形成する方法が好ましく、ポリシラザン含有液の塗布膜に改質処理を施して形成された二酸化珪素等の珪素酸化物または酸化窒化珪素化合物からなるガスバリア層が特に好ましい。当該セラミック前駆体としては、ゾル状の有機金属化合物またはポリシラザンが好ましい。有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、金属アルコキシドが挙げられる。   The gas barrier layer according to the present invention is not particularly limited in its formation method, but the raw material is spray method, spin coating method, sputtering method, ion assist method, plasma CVD method, atmospheric pressure or pressure near atmospheric pressure. It can be formed by applying a plasma CVD method or the like. Among these, a plasma CVD method, a method in which an inorganic oxide film is formed by applying a ceramic precursor of an inorganic oxide film after heating and / or ultraviolet irradiation is preferable. A gas barrier layer made of a silicon oxide such as silicon dioxide or a silicon oxynitride compound formed by a modification treatment is particularly preferable. The ceramic precursor is preferably a sol-like organometallic compound or polysilazane. The organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.

珪素酸化物または酸化窒化珪素化合物のガスバリア層を形成するための珪素酸化物または酸化窒化珪素化合物の供給は、CVD法(Chemical Vapor Deposition:化学気相成長法)のようにガスとして供給されるよりも、ガスバリアフィルム基材表面に塗布したほうがより均一で、平滑なガスバリア層を形成することができる。CVD法などの場合は気相で反応性が増した原料物質が基材表面に堆積する工程と同時に、気相中で不必要なパーティクルよばれる異物が生成することは、よく知られているが、原料を気相反応空間に存在させないことで、これらパーティクルの発生を抑制することが可能になる。   The silicon oxide or silicon oxynitride compound for forming the gas barrier layer of silicon oxide or silicon oxynitride compound is supplied as a gas as in a CVD method (Chemical Vapor Deposition). However, it is possible to form a more uniform and smooth gas barrier layer by applying it to the surface of the gas barrier film substrate. It is well known that in the case of a CVD method or the like, a foreign material called unnecessary particles is generated in the gas phase simultaneously with the step of depositing the source material having increased reactivity in the gas phase on the substrate surface. By preventing the raw material from being present in the gas phase reaction space, the generation of these particles can be suppressed.

〈ポリシラザン含有液の塗布膜〉
ポリシラザン含有液の塗布膜は、基材上に少なくとも1層のポリシラザン化合物を含有する塗布液を塗布することが好ましい。
<Coating film of polysilazane-containing liquid>
The coating film of the polysilazane-containing liquid is preferably applied with a coating liquid containing at least one polysilazane compound on the substrate.

塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが好ましくは1nm〜100μm程度、さらに好ましくは10nm〜10μm程度、最も好ましくは10nm〜1μm程度となるように設定され得る。   Any appropriate method can be adopted as a coating method. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method. The coating thickness can be appropriately set according to the purpose. For example, the coating thickness can be set so that the thickness after drying is preferably about 1 nm to 100 μm, more preferably about 10 nm to 10 μm, and most preferably about 10 nm to 1 μm.

本発明で用いられる「ポリシラザン」とは、珪素−窒素結合を持つポリマーで、Si−N、Si−H、N−H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 The “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond, and includes SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y made of Si—N, Si—H, N—H, or the like. Such as a ceramic precursor inorganic polymer.

フィルム基材を損なわないように塗布するためには、特開平8−112879号公報に記載されているように比較的低温でセラミック化してシリカに転化する下記一般式1で示されるものがよい。   In order not to damage the film base material, a material represented by the following general formula 1 that is converted to silica by converting to ceramic at a relatively low temperature as described in JP-A-8-112879 is preferable.

Figure 0005581816
Figure 0005581816

式中、R、R、及びRのそれぞれは、独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基などを表す。 In the formula, each of R 1 , R 2 , and R 3 independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, an alkoxy group, or the like.

本発明では、得られるガスバリア膜としての緻密性の観点からは、R、R、及びRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。 In the present invention, perhydropolysilazane in which all of R 1 , R 2 , and R 3 are hydrogen atoms is particularly preferable from the viewpoint of denseness as a gas barrier film to be obtained.

一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。   On the other hand, the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane is hard and brittle. The ceramic film can be provided with toughness, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased. These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.

パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。   Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.

低温でセラミック化するポリシラザンの別の例としては、上記一般式1のポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等が挙げられる。   As another example of polysilazane which is ceramicized at a low temperature, a silicon alkoxide-added polysilazane obtained by reacting a polysilazane of the above general formula 1 with a silicon alkoxide (Japanese Patent Laid-Open No. 5-238827), a glycidol obtained by reacting glycidol Addition polysilazane (JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (JP-A-6-240208), metal carboxylate-added polysilazane obtained by reacting metal carboxylate (special Kaihei 6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles ( JP-A-7- JP), etc. 96986 can be mentioned.

ポリシラザンを含有する液体を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは好ましくない。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度、等目的にあわせて選択し、複数の溶剤を混合しても良い。   As an organic solvent for preparing a liquid containing polysilazane, it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane. Specifically, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers and alicyclic ethers can be used. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed.

ポリシラザン含有塗布液中のポリシラザン濃度は目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2〜35質量%程度である。   The polysilazane concentration in the polysilazane-containing coating solution is about 0.2 to 35% by mass, although it varies depending on the target silica film thickness and the pot life of the coating solution.

有機ポリシラザンは、そのSiと結合する水素部分が一部アルキル基等で置換された誘導体であってもよい。アルキル基、特にもっとも分子量の少ないメチル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいシリカ膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる。   The organic polysilazane may be a derivative in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like. By having an alkyl group, especially a methyl group having the smallest molecular weight, the adhesion to the base material can be improved, and the hard and brittle silica film can be toughened, and even if the film thickness is increased, cracks are not generated. Occurrence is suppressed.

酸化珪素化合物への転化を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製アクアミカNAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140などが挙げられる。   In order to promote the conversion to a silicon oxide compound, an amine or metal catalyst may be added. Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.

〈ポリシラザン膜形成工程〉
ポリシラザン含有液の塗布膜は、改質処理前または処理中に水分が除去されていることが好ましい。そのために、ポリシラザン膜中の溶媒を取り除く目的の第一工程と、それに続くポリシラザン膜中の水分を取り除く目的の第二工程に分かれていることが好ましい。
<Polysilazane film formation process>
The coating film of the polysilazane-containing liquid preferably has moisture removed before or during the modification treatment. Therefore, it is preferable to divide into the 1st process for the purpose of removing the solvent in a polysilazane film | membrane, and the 2nd process for the purpose of removing the water | moisture content in the polysilazane film | membrane following it.

第一工程においては、主に溶媒を取り除くための乾燥条件を、熱処理などの方法で適宜決めることができるがこのときに水分が除去される条件にあってもよい。熱処理温度は迅速処理の観点から高い温度が好ましいが、樹脂基材への熱ダメージを考慮し温度と処理時間を決めることができる。たとえば樹脂基材にガラス転位温度(Tg)が70℃のPET基材を用いる場合には熱処理温度は200℃以下を設定することができる。処理時間は溶媒が除去され、かつ基材への熱ダメージがすくなくなるように短時間に設定することが好ましく、熱処理温度が200℃以下であれば30分以内に設定することができる。   In the first step, the drying conditions for mainly removing the solvent can be appropriately determined by a method such as heat treatment, but the conditions may be such that moisture is removed at this time. The heat treatment temperature is preferably high from the viewpoint of rapid treatment, but the temperature and treatment time can be determined in consideration of thermal damage to the resin substrate. For example, when a PET substrate having a glass transition temperature (Tg) of 70 ° C. is used as the resin substrate, the heat treatment temperature can be set to 200 ° C. or less. The treatment time is preferably set to a short time so that the solvent is removed and the thermal damage to the substrate is reduced. If the heat treatment temperature is 200 ° C. or less, the treatment time can be set within 30 minutes.

第二工程は、ポリシラザン膜中の水分を取り除くための工程で、水分を除去する方法としては低湿度環境に維持される形態が好ましい。低湿度環境における湿度は、温度により変化するので温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4度以下(温度25度/湿度25%)で、より好ましい露点温度は−8度(温度25度/湿度10%)以下、さらに好ましい露点温度は(温度25度/湿度1%)−31度以下であり、維持される時間はポリシラザン膜の膜厚によって適宜変わる。ポリシラザン膜厚1μm以下の条件においては、好ましい露点温度は−8度以下で、維持される時間は5分以上である。また、水分を取り除きやすくするために減圧乾燥してもよい。減圧乾燥における圧力は常圧〜0.1MPaを選ぶことができる。   The second step is a step for removing moisture in the polysilazane film, and the method for removing moisture is preferably in a form maintained in a low humidity environment. Since the humidity in the low humidity environment varies depending on the temperature, a preferable form of the relationship between the temperature and the humidity is indicated by the definition of the dew point temperature. A preferable dew point temperature is 4 degrees or less (temperature 25 degrees / humidity 25%), a more preferable dew point temperature is -8 degrees (temperature 25 degrees / humidity 10%) or less, and a more preferable dew point temperature is (temperature 25 degrees / humidity 1%). ) −31 degrees or less, and the maintained time varies depending on the thickness of the polysilazane film. Under the condition of a polysilazane film thickness of 1 μm or less, the preferable dew point temperature is −8 degrees or less, and the maintained time is 5 minutes or more. Moreover, you may dry under reduced pressure in order to make it easy to remove a water | moisture content. The pressure in the vacuum drying can be selected from normal pressure to 0.1 MPa.

第一工程の条件に対する第二工程の好ましい条件としては、例えば第一工程で温度60〜150℃、処理時間1分〜30分間で溶媒を除去したときには、第二工程の露点は4度以下で処理時間は5分〜120分により水分を除去する条件を選ぶことができる。第一工程と第二工程の区分は露点の変化で区別することができ、工程環境の露点の差が10度以上変わることで区分ができる。   As a preferable condition of the second step with respect to the condition of the first step, for example, when the solvent is removed at a temperature of 60 to 150 ° C. and a processing time of 1 to 30 minutes in the first step, the dew point of the second step is 4 degrees or less. The treatment time can be selected from 5 minutes to 120 minutes under conditions for removing moisture. The first process and the second process can be distinguished by changing the dew point, and can be classified by changing the dew point of the process environment by 10 degrees or more.

ポリシラザン膜は第二工程により水分が取り除かれた後も、その状態を維持されて改質処理されることが好ましい。   The polysilazane film is preferably subjected to a modification treatment while maintaining its state even after moisture is removed in the second step.

〈ポリシラザン膜の含水量〉
ポリシラザン膜の含水率は以下の分析方法で検出できる。
<Water content of polysilazane film>
The water content of the polysilazane film can be detected by the following analysis method.

ヘッドスペース−ガスクロマトグラフ/質量分析法
装置:HP6890GC/HP5973MSD
オーブン:40℃(2min)、その後、10℃/minの速度で150℃まで昇温
カラム:DB−624(0.25mmid×30m)
注入口:230℃
検出器:SIM m/z=18
HS条件:190℃・30min
本発明におけるポリシラザン膜中の含水率は、上記の分析方法により得られる含水量からポリシラザン膜の体積で除した値と定義され、第二工程により水分が取り除かれた状態において、好ましくは0.1%以下である。さらに好ましい含水率は0.01%以下(検出限界以下)である。
Headspace-gas chromatograph / mass spectrometry apparatus: HP6890GC / HP5973MSD
Oven: 40 ° C. (2 min), then heated to 150 ° C. at a rate of 10 ° C./min Column: DB-624 (0.25 mm × 30 m)
Inlet: 230 ° C
Detector: SIM m / z = 18
HS condition: 190 ° C, 30min
The water content in the polysilazane film in the present invention is defined as a value obtained by dividing the water content obtained by the above analytical method by the volume of the polysilazane film, and preferably 0.1% in a state where moisture is removed by the second step. % Or less. A more preferable moisture content is 0.01% or less (below the detection limit).

本発明のように改質処理前、または改質中に水分が除去されることでシラノールに転化したポリシラザン膜の脱水反応を促進するために好ましい形態である。   This is a preferred mode for promoting the dehydration reaction of the polysilazane film converted to silanol by removing water before or during the modification treatment as in the present invention.

(改質処理)
本発明において改質処理とは、セラミック前駆体無機ポリマーであるポリシラザン含有の塗布膜にUV光などを照射して、二酸化珪素等の珪素酸化物または酸化窒化珪素化合物に転化する処理をいう。
(Modification process)
In the present invention, the modification treatment refers to a treatment in which a polysilazane-containing coating film, which is an inorganic ceramic precursor polymer, is irradiated with UV light or the like to be converted into a silicon oxide such as silicon dioxide or a silicon oxynitride compound.

本発明における改質処理は、ポリシラザン膜の転化反応に基づく公知の方法を選ぶことができる。シラザン化合物の置換反応による酸化ケイ素膜または酸化窒化珪素膜の作製には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板においては適応が難しい。本発明においてはプラスチック基板への適応のためにより低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。   For the modification treatment in the present invention, a known method based on the conversion reaction of the polysilazane film can be selected. Production of a silicon oxide film or a silicon oxynitride film by a substitution reaction of a silazane compound requires a high temperature of 450 ° C. or higher, and is difficult to adapt to a flexible substrate such as plastic. In the present invention, a conversion reaction using plasma, ozone, or ultraviolet rays, which can be converted at a lower temperature, is preferred for adaptation to a plastic substrate.

〈プラズマ処理〉
本発明において、改質処理としてのプラズマ処理は、公知の方法を用いることができるが、大気圧プラズマ処理が好ましい。大気圧プラズマ処理の場合は、放電ガスとしては窒素ガス及び/又は周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
<Plasma treatment>
In the present invention, a known method can be used for the plasma treatment as the modification treatment, but atmospheric pressure plasma treatment is preferable. In the case of atmospheric pressure plasma treatment, nitrogen gas and / or Group 18 atom of the periodic table, specifically helium, neon, argon, krypton, xenon, radon, etc. are used as the discharge gas. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.

(紫外線照射処理)
本発明において、改質処理の方法として、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸化窒化珪素膜を作製することが可能である。
(UV irradiation treatment)
In the present invention, a treatment by ultraviolet irradiation is also preferable as a method for the modification treatment. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and it is possible to produce silicon oxide films or silicon oxynitride films that have high density and insulation at low temperatures. It is.

この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるセラミックス膜が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。 By this ultraviolet irradiation, the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated. The conversion to ceramics is promoted, and the resulting ceramic film becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.

また、常用されているいずれの紫外線発生装置でも使用することが可能である。   Further, any commonly used ultraviolet ray generator can be used.

なお、本発明において、「紫外線」とは、一般には、10〜400nmの波長を有する電磁波をいうが、後述する真空紫外線(10〜200nm)処理以外の紫外線照射処理の場合は、好ましくは210〜350nmの紫外線を用いる。   In the present invention, “ultraviolet rays” generally refers to electromagnetic waves having a wavelength of 10 to 400 nm, but in the case of ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described below, preferably 210 to 210. An ultraviolet ray of 350 nm is used.

紫外線の照射は、照射される塗膜を担持している基材がダメージを受けない範囲で照射強度及び/又は照射時間を設定すべきである。   In the irradiation with ultraviolet rays, the irradiation intensity and / or the irradiation time should be set within a range where the substrate carrying the coating film to be irradiated is not damaged.

基材としてプラスチックフィルムを用いた場合を例にとると、たとえば2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm、好ましくは50〜200mW/cmになるように基材−ランプ間距離を設定し、0.1秒〜10分間の照射を行うことができる。 For example, when a plastic film is used as the substrate, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the substrate surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm 2. The distance between the base material and the lamp is set so that the irradiation becomes 0.1 seconds to 10 minutes.

一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には基材が変形したり、その強度が劣化するなど、基材が損なわれる。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基板の場合にはより高温での処理が可能である。従って、この紫外線照射時の基材温度に一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。   In general, when the substrate temperature during the ultraviolet irradiation treatment is 150 ° C. or higher, the substrate is damaged in the case of a plastic film or the like, for example, the substrate is deformed or its strength is deteriorated. However, in the case of a film having high heat resistance such as polyimide or a substrate such as metal, processing at a higher temperature is possible. Therefore, there is no general upper limit to the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.

このような紫外線の発生方法としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線をポリシラザン塗膜に照射する際には、効率の向上のため均一な照射を達成するためにも、発生源からの紫外線を反射板で反射させてから塗膜に当てることが望ましい。   Examples of such ultraviolet ray generation methods include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser, and the like. Also, when irradiating the polysilazane coating film with the generated UV light, the UV light from the source is reflected on the reflector and then applied to the coating film in order to achieve uniform irradiation to improve efficiency. Is desirable.

紫外線照射は、バッチ処理にも連続処理にも適合可能であり、被塗布基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、ポリシラザン塗膜を表面に有する基材(例、シリコンウェハー)を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス(株)製を使用することができる。また、ポリシラザン塗膜を表面に有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、塗布される基材やコーティング組成物の組成、濃度にもよるが、一般に0.1秒〜10分、好ましくは0.5秒〜3分である。   The ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be coated. For example, in the case of batch processing, a substrate (eg, silicon wafer) having a polysilazane coating film on the surface can be processed in an ultraviolet baking furnace equipped with the above-described ultraviolet light source. The ultraviolet baking furnace itself is generally known, and for example, it is possible to use those manufactured by I-Graphics Co., Ltd. In addition, when the substrate having a polysilazane coating film on the surface is a long film, the ceramic is obtained by continuously irradiating ultraviolet rays in a drying zone having the ultraviolet ray generation source as described above while being conveyed. Can be The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate to be applied and the coating composition.

〈真空紫外線照射処理;エキシマ照射処理〉
本発明において、さらに好ましい改質処理の方法として、真空紫外線照射による処理が挙げられる。真空紫外線照射による処理は、シラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化シリコン膜の形成を行う方法である。
<Vacuum UV irradiation treatment; Excimer irradiation treatment>
In the present invention, a more preferable method for the modification treatment is treatment by vacuum ultraviolet irradiation. The treatment with vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the silazane compound, and bonds of atoms are only photons called photon processes. This is a method of forming a silicon oxide film at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of.

これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。   As a vacuum ultraviolet light source required for this, a rare gas excimer lamp is preferably used.

エキシマ光とは、希ガスエキシマーまたはヘテロエキシマーを動作媒質とするレーザー光である。Xe,Kr,Ar,Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
e+Xe→e+Xe
Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
Excimer light is laser light using a rare gas excimer or a hetero excimer as an operating medium. Since noble gas atoms such as Xe, Kr, Ar, Ne and the like are chemically bonded to form no molecule, they are called inert gases. However, a rare gas atom (excited atom) that has gained energy by discharge or the like can combine with other atoms to form a molecule. When the rare gas is xenon,
e + Xe → e + Xe *
Xe * + Xe + Xe → Xe 2 * + Xe
Thus, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light of 172 nm is emitted. A feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high.

また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。   Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.

エキシマ発光を得るには誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電で、micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。このmicro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分る光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。   In order to obtain excimer light emission, a method using dielectric barrier discharge is known. Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. When the micro discharge streamer reaches the tube wall (dielectric) in a similar very thin discharge called micro discharge, the electric charge accumulates on the dielectric surface, and the micro discharge disappears. This micro discharge spreads over the entire tube wall, and is a discharge that is repeatedly generated and extinguished. For this reason, flickering of light that can be seen with the naked eye occurs. Moreover, since a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.

効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外に無電極電界放電でも可能である。   As a method for efficiently obtaining excimer light emission, electrodeless field discharge can be used in addition to dielectric barrier discharge.

容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極およびその配置は基本的には誘電体バリア放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキが無い長寿命のランプが得られる。   Electrodeless electric field discharge by capacitive coupling, also called RF discharge. The lamp and electrodes and their arrangement may be basically the same as for dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.

誘電体バリア放電の場合はmicro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。   In the case of dielectric barrier discharge, micro discharge occurs only between the electrodes, so the outer electrode covers the entire outer surface and allows light to pass through in order to extract light to the outside in order to discharge in the entire discharge space. Must. For this reason, an electrode in which a fine metal wire is formed in a net shape is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere.

これを防ぐためにはランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。   In order to prevent this, it is necessary to provide an atmosphere of an inert gas such as nitrogen around the lamp, that is, the inside of the irradiation apparatus, and provide a synthetic quartz window to extract the irradiation light. Synthetic quartz windows are not only expensive consumables, but also cause light loss.

二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様に出来、一様な照度分布が得られる。   Since the double cylindrical lamp has an outer diameter of about 25 mm, the difference in distance to the irradiation surface cannot be ignored between the position directly below the lamp axis and the side surface of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are arranged in close contact, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.

無電極電界放電を用いた場合には外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。   When electrodeless field discharge is used, it is not necessary to make the external electrodes mesh. The glow discharge spreads over the entire discharge space simply by providing an external electrode on a part of the outer surface of the lamp. As the external electrode, an electrode that also serves as a light reflector made of an aluminum block is usually used on the back of the lamp. However, since the outer diameter of the lamp is as large as in the case of the dielectric barrier discharge, synthetic quartz is required to obtain a uniform illuminance distribution.

細管エキシマランプの最大の特徴は構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。したがって、非常に安価な光源を提供できる。   The biggest feature of the capillary excimer lamp is its simple structure. The quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.

二重円筒型ランプは内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ取り扱いや輸送で破損しやすい。   Since the double cylindrical lamp is processed by connecting both ends of the inner and outer tubes, it is more likely to be damaged during handling and transportation than a thin tube lamp.

細管ランプの管の外径は6〜12mm程度で、あまり太いと始動に高い電圧が必要になる。   The outer diameter of the tube of the thin tube lamp is about 6 to 12 mm, and if it is too thick, a high voltage is required for starting.

放電の形態は誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。   As for the form of discharge, either dielectric barrier discharge or electrodeless field discharge can be used. The electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.

Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラディカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。   The Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, radical oxygen atomic species and ozone can be generated at a high concentration with a small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane film can be modified in a short time. Therefore, compared with low-pressure mercury lamps with wavelengths of 185 nm and 254 nm and plasma cleaning, it is possible to shorten the process time associated with high throughput, reduce the equipment area, and irradiate organic materials and plastic substrates that are easily damaged by heat. .

エキシマランプは光の発生効率が高いため低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。   Since the excimer lamp has high light generation efficiency, it can be lit with low power. In addition, light having a long wavelength that causes a temperature rise due to light is not emitted, and energy is irradiated at a single wavelength in the ultraviolet region, so that the rise in the surface temperature of the object to be fired is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.

(膜密度)
本発明においては、ガスバリア層が珪素酸化物または酸化窒化珪素化合物の膜から形成されていることが好ましい。
(Film density)
In the present invention, the gas barrier layer is preferably formed of a silicon oxide or silicon oxynitride compound film.

ここで言う膜密度は、X線反射率測定法により、測定し、具体的には、X線発生源は銅をターゲットとし、50kV−300mAで作動させる。多層膜ミラーとGe(111)チャンネルカットモノクロメーターにて単色化したX線を使用する。測定は、ソフトウエアーATX−Crystal Guide Ver.6.5.3.4を用い、半割、アライメント調整後、2θ/ω=0度から1度を0.002度/stepで0.05度/min.で走査する。上記の測定条件で反射率曲線を測定した後、株式会社リガク製GXRR Ver.2.1.0.0解析ソフトウエアを用いて求めることができる。   The film density mentioned here is measured by an X-ray reflectivity measurement method. Specifically, the X-ray generation source is operated at 50 kV-300 mA with copper as a target. X-rays monochromatized with a multilayer mirror and a Ge (111) channel cut monochromator are used. The measurement was performed using software ATX-Crystal Guide Ver. 6.5.3.4, halved, after alignment adjustment, 2θ / ω = 0 ° to 1 ° from 0.002 ° / step to 0.05 ° / min. Scan with. After measuring the reflectance curve under the above measurement conditions, GXRR Ver. It can be determined using 2.1.0.0 analysis software.

〈表面粗さ:平滑性〉
ガスバリア層の改質処理側の表面の表面粗さ(Ra)は、2nm以下が好ましく、さらに好ましくは1nm以下である。表面粗さが、上記範囲にあることで有機素子デバイス用の樹脂基材として使用する際に、凹凸が少ない平滑な膜面により光透過効率の向上と、電極間リーク電流の低減によりエネルギー変換効率が向上するので好ましい。ガスバリア層の表面粗さ(Ra)は以下の方法で測定することができる。
<Surface roughness: smoothness>
The surface roughness (Ra) of the gas barrier layer on the modification treatment side is preferably 2 nm or less, and more preferably 1 nm or less. When the surface roughness is in the above range, when used as a resin base material for organic element devices, the energy conversion efficiency is improved by improving the light transmission efficiency with a smooth film surface with few irregularities and reducing the inter-electrode leakage current. Is preferable. The surface roughness (Ra) of the gas barrier layer can be measured by the following method.

表面粗さ測定の方法;AFM測定:
表面粗さは、AFM(原子間力顕微鏡)、例えば、Digital Instruments社製DI3100で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
Surface roughness measurement method; AFM measurement:
The surface roughness is calculated from an uneven sectional curve continuously measured with an AFM (Atomic Force Microscope), for example, DI3100 manufactured by Digital Instruments, with a detector having a stylus with a minimum tip radius. This is a roughness related to the amplitude of fine irregularities measured by a stylus many times in a section whose measurement direction is several tens of μm.

(基材)
本発明のガスバリア性フィルムの基材(支持体ともいう。)としては、後述のガスバリア性を有するガスバリア層を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
(Base material)
The substrate (also referred to as a support) of the gas barrier film of the present invention is not particularly limited as long as it is formed of an organic material capable of holding a gas barrier layer having gas barrier properties described later. .

例えば、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリスチレン(PS)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂フィルム、更には前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などが好ましく用いられる。   For example, methacrylic acid ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polystyrene (PS), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, poly Examples include resin films such as ether imide, and resin films formed by laminating two or more layers of the above resins. From the viewpoint of cost and availability, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used.

支持体の厚さは5〜500μm程度が好ましく、更に好ましくは25〜250μmである。   The thickness of the support is preferably about 5 to 500 μm, more preferably 25 to 250 μm.

また、本発明に係る支持体は透明であることが好ましい。支持体が透明であり、支持体上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。   The support according to the present invention is preferably transparent. Since the support is transparent and the layer formed on the support is also transparent, a transparent gas barrier film can be obtained, and thus a transparent substrate such as an organic EL element can be obtained. It is.

また、上記に挙げた樹脂等を用いた支持体は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。   In addition, the support using the above-described resins or the like may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.

本発明に用いられる支持体は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の支持体を製造することができる。また、未延伸の支持体を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、支持体の流れ(縦軸)方向、又は支持体の流れ方向と直角(横軸)方向に延伸することにより延伸支持体を製造することができる。この場合の延伸倍率は、支持体の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2〜10倍が好ましい。   The support used in the present invention can be produced by a conventionally known general method. For example, an unstretched support that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. Further, the unstretched support is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, and other known methods, such as the flow (vertical axis) direction of the support, or A stretched support can be produced by stretching in the direction perpendicular to the flow direction of the support (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the support, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.

また本発明に用いられる支持体は、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80〜200℃で行われることが好ましく、より好ましくは処理温度が100〜180℃である。また長手方向、幅手方向ともに、弛緩率が0.1〜10%の範囲で行われることが好ましく、より好ましくは弛緩率が2〜6%で処理されることである。弛緩処理された支持体は、下記のオフライン熱処理を施すことにより耐熱性が向上し、更に寸法安定性が良好になる。オフライン熱処理の方法としては、特に限定されないが、例えば、複数のロール群によるロール搬送方法、空気をフィルムに吹き付けて浮揚させるエアー搬送などにより搬送させる方法(複数のスリットから加熱空気をフィルム面の片面あるいは両面に吹き付ける方法)、赤外線ヒーターなどによる輻射熱を利用する方法、フィルムを自重で垂れ下がらせ、下方で巻き等搬送方法等を挙げることが出来る。熱処理の搬送張力は、出来るだけ低くして熱収縮を促進することで、良好な寸法安定性の支持体となる。処理温度としてはTg+50〜Tg+150℃の温度範囲が好ましい。   In addition, the support used in the present invention may be subjected to relaxation treatment or off-line heat treatment in terms of dimensional stability. It is preferable that the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C, more preferably a treatment temperature of 100 to 180 ° C. Moreover, it is preferable that the relaxation rate is in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%. The relaxed support is subjected to the following off-line heat treatment to improve heat resistance and further improve dimensional stability. Although it does not specifically limit as a method of off-line heat processing, For example, the method of conveying by the roll conveyance method by a some roll group, the air conveyance etc. which blow an air on a film and levitate | float (one side of a film surface from heating air) Or, a method of spraying on both surfaces), a method of using radiant heat from an infrared heater, a method of hanging the film by its own weight, and a method of conveying such as winding below. The conveyance tension of the heat treatment is made as low as possible to promote thermal shrinkage, thereby providing a support with good dimensional stability. The treatment temperature is preferably in the temperature range of Tg + 50 to Tg + 150 ° C.

本発明の支持体は、製膜過程で片面または両面にインラインで下引層塗布液を塗布することが好ましい。本発明において、製膜工程中での下引塗布をインライン下引という。本発明に有用な下引層塗布液に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂及びゼラチン等を挙げることが出来、何れも好ましく用いることが出来る。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。   The support of the present invention is preferably coated with an undercoat layer coating solution inline on one side or both sides in the film forming process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating. Examples of resins used in the undercoat layer coating solution useful in the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins, and polyvinyl alcohol resins. , Modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used. A conventionally well-known additive can also be added to these undercoat layers. The undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating.

また本発明の支持体は、屋外で使用することから、耐加水分解性を有するフィルムを使用することができる。例えば、特開2007−70430号公報のフィルムの固有粘度を上げる技術や、特開2007−204538号公報のフィルム中のポリエステルの末端カルボン酸を抑える技術等を使用して、耐加水分解性を向上することができる。   Further, since the support of the present invention is used outdoors, a film having hydrolysis resistance can be used. For example, using the technology for increasing the intrinsic viscosity of a film disclosed in Japanese Patent Application Laid-Open No. 2007-70430 or the technology for suppressing the terminal carboxylic acid of polyester in the film disclosed in Japanese Patent Application Laid-Open No. 2007-204538, the hydrolysis resistance is improved. can do.

(光散乱性層、UVカット性層)
本発明において、少なくともガスバリア層の反対側にあって、基材に隣接する層は光散乱剤UVカット剤とを含有する鉛筆硬度がH以上の層である。上記層が基材に隣接することで、UVカット性層なら基材のUV吸収による黄変や弾性率の低下等を効率良く抑制できる。また光散乱層なら有機素子デバイスから発生した光を効率良く外に取り出したり、光を効率良く取り込んで電気に変換したりすることが可能になり、多機能ガスバリア性フィルムとして有効である。但し本発明において基材に隣接する層として、光散乱性層またはUVカット性層との界面接着性を上げる目的に使われる乾燥時の膜厚が0.3μm以下の易接着層(下引層ともいう)は隣接層とはしない。
(Light scattering layer, UV cut layer)
In the present invention, at least on the opposite side of the gas barrier layer, the layer adjacent to the base material is a layer having a pencil hardness of H or more containing a light scattering agent and a UV cut agent. If the layer is adjacent to the base material, the UV-cutting layer can efficiently suppress yellowing due to UV absorption of the base material, a decrease in elastic modulus, and the like. In addition, the light scattering layer is effective as a multifunctional gas barrier film because light generated from the organic element device can be efficiently extracted to the outside and light can be efficiently extracted and converted into electricity. However, in the present invention, an easy-adhesion layer (undercoat layer) having a dry film thickness of 0.3 μm or less used for the purpose of increasing the interfacial adhesion with the light-scattering layer or the UV-cutting layer as a layer adjacent to the substrate. Is also not an adjacent layer.

本発明における光散乱性層は、樹脂材料と光散乱剤の組み合わせ、UVカット性層は、樹脂材料とUVカット剤との組み合わせで基本的に構成される。   The light-scattering layer in the present invention is basically composed of a combination of a resin material and a light-scattering agent, and the UV-cutting layer is basically composed of a combination of a resin material and a UV-cutting agent.

本発明の光散乱剤UVカット剤を有している層は、硬度がH以上である。特に好ましくは硬度が2H以上6H以下である。硬度がHより小さいと、上記層の耐熱性が不十分であり、屋外用の多機能ガスバリア性フィルムとして、それを用いた有機素子デバイスとしては好ましくない。硬度はJIS K 5600−5−4に準拠して、手かき法による鉛筆硬度で測定する事ができる。 Layer and a light scattering agent and UV cut agent of the present invention, hardness of Ru der than H. Particularly preferably, the hardness is 2H or more and 6H or less. When the hardness is smaller than H, the heat resistance of the above layer is insufficient, and it is not preferable as an organic element device using it as an outdoor multifunctional gas barrier film. The hardness can be measured by pencil hardness by a hand-drawing method in accordance with JIS K 5600-5-4.

またUVカット剤と光散乱剤を一つの層に添加することで一層で、良好な光散乱性とUVカット性が得られる。 Further , by adding the UV-cutting agent and the light-scattering agent to one layer, good light-scattering properties and UV-cutting properties can be obtained in one layer.

(樹脂材料)
本発明における樹脂材料としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂、電子線硬化樹脂を使用することができるが、硬度、平滑性等が必要なことから、紫外線硬化樹脂、電子線硬化樹脂を使用することが好ましく、特に紫外線硬化樹脂が好ましい。
(Resin material)
As the resin material in the present invention, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, and an electron beam curable resin can be used. However, since hardness, smoothness, and the like are necessary, the ultraviolet curable resin, the electron beam are used. It is preferable to use a curable resin, and an ultraviolet curable resin is particularly preferable.

紫外線硬化樹脂としては、硬化によって透明な樹脂組成物を形成する物であれば特に制限なく使用でき、例えば、シリコーン樹脂、エポキシ樹脂、ビニルエステル樹脂、アクリル系樹脂、アリルエステル系樹脂等が挙げられる。特に好ましくは、硬度、平滑性、透明性の観点からアクリル系樹脂を用いることができる。   The ultraviolet curable resin can be used without particular limitation as long as it forms a transparent resin composition by curing, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, and allyl ester resins. . Particularly preferably, an acrylic resin can be used from the viewpoints of hardness, smoothness, and transparency.

アクリル系樹脂組成物としては、ラジカル反応性不飽和化合物を有するアクリレート化合物、アクリレート化合物とチオール基を有するメルカプト化合物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させたもの等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。   Examples of the acrylic resin composition include acrylate compounds having a radical reactive unsaturated compound, mercapto compounds having an acrylate compound and a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, glycerol methacrylate and the like. What dissolved the polyfunctional acrylate monomer etc. are mentioned. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.

光重合開始剤としては、公知のものを使用することができ、1種又は2種以上の組み合わせで使用することができる。   As a photoinitiator, a well-known thing can be used and it can be used by 1 type, or 2 or more types of combination.

本発明のおけるアクリル系樹脂は、硬度、平滑性、透明性の観点から、国際公開第2008−035669号に記載されているような表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むことが好ましい。ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基などを挙げることができる。また感光性樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むものであってもよい。また重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。ここで、反応性シリカ粒子の平均粒子径としては、0.001〜0.1μmの平均粒子径であることが好ましい。平均粒子径をこのような範囲にすることにより、透明性、平滑性、硬度をバランスよく満たすことができる。   The acrylic resin in the present invention is a reaction in which a photosensitive group having photopolymerization reactivity is introduced on the surface as described in International Publication No. 2008-035669 from the viewpoint of hardness, smoothness, and transparency. It is preferable to contain reactive silica particles (hereinafter also simply referred to as “reactive silica particles”). Here, examples of the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group. The photosensitive resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an unsaturated organic compound having a polymerizable unsaturated group. It may be. In addition, a polymerizable unsaturated group-modified hydrolyzable silane reacts with a silica particle that forms a silyloxy group and is chemically bonded to the silica particle by a hydrolysis reaction of the hydrolyzable silyl group. Can be used as conductive silica particles. Here, the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 μm. By setting the average particle diameter in such a range, transparency, smoothness, and hardness can be satisfied in a well-balanced manner.

また本発明のアクリル系樹脂には、屈折率を調整するできる点で、含フッ素ビニルモノマーを用いることもできる。含フッ素ビニルモノマーとしてはフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学製)やR−2020(商品名、ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。   Moreover, a fluorine-containing vinyl monomer can also be used for the acrylic resin of this invention at the point which can adjust a refractive index. Examples of the fluorine-containing vinyl monomer include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.), (meth) acrylic acid moieties or fully fluorinated alkyl ester derivatives (for example, biscoat 6FM (trade name) And R-2020 (trade name, manufactured by Daikin) and the like, and fully or partially fluorinated vinyl ethers.

(UVカット剤)
本発明におけるUVカット剤は紫外領域に吸収を持つUV吸収剤である。UV吸収剤としては、無機系、有機系のいずれも使用することができるが、耐候性の観点からは無機系粒子の方が好ましい。
(UV cut agent)
The UV cut agent in the present invention is a UV absorber having absorption in the ultraviolet region. As the UV absorber, either inorganic or organic can be used, but inorganic particles are preferred from the viewpoint of weather resistance.

無機系粒子としては、二酸化チタン、酸化亜鉛、酸化セリウムや、二酸化チタン微粒子を酸化鉄で複合化処理してなるハイブリッド無機粉体、酸化セリウム微粒子の表面を非結晶性シリカでコーティングしてなるハイブリッド無機粉体などが挙げられる。UV吸収剤の粒径は、透明性、平滑性の観点から、0.1μm以下が好ましい。   Inorganic particles include titanium dioxide, zinc oxide, cerium oxide, hybrid inorganic powder obtained by complexing titanium dioxide fine particles with iron oxide, and hybrid obtained by coating the surface of cerium oxide fine particles with amorphous silica. An inorganic powder etc. are mentioned. The particle size of the UV absorber is preferably 0.1 μm or less from the viewpoint of transparency and smoothness.

一方、有機系のUV吸収剤としては、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、置換アクリロニトリル系等が挙げられる。有機系は、光安定剤と併用することで耐候性が向上するので、有用である。光安定化剤としては、ヒンダードアミン系のような素材が挙げられる。前記UV吸収剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。UVカット性層における含有量としては特に制限はないが、透明性、平滑性の点から、0.1〜50質量%、好ましくは1〜20質量%の範囲が好ましい。   On the other hand, examples of organic UV absorbers include salicylates, benzophenones, benzotriazoles, and substituted acrylonitriles. The organic system is useful because it improves weather resistance when used in combination with a light stabilizer. Examples of the light stabilizer include materials such as hindered amines. The said UV absorber may be used independently and may be used in combination of 2 or more type. Although there is no restriction | limiting in particular as content in a UV-cutting layer, From the point of transparency and smoothness, 0.1-50 mass%, Preferably the range of 1-20 mass% is preferable.

(光散乱剤)
本発明に係る光散乱剤としては、無機系粒子、有機系粒子、いずれも使用することができる。光散乱性層の効用、つまり光取り出し、光取り込みの用途によって、また必要な屈折率によって使い分けをすることができる。例えば、高屈折率の層にする場合には無機系粒子の方が好ましく、低屈折率の層にするには、フッ素含有の有機系粒子であることが好ましい。
(Light scattering agent)
As the light scattering agent according to the present invention, both inorganic particles and organic particles can be used. Depending on the utility of the light-scattering layer, that is, the use of light extraction and light capture, and the necessary refractive index, it can be used properly. For example, inorganic particles are preferable for a high refractive index layer, and fluorine-containing organic particles are preferable for a low refractive index layer.

無機系粒子としては、例えば、珪素、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫及びアンチモンから選ばれる少なくとも1種の金属の酸化物であることが好ましく、具体例としては、Si0、ZrO、TiO、Al(アルミナ)、In、ZnO、SnO、Sb、ITO、MgF等が挙げられる。また、合成マイカ(雲母)、カオリン(AlSi(OH))なども使用することができる。上記の中で好ましくは、反射率等の点から、酸化珪素、酸化亜鉛、酸化チタン、酸化ジルコニアマイカ、アルミナが好ましい。これらの無機系粒子は、表面に光の反射率を向上させる目的で、他の組成を修飾することもできる。 The inorganic particles are preferably oxides of at least one metal selected from, for example, silicon, zirconium, titanium, aluminum, indium, zinc, tin, and antimony. Specific examples include SiO 2 , ZrO 2. , TiO 2, Al 2 O 3 ( alumina), In 2 O 3, ZnO , SnO 2, Sb 2 O 3, ITO, MgF 2 and the like. Synthetic mica (mica), kaolin (Al 2 Si 2 O 5 (OH) 4 ), and the like can also be used. Among these, silicon oxide, zinc oxide, titanium oxide, zirconia mica, and alumina are preferable from the viewpoint of reflectance and the like. These inorganic particles can be modified with other compositions for the purpose of improving the reflectance of light on the surface.

本発明における粒子は、光散乱性の観点から、粒径が0.1〜5.0μm、好ましくは0.2〜2.0μmであることが好ましい。粒径が0.1μmより小さいと光散乱性が小さくなり好ましくない。また粒径が5.0μmより大きいと、膜厚や含有量にもよるが光透過性が劣化し、好ましくない。   The particles in the present invention preferably have a particle size of 0.1 to 5.0 μm, preferably 0.2 to 2.0 μm, from the viewpoint of light scattering properties. If the particle size is smaller than 0.1 μm, the light scattering property is decreased, which is not preferable. On the other hand, when the particle size is larger than 5.0 μm, although it depends on the film thickness and content, the light transmittance is deteriorated, which is not preferable.

本発明の粒子は、異方性、すなわち針状や板状の粒子も用いることができる。また本発明の粒子は、1種または2種以上を適宜に選択して用いることができる。また本発明の効果を損なわない範囲で、他の無機系粒子、有機系粒子を混合して使用することもできる。   The particles of the present invention can also be anisotropic, that is, needle-like or plate-like particles. Moreover, the particle | grains of this invention can select and use 1 type (s) or 2 or more types suitably. In addition, other inorganic particles and organic particles can be mixed and used within a range not impairing the effects of the present invention.

光散乱性層における含有量としては特に制限はないが、透明性、平滑性の点から、0.1〜50質量%、好ましくは1〜20質量%の範囲が好ましい。   Although there is no restriction | limiting in particular as content in a light-scattering layer, From the point of transparency and smoothness, 0.1-50 mass%, Preferably the range of 1-20 mass% is preferable.

(光散乱性層、UVカット性層その他)
本発明における光散乱性層、UVカット性層の厚さとしては、1〜10μm、好ましくは2〜7μmであることが望ましい。1μmより小さいと、硬度が不十分で好ましくない。一方、10μmより大きいと平滑層や透明性等が劣化し好ましくない。
(Light scattering layer, UV cut layer, etc.)
The thickness of the light-scattering layer and the UV-cutting layer in the present invention is 1 to 10 μm, preferably 2 to 7 μm. If it is smaller than 1 μm, the hardness is insufficient and is not preferable. On the other hand, if it is larger than 10 μm, the smooth layer, transparency and the like deteriorate, which is not preferable.

光散乱性層、UVカット性層の形成方法は特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。   The method for forming the light-scattering layer and the UV-cutting layer is not particularly limited, but is formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as a vapor deposition method. It is preferable.

紫外線照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプなどから発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する、又は走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。   As a method of irradiating ultraviolet rays, ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like, or a scanning type or a curtain type are used. It can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from the electron beam accelerator.

光散乱性層、UVカット性層の形成では、上述の樹脂に、必要に応じて、酸化防止剤、可塑剤、マット剤、熱可塑性樹脂等の添加剤を加えることができる。また樹脂を溶媒に溶解又は分散させた塗布液を用いて平滑層を形成する際に使用する溶媒としては、公知のものを使用することができる。   In the formation of the light-scattering layer and the UV-cutting layer, additives such as an antioxidant, a plasticizer, a matting agent, and a thermoplastic resin can be added to the above-described resin as necessary. Moreover, as a solvent used when forming a smooth layer using the coating liquid which melt | dissolved or disperse | distributed resin in the solvent, a well-known thing can be used.

(有機素子デバイス)
本発明のガスバリア性フィルムは、有機素子デバイス用フィルムとして使用することができる。有機素子デバイスとしては、有機EL素子、有機光電変換素子等が挙げられる。下記に本発明のガスバリア性フィルムを有機EL素子、有機光電変換素子に使用する際の構成、詳細について説明する。
(Organic device)
The gas barrier film of the present invention can be used as a film for organic element devices. Examples of the organic element device include an organic EL element and an organic photoelectric conversion element. The configuration and details of using the gas barrier film of the present invention for an organic EL device and an organic photoelectric conversion device are described below.

(有機EL)
次いで、本発明の有機ELの一例である有機EL素子の実施形態を詳細に説明するが、以下に記載する内容は、本発明の実施態様の代表例であり、本発明はその要旨を超えない限り、これらの内容に限定されない。
(Organic EL)
Next, embodiments of the organic EL element which is an example of the organic EL of the present invention will be described in detail. However, the contents described below are representative examples of the embodiments of the present invention, and the present invention does not exceed the gist thereof. As long as it is not limited to these contents.

〔有機EL素子〕
有機EL層(以下、有機EL素子ともいう)の層構成の好ましい具体例を以下に示す。
[Organic EL device]
Preferred specific examples of the layer structure of the organic EL layer (hereinafter also referred to as organic EL element) are shown below.

(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
ここで、発光層で発生した光が外部へ出射されるためには、陽極または陰極の少なくとも一方が透明であることが必要であるが、本発明においては、透明導電層を主に陽極として使用することが好ましい。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode Here, in order for the light generated in the light emitting layer to be emitted to the outside, it is necessary that at least one of the anode and the cathode is transparent. In the method, it is preferable to use the transparent conductive layer mainly as an anode.

発光層は、少なくとも発光色の異なる2種以上の発光材料を含有していることが好ましく、単層でも複数の発光層からなる発光層ユニットを形成していてもよい。また、正孔輸送層には正孔注入層、電子阻止層も含まれる。   The light emitting layer preferably contains at least two kinds of light emitting materials having different emission colors, and a single layer or a light emitting layer unit composed of a plurality of light emitting layers may be formed. The hole transport layer also includes a hole injection layer and an electron blocking layer.

〔透明導電層〕
有機EL素子における透明導電層としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物が、透明導電層を形成する電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性光透過性材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で光透過性の導電膜を作製可能な材料を用いてもよい。本発明においては、透明導電層は陽極として用いられることが好ましい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは50〜200nmの範囲で選ばれる。
[Transparent conductive layer]
As the transparent conductive layer in the organic EL element, a material having a work function (4 eV or more) metal, alloy, electrically conductive compound and a mixture thereof as an electrode material for forming the transparent conductive layer is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive light-transmitting materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used. In the present invention, the transparent conductive layer is preferably used as an anode. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. The sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 50 to 200 nm.

また、この透明導電層に金属ナノワイヤを用いることもできる。金属ナノワイヤを用いる場合、1つの金属ナノワイヤで長い導電パスを形成するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、さらには3〜500μmが好ましく、特に、3〜300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10〜300nmが好ましく、30〜200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。   Moreover, a metal nanowire can also be used for this transparent conductive layer. In the case of using metal nanowires, in order to form a long conductive path with one metal nanowire and to express appropriate light scattering properties, the average length is preferably 3 μm or more, and more preferably 3 to 500 μm. It is preferable that it is 3-300 micrometers especially. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, it is preferable that an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint. In this invention, 10-300 nm is preferable as an average diameter of metal nanowire, and it is more preferable that it is 30-200 nm. In addition, the relative standard deviation of the diameter is preferably 20% or less.

金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。   The metal composition of the metal nanowire is not particularly limited, and can be composed of one or more metals such as a noble metal element and a base metal element, but noble metals (for example, gold, platinum, silver, palladium, rhodium, iridium, ruthenium, Osmium etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity.

また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。金属ナノワイヤが二種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。   In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire contains two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire may have the same metal composition.

Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833〜837;Chem.Mater.,2002,14,4736〜4745等、Auナノワイヤの製造方法としては特開2006−233252号公報等、Cuナノワイヤの製造方法としては特開2002−266007号公報等、Coナノワイヤの製造方法としては特開2004−149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、金属ナノワイヤの製造方法として好ましく適用することができる。   As a manufacturing method of Ag nanowire, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. , 2002, 14, 4736-4745, etc. As a method for producing Co nanowires, a method for producing Au nanowires is disclosed in JP 2006-233252A, and a method for producing Cu nanowires is disclosed in JP 2002-266007 A, etc. Reference can be made to Japanese Unexamined Patent Publication No. 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in 1 can easily produce Ag nanowires in water, and since silver has the highest conductivity in metals, it can be preferably applied as a method for producing metal nanowires. it can.

(発光層)
発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
(Light emitting layer)
The light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light-emitting portion is the light-emitting layer even in the light-emitting layer. It may be an interface with an adjacent layer.

発光層としては、含まれる発光材料が前記要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。また、各発光層間には非発光性の中間層を有していることが好ましい。   As a light emitting layer, if the light emitting material contained satisfies the said requirements, there will be no restriction | limiting in particular in the structure. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. Moreover, it is preferable to have a non-light emitting intermediate | middle layer between each light emitting layer.

発光層の膜厚の総和は1〜100nmの範囲にあることが好ましく、更に好ましくは、より低い駆動電圧を得ることができることから30nm以下である。なお、発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。   The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained. Note that the total film thickness of the light emitting layer is a film thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers.

個々の発光層の膜厚としては、1〜50nmの範囲に調整することが好ましく、更に好ましくは1〜20nmの範囲に調整することである。青、緑、赤の各発光層の膜厚の関係については、特に制限はない。   The thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, more preferably adjusted to a range of 1 to 20 nm. There is no particular limitation on the relationship between the film thicknesses of the blue, green and red light emitting layers.

発光層の作製には、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。   For the production of the light emitting layer, a light emitting material or a host compound, which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. it can.

各発光層には複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料を同一発光層中に混合して用いてもよい。   A plurality of light emitting materials may be mixed in each light emitting layer, and a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.

発光層の構成として、ホスト化合物、発光材料(発光ドーパント化合物ともいう)を含有し、発光材料より発光させることが好ましい。   As a structure of the light emitting layer, it is preferable to contain a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emit light from the light emitting material.

有機EL素子の発光層に含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。更に好ましくは燐光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。   As the host compound contained in the light emitting layer of the organic EL device, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.

ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。   As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of luminescent material mentioned later, and can thereby obtain arbitrary luminescent colors.

用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。   The host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .

公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。   As the known host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable. Here, the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).

公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等が挙げられる。   Specific examples of known host compounds include compounds described in the following documents. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787 gazette, 2002-15871 gazette, 2002-334788 gazette, 2002-43056 gazette, 2002-334789 gazette, 2002-75645 gazette, 2002-338579 gazette. No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. 2002-302516, 2002-305083, 2002-305084, 2002-308837, and the like.

次に、発光材料について説明する。   Next, the light emitting material will be described.

発光材料としては、蛍光性化合物、燐光発光材料(燐光性化合物、燐光発光性化合物等ともいう)を用いることができる。   As the light-emitting material, a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) can be used.

燐光発光材料とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。   A phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0.01 or more at 25 ° C. However, the preferable phosphorescence quantum yield is 0.1 or more.

上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光材料を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。   The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in a solution can be measured using various solvents. However, when a phosphorescent material is used in the present invention, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.

燐光発光材料の発光の原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光材料に移動させることで燐光発光材料からの発光を得るというエネルギー移動型であり、もう一つは燐光発光材料がキャリアトラップとなり、燐光発光材料上でキャリアの再結合が起こり燐光発光材料からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光材料の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of light emission principles of phosphorescent materials. One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is transferred to the phosphorescent material. The energy transfer type is to obtain light emission from the phosphorescent light emitting material, and the other is that the phosphorescent light emitting material becomes a carrier trap, and carrier recombination occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material is obtained. In any case, the excited state energy of the phosphorescent light emitting material is required to be lower than the excited state energy of the host compound.

燐光発光材料は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。   The phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.

有機EL素子には、蛍光発光体を用いることもできる。蛍光発光体(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。   A fluorescent substance can also be used for the organic EL element. Representative examples of fluorescent emitters (fluorescent dopants) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.

また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第00/70655号明細書、特開2002−280178号公報、同2001−181616号公報、同2002−280179号公報、同2001−181617号公報、同2002−280180号公報、同2001−247859号公報、同2002−299060号公報、同2001−313178号公報、同2002−302671号公報、同2001−345183号公報、同2002−324679号公報、国際公開第02/15645号明細書、特開2002−332291号公報、同2002−50484号公報、同2002−332292号公報、同2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、同2002−338588号公報、同2002−170684号公報、同2002−352960号公報、国際公開第01/93642号明細書、特開2002−50483号公報、同2002−100476号公報、同2002−173674号公報、同2002−359082号公報、同2002−175884号公報、同2002−363552号公報、同2002−184582号公報、同2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、同2002−226495号公報、同2002−234894号公報、同2002−235076号公報、同2002−241751号公報、同2001−319779号公報、同2001−319780号公報、同2002−62824号公報、同2002−100474号公報、同2002−203679号公報、同2002−343572号公報、同2002−203678号公報等が挙げられる。   Conventionally known dopants can also be used in the present invention. For example, WO 00/70655, JP-A 2002-280178, 2001-181616, 2002-280179, 2001-181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002 No. 324679, International Publication No. 02/15645, JP 2002-332291 A, 2002-50484, 2002-332292, 2002-83684, JP 2002-540572 A JP, 2002-11 No. 978, No. 2002-338588, No. 2002-170684, No. 2002-352960, WO 01/93642, JP-A No. 2002-50483, No. 2002-1000047. JP 2002-173674, 2002-359082, 2002-17584, 2002-363552, 2002-184582, 2003-7469, JP 2002-525808, JP 2003-7471 A, JP 2002-525833 A, JP 2003-31366 A, 2002-226495 A, 2002-234894 A, 2002-23076 A, 2002-241751 Gazette, 200 -319779, 2001-319780, 2002-62824, 2002-1000047, 2002-203679, 2002-343572, 2002-203678, and the like. .

本発明においては、少なくとも一つの発光層に2種以上の発光材料を含有していてもよく、発光層における発光材料の濃度比が発光層の厚さ方向で変化していてもよい。   In the present invention, at least one light emitting layer may contain two or more kinds of light emitting materials, and the concentration ratio of the light emitting materials in the light emitting layer may vary in the thickness direction of the light emitting layer.

(中間層)
各発光層間に非発光性の中間層(非ドープ領域等ともいう)を設ける場合について説明する。
(Middle layer)
A case where a non-light emitting intermediate layer (also referred to as an undoped region or the like) is provided between the light emitting layers will be described.

非発光性の中間層とは、複数の発光層を有する場合、その発光層間に設けられる層である。非発光性の中間層の膜厚としては1〜20nmの範囲にあるのが好ましく、更には3〜10nmの範囲にあることが隣接発光層間のエネルギー移動等相互作用を抑制し、且つ素子の電流電圧特性に大きな負荷を与えないということから好ましい。   The non-light emitting intermediate layer is a layer provided between the light emitting layers in the case of having a plurality of light emitting layers. The film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 20 nm, and further in the range of 3 to 10 nm suppresses interaction such as energy transfer between adjacent light emitting layers, and the current of the device This is preferable because a large load is not applied to the voltage characteristics.

この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト材料と同一であることが好ましい。   The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.

非発光性の中間層は非発光層、各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、燐光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層−非発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。更に、非ドープ発光層に各発光層に含まれるホスト化合物と同一の物理的特性または同一の分子構造を有するホスト材料を用いることにより、従来の有機EL素子作製の大きな問題点である素子作製の煩雑さをも併せて解消することができる。   The non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) In the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, or the molecular structure of the host compound is the same, etc.) The barrier is reduced, and the effect of easily maintaining the injection balance of holes and electrons even when the voltage (current) is changed can be obtained. Furthermore, by using a host material having the same physical characteristics or the same molecular structure as the host compound contained in each light-emitting layer in the undoped light-emitting layer, device fabrication, which is a major problem in conventional organic EL device fabrication, is achieved. Complexity can also be eliminated.

ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は正孔と電子注入・輸送バランスを崩しやすいため、中間層材料、ホスト材料は移動度の電界強度依存性の少ない材料を用いることが好ましい。   Since the host material is responsible for carrier transportation, a material having carrier transportation ability is preferable. Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.

また、一方では、正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は後述する阻止層、即ち正孔阻止層、電子阻止層として機能することも好ましい態様として挙げられる。   On the other hand, in order to optimally adjust the injection balance of holes and electrons, it is also preferable that the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. Can be mentioned.

(注入層:電子注入層、正孔注入層)
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
(Injection layer: electron injection layer, hole injection layer)
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.

注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。   An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.

陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。   The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material.

(阻止層:正孔阻止層、電子阻止層)
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
(Blocking layer: hole blocking layer, electron blocking layer)
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer.

正孔阻止層とは、広い意味では、電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。   In a broad sense, the hole blocking layer has a function of an electron transport layer and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.

一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。正孔阻止層、電子輸送層の膜厚としては好ましくは3〜100nmであり、更に好ましくは5〜30nmである。   On the other hand, the electron blocking layer, in a broad sense, has a function of a hole transport layer, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer is preferably 3 to 100 nm, and more preferably 5 to 30 nm.

(正孔輸送層)
正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。   The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.

正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。   The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.

芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。   Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two of those described in US Pat. No. 5,061,569. Having a condensed aromatic ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8 are linked in a starburst type ( MTDATA) and the like.

更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。   Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。   JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.

正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.

このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。   It is preferable to use such a hole transport layer having a high p property because an element with lower power consumption can be manufactured.

(電子輸送層)
電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.

従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。   Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Further, the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.

電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Further, an electron transport layer having a high n property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be manufactured.

(対向電極)
対向電極としては、前記透明導電層に対向する電極をいう。本発明においては、透明導電層を主に陽極として使用するため、対向電極としては以下に示す陰極を用いることができる。陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
(Counter electrode)
The counter electrode is an electrode facing the transparent conductive layer. In the present invention, since the transparent conductive layer is mainly used as an anode, the following cathode can be used as the counter electrode. As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.

また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。   Moreover, after producing the said metal with a film thickness of 1 nm-20 nm on a cathode, a transparent or semi-transparent cathode can be produced by producing an electroconductive transparent material on it, By applying this, An element in which both the anode and the cathode are transmissive can be manufactured.

〔有機ELの作製方法〕
本発明の有機ELは、透明基材上に、光取り出し層と、透明導電層、有機エレクトロルミネッセンス層、及び対向電極を順次形成することにより作製できる。
[Production method of organic EL]
The organic EL of the present invention can be produced by sequentially forming a light extraction layer, a transparent conductive layer, an organic electroluminescence layer, and a counter electrode on a transparent substrate.

(透明導電層の形成)
透明基材上に、所望の電極物質を用いて透明導電層を形成することができる。例えば、電極物質としてITO(すずを添加した酸化インジウム)を用いる場合には、蒸着やスパッタリング等の方法により透明導電層を形成することができる。また、金属ナノワイヤや導電性ポリマーあるいは透明導電性金属酸化物を含む材料を、塗布法や印刷法などの液相成膜法を用いて透明導電層を形成することもできる。
(Formation of transparent conductive layer)
A transparent conductive layer can be formed on a transparent substrate using a desired electrode material. For example, when ITO (indium oxide added with tin) is used as the electrode material, the transparent conductive layer can be formed by a method such as vapor deposition or sputtering. In addition, a transparent conductive layer can be formed from a material containing metal nanowires, a conductive polymer, or a transparent conductive metal oxide by a liquid phase film forming method such as a coating method or a printing method.

生産性の改善、平滑性や均一性などの電極品質の向上、環境負荷軽減の観点から、金属ナノワイヤを含有する透明導電層を塗布法や印刷法などの液相成膜法により形成することが好ましい。塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法などを用いることができる。印刷法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法などを用いることができる。なお、必要に応じて、密着性・塗工性を向上させるための予備処理として、離型性基材表面にコロナ放電処理、プラズマ放電処理などの物理的表面処理を施すことができる。   From the viewpoint of improving productivity, improving electrode quality such as smoothness and uniformity, and reducing environmental impact, it is possible to form a transparent conductive layer containing metal nanowires by a liquid phase film-forming method such as a coating method or a printing method. preferable. As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc. can be used. As the printing method, a letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used. In addition, as necessary, physical surface treatment such as corona discharge treatment or plasma discharge treatment can be applied to the surface of the releasable substrate as a preliminary treatment for improving the adhesion and coating properties.

(有機エレクトロルミネッセンス層の形成)
陽極バッファー層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層の全部または一部からなる、透明導電層と陰極の間に形成された層を有機エレクトロルミネッセンス層という。この有機エレクトロルミネッセンス層の作製方法の一例として、正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層からなる有機エレクトロルミネッセンス層の作製法について説明する。
(Formation of organic electroluminescence layer)
A layer formed between the transparent conductive layer and the cathode, consisting of all or part of the anode buffer layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, and cathode buffer layer is called an organic electroluminescence layer. . As an example of a method for producing this organic electroluminescence layer, a method for producing an organic electroluminescence layer comprising a hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer will be described.

透明導電層を形成した透明基材上に、有機EL層の構成材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。   An organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are constituent materials of the organic EL layer, is formed on the transparent base material on which the transparent conductive layer is formed.

この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。 As a method for thinning the organic compound thin film, there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an ink jet method, and a printing method are particularly preferable. Further, different film forming methods may be applied for each layer. When employing a vapor deposition method for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 −6 to 10 −2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.

(陰極の形成)
上記の有機エレクトロルミネッセンス層を形成後、その上に陰極用物質からなる薄膜を1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設ける。
(Formation of cathode)
After forming the organic electroluminescence layer, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm. Is provided.

以上の工程により、有機エレクトロルミネッセンス層が得られる。有機エレクトロルミネッセンス層の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。   Through the above steps, an organic electroluminescence layer is obtained. The organic electroluminescence layer is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.

また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の液晶表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。   In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor liquid crystal display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

(有機光変換素子)
本発明に係る有機光電変換素子の好ましい態様を説明するが、これに限定されるものではない。有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層、バルクヘテロジャンクション層、i層ともいう。)が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。
(Organic light conversion element)
Although the preferable aspect of the organic photoelectric conversion element which concerns on this invention is demonstrated, it is not limited to this. There is no restriction | limiting in particular as an organic photoelectric conversion element, The electric power generation layer (The layer which mixed the p-type semiconductor and the n-type semiconductor, the bulk heterojunction layer, and i layer) sandwiched between the anode and the cathode at least 1 is provided. Any element that has more than one layer and generates current when irradiated with light may be used.

有機光電変換素子の層構成の好ましい具体例を以下に示す。
(i)陽極/発電層/陰極
(ii)陽極/正孔輸送層/発電層/陰極
(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
(v)陽極/正孔輸送層/第1発光層/電子輸送層/中間電極/正孔輸送層/第2発光層/電子輸送層/陰極
ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質2層でヘテロジャンクションを形成していても良いし、1層の内部で混合された状態となっているバルクヘテロジャンクションを形成しても良いが、バルクヘテロジャンクション構成のほうが光電変換効率が高いため、好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。
The preferable specific example of the layer structure of an organic photoelectric conversion element is shown below.
(I) anode / power generation layer / cathode (ii) anode / hole transport layer / power generation layer / cathode (iii) anode / hole transport layer / power generation layer / electron transport layer / cathode (iv) anode / hole transport layer / P-type semiconductor layer / power generation layer / n-type semiconductor layer / electron transport layer / cathode (v) anode / hole transport layer / first light emitting layer / electron transport layer / intermediate electrode / hole transport layer / second light emitting layer Here, the power generation layer needs to contain a p-type semiconductor material capable of transporting holes and an n-type semiconductor material capable of transporting electrons, which are substantially two layers and heterojunction. Alternatively, a bulk heterojunction that is in a mixed state in one layer may be formed, but a bulk heterojunction configuration is preferable because of higher photoelectric conversion efficiency. A p-type semiconductor material and an n-type semiconductor material used for the power generation layer will be described later.

有機EL素子同様、発電層を正孔輸送層、電子輸送層で挟み込むことで、正孔及び電子の陽極・陰極への取り出し効率を高めることができるため、それらを有する構成((ii)、(iii))の方が好ましい。また、発電層自体も正孔と電子の整流性(キャリア取り出しの選択性)を高めるため、(iv)のようにp型半導体材料とn型半導体材料単体からなる層で発電層を挟み込むような構成(p−i−n構成ともいう)であっても良い。また、太陽光の利用効率を高めるため、異なる波長の太陽光をそれぞれの発電層で吸収するような、タンデム構成((v)の構成)であっても良い。   Like the organic EL element, the efficiency of taking out holes and electrons to the anode / cathode can be increased by sandwiching the power generation layer between the hole transport layer and the electron transport layer. Therefore, the structure having them ((ii), ( iii)) is preferred. Further, in order to improve the rectification of holes and electrons (selection of carrier extraction), the power generation layer itself is sandwiched between layers of a p-type semiconductor material and a single n-type semiconductor material as shown in (iv). It may be a configuration (also referred to as a pin configuration). Moreover, in order to improve the utilization efficiency of sunlight, the tandem configuration (configuration (v)) in which sunlight of different wavelengths is absorbed by each power generation layer may be employed.

太陽光利用率(光電変換効率)の向上を目的として、図1に示す有機光電変換素子10におけるサンドイッチ構造に替わって、一対の櫛歯状電極上にそれぞれ正孔輸送層14、電子輸送層16を形成し、その上に光電変換部15を配置するといった、バックコンタクト型の有機光電変換素子が構成とすることもできる。   Instead of the sandwich structure in the organic photoelectric conversion element 10 shown in FIG. 1 for the purpose of improving the sunlight utilization rate (photoelectric conversion efficiency), a hole transport layer 14 and an electron transport layer 16 are respectively formed on a pair of comb-like electrodes. The back contact type organic photoelectric conversion element can be configured such that the photoelectric conversion unit 15 is disposed thereon.

さらに、詳細な本発明に係る有機光電変換素子の好ましい態様を下記に説明する。   Furthermore, the preferable aspect of the organic photoelectric conversion element which concerns on detailed this invention is demonstrated below.

図1は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、陽極12、正孔輸送層17、バルクヘテロジャンクション層の発電層14、電子輸送層18及び陰極13が順次積層されている。   FIG. 1 is a cross-sectional view showing an example of a solar cell composed of a bulk heterojunction organic photoelectric conversion element. In FIG. 1, a bulk heterojunction organic photoelectric conversion element 10 has an anode 12, a hole transport layer 17, a power generation layer 14 of a bulk heterojunction layer, an electron transport layer 18, and a cathode 13 sequentially stacked on one surface of a substrate 11. Has been.

基板11は、順次積層された陽極12、発電層14及び陰極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、発電層14の両面に陽極12及び陰極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。   The substrate 11 is a member that holds the anode 12, the power generation layer 14, and the cathode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member. As the substrate 11, for example, a glass substrate or a resin substrate is used. The substrate 11 is not essential. For example, the bulk heterojunction organic photoelectric conversion element 10 may be configured by forming the anode 12 and the cathode 13 on both surfaces of the power generation layer 14.

発電層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。   The power generation layer 14 is a layer that converts light energy into electrical energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor).

図1において、基板11を介して陽極12から入射された光は、発電層14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、陽極12と陰極13の仕事関数が異なる場合では陽極12と陰極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、陽極12の仕事関数が陰極13の仕事関数よりも大きい場合では、電子は、陽極12へ、正孔は、陰極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、陽極12と陰極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。   In FIG. 1, light incident from the anode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the power generation layer 14, and electrons move from the electron donor to the electron acceptor. A pair of holes and electrons (charge separation state) is formed. The generated electric charge is caused by an internal electric field, for example, when the work function of the anode 12 and the cathode 13 is different, the electrons pass between the electron acceptors and the holes are electron donors due to the potential difference between the anode 12 and the cathode 13. The photocurrent is detected by passing through different electrodes to different electrodes. For example, when the work function of the anode 12 is larger than that of the cathode 13, electrons are transported to the anode 12 and holes are transported to the cathode 13. If the magnitude of the work function is reversed, electrons and holes are transported in the opposite direction. In addition, the transport direction of electrons and holes can be controlled by applying a potential between the anode 12 and the cathode 13.

なお、図1には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。   Although not shown in FIG. 1, other layers such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer may be included.

さらに好ましい構成としては、前記発電層14が、いわゆるp−i−nの三層構成となっている構成(図2)である。通常のバルクヘテロジャンクション層は、p型半導体材料とn型半導体層が混合した、i層単体であるが、p型半導体材料単体からなるp層、及びn型半導体材料単体からなるn層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。   As a more preferable configuration, the power generation layer 14 has a so-called p-i-n three-layer configuration (FIG. 2). A normal bulk heterojunction layer is a single i layer in which a p-type semiconductor material and an n-type semiconductor layer are mixed, but is sandwiched between a p-layer composed of a single p-type semiconductor material and an n-layer composed of a single n-type semiconductor material. As a result, the rectification of holes and electrons becomes higher, loss due to recombination of charge-separated holes and electrons is reduced, and higher photoelectric conversion efficiency can be obtained.

さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。   Furthermore, it is good also as a tandem-type structure which laminated | stacked such a photoelectric conversion element for the purpose of the improvement of sunlight utilization factor (photoelectric conversion efficiency).

図3は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極である陽極12、第1の発電層14′を積層した後、電荷再結合層15を積層した後、第2の発電層16、次いで対電極である陰極13を積層することで、タンデム型の構成とすることができる。第2の発電層16は、第1の発電層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また第1の発電層14′、第2の発電層16がともに前述のp−i−nの三層構成であってもよい。   FIG. 3 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element including a tandem bulk heterojunction layer. In the case of the tandem configuration, the anode 12 that is a transparent electrode and the first power generation layer 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second power generation layer 16, and then the pair By stacking the cathode 13 as an electrode, a tandem structure can be obtained. The second power generation layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first power generation layer 14 ′ or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. Further, both the first power generation layer 14 ′ and the second power generation layer 16 may have the above-described three-layer structure of pin.

以下に、これらの層を構成する材料について述べる。   Below, the material which comprises these layers is described.

(有機光電変換素子材料)
〈p型半導体材料〉
発電層(バルクヘテロジャンクション層)に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマー・オリゴマーが挙げられる。
(Organic photoelectric conversion element material)
<P-type semiconductor material>
Examples of the p-type semiconductor material used for the power generation layer (bulk heterojunction layer) include various condensed polycyclic aromatic low-molecular compounds and conjugated polymers / oligomers.

縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビス(エチレンジチオ)テトラチアフルバレン(BEDT−TTF)−過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。   Examples of the condensed polycyclic aromatic low-molecular compound include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zesulene, Compounds such as heptazethrene, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bis (ethylenedithio) tetrathiafur Examples include valene (BEDT-TTF) -perchloric acid complex, and derivatives and precursors thereof.

また、上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。   Examples of the derivative having the above condensed polycycle include International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, Japanese Patent Application Laid-Open No. 2004-107216. A pentacene derivative having a substituent described in JP-A No. 2003-136964, a pentacene precursor described in US Patent Application Publication No. 2003/136964, and the like; Amer. Chem. Soc. , Vol127. No. 14.4986, J. MoI. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, acene-based compounds substituted with a trialkylsilylethynyl group described in 2706 and the like.

共役系ポリマーとしては、例えば、ポリ3−ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、又はTechnical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン−チエノチオフェン共重合体、国際公開2008/000664号に記載のポリチオフェン−ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン−チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。   Examples of the conjugated polymer include a polythiophene such as poly-3-hexylthiophene (P3HT) and an oligomer thereof, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, the polythiophene-thienothiophene copolymer described in p328, the polythiophene-diketopyrrolopyrrole copolymer described in International Publication No. 2008/000664, the polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007 p4160, Nature Mat. vol. 6 (2007), p497 described in PCPDTBT, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as σ-conjugated polymers such as polysilane and polygermane.

また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。   In addition, oligomeric materials instead of polymer materials include thiophene hexamer α-sexual thiophene α, ω-dihexyl-α-sexual thiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3 Oligomers such as -butoxypropyl) -α-sexithiophene can be preferably used.

これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。   Among these compounds, compounds that have high solubility in organic solvents to the extent that solution processing is possible, can form a crystalline thin film after drying, and can achieve high mobility are preferable.

また、発電層上に電子輸送層を塗布で製膜する場合、電子輸送層溶液が発電層を溶かしてしまうという課題があるため、溶液プロセスで塗布した後に不溶化できるような材料を用いても良い。   Further, when the electron transport layer is formed on the power generation layer by coating, there is a problem that the electron transport layer solution dissolves the power generation layer. Therefore, a material that can be insolubilized after coating by a solution process may be used. .

このような材料としては、Technical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、又は米国特許出願公開第2003/136964号、及び特開2008−16834号公報等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。   Examples of such a material include materials that can be insolubilized by coating the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or by applying energy such as heat as described in U.S. Patent Application Publication No. 2003/136964 and Japanese Patent Application Laid-Open No. 2008-16834, etc., the soluble substituent reacts to insolubilize (to form a pigment). ) Materials can be mentioned.

〈n型半導体材料〉
バルクヘテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
<N-type semiconductor material>
The n-type semiconductor material used in the bulk heterojunction layer is not particularly limited. For example, perfluoro compounds in which a hydrogen atom of a p-type semiconductor is substituted with a fluorine atom, such as fullerene and octaazaporphyrin (perfluoropentacene or perfluorophthalocyanine). ), Naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and other aromatic carboxylic acid anhydrides and polymer compounds containing the imidized compounds thereof be able to.

しかし、各種のp型半導体材料と高速(〜50fs)かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換又は無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。   However, fullerene derivatives that can perform charge separation with various p-type semiconductor materials at high speed (˜50 fs) and efficiently are preferable. Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Some are hydrogen atoms, halogen atoms, substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, cycloalkyl groups, silyl groups, ether groups, thioether groups, amino groups, silyl groups, etc. Examples thereof include substituted fullerene derivatives.

中でも[6,6]−フェニルC61−ブチリックアシッドメチルエステル(略称PCBM)、[6,6]−フェニルC61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニルC61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニルC61−ブチリックアシッド−nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis−PCBM、特開2006−199674号公報等のアミノ化フラーレン、特開2008−130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。   Among them, [6,6] -phenyl C61-butyric acid methyl ester (abbreviation PCBM), [6,6] -phenyl C61-butyric acid-nbutyl ester (PCBnB), [6,6] -phenyl C61-buty Rick acid-isobutyl ester (PCBiB), [6,6] -phenyl C61-butyric acid-n hexyl ester (PCBH), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A 2006-199674, metallocene fullerenes such as JP-A 2008-130889, and cyclics such as US Pat. No. 7,329,709. It is preferable to use a fullerene derivative having a substituent and having improved solubility, such as fullerene having an ether group.

〈正孔輸送層・電子ブロック層〉
本発明に係る有機光電変換素子10は、バルクヘテロジャンクション層と陽極との中間には正孔輸送層17を、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
<Hole transport layer and electron block layer>
Since the organic photoelectric conversion element 10 according to the present invention can extract the hole transport layer 17 between the bulk heterojunction layer and the anode, and more efficiently take out the charges generated in the bulk heterojunction layer. It is preferable to have a layer.

これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、WO2006019270号等に記載のシアン化合物、などを用いることができる。なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5−271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。   As a material constituting these layers, for example, as the hole transport layer 17, PEDOT such as Stark Vitec Co., Ltd., trade name BaytronP, polyaniline and its doped material, cyan compounds described in WO2006019270, etc. Can be used. Note that the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the anode side. It has an electronic block function. Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function. As such a material, a triarylamine compound described in JP-A-5-271166 or a metal oxide such as molybdenum oxide, nickel oxide, or tungsten oxide can be used. A layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming the coating film in the lower layer before forming the bulk heterojunction layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.

〈電子輸送層・正孔ブロック層〉
本発明に係る有機光電変換素子10は、バルクヘテロジャンクション層と陰極との中間には電子輸送層18を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
<Electron transport layer / hole blocking layer>
In the organic photoelectric conversion element 10 according to the present invention, the electron transport layer 18 is formed between the bulk heterojunction layer and the cathode, so that charges generated in the bulk heterojunction layer can be taken out more efficiently. It is preferable to have these layers.

また電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。   As the electron transport layer 18, octaazaporphyrin, a p-type semiconductor perfluoro product (perfluoropentacene, perfluorophthalocyanine, etc.) can be used. Similarly, a p-type semiconductor material used for a bulk heterojunction layer is used. The electron transport layer having a HOMO level deeper than the HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the cathode side. Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function. Examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide. N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. A layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method.

〈その他の層〉
エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
<Other layers>
For the purpose of improving energy conversion efficiency and improving the lifetime of the element, a structure having various intermediate layers in the element may be employed. Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.

〈透明電極(第1電極)〉
透明電極は、陰極、陽極は特に限定せず、素子構成により選択することができるが、好ましくは透明電極を陽極として用いることである。例えば、陽極として用いる場合、好ましくは380〜800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤー、カーボンナノチューブ用いることができる。
<Transparent electrode (first electrode)>
The transparent electrode is not particularly limited to a cathode and an anode, and can be selected depending on the element configuration. Preferably, the transparent electrode is used as an anode. For example, when used as an anode, it is preferably an electrode that transmits light of 380 to 800 nm. As the material, for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires and carbon nanotubes can be used.

またポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。   Also, a conductive material selected from the group consisting of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene, and polynaphthalene. A functional polymer can also be used. A plurality of these conductive compounds can be combined to form a transparent electrode.

〈対電極(第2電極)〉
対電極は導電材単独層であっても良いが、導電性を有する材料に加えて、これらを保持する樹脂を併用しても良い。対電極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。対電極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、(平均)膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
<Counter electrode (second electrode)>
The counter electrode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination. As the conductive material of the counter electrode, a material having a small work function (4 eV or less) metal, alloy, electrically conductive compound and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the viewpoint of electron extraction performance and durability against oxidation, etc., a mixture of these metals and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The counter electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The (average) film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.

対電極の導電材として金属材料を用いれば対電極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。   If a metal material is used as the conductive material of the counter electrode, the light coming to the counter electrode side is reflected and reflected to the first electrode side, and this light can be reused and is absorbed again by the photoelectric conversion layer, and more photoelectric conversion efficiency Is preferable.

また、対電極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤー、ナノ構造体であってもよく、ナノワイヤーの分散物であれば、透明で導電性の高い対電極を塗布法により形成でき好ましい。   The counter electrode 13 may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), a nanoparticle made of carbon, a nanowire, or a nanostructure. If the dispersion is, a transparent and highly conductive counter electrode can be formed by a coating method.

また、対電極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の対電極に適した導電性材料を薄く1〜20nm程度の(平均)膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性対電極とすることができる。   In addition, when the counter electrode side is made light-transmitting, for example, a conductive material suitable for the counter electrode such as aluminum and aluminum alloy, silver and silver compound is made thin with an average film thickness of about 1 to 20 nm. Thereafter, a light-transmitting counter electrode can be obtained by providing a film of the conductive light-transmitting material mentioned in the description of the transparent electrode.

〈中間電極〉
また、前記(v)(又は図3)のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層又はナノ粒子・ナノワイヤーを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
<Intermediate electrode>
In addition, the material of the intermediate electrode required in the case of the tandem configuration as in the above (v) (or FIG. 3) is preferably a layer using a compound having both transparency and conductivity. (Such as ITO, AZO, FTO, transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, etc., or layers containing nanoparticles / nanowires, PEDOT: PSS, polyaniline) Or the like can be used.

なお前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると一層形成する工程を省くことができ好ましい。   In addition, among the hole transport layer and the electron transport layer described above, there is also a combination that works as an intermediate electrode (charge recombination layer) by stacking in an appropriate combination. With such a configuration, a step of forming one layer is omitted. Can be preferable.

〈金属ナノワイヤ〉
導電性繊維としては、金属でコーティングした有機繊維や無機繊維、導電性金属酸化物繊維、金属ナノワイヤ、炭素繊維、カーボンナノチューブ等を用いることができるが、金属ナノワイヤが好ましい。
<Metal nanowires>
As the conductive fibers, organic fibers or inorganic fibers coated with metal, conductive metal oxide fibers, metal nanowires, carbon fibers, carbon nanotubes, and the like can be used. Metal nanowires are preferable.

一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする線状構造体のことをいう。特に、本発明における金属ナノワイヤとはnmサイズの直径を有する線状構造体を意味する。   In general, the metal nanowire refers to a linear structure having a metal element as a main component. In particular, the metal nanowire in the present invention means a linear structure having a diameter of nm size.

金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、さらには3〜500μmが好ましく、特に3〜300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10〜300nmが好ましく、30〜200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。   As a metal nanowire, in order to form a long conductive path with one metal nanowire and to express appropriate light scattering properties, the average length is preferably 3 μm or more, and more preferably 3 to 500 μm. Particularly preferred is 3 to 300 μm. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, it is preferable that an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint. In this invention, 10-300 nm is preferable as an average diameter of metal nanowire, and it is more preferable that it is 30-200 nm. In addition, the relative standard deviation of the diameter is preferably 20% or less.

金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種又は複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。   The metal composition of the metal nanowire is not particularly limited, and can be composed of one or more metals such as a noble metal element and a base metal element, but noble metals (for example, gold, platinum, silver, palladium, rhodium, iridium, ruthenium, Osmium etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire includes two or more kinds of metal elements, for example, the metal composition may be different between the surface and the inside of the metal nanowire, or the entire metal nanowire may have the same metal composition.

本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833〜837;Chem.Mater.,2002,14,4736〜4745等、Auナノワイヤの製造方法としては特開2006−233252号公報等、Cuナノワイヤの製造方法としては特開2002−266007号公報等、Coナノワイヤの製造方法としては特開2004−149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、金属ナノワイヤの製造方法として好ましく適用することができる。   In the present invention, the means for producing the metal nanowire is not particularly limited, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing Ag nanowires, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. , 2002, 14, 4736-4745, etc. As a method for producing Co nanowires, a method for producing Au nanowires is disclosed in JP 2006-233252A, and a method for producing Cu nanowires is disclosed in JP 2002-266007 A, etc. Reference can be made to Japanese Unexamined Patent Publication No. 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in 1 can easily produce Ag nanowires in water, and since silver has the highest conductivity in metals, it can be preferably applied as a method for producing metal nanowires. it can.

本発明においては、金属ナノワイヤが互いに接触し合うことにより3次元的な導電ネットワークを形成し、高い導電性を発現するとともに、金属ナノワイヤが存在しない導電ネットワークの窓部を光が透過することが可能となり、さらに、金属ナノワイヤの散乱効果によって、有機発電層部からの発電を効率的に行うことが可能となる。第1電極において金属ナノワイヤを有機発電層部に近い側に設置すれば、この散乱効果がより有効に利用できるのでより好ましい実施形態である。   In the present invention, the metal nanowires come into contact with each other to form a three-dimensional conductive network, exhibiting high conductivity, and allowing light to pass through the window of the conductive network where no metal nanowire exists. In addition, the power generation from the organic power generation layer can be efficiently performed by the scattering effect of the metal nanowires. If a metal nanowire is installed in the 1st electrode at the side close | similar to an organic electric power generation layer part, since this scattering effect can be utilized more effectively, it is more preferable embodiment.

〈光学機能層〉
本発明に係る有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していて良い。光学機能層としては、たとえば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けても良い。
<Optical function layer>
The organic photoelectric conversion element according to the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .

反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。   Various known antireflection layers can be provided as the antireflection layer. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ˜1.63 because the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.

集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。   As the condensing layer, for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it is smaller than this, the effect of diffraction is generated and colored.

また、光散乱層としては、各種のアンチグレア層、金属又は各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。   Examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.

〈製膜方法・表面処理方法〉
〈各種の層の形成方法〉
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層、及び輸送層・電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、バルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
<Film forming method / Surface treatment method>
<Method for forming various layers>
Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed, and a transport layer / electrode include a vapor deposition method and a coating method (including a cast method and a spin coat method). Among these, examples of the method for forming the bulk heterojunction layer include a vapor deposition method and a coating method (including a casting method and a spin coating method). Among these, the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency. The coating method is also excellent in production speed.

この際に使用する塗布方法に制限は無いが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。   Although there is no restriction | limiting in the coating method used in this case, For example, a spin coat method, the casting method from a solution, a dip coat method, a blade coat method, a wire bar coat method, a gravure coat method, a spray coat method etc. are mentioned. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.

塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集又は結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。   After coating, it is preferable to perform heating in order to cause removal of residual solvent, moisture and gas, and improvement of mobility and absorption longwave due to crystallization of the semiconductor material. When annealing is performed at a predetermined temperature during the manufacturing process, a part of the material is microscopically aggregated or crystallized, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.

発電層(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成することが可能となる。   The power generation layer (bulk heterojunction layer) 14 may be composed of a single layer in which an electron acceptor and an electron donor are uniformly mixed, but a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. You may comprise. In this case, it can be formed by using a material that can be insolubilized after coating as described above.

〈パターニング〉
電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
<Patterning>
There is no particular limitation on the method and process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, and the like, and known methods can be applied as appropriate.

バルクヘテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取っても良いし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしても良い。   If it is a soluble material such as a bulk heterojunction layer and a transport layer, only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc., or direct patterning at the time of coating using a method such as an ink jet method or screen printing. May be.

電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成しても良い。   In the case of an insoluble material such as an electrode material, the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off. Alternatively, the pattern may be formed by transferring a pattern formed on another substrate.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

実施例1
(支持体)
支持体1:両面に易接着加工された50μmの厚さのポリエステルフィルム、帝人デュポンフィルム株式会社製、KDL86W−50μmを支持体1として用いた。
Example 1
(Support)
Support 1: A 50 μm-thick polyester film that was easily bonded on both surfaces, KDL86W-50 μm, manufactured by Teijin DuPont Films Ltd., was used as the support 1.

支持体2:両面に易接着加工された50μmの厚さのポリエステルフィルムで、オフラインアニール処理した帝人デュポンフィルム株式会社製、KDL86WA−50μmを極低熱収縮性の支持体2として用いた。   Support 2: KDL86WA-50 μm manufactured by Teijin DuPont Films Co., Ltd., which was a 50 μm-thick polyester film with easy adhesion processing on both sides and subjected to offline annealing, was used as the support 2 with extremely low heat shrinkage.

支持体3:50μmの厚さの耐加水分解性ポリエステルフィルム、東洋紡株式会社製、シャインビーム透明タイプの両面に、オフラインで東洋紡株式会社製K1531を、乾燥膜厚で0.1μmとなるように易接着層をコーティングしたものを耐加水分解性を有する支持体3として用いた。   Support 3: Hydrolysis-resistant polyester film with a thickness of 50 μm, Toyobo Co., Ltd., Shine Beam transparent type on both sides, easy to off-line K1531 made by Toyobo Co., Ltd. to a dry film thickness of 0.1 μm What coated the adhesive layer was used as the support body 3 which has hydrolysis resistance.

支持体4:固有粘度0.67のポリエチレンテレフタレート(PET)樹脂と光散乱物質として球状シリカHS−301(アドマテックス)2.4μmを0.5質量%になるように、2軸混練押出機にて混練して、その後、285℃でTダイから層状に溶融押しだし、30℃の冷却ドラム上で静電印加しながら密着させ、冷却固化させ、未延伸フィルムを得た。この未延伸シートをロール式縦延伸機を用いて、80℃で縦方向に3.3倍延伸した。引き続き、テンター式横延伸機を用いて、第一延伸ゾーン90℃で総横延伸倍率の50%延伸し、さらに第二延伸ゾーン100℃で総横延伸倍率3.3倍になるように延伸した。次いで、70℃2秒間、前熱処理し、さらに第一固定ゾーン150℃で5秒間熱固定し、第二固定ゾーン220℃で15秒間熱固定した。次いで160℃で横(幅手)方向に5%弛緩処理し、テンターを出た後に、駆動ロールの周速差を利用して、140℃で縦(長手)方向に弛緩処理を行い、室温まで60秒かけて冷却し、フィルムをクリップから解放し、厚さ50μmの二軸延伸PETフィルムを得た。このフィルムの両面にオフラインで東洋紡株式会社製、K1531の易接着層を乾燥膜厚で0.1μmとなるようにコーティングしたものを光散乱性を有する支持体4として用いた。   Support 4: Polyethylene terephthalate (PET) resin having an intrinsic viscosity of 0.67 and spherical silica HS-301 (Admatex) 2.4 μm as a light scattering material in a biaxial kneading extruder so as to be 0.5 mass%. Kneaded and then melt-extruded in layers from a T-die at 285 ° C., and brought into close contact while being electrostatically applied on a cooling drum at 30 ° C., cooled and solidified to obtain an unstretched film. This unstretched sheet was stretched 3.3 times in the longitudinal direction at 80 ° C. using a roll type longitudinal stretching machine. Subsequently, using a tenter-type transverse stretching machine, the film was stretched to 50% of the total transverse stretching ratio in the first stretching zone 90 ° C., and further stretched to a total transverse stretching ratio of 3.3 times in the second stretching zone 100 ° C. . Subsequently, pre-heat treatment was performed at 70 ° C. for 2 seconds, and heat setting was further performed at the first fixing zone 150 ° C. for 5 seconds, and heat setting was performed at the second fixing zone 220 ° C. for 15 seconds. Next, 5% relaxation treatment is performed in the lateral (width) direction at 160 ° C. After exiting the tenter, the relaxation treatment is performed in the longitudinal (longitudinal) direction at 140 ° C. using the peripheral speed difference of the drive roll, until the room temperature is reached. After cooling for 60 seconds, the film was released from the clip to obtain a biaxially stretched PET film having a thickness of 50 μm. The support 4 having a light scattering property was prepared by coating an adhesive layer of K1531 made by Toyobo Co., Ltd. on both sides of this film so that the dry film thickness was 0.1 μm.

支持体5:支持体4の球状シリカの代わりに、UVカット剤として酸化亜鉛微粒子ZnO−310(住友大阪セメント)に変更して、UVカット性を有する支持体5として用いた。   Support 5: Instead of the spherical silica of the support 4, zinc oxide fine particles ZnO-310 (Sumitomo Osaka Cement) was used as the UV-cutting agent and used as the support 5 having UV-cutting properties.

(ガスバリア性フィルムの作製)
ガスバリア性フィルムは、上記支持体を30m/分の速度で搬送しながら、表1に示す層構成になるようにして形成した。形成順序としては、ガスバリア層側の反対側の1層目、2層目を形成後、ガスバリア層側の1層目、2層目、3層目、4層目の順で形成した。各層の構成と形成方法は下記に示す。
(Production of gas barrier film)
The gas barrier film was formed so as to have the layer structure shown in Table 1 while transporting the support at a speed of 30 m / min. As the formation order, the first layer and the second layer on the opposite side of the gas barrier layer side were formed, and then the first layer, the second layer, the third layer, and the fourth layer on the gas barrier layer side were formed in this order. The configuration and forming method of each layer are shown below.

(ブリードアウト防止層の形成)
BA防止層 :上記支持体の片面に、またはガスバリア層の上に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7535を塗布、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、硬化条件;1.0J/cm空気下、高圧水銀ランプ使用、乾燥条件;80℃、3分で硬化を行い、ブリードアウト防止層を形成した。
(Formation of bleed-out prevention layer)
BA prevention layer: UV curable organic / inorganic hybrid hard coating material OPSTAR Z7535 manufactured by JSR Corporation is applied on one side of the support or on the gas barrier layer, and the (average) film thickness after drying is 4 μm. After coating with a wire bar, curing conditions: 1.0 J / cm 2 under air, using a high-pressure mercury lamp, drying conditions: curing at 80 ° C. for 3 minutes to form a bleed-out prevention layer.

(光散乱性層の形成)
光散乱性層1:東洋インキ株式会社製 TYZ74(UV硬化型有機/ジルコニア含有ハードコート材、屈折率を1.74に調整)に、光散乱性粒子として球状シリカHS−301(アドマテックス)(平均粒径2.4μm)を10体積%で添加した後、超音波分散して光散乱性層塗布液1を調製した。この光散乱性層塗布液1を塗布、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;200mJ/cm硬化を行い、表1に示される位置に、光散乱性層1を形成した。
(Formation of light scattering layer)
Light scattering layer 1: Toyo Ink Co., Ltd. TYZ74 (UV curable organic / zirconia-containing hard coat material, refractive index adjusted to 1.74), spherical silica HS-301 (ADMATEX) as light scattering particles ( After adding 10% by volume of an average particle size of 2.4 μm, the mixture was subjected to ultrasonic dispersion to prepare a light scattering layer coating solution 1. After applying this light scattering layer coating solution 1 and applying it with a wire bar so that the (average) film thickness after drying is 4 μm, drying conditions; after drying at 80 ° C. for 3 minutes, high pressure mercury in an air atmosphere Lamp use, curing conditions: 200 mJ / cm 2 curing was performed, and the light scattering layer 1 was formed at the position shown in Table 1.

光散乱性層2:光散乱性粒子として球状シリカHS−301の代わりに、球状アルミナAO−802(アドマテックス)(平均粒径0.7μm)に変更する以外は光散乱性層1と同様にして、表1に示される位置に、光散乱性層2を形成した。   Light-scattering layer 2: Similar to the light-scattering layer 1, except that the light-scattering particles are changed to spherical alumina AO-802 (Admatics) (average particle size 0.7 μm) instead of the spherical silica HS-301. Thus, the light scattering layer 2 was formed at the position shown in Table 1.

(UVカット性層の形成)
UVカット性層1:東洋インキ株式会社製 TYZ74(UV硬化型有機/ジルコニア含有ハードコート材、屈折率を1.74に調整)に、UV吸収性粒子として酸化亜鉛微粒子ZnO−310(住友大阪セメント)(平均粒径0.02μm)を10体積%で添加した後、超音波分散してUVカット性層塗布液1を調製した。このUVカット性層塗布液1を塗布、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;200mJ/cm硬化を行い、UVカット性層1を、表1に示される位置に形成した。
(Formation of UV-cutting layer)
UV-cutting layer 1: Toyo Ink Co., Ltd. TYZ74 (UV curable organic / zirconia-containing hard coat material, refractive index adjusted to 1.74), zinc oxide fine particles ZnO-310 (Sumitomo Osaka Cement) as UV-absorbing particles ) (Average particle size 0.02 μm) was added at 10% by volume, followed by ultrasonic dispersion to prepare UV-cutting layer coating solution 1. After applying this UV-cutting layer coating solution 1 and applying it with a wire bar so that the (average) film thickness after drying is 4 μm, drying conditions; after drying at 80 ° C. for 3 minutes, high-pressure mercury in an air atmosphere Lamp use, curing conditions: 200 mJ / cm 2 curing was performed, and the UV-cutting layer 1 was formed at the position shown in Table 1.

UVカット性層2:UV吸収性粒子として酸化亜鉛微粒子ZnO−310の代わりに、酸化チタンFPC104(石原産業)(平均粒径0.28μm)に変更した以外はUVカット性層1の形成と同様にして、表1に示される位置にUVカット性層2を形成した。   UV-cutting layer 2: Similar to the formation of the UV-cutting layer 1 except that the titanium oxide FPC104 (Ishihara Sangyo) (average particle size 0.28 μm) is used instead of the zinc oxide fine particles ZnO-310 as UV-absorbing particles. Thus, the UV-cutting layer 2 was formed at the position shown in Table 1.

UVカット性層3:ハードコート剤をTYZ74の代わりに、ZnO粒子添加済みのTYN74に変更して、及びUV吸収性粒子フリーにした以外はUVカット性層1の形成と同様にして、表1に示される位置にUVカット性層3を形成した。   UV-cutting layer 3: In the same manner as the formation of the UV-cutting layer 1, except that the hard coat agent was changed to TYN74 with ZnO particles added instead of TYZ74 and made UV-absorbing particles free, Table 1 The UV-cutting layer 3 was formed at the position shown in FIG.

(UVカット性層と光散乱性層の形成)
UVカット性層と光散乱性層:東洋インキ株式会社製 TYZ74(UV硬化型有機/ジルコニア含有ハードコート材、屈折率を1.74に調整)に、光散乱性粒子として球状シリカHS−301(アドマテックス)(平均粒径2.4μm)を5体積%と、UV吸収性粒子として酸化亜鉛微粒子ZnO−310(住友大阪セメント)(平均粒径0.02μm)を5体積%で添加した後、超音波分散して光散乱性層塗布液を調製した。この光散乱性層塗布液1を塗布、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;200mJ/cm硬化を行い、表1に示される位置にUVカット性と光散乱性を有する層を形成した。
(Formation of UV-cutting layer and light-scattering layer)
UV-cutting layer and light-scattering layer: TYZ74 (UV curable organic / zirconia-containing hard coat material, refractive index adjusted to 1.74) manufactured by Toyo Ink Co., Ltd., spherical silica HS-301 (light-scattering particles) ADMATEX) (average particle size 2.4 μm) was added at 5% by volume, and zinc oxide fine particles ZnO-310 (Sumitomo Osaka Cement) (average particle size 0.02 μm) was added at 5% by volume as UV-absorbing particles. A light scattering layer coating solution was prepared by ultrasonic dispersion. After applying this light scattering layer coating solution 1 and applying it with a wire bar so that the (average) film thickness after drying is 4 μm, drying conditions; after drying at 80 ° C. for 3 minutes, high pressure mercury in an air atmosphere Lamp use, curing conditions: 200 mJ / cm 2 curing was performed, and a layer having UV cut property and light scattering property was formed at the position shown in Table 1.

(低硬度層の形成)
低硬度層:表1に示されるように、支持体1の片面に、下記処方の低硬度層塗布液を、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥温度80℃、3分間で乾燥して、低硬度層を形成した。
(Formation of low hardness layer)
Low hardness layer: As shown in Table 1, after applying a low hardness layer coating solution of the following formulation on one side of the support 1 with a wire bar so that the (average) film thickness after drying is 4 μm, Drying was performed at a drying temperature of 80 ° C. for 3 minutes to form a low hardness layer.

プロピレングリコールモノメチルエーテル 20.0部
メチルエチルケトン 50.0部
メチルメタクリレート/2−エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/30/10/5、重量平均分子量=10万、Tg≒70℃) 30.0部
(ガスバリア層1の形成)
表1に示される位置にガスバリア層1を以下に示す条件で、形成した。
Propylene glycol monomethyl ether 20.0 parts Methyl ethyl ketone 50.0 parts Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio) = 55/30/10/5, weight average molecular weight = 100,000, Tg ≈ 70 ° C) 30.0 parts (Formation of gas barrier layer 1)
The gas barrier layer 1 was formed at the position shown in Table 1 under the following conditions.

ガスバリア層1塗布液
パーヒドロポリシラザン(PHPS)の20質量%ジブチルエーテル溶液
AZエレクトロニックマテリアルズ(株)製アクアミカ NN320
ワイヤレスバーにて、乾燥後の(平均)膜厚が、0.30μmとなるように塗布し、塗布試料を得た。
Gas barrier layer 1 coating solution Perhydropolysilazane (PHPS) 20% by mass dibutyl ether solution AQUAMICA NN320 manufactured by AZ Electronic Materials Co., Ltd.
With a wireless bar, coating was performed so that the (average) film thickness after drying was 0.30 μm to obtain a coated sample.

(第一工程;乾燥処理)
得られた塗布試料を温度85℃、湿度55%RHの雰囲気下で1分処理し、乾燥試料を得た。
(First step; drying treatment)
The obtained coated sample was treated for 1 minute in an atmosphere having a temperature of 85 ° C. and a humidity of 55% RH to obtain a dried sample.

(第二工程;除湿処理)
乾燥試料をさらに温度25℃、湿度10%RH(露点温度−8℃)の雰囲気下に10分間保持し、除湿処理を行った。
(Second step; dehumidification treatment)
The dried sample was further held for 10 minutes in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature −8 ° C.) to perform dehumidification.

(改質処理)
除湿処理を行った試料を下記の条件で改質処理を行い、ガスバリア層1を形成した。改質処理時の露点温度は−8℃で実施した。
(Modification process)
The sample subjected to the dehumidification treatment was subjected to a modification treatment under the following conditions to form a gas barrier layer 1. The dew point temperature during the reforming treatment was -8 ° C.

(改質処理装置)
エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200、波長:172nm、ランプ封入ガス:Xe
稼動ステージ上に固定した試料を以下の条件で改質処理を行った。
(Modification equipment)
M.D.Com Eximer Irradiation Device MODEL: MECL-M-1-200, Wavelength: 172 nm, Lamp Filled Gas: Xe
The sample fixed on the operation stage was modified under the following conditions.

(改質処理条件)
エキシマ光強度 130mW/cm(172nm)
試料と光源の距離 1mm
ステージ加熱温度 70℃
照射装置内の酸素濃度 1%
エキシマ照射時間 3秒
(ガスバリア層2の形成)
表1に示される位置にガスバリア層2を以下に示す条件で、形成した。
(Reforming treatment conditions)
Excimer light intensity 130mW / cm 2 (172nm)
1mm distance between sample and light source
Stage heating temperature 70 ℃
Oxygen concentration in irradiation device 1%
Excimer irradiation time 3 seconds (formation of gas barrier layer 2)
A gas barrier layer 2 was formed at the position shown in Table 1 under the following conditions.

マグネトロンスパッタリング装置のチャンバー内に装着し、ターゲットとして窒化珪素を使用し、下記の成膜条件で酸化窒化珪素の薄膜を厚み0.3μmになるまで成膜して、酸化窒化珪素を蒸着処理してバリア層2を形成した。   A silicon oxynitride thin film is formed to a thickness of 0.3 μm under the following film formation conditions by using silicon nitride as a target, mounted in a chamber of a magnetron sputtering apparatus, and silicon oxynitride is deposited. Barrier layer 2 was formed.

(成膜条件)
成膜圧力:2.5×10−1Pa
アルゴンガス流量:20sccm
窒素ガス流量:9sccm
周波数:13.56MHz
(評価)
<水蒸気透過度の評価>
以下の測定方法により評価した。
(Deposition conditions)
Deposition pressure: 2.5 × 10 −1 Pa
Argon gas flow rate: 20 sccm
Nitrogen gas flow rate: 9sccm
Frequency: 13.56MHz
(Evaluation)
<Evaluation of water vapor transmission rate>
The following measurement methods were used for evaluation.

装置
蒸着装置:日本電子(株)製真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
水蒸気バリア性評価用セルの作製
表1で示されるガスバリア性フィルム番号1〜24の試料のガスバリア側に、真空蒸着装置(日本電子製真空蒸着装置 JEE−400)を用い、透明導電膜を付ける前のガスバリアフィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、上記屈曲の処理を行わなかったガスバリアフィルムについても同様に、水蒸気バリア性評価用セルを作製した。
Equipment Vapor deposition equipment: Vacuum vapor deposition equipment JEE-400 manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor-impermeable metal: Aluminum (φ3-5mm, granular)
Preparation of cell for evaluating water vapor barrier property Before applying a transparent conductive film on the gas barrier side of the samples of gas barrier film numbers 1 to 24 shown in Table 1 using a vacuum vapor deposition apparatus (vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.) The portion other than the portion of the gas barrier film sample to be vapor-deposited (9 mm of 12 mm × 12 mm) was masked to deposit metallic calcium. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays. In addition, in order to confirm the change in gas barrier properties before and after bending, a water vapor barrier property evaluation cell was similarly prepared for the gas barrier film that was not subjected to the bending treatment.

得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005−283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。   The obtained sample with both sides sealed was stored at 60 ° C. and 90% RH under high temperature and high humidity, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount of water was calculated.

なお、ガスバリアフィルム面から以外の水蒸気の透過が無いことを確認するために、比較試料としてガスバリアフィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。   In addition, in order to confirm that there is no permeation of water vapor other than from the gas barrier film surface, instead of the gas barrier film sample as a comparative sample, a sample in which metallic calcium was deposited using a quartz glass plate having a thickness of 0.2 mm, The same 60 ° C., 90% RH high temperature and high humidity storage was performed, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.

得られた水分量から以下の5段階に分類した。   The obtained water content was classified into the following five stages.

A:1×10−5g/(m・day)未満
B:1×10−5g/(m・day)以上、1×10−4g/(m・day)未満
C:1×10−4g/(m・day)以上、1×10−3g/(m・day)未満
D:1×10−3g/(m・day)以上、1×10−2g/(m・day)未満
E:1×10−2g/(m・day)以上
(硬度)
JIS K 5600−5−4に準拠して、手かき法により鉛筆硬度を測定した。
A: Less than 1 × 10 −5 g / (m 2 · day) B: 1 × 10 −5 g / (m 2 · day) or more and less than 1 × 10 −4 g / (m 2 · day) C: 1 × 10 −4 g / (m 2 · day) or more, less than 1 × 10 −3 g / (m 2 · day) D: 1 × 10 −3 g / (m 2 · day) or more, 1 × 10 −2 Less than g / (m 2 · day) E: 1 × 10 −2 g / (m 2 · day) or more (Hardness)
Based on JIS K 5600-5-4, the pencil hardness was measured by a hand-drawn method.

(耐熱性耐水性)
厳しい熱と水分の環境条件を模した85℃−85%RH環境で、3000時間の促進処理を上記で作成したガスバリアフィルム1〜24に対して行い、処理をした後のサンプルについて下記の引張試験機を用いて、処理後の膜強度(破断伸度)を下記条件で測定して、耐熱性耐水性を評価した。
(Heat resistance and water resistance)
The following tensile tests are performed on samples after performing the accelerated treatment for 3000 hours on the gas barrier films 1 to 24 prepared above in an 85 ° C.-85% RH environment simulating severe environmental conditions of heat and moisture. Using a machine, the film strength (breaking elongation) after the treatment was measured under the following conditions to evaluate the heat resistance and water resistance.

条件:試料を長さ150mm×幅10mmの帯状に切出し、引張試験機(株式会社島津製作所製オートグラフAGS−500A)を用い、チャック間距離100mm、歪速度200mm/minの引張試験を行い、破断時の伸度をJIS K 7127に準じて、測定した。この値の高い方が耐熱性耐水性に優れていることを示している。   Conditions: A sample was cut into a strip of length 150 mm × width 10 mm, and a tensile tester (Autograph AGS-500A manufactured by Shimadzu Corporation) was used to perform a tensile test with a distance between chucks of 100 mm and a strain rate of 200 mm / min, and fractured. The elongation at time was measured according to JIS K 7127. A higher value indicates better heat resistance and water resistance.

(UVカット性)
メタルハライドランプ方式の耐候性試験機(ダイプラ・ウィンテス社製)を使用し、試料面放射強度:2.16MJ/m以下、ブラックパネル温度63℃、相対湿度:50%、照射時間500時間の条件で試験を行い、照射後のサンプルについて耐熱性耐水性試験と同様引張試験機を用いて破断伸度を測定することにより、光に対するUVカット性の効果を、照射後の破断伸度で評価した。この値の高い方がUVカット性に優れていることを示している。
(UV cut property)
Using a metal halide lamp type weather resistance tester (Daipura Wintes Co., Ltd.), sample surface radiation intensity: 2.16 MJ / m 2 or less, black panel temperature: 63 ° C., relative humidity: 50%, irradiation time: 500 hours In the same manner as in the heat resistance and water resistance test, the elongation at break was measured for the sample after irradiation by using a tensile tester, and the effect of UV cutability on light was evaluated by the elongation at break after irradiation. . The higher this value, the better the UV cut property.

(光散乱性)
ガスバリア性フィルム1〜24の散乱プロファイルをゴニオフォトメーターを用いて測定した。自動変角光度計GP−5型((株)村上色彩技術研究所製)を用いて、入射光に対して光散乱フィルムを垂直に配置し、散乱光プロファイルを測定し、前方散乱成分内の0°方向(直進方向)の値をI0、前方散乱成分の内の30°方向(直進方向から30°傾いた方向)の値をI30とした時、I30/I0の計算値を光散乱性の指標として求めた。
(Light scattering)
The scattering profiles of the gas barrier films 1 to 24 were measured using a goniophotometer. Using an automatic goniophotometer GP-5 type (manufactured by Murakami Color Research Laboratory Co., Ltd.), a light scattering film is arranged perpendicular to the incident light, a scattered light profile is measured, When the value in the 0 ° direction (straight direction) is I0 and the value in the 30 ° direction (direction inclined 30 ° from the straight direction) of the forward scattering component is I30, the calculated value of I30 / I0 is the light scattering property. Obtained as an indicator.

上記試料の内容と評価結果を表1に示す。   Table 1 shows the contents of the samples and the evaluation results.

なお、表1では以下のように略記した。
BA防止:ブリードアウト防止層
バリアフィルム:ガスバリア性フィルム
バリア1:ガスバリア層1
バリア2:ガスバリア層2
UV1:UVカット性層1
UV2:UVカット性層2
UV3:UVカット性層3
光散乱1:光散乱性層1
光散乱2:光散乱性層2
低硬度:低硬度層
UV+光散乱:UVカット性と光散乱性を有する層
なお、表1で空欄は層を設けなかった事を示す。
In Table 1, the abbreviations are as follows.
BA prevention: Bleed-out prevention layer Barrier film: Gas barrier film barrier 1: Gas barrier layer 1
Barrier 2: Gas barrier layer 2
UV1: UV-cutting layer 1
UV2: UV-cutting layer 2
UV3: UV-cutting layer 3
Light scattering 1: light scattering layer 1
Light scattering 2: light scattering layer 2
Low hardness: low hardness layer UV + light scattering: layer having UV cut property and light scattering property In Table 1, the blank indicates that no layer was provided.

Figure 0005581816
Figure 0005581816

表1に示した結果から明らかなように、本発明の試料は支持体にフィラーとして光散乱性物質や、UVカット剤を添加した比較例3,4に比べ、明らかに水蒸気バリア性と耐熱性耐水性が共に優れ、かつ光散乱性及び/またはUVカット性が良好であることがわかった。またバリア層としてポリシラザンの改質処理をおこなったガスバリア層1を用いたガスバリアフィルムの効果の高いことがわかる。   As is apparent from the results shown in Table 1, the water vapor barrier properties and heat resistance of the sample of the present invention are clearly higher than those of Comparative Examples 3 and 4 in which a light scattering material or a UV cut agent is added as a filler to the support. It was found that both the water resistance was excellent and the light scattering property and / or the UV cut property were good. Moreover, it turns out that the effect of the gas barrier film using the gas barrier layer 1 which performed the modification process of polysilazane as a barrier layer is high.

実施例2
〔有機光電変換素子の作製〕
実施例1で作成したガスバリア性フィルム1〜24のガスバリア側に、それぞれ、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて2mm幅にパターニングし第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
Example 2
[Production of organic photoelectric conversion element]
Each of the gas barrier films 1 to 24 prepared in Example 1 was deposited with a 150 nm indium tin oxide (ITO) transparent conductive film (sheet resistance 10 Ω / □) on the gas barrier side. The first electrode was formed by patterning to a width of 2 mm using wet etching. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を(平均)膜厚が30nmになるように塗布乾燥した後、150℃で30分間熱処理させ正孔輸送層を製膜した。   On this transparent substrate, Baytron P4083 (manufactured by Starck Vitec), which is a conductive polymer, is applied and dried so that the (average) film thickness is 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. A film was formed.

これ以降は、基板を窒素チャンバー中に持ち込み、窒素雰囲気下で作製した。   Thereafter, the substrate was brought into a nitrogen chamber and manufactured in a nitrogen atmosphere.

まず、窒素雰囲気下で上記基板を150℃で10分間加熱処理した。次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ−3−ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:6,6−フェニル−C61−ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過しながら(平均)膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を製膜した。 First, the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere. Next, P3HT in chlorobenzene (plectrovirus Toro Nix Co., Ltd. regioregular poly-3-hexylthiophene) and PCBM (manufactured by Frontier Carbon Corporation: 6,6-phenyl -C 61 - butyric acid methyl ester) and 3.0 wt% Then, a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm and the film was filtered (filtered), and allowed to dry at room temperature. Subsequently, a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.

次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10−4Pa以下まで真空蒸着装置内を減圧した後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、更に続けて、2mm幅のシャドウマスクを通して(受光部が2×2mmに成るように直行させて蒸着)、蒸着速度0.2nm/秒でAlメタルを100nm積層することで第2の電極を形成した。得られた有機光電変換素子を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が2×2mmサイズの有機光電変換素子を作製した。 Next, the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 × 10 −4 Pa or less, and then fluorinated at a deposition rate of 0.01 nm / second. Laminate 0.6 nm of lithium, and then continue to deposit 100 nm of Al metal at a deposition rate of 0.2 nm / sec through a shadow mask with a width of 2 mm (vaporization is performed so that the light receiving part is 2 × 2 mm). A second electrode was formed. The obtained organic photoelectric conversion element was moved to a nitrogen chamber, and sealed using a sealing cap and a UV curable resin, to produce an organic photoelectric conversion element having a light receiving portion of 2 × 2 mm size.

(有機光電変換素子の封止)
窒素ガス(不活性ガス)によりパージされた環境下で、ガスバリア性フィルム試料1〜24の二枚を用い、ガスバリア層を設けた面に、シール材としてエポキシ系光硬化型接着剤を塗布した。上述した方法によって得られた試料1〜24に対応する有機光電変換素子を、上記接着剤を塗布した二枚のガスバリア性フィルム試料1〜24の接着剤塗布面の間に挟み込んで密着させた後、片側の基板側からUV光を照射して硬化させ、有機光電変換素子1〜24を作成した。
(Sealing of organic photoelectric conversion elements)
In an environment purged with nitrogen gas (inert gas), two gas barrier film samples 1 to 24 were used, and an epoxy photocurable adhesive was applied as a sealing material to the surface provided with the gas barrier layer. After the organic photoelectric conversion elements corresponding to the samples 1 to 24 obtained by the method described above are sandwiched between the adhesive application surfaces of the two gas barrier film samples 1 to 24 coated with the adhesive, The organic photoelectric conversion elements 1 to 24 were prepared by irradiating and curing UV light from one side of the substrate.

<有機光電変換素子の耐候性の評価>
(エネルギー変換効率の評価)
上記作製した光電変換素子について、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)及びフィルファクターFF(%)を、同素子上に形成した4箇所の受光部をそれぞれ測定し、下記式1に従って求めたエネルギー変換効率PCE(%)の4点平均値を見積もった。
(式1)PCE(%)=〔Jsc(mA/cm)×Voc(V)×FF(%)〕/100mW/cm
初期電池特性としての変換効率を測定し、性能の経時的低下の度合いを、メタルハライドランプ方式の耐候性試験機(ダイプラ・ウィンテス社製)を使用し、試料面放射強度:2.16MJ/m以下、ブラックパネル温度63℃、相対湿度:50%、照射時間500時間の条件で耐候性試験を行い、その後、温度85℃、湿度85%RH環境で3000時間保存した加速試験後の変換効率残存率により光、熱、水に対する耐候性を評価した。
加速試験後の変換効率/初期変換効率の比
5:90%以上
4:70%以上、90%未満
3:40%以上、70%未満
2:20%以上、40%未満
1:20%未満
それぞれの評価結果を表2に示す。
<Evaluation of weather resistance of organic photoelectric conversion element>
(Evaluation of energy conversion efficiency)
About the produced photoelectric conversion element, the light of the intensity | strength of 100 mW / cm < 2 > of a solar simulator (AM1.5G filter) is irradiated, the mask which made the effective area 4.0mm < 2 > is piled up on a light-receiving part, and IV characteristic is evaluated. Thus, the short-circuit current density Jsc (mA / cm 2 ), the open-circuit voltage Voc (V), and the fill factor FF (%) are respectively measured at the four light receiving portions formed on the same element, and obtained according to the following formula 1. The four-point average value of the energy conversion efficiency PCE (%) was estimated.
(Formula 1) PCE (%) = [Jsc (mA / cm 2 ) × Voc (V) × FF (%)] / 100 mW / cm 2
The conversion efficiency as the initial battery characteristics was measured, and the degree of deterioration in performance over time was measured using a metal halide lamp type weather resistance tester (manufactured by Daipura Wintes Co., Ltd.). Sample surface radiation intensity: 2.16 MJ / m 2 Thereafter, a weather resistance test was performed under the conditions of a black panel temperature of 63 ° C., a relative humidity of 50%, and an irradiation time of 500 hours, and then the conversion efficiency remaining after the acceleration test was stored for 3000 hours in an environment of 85 ° C. and 85% humidity The weather resistance against light, heat and water was evaluated by the rate.
Ratio of conversion efficiency / initial conversion efficiency after acceleration test 5: 90% or more 4: 70% or more, less than 90% 3: 40% or more, less than 70% 2: 20% or more, less than 40% 1: less than 20%, respectively The evaluation results are shown in Table 2.

Figure 0005581816
Figure 0005581816

表2に示した結果から明らかなように、本発明のガスバリア性フィルムを用いて作製した有機光電変換素子は、過酷な環境下でも性能劣化が発生し難いことが分かる。   As is clear from the results shown in Table 2, it can be seen that the organic photoelectric conversion element produced using the gas barrier film of the present invention hardly undergoes performance deterioration even under a severe environment.

実施例3
〔有機EL素子の作製〕
(ITO導電層の形成)
実施例1で作成したガスバリア性フィルム1〜24のガスバリア層側に、ITO(インジウムチンオキシド)を厚さ100nmとなる条件で製膜してパターニングしてITO導電性層の形成を行った後、このITO導電性層を設けた基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 3
[Production of organic EL elements]
(Formation of ITO conductive layer)
After forming the ITO conductive layer by forming and patterning ITO (indium tin oxide) on the gas barrier layer side of the gas barrier films 1 to 24 created in Example 1 under the condition of a thickness of 100 nm, The substrate provided with the ITO conductive layer was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

(正孔注入層の形成)
この基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒でスピンコート法により製膜した後、基板表面温度200℃にて1時間乾燥して、膜厚30nmの正孔注入層を設けた。
(Formation of hole injection layer)
On this substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water was used at 3000 rpm for 30 seconds. After forming the film by spin coating, the substrate was dried at a substrate surface temperature of 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.

(正孔輸送層の形成)
この基板を、窒素雰囲気下、JIS B 9920に準拠した測定法で測定した清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。グローブボックス中にて正孔輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。この基板を、基板表面温度150℃で30分間加熱乾燥して正孔輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は20nmであった。
(Formation of hole transport layer)
This substrate was transferred to a glove box having a cleanliness of class 100, a dew point temperature of −80 ° C. or less, and an oxygen concentration of 0.8 ppm measured by a measurement method according to JIS B 9920 in a nitrogen atmosphere. A coating solution for a hole transport layer was prepared as follows in a glove box, and applied with a spin coater under conditions of 1500 rpm and 30 seconds. This substrate was dried by heating at a substrate surface temperature of 150 ° C. for 30 minutes to provide a hole transport layer. The film thickness was 20 nm when it apply | coated and measured on the conditions with the board | substrate prepared separately.

〈正孔輸送層用塗布液〉
モノクロロベンゼン 100g
ポリ−N,N′−ビス(4−ブチルフェニル)−N,N′−ビス(フェニル)ベンジジン(ADS254BE:アメリカン・ダイ・ソース社製) 0.5g
(発光層の形成)
次いで、発光層塗布液を下記のように調製し、スピンコーターにて、2000rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し発光層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は40nmであった。尚、下記発光層組成物のうち、最も低いTgを示したのはH−Aであり、132℃であった。
<Hole transport layer coating solution>
Monochlorobenzene 100g
Poly-N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine (ADS254BE: manufactured by American Die Source) 0.5 g
(Formation of light emitting layer)
Subsequently, the light emitting layer coating liquid was prepared as follows, and it apply | coated on 2000 rpm and the conditions for 30 seconds with the spin coater. Furthermore, it heated at the substrate surface temperature of 120 degreeC for 30 minutes, and provided the light emitting layer. When the coating was performed under the same conditions on a separately prepared substrate and measured, the film thickness was 40 nm. In addition, among the following light emitting layer composition, it was HA which showed the lowest Tg, and it was 132 degreeC.

〈発光層用塗布液〉
酢酸ブチル 100g
H−A 1.0g
D−A 0.11g
D−B 0.002g
D−C 0.002g
(電子輸送層の形成)
次いで、電子輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し電子輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は30nmであった。
<Coating solution for light emitting layer>
Butyl acetate 100g
H-A 1.0g
DA 0.11g
DB 0.002g
D-C 0.002g
(Formation of electron transport layer)
Subsequently, the coating liquid for electron carrying layers was prepared as follows, and it apply | coated on the conditions of 1500 rpm and 30 seconds with a spin coater. Furthermore, it heated for 30 minutes at the substrate surface temperature of 120 degreeC, and provided the electron carrying layer. The film thickness was 30 nm when it applied and measured on the conditions prepared with the board | substrate prepared separately.

〈電子輸送層用塗布液〉
2,2,3,3−テトラフルオロ−1−プロパノール 100g
ET−A 0.75g
<Coating liquid for electron transport layer>
2,2,3,3-tetrafluoro-1-propanol 100 g
ET-A 0.75g

Figure 0005581816
Figure 0005581816

(電子注入層の形成)
次いで、電子輸送層まで設けた基板を大気曝露せずに、蒸着器に移動し、4×10−4Paまで減圧した。尚、フッ化カリウムおよびアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着器に取り付けておいた。
(Formation of electron injection layer)
Next, the substrate provided up to the electron transport layer was moved to a vapor deposition unit without being exposed to the atmosphere, and the pressure was reduced to 4 × 10 −4 Pa. In addition, potassium fluoride and aluminum were each put in a resistance heating boat made of tantalum and attached to a vapor deposition device.

先ず、フッ化カリウムの入った抵抗加熱ボートに通電して加熱し、基板上にフッ化カリウムからなる電子注入層を3nm設けた。   First, a resistance heating boat containing potassium fluoride was energized and heated to provide 3 nm of an electron injection layer made of potassium fluoride on the substrate.

(陰極の形成)
続いて、アルミニウムの入った抵抗加熱ボートに通電加熱し、蒸着速度1〜2nm/秒でアルミニウムからなる膜厚100nmの陰極を設け、得られた有機EL素子を作製した。
(Formation of cathode)
Subsequently, the resistance heating boat containing aluminum was energized and heated, a cathode having a film thickness of 100 nm made of aluminum was provided at a deposition rate of 1 to 2 nm / second, and the obtained organic EL element was produced.

(光取り出し効率の測定)
上記作製した有機EL素子に対し、2.5mA/cm定電流を流したときの外部取り出し量子効率(%)を、不活性ガス雰囲気下で測定した。なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。以上により得られた有機EL素子1(比較例1のガスバリア性フィルム使用)の量子効率を100としたときの相対値を求めた。数値が大きいほど外部光取り出し効率に優れていることを表す。
(Measurement of light extraction efficiency)
With respect to the produced organic EL element, the external extraction quantum efficiency (%) when a constant current of 2.5 mA / cm 2 was passed was measured under an inert gas atmosphere. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used. The relative value when the quantum efficiency of the organic EL element 1 obtained as described above (using the gas barrier film of Comparative Example 1) was set to 100 was obtained. The larger the value, the better the external light extraction efficiency.

(耐候性の評価)
上記作製した有機EL素子1〜24に対し、メタルハライドランプ方式の耐候性試験機(ダイプラ・ウィンテス社製)を使用し、試料面放射強度:2.16MJ/m以下、ブラックパネル温度63℃、相対湿度:50%、照射時間500時間の条件で耐候性試験を行い、その後、温度85℃、湿度85%RH環境で3000時間保存した後の10mA/cmの一定電流で駆動したときに、初期輝度に対しての加速試験後の輝度残存率により光、熱、水に対する耐候性を評価した。
加速試験後の輝度/初期輝度の比
5:70%以上
4:50%以上、70%未満
3:30%以上、50%未満
2:10%以上、30%未満
1:10%未満
以上により得られた結果を、表3に示す。
(Evaluation of weather resistance)
For the organic EL elements 1 to 24 produced above, a metal halide lamp type weather resistance tester (manufactured by Daipura Wintes Co., Ltd.) was used, sample surface radiation intensity: 2.16 MJ / m 2 or less, black panel temperature 63 ° C., When driving at a constant current of 10 mA / cm 2 after performing a weather resistance test under the conditions of relative humidity: 50% and irradiation time of 500 hours, and then storing in an environment of temperature 85 ° C. and humidity 85% RH for 3000 hours, The weather resistance against light, heat, and water was evaluated based on the residual luminance after the acceleration test with respect to the initial luminance.
Ratio of luminance / initial luminance after acceleration test 5: 70% or more 4: 50% or more, less than 70% 3: 30% or more, less than 50% 2: 10% or more, less than 30% 1: 10% or less The results obtained are shown in Table 3.

Figure 0005581816
Figure 0005581816

表3に記載の結果より明らかな様に、本発明で規定する構成からなる有機ELは、光取り出し効率が高く、屋外で使用した時の耐候性に優れていることが分かる。   As is clear from the results shown in Table 3, it can be seen that the organic EL having the structure defined in the present invention has high light extraction efficiency and excellent weather resistance when used outdoors.

10 バルクヘテロジャンクション型の有機光電変換素子
11 基板
12 陽極
13 陰極
14 発電層(バルクヘテロジャンクション層)
14p p層
14i i層
14n n層
14′ 第1の発電層
15 電荷再結合層
16 第2の発電層
17 正孔輸送層
18 電子輸送層
DESCRIPTION OF SYMBOLS 10 Bulk heterojunction type organic photoelectric conversion element 11 Substrate 12 Anode 13 Cathode 14 Power generation layer (bulk heterojunction layer)
14p p layer 14i i layer 14n n layer 14 'first power generation layer 15 charge recombination layer 16 second power generation layer 17 hole transport layer 18 electron transport layer

Claims (4)

基材の片面にガスバリア層を有するガスバリア性フィルムであって、該ガスバリア層とは反対面に、該基材に隣接して光散乱剤とUVカット剤とを含有する鉛筆硬度がH以上の層を有していることを特徴とするガスバリア性フィルム。 A gas barrier film having a gas barrier layer on one side of a substrate, the layer having a pencil hardness of H or more containing a light scattering agent and a UV-cutting agent adjacent to the substrate on the opposite side of the gas barrier layer It has gas barrier film characterized by having. 前記ガスバリア層が、ポリシラザン含有液の塗布膜に改質処理を施して形成されることを特徴とする請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the gas barrier layer is formed by subjecting a coating film of a polysilazane-containing liquid to a modification treatment . 前記改質処理が、波長200nm以下の真空紫外光を照射する改質処理であることを特徴とする請求項1又は2に記載のガスバリア性フィルム。 The gas barrier film according to claim 1 or 2, wherein the modification treatment is a modification treatment in which vacuum ultraviolet light having a wavelength of 200 nm or less is irradiated . 請求項1〜3のいずれか一項に記載のガスバリア性フィルムを用いたことを特徴とする有機素子デバイス An organic element device using the gas barrier film according to any one of claims 1 to 3 .
JP2010126610A 2010-06-02 2010-06-02 Gas barrier film and organic element device using the same Expired - Fee Related JP5581816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126610A JP5581816B2 (en) 2010-06-02 2010-06-02 Gas barrier film and organic element device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126610A JP5581816B2 (en) 2010-06-02 2010-06-02 Gas barrier film and organic element device using the same

Publications (2)

Publication Number Publication Date
JP2011251460A JP2011251460A (en) 2011-12-15
JP5581816B2 true JP5581816B2 (en) 2014-09-03

Family

ID=45415807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126610A Expired - Fee Related JP5581816B2 (en) 2010-06-02 2010-06-02 Gas barrier film and organic element device using the same

Country Status (1)

Country Link
JP (1) JP5581816B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565129B2 (en) * 2010-06-22 2014-08-06 コニカミノルタ株式会社 Gas barrier film and organic element device using the same
JP2013219190A (en) * 2012-04-09 2013-10-24 Kuraray Co Ltd Organic photoelectric conversion element
JPWO2014185277A1 (en) * 2013-05-16 2017-02-23 コニカミノルタ株式会社 Organic electroluminescence device
JPWO2016063463A1 (en) * 2014-10-21 2017-06-08 日本曹達株式会社 Organic thin film manufacturing method
US10032826B2 (en) 2014-10-22 2018-07-24 Konica Minolta, Inc. Light extraction substrate, method for manufacturing light extraction substrate, organic electroluminescent element, and method for manufacturing organic electroluminescent element
JP5928634B2 (en) * 2015-04-30 2016-06-01 コニカミノルタ株式会社 Gas barrier film and electronic device
JP6926470B2 (en) * 2016-12-26 2021-08-25 大日本印刷株式会社 Transparent protective sheet for solar cell modules
US11276837B2 (en) * 2017-11-10 2022-03-15 Konica Minolta, Inc. Manufacturing method for electronic device
JP7292651B2 (en) 2018-04-17 2023-06-19 エルジー・ケム・リミテッド Light diffusion barrier film
KR102056469B1 (en) 2018-05-08 2019-12-16 한국과학기술원 Transparent structure capable of blocking ultraviolet rays and infrared rays
WO2023080187A1 (en) * 2021-11-05 2023-05-11 出光興産株式会社 Organic electroluminescent element and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892794B2 (en) * 1990-08-10 1999-05-17 尾池工業株式会社 Laminated film
JP2004004176A (en) * 2002-05-30 2004-01-08 Nitto Denko Corp Antireflection resin sheet, substrate for image display, image display
JP4309744B2 (en) * 2002-11-07 2009-08-05 パナソニック電工株式会社 Fluorine-based composite resin film and solar cell
JP4717497B2 (en) * 2005-04-20 2011-07-06 富士フイルム株式会社 Gas barrier film
JP2008249903A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Protective film for polarizing plate, manufacturing method thereof, polarizing plate and image display device
JP2009255040A (en) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd Flexible gas barrier film and method for manufacturing the same

Also Published As

Publication number Publication date
JP2011251460A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5581816B2 (en) Gas barrier film and organic element device using the same
JP5565129B2 (en) Gas barrier film and organic element device using the same
JP5699738B2 (en) Hard coat film, heat ray blocking film using the same, and organic element device
WO2014142036A1 (en) Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
WO2015083660A1 (en) Organic electroluminescence element
JP2012086393A (en) Method of manufacturing functional multilayer film, gas barrier film, and organic element device
JPWO2011046011A1 (en) BARRIER TRANSPARENT CONDUCTIVE FILM, ITS MANUFACTURING METHOD, ORGANIC EL ELEMENT AND ORGANIC SOLAR CELL USING THE BARRIER TRANSPARENT CONDUCTIVE FILM
JP5835083B2 (en) Organic electronics devices
JP7136118B2 (en) Electronic device manufacturing method
JP5609524B2 (en) Gas barrier film and organic element device using the same
JP6984649B2 (en) Composition for manufacturing electronic devices, manufacturing method of composition for manufacturing electronic devices, manufacturing method of organic thin film and organic thin film
WO2017056635A1 (en) Organic electroluminescent element
JPWO2011132550A1 (en) Organic electroluminescence element, display device and lighting device
JP5181920B2 (en) Method for manufacturing organic electroluminescence element
JP2016091793A (en) Organic electroluminescent device and method for manufacturing the same
WO2016163215A1 (en) Organic electroluminescent element
WO2012063656A1 (en) Process for producing organic electroluminescent element
JP2012230774A (en) Method for manufacturing organic electroluminescent element
JP7336381B2 (en) Light-receiving/light-emitting elements, optical sensors and biosensors
JP5472107B2 (en) Method for manufacturing organic electroluminescent element
WO2017217200A1 (en) Light extraction film and organic electroluminescent light emitting device
TWI777271B (en) Electronic components, anti-vulcanization agents and sealing materials
WO2014126063A1 (en) Organic electroluminescent element and method for manufacturing organic electroluminescent element
WO2020130025A1 (en) Electronic device and method of manufacturing electronic device
WO2020130021A1 (en) Electronic device and method of manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5581816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees