WO2020130021A1 - Electronic device and method of manufacturing electronic device - Google Patents

Electronic device and method of manufacturing electronic device Download PDF

Info

Publication number
WO2020130021A1
WO2020130021A1 PCT/JP2019/049549 JP2019049549W WO2020130021A1 WO 2020130021 A1 WO2020130021 A1 WO 2020130021A1 JP 2019049549 W JP2019049549 W JP 2019049549W WO 2020130021 A1 WO2020130021 A1 WO 2020130021A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
layer
coating
organic
electronic device
Prior art date
Application number
PCT/JP2019/049549
Other languages
French (fr)
Japanese (ja)
Inventor
勇作 田中
小島 茂
中林 亮
みゆき 岡庭
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020561488A priority Critical patent/JPWO2020130021A1/en
Publication of WO2020130021A1 publication Critical patent/WO2020130021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode

Definitions

  • the present invention relates to an electronic device and a method for manufacturing an electronic device, and particularly to an electronic device having excellent conductivity of the cathode even when the cathode is formed by a coating method.
  • organic electroluminescent elements hereinafter, also simply referred to as “organic EL elements”
  • organic EL elements it is a high energy consumption process that was once mainstream in manufacturing.
  • a process using a wet coating method hereinafter, also simply referred to as “coating method” for forming a functional film by coating a solution or printing.
  • coating method since it is preferable to manufacture the electrode by a coating method from the viewpoint of efficiency, the manufacturing method is being studied.
  • Patent Document 1 discloses that a cathode is produced from a solution containing a silver-conjugated compound composite containing silver particles and a conjugated compound by a coating method.
  • the particle size of the silver particles is relatively large, and by applying silver particles having such a large particle size to manufacture an electrode, the manufacturing cost and the manufacturing speed are excellent, but it is opposite to the organic layer of the cathode. Due to the large roughness of the surface on the side, the conductivity of the cathode was poor and the performance as an electrode was insufficient.
  • the present invention has been made in view of the above problems and circumstances, and a problem to be solved is an electronic device excellent in conductivity of the cathode and a method of manufacturing the electronic device even when the cathode is formed by a coating method. Is to provide.
  • this inventor sets the arithmetic mean roughness Sa of the surface on the opposite side to the intermediate
  • Sa arithmetic mean roughness
  • An electronic device comprising at least an anode, an intermediate layer and a cathode,
  • the cathode contains silver particles and a dispersant
  • An electronic device in which the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer side is 3.0 nm or less.
  • the average particle size of the silver particles in the coating liquid for the cathode is in the range of 4 to 100 nm, and (D 90 -D 10 )/D at D 10 , D 50 and D 90 according to the volume standard particle size distribution. 5.
  • the step of forming the cathode is spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexo. 6.
  • the present invention it is possible to provide an electronic device excellent in conductivity of the cathode and a method of manufacturing the electronic device even when the cathode is formed by a coating method.
  • the mechanism of action or mechanism of action of the present invention has not been clarified, but is presumed as follows. Conventionally, although the manufacturing cost and the manufacturing speed are solved by manufacturing the electrode by coating, the performance as the electrode is insufficient. Therefore, as a result of diligent studies, the present inventors have found that in coating, the unevenness of the surface roughness of the cathode affects the current flow.
  • the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer is 3.0 nm or less, the surface of the cathode opposite to the intermediate layer or the intermediate layer side.
  • the surface becomes flat, and as a result, the electric conductivity of the cathode is good, and an electronic device having excellent performance as an electrode can be obtained.
  • Sectional drawing which shows an example of the layer structure of the organic EL element which concerns on this invention.
  • Sectional drawing which shows the solar cell which consists of the bulk heterojunction type organic photoelectric conversion element which concerns on this invention.
  • the electronic device of the present invention is an electronic device comprising at least an anode, an intermediate layer and a cathode, wherein the cathode contains silver particles and a dispersant, and the surface of the cathode opposite to the intermediate layer or
  • the arithmetic average roughness Sa of the surface on the side of the intermediate layer is 3.0 nm or less.
  • This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer and the surface of the intermediate layer side is preferably 3.0 nm or less in order to improve the conductivity of the cathode.
  • the method for producing an electronic device of the present invention has a step of forming a cathode by applying a coating liquid for a cathode containing silver particles and a dispersant, and an average aspect ratio of the silver particles in the coating liquid for a cathode. Is in the range of 1.0 to 5.0. As a result, the roughness of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer side can be reduced and flattened, so that the conductivity of the cathode is improved.
  • the average particle size of the silver particles in the coating liquid for the cathode is in the range of 4 to 100 nm, and (D 90 -D 10 ) at D 10 , D 50 and D 90 according to the volume standard particle size distribution. It is preferable that the value of /D 50 is in the range of 1.50 to 3.00 in order to improve the conductivity of the cathode.
  • the step of forming the cathode includes spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing. It is preferable to apply the cathode coating solution by any one of a flexographic printing method, an offset printing method, and an inkjet method from the viewpoints that the film thickness can be appropriately controlled and that the coating is easy and accurate.
  • the electronic device of the present invention is an electronic device comprising at least an anode, an intermediate layer and a cathode, wherein the cathode contains silver particles and a dispersant, and the surface of the cathode opposite to the intermediate layer or
  • the arithmetic average roughness Sa of the surface on the intermediate layer side is 3.0 nm or less.
  • the surface of the cathode opposite to the intermediate layer means, for example, when the electronic device is an organic electroluminescence element as shown in FIG. 1, the second organic functional layer of the cathode (17) (
  • the surface of the cathode on the side of the intermediate layer means the surface (K1) on the side of the second organic functional layer (intermediate layer) (15) of the cathode (17).
  • the arithmetic average roughness Sa is a concept obtained by expanding the two-dimensional arithmetic average roughness Ra defined in JIS B0601 into three dimensions, that is, a three-dimensional roughness parameter.
  • the arithmetic mean roughness Sa can be obtained by an atomic force microscope (AFM) method.
  • the arithmetic mean roughness Sa is measured by an atomic force microscope with a tapping mode (DFM) as a measurement mode, a cantilever scanning frequency of 1.20 Hz, a scanning range of 500 nm ⁇ 500 nm, and a cutoff. It can be calculated by setting the value to 99.98 nm.
  • the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer side is 3.0 nm or less, preferably 0.1 nm or more.
  • it is preferable that the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer and the surface of the intermediate layer side is 3.0 nm or less so that the conductivity of the cathode is better.
  • the average aspect ratio of silver particles in the coating solution for cathode containing silver particles and a dispersant coating for cathode Adjusting the average particle size of the silver particles in the liquid and the value of (D 90 -D 10 )/D 50 within a specific range, and applying each of the above-mentioned coating methods as the coating solution for the cathode.
  • Examples of the electronic device of the present invention include an organic EL element, a solar cell having an organic photoelectric conversion element, an organic thin film transistor, and a touch panel sensor. Above all, the electronic device of the present invention is preferably an organic EL element.
  • a solar cell having an organic EL element and an organic photoelectric conversion element will be described in order.
  • FIG. 1 is a sectional view showing an example of the layer structure of an organic EL element according to the present invention.
  • the organic EL device (EL) according to the present invention is preferably used as a substrate having a gas barrier property by forming a gas barrier layer (11) on a substrate (10) having flexibility.
  • an anode (12) is formed on the substrate, and a first organic functional layer (organic layer such as a hole injection layer/hole transport layer/electron blocking layer) is formed on the anode (12).
  • a second organic functional layer (organic layer) (15) such as a layer) (13), a light emitting layer (14), and a hole blocking layer/electron transporting layer/electron injecting layer (15). preferable.
  • An organic functional layer unit (16) is constituted by the first organic functional layer (13), the light emitting layer (14) and the second organic functional layer (15). Further, a cathode (17) is formed as an upper layer of the second organic functional layer (15), and the first organic layer (13), the second organic functional layer (15), the anode (12) and the cathode (17). ) Is sealed with a sealing substrate (19) via a sealing adhesive layer (18).
  • the organic functional layer unit (16) arranged between the anode (12) and the cathode (17) corresponds to the intermediate layer according to the present invention.
  • Substrate (10) applicable to the organic EL element (EL) is not particularly limited, and examples thereof include glass and plastic. Furthermore, it is preferable that the substrate has flexibility.
  • the term “flexibility” as used in the present invention means that a rod made of an ABS resin (acrylonitrile-butadiene-styrene copolymer resin) having a diameter of 5 mm is wound and opened 10 times, and then the substrate is visually inspected for cracks or chips. Refers to the property of no damage.
  • the substrate (10) arranged on the outermost surface (light emitting surface side) is preferably a transparent substrate, and “transparent” means that the average light transmittance in the visible light region is 50% or more. It is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the substrate (10) in the structure in which the light L is extracted from the substrate (10) side, the substrate (10) needs to be a transparent material, and the transparent flexible substrate (10) preferably used is glass, Quartz and a resin substrate can be mentioned, and a resin substrate is more preferable from the viewpoint of flexibility and safety.
  • polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • transparent resin films such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), which are polyester films, are flexible. It is preferably used as a resin substrate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the polyester constituting the polyester film is not particularly limited, but it is preferable to use a polyester having a film-forming property containing a dicarboxylic acid component and a diol component as main constituent components.
  • a dicarboxylic acid component and a diol component are the main components in terms of transparency, mechanical strength, dimensional stability, etc.
  • Polyester as a component is preferable.
  • a biaxially oriented polyester film is particularly preferable as the transparent resin film, but an unstretched or at least one stretched uniaxially stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion.
  • a transparent resin film in order to facilitate handling, within a range not impairing transparency, calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, It is preferable to contain inorganic fine particles such as lithium fluoride, zeolite and molybdenum sulfide, crosslinked polymer fine particles and organic fine particles such as calcium oxalate. It is also preferable to contain a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an antioxidant, a dye, a pigment, an ultraviolet absorber, and the like.
  • the thickness of the resin substrate is preferably a thin film resin substrate within the range of 10 to 500 ⁇ m, more preferably within the range of 30 to 400 ⁇ m, and particularly preferably within the range of 50 to 300 ⁇ m. is there.
  • the thickness is 10 ⁇ m or more, the organic EL element can be stably held, and when the thickness is 500 ⁇ m or less, a thin organic EL element can be provided.
  • a gas barrier layer (11) can be provided on the substrate (10) according to the present invention.
  • the gas barrier layer is not particularly limited as long as it has an effect of blocking gas, moisture, etc., and a conventionally known gas barrier layer can be appropriately selected and applied.
  • the gas barrier layer may be not only an inorganic material film but also a film made of a composite material with an organic material or a hybrid film in which these films are laminated.
  • the water vapor permeability (environmental conditions: 25 ⁇ 0.5° C., relative humidity (90 ⁇ 2)%) according to JIS (Japanese Industrial Standard)-K7129 (2008) is about 0. 01g/(m 2 ⁇ 24h) or less
  • oxygen permeability according to JIS-K7126 (2006) is about 0.01mL/(m 2 ⁇ 24h ⁇ atm) or less
  • resistivity is 1 ⁇ 10 12 ⁇ cm or more.
  • the light-transmitting insulating film having a gas barrier property has a light transmittance of about 80% or more in a visible light region.
  • any material can be used as long as it can prevent the deterioration of the organic EL element, for example, the infiltration of gas such as water or oxygen into the organic EL element.
  • silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, niobium oxide can be composed of a film made of an inorganic material such as molybdenum oxide,
  • the main raw material is a silicon compound such as silicon nitride or silicon oxide.
  • a conventionally known film forming method can be appropriately selected and used, and examples thereof include a vacuum vapor deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method.
  • Coating method, plasma polymerization method, atmospheric pressure plasma polymerization method see Japanese Patent Laid-Open No. 2004-68143), plasma CVD (Chemical Vapor Deposition) method, laser CVD method, thermal CVD method, ALD (atomic layer deposition) method, and A wet coating method using polysilazane or the like can also be applied.
  • the cathode according to the present invention may have a single-layer form or a laminate of a plurality of layers.
  • the cathode according to the present invention is formed by a coating method.
  • the coating liquid for the cathode used when the cathode is formed by the coating method contains silver particles and a dispersant.
  • the organic EL When the average aspect ratio of the silver particles in the coating liquid for the cathode is within the range of 1.0 to 5.0, the organic EL having good conductivity of the cathode, high reflectance, and excellent uniform light emission. It is preferable that it can be used as an element, and more preferably within the range of 1.0 to 1.5.
  • the average particle size of the silver particles in the coating liquid for the cathode is in the range of 4 to 100 nm, and (D 90 -D 10 ) at D 10 , D 50 and D 90 according to the volume standard particle size distribution. It is preferable that the value of /D 50 is in the range of 1.50 to 3.00 in order to improve the conductivity of the cathode. More preferably, the average particle size is in the range of 8 to 50 nm, and the value of (D 90 -D 10 )/D 50 is in the range of 2.00 to 2.50.
  • the average particle diameter of the silver particles is a volume-based median diameter (D 50 ), and the median diameter can be measured by various methods. However, in the present invention, the particle diameter is measured by SEM to obtain an image.
  • the median diameter (D 50 ) was calculated by volume conversion using the processing software ImageJ,
  • the value of (D 90 ⁇ D 10 )/D 50 can also be calculated by the above method.
  • the value of (D 90 -D 10 /D 50 ) can be controlled by, for example, the heating time and the stirring time during the preparation of the cathode coating liquid. Further, the average particle size of the silver particles can be controlled by, for example, the amount of the dispersant at the time of preparing the coating liquid for the cathode.
  • the cathode may further contain metal particles other than silver particles, and a metal having a small work function (4 eV or less) (referred to as an electron injecting metal) or an alloy as an electrode substance is preferably used. ..
  • metal particles other than silver particles fine particles of gold, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, etc., particularly particles having a particle size of 1 ⁇ m or less are referred to. Of these, gold, platinum, and copper are preferable.
  • the aspect ratio of the metal particles other than the silver particles is preferably in the range of 1 to 5, more preferably 1 to 3.
  • the aspect ratio is closer to 1 and closer to a true sphere, the density of the film made of metal particles is higher, the contact area with the organic functional layer is higher, and the adhesion and bending resistance are better.
  • the dispersant according to the present invention is preferably a non-volatile organic substance having a boiling point of 300°C or higher.
  • the non-volatile organic material enhances the dispersion stability of the silver particles in the dispersion liquid of the silver particles, and also improves the adhesion between the organic functional layer and the cathode formed of the silver particles in the organic EL device. Is added.
  • Non-volatile organic substances include styrene-acrylic acid copolymers, styrene-acrylic acid-acrylic acid alkyl ester copolymers, styrene-acrylic acid copolymers, styrene-maleic acid-acrylic acid alkyl ester copolymers, styrene -Maleic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene-methacrylic acid copolymer, styrene-maleic acid half ester copolymer, vinylnaphthalene-acrylic acid copolymer, vinylnaphthalene- Maleic acid copolymers, polyvinyl alcohols, gelatins, celluloses, thickening polysaccharides, polymers having amines and aliphatics (for example, polyethyleneimine) and the like can be used.
  • the coating solvent of the cathode is preferably water from the viewpoint of suppressing the influence of dissolution and the like due to the diffusion of the solvent into the lower layer, but when a small amount of an organic solvent or the like is added, the wettability and spreadability of the dispersion liquid to the organic functional layer is good. This is preferable because the adhesion between the organic functional layer and the electrodes formed of silver particles and a non-volatile organic substance is further improved.
  • the cathode according to the present invention preferably contains water within a range of 20 to 300 ⁇ g per 1 mm 3 , and contains an organic solvent within a range of 4 to 100 ⁇ g per 1 mm 3 , and the range of the content is preferably. Therefore, it is preferable to use water and an organic solvent for preparing the dispersion liquid.
  • the mixing ratio of water to the organic solvent is preferably in the range of water:organic solvent of 4:6 to 95:5, and more preferably 6:4 to 95:5.
  • the amount of water and alcohol in the cathode can be measured by a gas chromatograph mass spectrometer, a temperature programmed thermal desorption analyzer, or the like. Further, as a specific device, the measurement can be carried out by a temperature programmed thermal desorption analysis device manufactured by Denshi Kagaku.
  • organic solvent it is preferable to use an organic solvent having a boiling point in the range of 50 to 250°C.
  • alcohol is preferable, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methylpropyl alcohol, ethylene glycol, propylene glycol, methoxyethanol, 1-methoxy-2-propanol, propylene glycol monopropyl.
  • Ether, 3-methoxy-1-butanol, 1-ethoxy-2-propanol, 2-n-butoxyethanol, methylpropylenediglycol, 2-(2-n-butoxyethoxy)ethanol and the like can be used.
  • the silver particles, the non-volatile organic substance and a solvent are mixed and dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion. it can.
  • the method for applying the coating liquid for the cathode is not limited, but spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating Method, screen printing method, flexographic printing method, offset printing method or inkjet method is preferable because the film thickness can be appropriately controlled.
  • the inkjet printing method is preferable from the viewpoint of ease and accuracy in coating.
  • the drying method after coating the dispersion containing silver particles and a non-volatile organic matter is not particularly limited, but it is preferable to perform initial drying by infrared drying, blast drying, warm air drying, and then a constant temperature bath, hot It is preferable to bake with a plate or the like. By drying in this manner, the concentration of the non-volatile organic substance in the region of 10 nm in the thickness direction from the interface of the electrode formed of silver particles on the organic functional layer side can be appropriately controlled.
  • Sheet resistance of the cathode as a whole is several hundred ⁇ /sq.
  • the following is preferable, and the thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • anode As the anode according to the present invention, those having a high work function (4 eV or more, preferably 4.5 V or more) metal, alloy, electrically conductive compound or a mixture thereof as an electrode substance are preferably used.
  • an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous transparent conductive film may be used.
  • the anode may be formed into a thin film by a method such as vapor deposition or sputtering of these electrode substances, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 ⁇ m or more).
  • a pattern may be formed through a mask having a desired shape during vapor deposition or sputtering of the electrode material.
  • a coatable substance such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance is higher than 10%, and the sheet resistance as the anode is several hundred ⁇ /sq.
  • the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably in the range of 10 to 200 nm.
  • the layers excluding the anode and the cathode are organic functional layers (simply referred to as organic layers).
  • Anode/organic functional layer unit [first organic functional layer (hole injection/transport layer)/light emitting layer/second organic functional layer]/cathode (ii) Anode/organic functional layer unit [first organic Functional layer (hole injecting and transporting layer)/light emitting layer/second organic functional layer (hole blocking layer/electron injecting and transporting layer)]/cathode (iii) anode/organic functional layer unit [first organic functional layer (Hoe injecting/transporting layer/electron blocking layer)/light emitting layer/second organic functional layer (hole blocking layer/electron injecting/transporting layer)]/cathode (iv) anode/organic functional layer unit [first organic functional layer] (Hole injection layer/hole transport layer)/light emitting layer/second organic functional layer (electron transport layer/electron injection layer)]/cathode (v) anode/organic functional layer unit [first organic functional layer (Hole injection layer/hole transport layer)/light emitting layer/second organic
  • JP-A-2013-157634 JP-A-2013-168552, JP-A-2013-177361, JP-A-2013-187211, and JP-A-2013-187211.
  • the configurations described in Japanese Patent Laid-Open No. 2014-017494 and the like can be mentioned.
  • tandem type organic EL device examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, and US Pat. No. 6107734, US Pat. No. 6,337,492, JP 2006-228712 A, JP 2006-24791 A, JP 2006-49393 A, JP 2006-49394 A, JP 2006-A. 49396, JP2011-96679A, JP2005-340187A, JP47111424A, JP34969681A, JP3884564A, JP4213169A, JP2010-192719A.
  • the light emitting layer constituting the organic EL device (EL) can use a phosphorescent compound or a fluorescent compound as a light emitting material.
  • the phosphorescent compound is contained particularly as a light emitting material. The configuration is preferable.
  • This light emitting layer is a layer in which electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer are recombined to emit light, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • the structure of such a light emitting layer is not particularly limited as long as the light emitting material contained therein satisfies the light emitting requirements. Further, there may be a plurality of layers having the same emission spectrum or emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layer is preferably in the range of 1 to 100 nm, more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the total thickness of the light emitting layer is the thickness including the non-light emitting intermediate layer when the non-light emitting intermediate layer is present between the light emitting layers.
  • known materials such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir Blodgett, Langmuir Blodgett method), and an inkjet method can be used for the light emitting material and the host compound described below. Can be formed by.
  • the light emitting layer may be a mixture of a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • the light-emitting layer preferably contains a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • ⁇ Host compound> As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Further, among the compounds contained in the light emitting layer, the volume ratio in the layer is preferably 50% or more.
  • a known host compound may be used alone, or a plurality of types of host compounds may be used.
  • a plurality of types of host compounds it is possible to adjust the transfer of charges and improve the efficiency of the organic electroluminescent device.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emissions, and thereby an arbitrary emission color can be obtained.
  • the host compound used in the light emitting layer may be a conventionally known low molecular weight compound or a high molecular compound having a repeating unit, and a low molecular weight compound having a polymerizable group such as a vinyl group or an epoxy group (a vapor deposition polymerizable light emitting host). ) Is OK.
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357977, 2002-8860, 2002-43056, 2002-105445, and No. 2002-352957, No. 2002-231453, No. 2002-234888, No. 2002-260861, No. 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication Examples thereof include compounds described in WO 2009/086028, WO 2012/023947, JP 2007-254297 A, EP 2034538 and the like.
  • Examples of the light-emitting material that can be used in the present invention include a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (also referred to as a fluorescent compound or a fluorescent material). ,), but it is particularly preferable to use a phosphorescent compound from the viewpoint of obtaining high luminous efficiency.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound also referred to as a fluorescent compound or a fluorescent material
  • the phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25° C.), and has a phosphorescence quantum yield of 0 at 25° C. Although it is defined as a compound of 0.01 or more, a preferable phosphorescence quantum yield is 0.1 or more.
  • the above-mentioned phosphorescence quantum yield can be measured by the method described on page 398 of Spectroscopy II of 4th edition Experimental Chemistry Course 7 (1992 version, Maruzen).
  • the phosphorescent quantum yield in a solution can be measured using various solvents, but when the phosphorescent compound is used in the present invention, the phosphorescent quantum yield is 0.01 or more in any one of the solvents. Should be achieved.
  • the phosphorescent compound can be appropriately selected and used from known compounds used for a light emitting layer of a general organic EL device, and preferably contains a metal of Group 8 to 10 in the periodic table of elements.
  • Complex compounds more preferably iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferably iridium compounds.
  • At least one light-emitting layer may contain two or more phosphorescent compounds, the concentration ratio of the phosphorescent compound in the light-emitting layer changes in the thickness direction of the light-emitting layer. It may be in the form.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond and a metal-sulfur bond is preferable.
  • the phosphorescent compound (also referred to as a phosphorescent metal complex) described above is described in, for example, Organic Letter magazine, vol. 16, pp. 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Volume 40, No. 7, pp. 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002). , New Journal of Chemistry. , Vol. 26, p. 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pp. 695-709 (2004), and the methods disclosed in the references cited in these documents. Can be synthesized by applying
  • fluorescent compound examples include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes.
  • fluorescent compound examples include dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • each layer constituting the organic functional layer unit will be described in the order of the charge injection layer, the hole transport layer, the electron transport layer and the blocking layer.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to reduce the driving voltage and improve the light emission brightness.
  • the organic EL element and its industrial front line June 30, 1998, NT The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166), Vol. 2, published by S. Co., Ltd.), which includes a hole injection layer and an electron injection layer.
  • the charge injection layer is generally present between the anode and the light emitting layer or the hole transport layer in the case of the hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of the electron injection layer.
  • the charge injection layer is arranged adjacent to the anode.
  • at least one of the electron injection layer and the hole injection layer adjacent to each other may satisfy the requirements of the present invention.
  • the hole injection layer is a layer arranged adjacent to the anode, which is a transparent electrode, for the purpose of lowering the driving voltage and improving the light emission brightness, and is referred to as "organic EL element and its frontier of industrialization (November 30, 1998). ⁇ Published by TS Co., Ltd.)", Chapter 2, “Electrode Materials” (Pages 123 to 166).
  • the hole injection layer is described in detail in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc., and these compounds can be used in the hole injection layer. it can.
  • a hexaazatriphenylene derivative as described in JP-B-2003-515432, JP-A-2006-135145, etc. can also be used as a hole transporting material.
  • the electron injecting layer is a layer provided between the cathode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness.
  • the cathode is formed of a transparent electrode, it is adjacent to the transparent electrode.
  • the electron injection layer is preferably a very thin film, and its layer thickness is preferably in the range of 1 nm to 10 ⁇ m, although it depends on the constituent material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole injection layer and the electron blocking layer also have a function of the hole transport layer in a broad sense.
  • the hole transport layer may be a single layer or a plurality of layers.
  • the hole-transporting material has any of hole injection or transport and electron barrier properties, and may be an organic substance or an inorganic substance.
  • the hole transport material the above materials can be used, but a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound can be used, and an aromatic tertiary amine compound is particularly preferably used. preferable.
  • the hole transport layer is formed by using the above hole transport material by a known method such as a vacuum vapor deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir Blodgett method, Langmuir Blodgett method). Can be formed by thinning.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single-layer structure composed of one or more of the above materials.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer and the hole blocking layer are also included in the electron transport layer.
  • the electron-transporting layer can be provided as a single-layer structure or a layered structure of a plurality of layers.
  • an electron injected from a cathode is used as a light emitting layer. It only has to have a function of transmitting.
  • any one of conventionally known compounds can be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethanes, anthrone derivatives and oxadiazole derivatives.
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Further, a polymer material obtained by introducing these materials into a polymer chain or a polymer material having these materials as a polymer main chain can also be used.
  • a metal complex of an 8-quinolinol derivative for example, tris(8-quinolinol)aluminum (abbreviation: Alq 3 ), tris(5,7-dichloro-8-quinolinol)aluminum, tris(5,7-dibromo-8-).
  • the central metal of quinolinol)aluminum, tris(2-methyl-8-quinolinol)aluminum, tris(5-methyl-8-quinolinol)aluminum, bis(8-quinolinol)zinc (abbreviation: Znq), and their metal complexes are A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the layer thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • the blocking layer examples include a hole blocking layer and an electron blocking layer, which are layers provided as necessary in addition to the constituent layers of the organic functional layer unit 3 described above. For example, it is described in JP-A-11-204258, JP-A-11-204359, and “237 pages of "organic EL element and its forefront of industrialization (published on November 30, 1998, NTS Co., Ltd.)". Hole blocking (hole blocking) layers and the like.
  • the hole blocking layer has the function of an electron transport layer.
  • the hole blocking layer is made of a hole blocking material which has a function of transporting electrons and has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. The probability can be improved.
  • the structure of the electron transport layer can be used as a hole blocking layer, if necessary.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons. By blocking the electrons while transporting the holes, the recombination probability of electrons and holes is improved. Can be made Further, the structure of the hole transport layer can be used as an electron blocking layer, if necessary.
  • the thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably 5 to 30 nm.
  • the method for forming the organic functional layer according to the present invention is not particularly limited, and conventionally known methods such as a vacuum deposition method and a wet method (also referred to as a wet process) can be used.
  • a spin coating method As a wet method, a spin coating method, a casting method, a dispenser method, an inkjet printing method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, an LB method (Langmuir-Blodgett method)
  • a roll-to-roll method having high suitability such as a dispenser method, a die coating method, an inkjet printing method, a spray coating method is preferable.
  • the inkjet printing method is preferable from the viewpoint of ease and accuracy in coating.
  • an inkjet head applicable to the present invention is, for example, Japanese Patent Application Laid-Open No. 2012-140017, Japanese Patent Application Laid-Open No. 2013-010227, Japanese Patent Application Laid-Open No. 2014-058171, Japanese Patent Application Laid-Open No. 2014-097644, and Japanese Patent Application Laid-Open No. 2015-2015. 142979, JP2015-142980, JP2016-002675, JP2016-002682, JP2016-107401, JP2017-109476, JP2017-177626.
  • An inkjet head and a printing method having the configurations described in the publications and the like can be appropriately selected and applied.
  • the coating liquid used in the wet method may be a solution in which the material forming the organic functional layer is uniformly dissolved in the liquid medium, or a dispersion liquid in which the material is dispersed as a solid content in the liquid medium.
  • a dispersion method it is possible to disperse by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
  • the liquid medium is not particularly limited, and examples thereof include halogen solvents such as chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, dichlorobenzene, dichlorohexanone, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, n- Ketone solvents such as propyl methyl ketone and cyclohexanone, aromatic solvents such as benzene, toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic solvents such as cyclohexane, decalin and dodecane, ethyl acetate, n-propyl acetate, n acetate -Butyl, methyl propionate, ethyl propionate, ⁇ -butyrolactone, diethyl carbonate and other ester solvents, t
  • the boiling point of these liquid mediums is preferably lower than the temperature of the drying treatment from the viewpoint of drying the liquid medium rapidly, specifically in the range of 60 to 200°C, and more preferably 80 to 180°C. Within the range of.
  • the coating liquid contains a surfactant for the purpose of controlling the coating range and suppressing the liquid flow (for example, liquid flow that causes a phenomenon called coffee ring) accompanying the surface tension gradient after coating.
  • the surfactant examples include anionic or nonionic surfactants from the viewpoint of the influence of water contained in the solvent, the leveling property, the wettability to the substrate f1 and the like.
  • the surfactants described in WO 08/146681 and JP-A-2-41308 can be used, such as fluorine-containing surfactants.
  • the viscosity of the coating film can be appropriately selected depending on the function required as the organic functional layer and the solubility or dispersibility of the organic material. Specifically, for example, 0.3 to 100 mPa ⁇ It can be selected within the range of s.
  • the thickness of the coating film can be appropriately selected depending on the function required as the organic functional layer and the solubility or dispersibility of the organic material, and specifically, can be selected within a range of 1 to 90 ⁇ m, for example. ..
  • the vapor deposition conditions generally differ depending on the type of compound used, but the boat heating temperature is 50 to 450° C., the vacuum degree is 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa, It is desirable that the vapor deposition rate is 0.01 to 50 nm/sec, the supporting substrate temperature is -50 to 300° C., and the thickness is 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic functional layer from the hole injecting layer to the cathode consistently by vacuuming once, but it is also possible to take out in the middle and apply a different film forming method. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • Sealing member As a sealing means used for sealing the organic EL element, for example, a method of bonding the flexible sealing member, the cathode and the transparent substrate with a sealing adhesive is given. it can.
  • the sealing member may be arranged so as to cover the display area of the organic EL element, and may have a concave plate shape or a flat plate shape. Further, the transparency and the electric insulation are not particularly limited.
  • Examples of the glass plate include soda-lime glass, barium/strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • examples of the metal film include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum.
  • the sealing member a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned.
  • the polymer film has a water vapor permeability of 1 ⁇ 10 ⁇ 3 g/m 2 ⁇ at a temperature of 25 ⁇ 0.5° C. and a relative humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by the method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml/m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 a Pa) equal to or lower than a temperature of 25 ⁇ 0.5 ° C.
  • water vapor permeability at a relative humidity of 90 ⁇ 2% RH is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • the adhesive used for adhering the organic EL element and the encapsulant include photocurable and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomer and methacrylic acid-based oligomer, and 2-cyanoacrylic acid ester.
  • adhesives include moisture-curable adhesives.
  • epoxy and other heat and chemical curing types can be used.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cation-curing type UV-curing type epoxy resin adhesive can be mentioned.
  • the organic EL element may be deteriorated by heat treatment, so a material that can be adhesively cured from room temperature (25°C) to 80°C is preferable.
  • a desiccant may be dispersed in the adhesive.
  • the adhesive may be applied to the sealing substrate by using a commercially available dispenser or by printing such as screen printing.
  • an inert gas such as nitrogen or argon or an inert liquid such as fluorocarbon or silicone oil is injected in the vapor phase and the liquid phase. You can also do it. Further, a gap between the sealing member and the display region of the organic EL element can be evacuated or a hygroscopic compound can be filled in the gap.
  • a sealing film may be provided on the transparent substrate in a state where the light emitting functional layer unit in the organic EL element is completely covered and the anode and cathode terminal portions of the organic EL element are exposed.
  • FIG. 2 is a cross-sectional view showing an example of a solar cell having a single structure (a structure having one bulk heterojunction layer) including a bulk heterojunction type organic photoelectric conversion element.
  • a bulk heterojunction type organic photoelectric conversion device includes an anode (202), a hole transport layer (207), and a bulk heterojunction layer photoelectric conversion unit (204) on one surface of a substrate (201).
  • An electron transport layer also referred to as a buffer layer 208) and a cathode (203) are sequentially stacked.
  • the hole transport layer (207) arranged between the anode (202) and the cathode (203), the photoelectric conversion part (204) of the bulk heterojunction layer, the electron The transport layer (208) corresponds to the intermediate layer according to the present invention.
  • the substrate (201) is a member that holds an anode (202), a photoelectric conversion unit (204) and a cathode (203) that are sequentially stacked.
  • the substrate (201) can transmit the photoelectrically converted light, that is, the light to be photoelectrically converted.
  • a member transparent to the wavelength is preferable.
  • the substrate (201) for example, a glass substrate or a resin substrate is used. This substrate (201) is not essential.
  • a bulk heterojunction type organic photoelectric conversion element (200) is formed by forming an anode (202) and a cathode (203) on both surfaces of a photoelectric conversion part (204). May be.
  • the photoelectric conversion unit (204) is a layer that converts light energy into electric energy, and is configured to have a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material relatively functions as an electron donor (donor)
  • the n-type semiconductor material relatively functions as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are "an electron donor that, when absorbing light, moves from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state).
  • electron acceptor which donates or accepts electrons as in an electrode, but donates or accepts electrons by a photoreaction.
  • the light incident from the anode (202) through the substrate (201) is absorbed by the electron acceptor or the electron donor in the bulk heterojunction layer of the photoelectric conversion unit (204), and the electron acceptor receives the electron. Electrons move to the body, forming a pair of holes and electrons (charge separation state).
  • the generated electric charge is caused by the internal electric field, for example, when the work functions of the anode (202) and the cathode (203) are different, the electrons pass between the electron acceptors due to the potential difference between the anode (202) and the cathode (203), and The holes pass between the electron donors and are carried to different electrodes to detect photocurrent.
  • the work function of the anode (202) is greater than that of the cathode (203)
  • electrons will be transported to the anode (202) and holes will be transported to the cathode (203).
  • the magnitude of the work function is reversed, the electrons and holes will be transported in the opposite directions.
  • it may have other layers such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer.
  • tandem type structure a structure having a plurality of bulk heterojunction layers in which such photoelectric conversion elements are stacked may be used.
  • Examples of the material that can be used for the layer as described above include the n-type semiconductor material and the p-type semiconductor material described in paragraphs 0045 to 0113 of JP-A-2015-149483.
  • the cathode (203) contains silver particles and a dispersant, and is the surface (S2) opposite to the electron transport layer (208) which is the intermediate layer of the cathode (203), or an intermediate layer.
  • the arithmetic average roughness Sa of the surface (K2) on the electron transport layer side is 3.0 nm or less.
  • the positive charge and the negative charge generated in the bulk heterojunction layer are taken out from the anode and the cathode via the p-type organic semiconductor material and the n-type organic semiconductor material, respectively, to obtain a battery. It works.
  • Each electrode is required to have characteristics suitable for a carrier passing through the electrode.
  • the organic photoelectric conversion device has a hole transport layer/electron block layer between the bulk heterojunction layer and the anode because it makes it possible to more efficiently extract the charges generated in the bulk heterojunction layer. Is preferred.
  • PEDOT such as Clevios manufactured by Heraeus, polyaniline and a doped material thereof, and a cyan compound described in WO2006/019270 can be used.
  • the organic photoelectric conversion device by forming an electron transport layer, a hole blocking layer, and a buffer layer between the bulk heterojunction layer and the cathode, it is possible to more efficiently extract the charges generated in the bulk heterojunction layer. Therefore, it is preferable to have these layers.
  • the organic photoelectric conversion element may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • the optical functional layer for example, an antireflection film, a light condensing layer such as a microlens array, or a light diffusing layer capable of scattering the light reflected by the cathode and re-entering the bulk heterojunction layer may be provided. Good.
  • [Preparation of coating liquid 110 for cathode] 100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto. To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After sufficiently stirring, 15 g of triethanolamine was added, and the mixture was stirred at 80°C for 1 hour.
  • a non-volatile organic substance Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution
  • ITO indium tin oxide
  • the substrate on which the anode was formed was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. Then, a poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) dispersion prepared in the same manner as in Example 16 of Japanese Patent No. 4509787 was added to the base material on which the anode was formed by using isopropyl alcohol. The 2 mass% solution diluted with was applied by an inkjet printing method and dried at 80° C. for 5 minutes to form a hole injection layer having a layer thickness of 40 nm.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate
  • the substrate on which the hole injection layer is formed is transferred to a nitrogen atmosphere using nitrogen gas (grade G1), and is applied by an inkjet printing method using a hole transport layer forming coating solution having the following composition. After drying at 150° C. for 30 minutes, a hole transport layer having a layer thickness of 30 nm was formed.
  • the substrate on which the hole transport layer is formed is applied by an inkjet printing method using a coating solution for forming a light emitting layer having the following composition and dried at 130° C. for 30 minutes to form a light emitting layer having a layer thickness of 50 nm. did.
  • ⁇ Emitting layer forming coating liquid> Host compound H-4 9 parts by weight Metal complex CD-2 1 part by weight Fluorescent material F-1 0.1 part by weight Normal butyl acetate 2000 parts by weight
  • the substrate on which the block layer is formed is coated by an inkjet printing method using a coating liquid for forming an electron transport layer having the following composition, and dried at 80° C. for 30 minutes to form an electron transport layer having a layer thickness of 30 nm. did.
  • the coating liquid 101 for cathode was applied to the substrate on which the electron injection layer was formed by using a dispenser to form a cathode.
  • the amount of liquid and the coating speed were adjusted in advance so that the film thickness after drying was 200 nm.
  • a coating solution is applied on a glass substrate prepared separately, a part of the film is peeled off, and the step between the peeled part and the part where the film remains is measured by using a Bruker stylus profiling system Dektak. It was measured using.
  • An inorganic gas barrier layer made of SiOx having a layer thickness of 500 nm was formed on the entire surface of the polyethylene naphthalate film (manufactured by Teijin Film Solutions Co., Ltd.) by using the atmospheric pressure plasma discharge treatment device having the configuration described in JP 2004-68143 A. It was formed so that
  • thermosetting liquid adhesive epoxy resin
  • the gas barrier film provided with this sealing resin layer was overlaid on the above-prepared element.
  • the sealing resin layer formation surface of the gas barrier film was continuously overlapped with the sealing surface side of the organic EL element so that the ends of the extraction portions of the anode and the cathode were exposed to the outside.
  • the sample to which the gas barrier film was attached was placed in a decompression device, and pressed at 90° C. under a decompression condition of 0.1 MPa for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90° C. for 30 minutes to cure the adhesive.
  • the sealing step is performed under atmospheric pressure in a nitrogen atmosphere having a water content of 1 ppm or less according to JIS B 9920, the cleanliness measured is Class 100, the dew point temperature is ⁇ 80° C. or less, and the oxygen concentration is 0.8 volume. It was carried out at atmospheric pressure below ppm. Through the above steps, the organic EL element 101 was manufactured.
  • each organic compound was prepared in the same manner as in the production of the organic EL element 101, except that the cathode coating liquid 101 was used instead of the cathode coating liquid 101.
  • EL devices 102 to 110 were obtained.
  • the average particle diameter (volume-based median diameter (D 50 )) of the silver particles in each of the obtained cathode coating solutions was determined by drying the cathode coating solution and then using a scanning electron microscope (SEM) “JSM- 7401F” (manufactured by JEOL Ltd.) was used to observe silver particles in an electron micrograph, and the volume conversion was calculated using image processing software ImageJ, and the results are shown in Table I below.
  • the arithmetic mean roughness Sa of the surface of the cathode opposite to the organic layer (specifically, the electron injection layer) and the surface of the organic layer (electron injection layer) side was measured by an atomic force microscope. It was calculated by the (AFM) method. Specifically, in the atomic force microscope, the measurement mode is tapping mode (DFM), the scanning frequency of the cantilever is 1.20 Hz, the scanning range is 500 nm ⁇ 500 nm, and the cutoff value is 99.98 nm.
  • the results are shown in Table I below. In the table below, the side opposite to the organic layer of the cathode is referred to as "upper surface side", and the organic layer side of the cathode is referred to as "substrate side".
  • the sheet resistance value ( ⁇ /sq.) of the cathode of the produced organic EL element was measured by a 4-terminal 4-probe method constant current application method using a resistivity meter (MCPT610 manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the sheet resistance value is 80 ⁇ /sq.
  • the following materials were judged to have high electrical conductivity and were evaluated as ⁇ , and the sheet resistance value was 80 ⁇ /sq. Greater than 100 ⁇ /sq.
  • the following materials were judged to have high electrical conductivity, and were evaluated as ⁇ , and 100 ⁇ /sq. The one having a larger resistance value was evaluated as x.
  • the coating liquid 101 for a cathode was applied on a glass substrate having a surface-side arithmetic average roughness Sa of 1.0 with a dispenser to form an electrode 11.
  • the amount of liquid and the coating speed were adjusted in advance so that the film thickness after drying was 200 nm. After application, it was dried in a constant temperature bath at 120° C. for 30 minutes.
  • a coating solution is applied on a glass substrate prepared separately, a part of the film is peeled off, and the step between the peeled part and the part where the film remains is measured by using a Bruker stylus profiling system Dektak. It was measured using.
  • Electrodes 12 to 17 were produced in the same manner as the electrode 11 except that the cathode coating liquid 101 was changed to 102 to 107 in the production of the electrode 11.
  • the coating liquid 101 for cathodes was applied to the glass substrate formed with the arithmetic average roughness Sa4.0 on the front surface side using a dispenser to form the electrode 21.
  • the amount of liquid and the coating speed were adjusted in advance so that the film thickness after drying was 200 nm. After application, it was dried in a constant temperature bath at 120° C. for 30 minutes.
  • a coating solution is applied on a glass substrate prepared separately, a part of the film is peeled off, and the step between the peeled part and the part where the film remains is measured by using a Bruker stylus profiling system Dektak. It was measured using.
  • Electrodes 22 to 27 were produced in the same manner as the electrode 21, except that the cathode coating liquid 101 was changed to 102 to 107 in the production of the electrode 21.
  • the arithmetic mean roughness Sa of the surface on the upper surface side (the side opposite to the substrate) of the electrode was calculated by an atomic force microscope (AFM) method.
  • the measurement mode is tapping mode (DFM)
  • the scanning frequency of the cantilever is 1.20 Hz
  • the scanning range is 500 nm ⁇ 500 nm
  • the cutoff value is 99.98 nm.
  • Table I the substrate side of the electrode is referred to as “substrate side”
  • the upper surface side of the electrode is referred to as “upper surface side”.
  • the sheet resistance value ( ⁇ /sq.) of the prepared electrode was measured using a resistivity meter (MCPT610 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) by a 4-terminal 4-probe method with constant current application method.
  • the sheet resistance value is 80 ⁇ /sq.
  • the following materials were judged to have high electrical conductivity and were evaluated as ⁇ , and the sheet resistance value was 80 ⁇ /sq. Greater than 100 ⁇ /sq.
  • the following materials were judged to have high electrical conductivity, and were evaluated as ⁇ , and 100 ⁇ /sq. The one having a larger resistance value was evaluated as x.
  • the organic EL device and electrode of the present invention are superior in electrical conductivity to the organic EL device and electrode of Comparative Example.
  • the present invention can be used particularly for an electronic device having excellent conductivity of the cathode and a method for manufacturing the electronic device even when the cathode is formed by a coating method.
  • EL organic EL device 10 substrate 11 gas barrier layer 12 anode 13 first organic functional layer 14 light emitting layer 15 second organic functional layer 16 organic functional layer unit 17 cathode 18 sealing adhesive layer 19 sealing substrate S1, S2 cathode Surface opposite to the intermediate layer of K1, K2 surface of the intermediate layer of the cathode h emission point L emission light 200 bulk heterojunction type organic photoelectric conversion element 201 substrate 202 anode 203 cathode 204 photoelectric conversion part (bulk heterojunction layer) 207 hole transport layer 208 electron transport layer

Abstract

An electronic device of the present invention comprises at least a positive electrode, an intermediate layer, and a negative electrode, wherein the negative electrode contains silver particles and dispersants, and the arithmetic average roughness Sa of an intermediate-layer-opposed-side surface of the negative electrode or an intermediate-layer-side surface of the negative electrode is 3.0 nm or less.

Description

電子デバイス及び電子デバイスの製造方法Electronic device and method of manufacturing electronic device
 本発明は、電子デバイス及び電子デバイスの製造方法に関し、特に、塗布法により陰極を形成した場合であっても、陰極の通電性に優れた電子デバイス等に関する。 The present invention relates to an electronic device and a method for manufacturing an electronic device, and particularly to an electronic device having excellent conductivity of the cathode even when the cathode is formed by a coating method.
 近年、有機エレクトロルミネッセンス素子(以下、単に「有機EL素子」ともいう。)の開発において渇望される低価格化や量産化の達成に向け、製造にはかつて主流であった高エネルギー消費プロセスである真空蒸着法に代替して、溶液の塗布や印刷により機能性膜を成膜する湿式塗布法(以下、単に「塗布法」ともいう。)を用いるプロセスに注目が集まっている。特に、電極を塗布法で製造することが効率の面で好ましいことからその製法について検討されている。
 具体的に特許文献1では、銀粒子及び共役化合物を含む銀-共役化合物複合体を含有する溶液から塗布法によって陰極を製造することが開示されている。しかしながら、前記銀粒子の粒径は比較的大きく、このような粒径の大きな銀粒子を塗布して、電極を製造することで、製造コスト及び製造速度には優れるものの、陰極の有機層と反対側の表面の粗さが大きいことで、陰極の通電性が悪く電極としての性能が不十分であった。
In recent years, in order to achieve cost reduction and mass production, which have been craved in the development of organic electroluminescent elements (hereinafter, also simply referred to as “organic EL elements”), it is a high energy consumption process that was once mainstream in manufacturing. In place of the vacuum vapor deposition method, attention is focused on a process using a wet coating method (hereinafter, also simply referred to as “coating method”) for forming a functional film by coating a solution or printing. In particular, since it is preferable to manufacture the electrode by a coating method from the viewpoint of efficiency, the manufacturing method is being studied.
Specifically, Patent Document 1 discloses that a cathode is produced from a solution containing a silver-conjugated compound composite containing silver particles and a conjugated compound by a coating method. However, the particle size of the silver particles is relatively large, and by applying silver particles having such a large particle size to manufacture an electrode, the manufacturing cost and the manufacturing speed are excellent, but it is opposite to the organic layer of the cathode. Due to the large roughness of the surface on the side, the conductivity of the cathode was poor and the performance as an electrode was insufficient.
特開2012-238576号公報JP 2012-238576 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、塗布法により陰極を形成した場合であっても、陰極の通電性に優れた電子デバイス及び電子デバイスの製造方法を提供することである。 The present invention has been made in view of the above problems and circumstances, and a problem to be solved is an electronic device excellent in conductivity of the cathode and a method of manufacturing the electronic device even when the cathode is formed by a coating method. Is to provide.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、陰極の中間層と反対側の表面又は前記中間層側の表面の算術平均粗さSaを特定範囲とすることにより、塗布法により陰極を形成した場合であっても、陰極の通電性に優れた電子デバイス及び電子デバイスの製造方法を提供することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
MEANS TO SOLVE THE PROBLEM In order to solve the said subject, this inventor sets the arithmetic mean roughness Sa of the surface on the opposite side to the intermediate|middle layer of a cathode, or the surface of the said intermediate|middle layer side to a specific range in the process of investigating the cause of said problem. As a result, they have found that it is possible to provide an electronic device excellent in conductivity of the cathode and a method for manufacturing the electronic device even when the cathode is formed by a coating method, and the present invention has been completed.
That is, the above-mentioned subject concerning the present invention is solved by the following means.
 1.少なくとも陽極、中間層及び陰極を備えた電子デバイスであって、
 前記陰極が、銀粒子及び分散剤を含有し、かつ、
 前記陰極の前記中間層と反対側の表面又は前記中間層側の表面の算術平均粗さSaが、3.0nm以下である電子デバイス。
1. An electronic device comprising at least an anode, an intermediate layer and a cathode,
The cathode contains silver particles and a dispersant, and
An electronic device in which the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer side is 3.0 nm or less.
 2.前記陰極の前記中間層と反対側の表面及び前記中間層側の表面の算術平均粗さSaが、3.0nm以下である第1項に記載の電子デバイス。 2. The electronic device according to item 1, wherein an arithmetic mean roughness Sa of a surface of the cathode opposite to the intermediate layer and a surface of the intermediate layer is 3.0 nm or less.
 3.有機エレクトロルミネッセンス素子である第1項又は第2項に記載の電子デバイス。 3. 3. The electronic device according to item 1 or 2, which is an organic electroluminescence element.
 4.第1項から第3項までのいずれか一項に記載の電子デバイスを製造する電子デバイスの製造方法であって、
 銀粒子及び分散剤を含有する陰極用塗布液を塗布して前記陰極を形成する工程を有し、
 前記陰極用塗布液中における前記銀粒子の平均アスペクト比が、1.0~5.0の範囲内である電子デバイスの製造方法。
4. An electronic device manufacturing method for manufacturing the electronic device according to any one of items 1 to 3,
There is a step of forming a cathode by applying a coating liquid for a cathode containing silver particles and a dispersant,
The method for producing an electronic device, wherein the average aspect ratio of the silver particles in the coating liquid for the cathode is in the range of 1.0 to 5.0.
 5.前記陰極用塗布液中における前記銀粒子の平均粒径が4~100nmの範囲内であり、かつ、体積基準粒度分布によるD10、D50及びD90において、(D90-D10)/D50の値が、1.50~3.00の範囲内である第4項に記載の電子デバイスの製造方法。 5. The average particle size of the silver particles in the coating liquid for the cathode is in the range of 4 to 100 nm, and (D 90 -D 10 )/D at D 10 , D 50 and D 90 according to the volume standard particle size distribution. 5. The method for manufacturing an electronic device according to item 4, wherein the value of 50 is in the range of 1.50 to 3.00.
 6.前記陰極を形成する工程が、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法又はインクジェット法のいずれかにより前記陰極用塗布液を塗布する第4項又は第5項に記載の電子デバイスの製造方法。 6. The step of forming the cathode is spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexo. 6. The method for manufacturing an electronic device according to item 4 or 5, wherein the cathode coating liquid is applied by any one of a printing method, an offset printing method and an inkjet method.
 本発明の上記手段により、塗布法により陰極を形成した場合であっても、陰極の通電性に優れた電子デバイス及び電子デバイスの製造方法を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 従来、電極を塗布で製造することで、製造コスト及び製造速度は解消されるものの、電極としての性能が不十分であった。そこで、本発明者等は鋭意検討の結果、塗布においては、陰極の表面粗さの凹凸が通電に影響を及ぼしていることを発見した。本発明では、陰極の中間層と反対側の表面又は前記中間層側の表面の算術平均粗さSaを3.0nm以下とすることにより、陰極の中間層と反対側の表面又は中間層側の表面が平坦となり、その結果、陰極の通電性が良好で、電極としての性能に優れた電子デバイスとすることができる。
According to the above-mentioned means of the present invention, it is possible to provide an electronic device excellent in conductivity of the cathode and a method of manufacturing the electronic device even when the cathode is formed by a coating method.
The mechanism of action or mechanism of action of the present invention has not been clarified, but is presumed as follows.
Conventionally, although the manufacturing cost and the manufacturing speed are solved by manufacturing the electrode by coating, the performance as the electrode is insufficient. Therefore, as a result of diligent studies, the present inventors have found that in coating, the unevenness of the surface roughness of the cathode affects the current flow. In the present invention, by setting the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer to 3.0 nm or less, the surface of the cathode opposite to the intermediate layer or the intermediate layer side. The surface becomes flat, and as a result, the electric conductivity of the cathode is good, and an electronic device having excellent performance as an electrode can be obtained.
本発明に係る有機EL素子の層構成の一例を示す断面図Sectional drawing which shows an example of the layer structure of the organic EL element which concerns on this invention. 本発明に係るバルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図Sectional drawing which shows the solar cell which consists of the bulk heterojunction type organic photoelectric conversion element which concerns on this invention.
 本発明の電子デバイスは、少なくとも陽極、中間層及び陰極を備えた電子デバイスであって、前記陰極が、銀粒子及び分散剤を含有し、かつ、前記陰極の前記中間層と反対側の表面又は前記中間層側の表面の算術平均粗さSaが、3.0nm以下である。この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
 また、前記陰極の前記中間層と反対側の表面及び前記中間層側の表面の算術平均粗さSaが、3.0nm以下であることが、陰極の通電性がより良好となる点で好ましい。
The electronic device of the present invention is an electronic device comprising at least an anode, an intermediate layer and a cathode, wherein the cathode contains silver particles and a dispersant, and the surface of the cathode opposite to the intermediate layer or The arithmetic average roughness Sa of the surface on the side of the intermediate layer is 3.0 nm or less. This feature is a technical feature common to or corresponding to each of the following embodiments.
Further, the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer and the surface of the intermediate layer side is preferably 3.0 nm or less in order to improve the conductivity of the cathode.
 本発明の電子デバイスの製造方法は、銀粒子及び分散剤を含有する陰極用塗布液を塗布して前記陰極を形成する工程を有し、前記陰極用塗布液中における前記銀粒子の平均アスペクト比が、1.0~5.0の範囲内である。これにより、陰極の中間層と反対側の表面又は中間層側の表面の粗さを小さくして、平坦にすることができるので、陰極の通電性が良好となる。
 また、前記陰極用塗布液中における前記銀粒子の平均粒径が4~100nmの範囲内であり、かつ、体積基準粒度分布によるD10、D50及びD90において、(D90-D10)/D50の値が、1.50~3.00の範囲内であることが、陰極の通電性がより良好となる点で好ましい。
The method for producing an electronic device of the present invention has a step of forming a cathode by applying a coating liquid for a cathode containing silver particles and a dispersant, and an average aspect ratio of the silver particles in the coating liquid for a cathode. Is in the range of 1.0 to 5.0. As a result, the roughness of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer side can be reduced and flattened, so that the conductivity of the cathode is improved.
Further, the average particle size of the silver particles in the coating liquid for the cathode is in the range of 4 to 100 nm, and (D 90 -D 10 ) at D 10 , D 50 and D 90 according to the volume standard particle size distribution. It is preferable that the value of /D 50 is in the range of 1.50 to 3.00 in order to improve the conductivity of the cathode.
 また、前記陰極を形成する工程が、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法又はインクジェット法のいずれかにより前記陰極用塗布液を塗布することが、膜厚を適切にコントロールでき、また塗布における容易性と精度の観点から好ましい。 Further, the step of forming the cathode includes spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing. It is preferable to apply the cathode coating solution by any one of a flexographic printing method, an offset printing method, and an inkjet method from the viewpoints that the film thickness can be appropriately controlled and that the coating is easy and accurate.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described. In the present application, "to" is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
[本発明の電子デバイスの概要]
 本発明の電子デバイスは、少なくとも陽極、中間層及び陰極を備えた電子デバイスであって、前記陰極が、銀粒子及び分散剤を含有し、かつ、前記陰極の前記中間層と反対側の表面又は中間層側の表面の算術平均粗さSaが、3.0nm以下である。
[Outline of Electronic Device of the Present Invention]
The electronic device of the present invention is an electronic device comprising at least an anode, an intermediate layer and a cathode, wherein the cathode contains silver particles and a dispersant, and the surface of the cathode opposite to the intermediate layer or The arithmetic average roughness Sa of the surface on the intermediate layer side is 3.0 nm or less.
 ここで、前記陰極の前記中間層と反対側の表面とは、例えば電子デバイスが、図1に示すような有機エレクトロルミネッセンス素子である場合には、陰極(17)の第2の有機機能層(中間層)(15)と反対側である封止用基板(19)側の面(S1)をいう。また、前記陰極の前記中間層側の表面とは、陰極(17)の第2の有機機能層(中間層)(15)側の面(K1)をいう。 Here, the surface of the cathode opposite to the intermediate layer means, for example, when the electronic device is an organic electroluminescence element as shown in FIG. 1, the second organic functional layer of the cathode (17) ( The surface (S1) on the side of the sealing substrate (19) which is the opposite side of the intermediate layer (15). The surface of the cathode on the side of the intermediate layer means the surface (K1) on the side of the second organic functional layer (intermediate layer) (15) of the cathode (17).
 本発明において、算術平均粗さSaは、JIS B0601で定義されている二次元の算術平均粗さRaを三次元に拡張した概念であり、すなわち、3次元粗さパラメーターである。算術平均粗さSaは、原子間力顕微鏡(AFM)法によって得ることができる。具体的には、この算術平均粗さSaは、原子間力顕微鏡において、測定モードをタッピングモード(DFM)とし、カンチレバーの走査周波数を1.20Hzとし、走査範囲を500nm×500nmとし、かつカットオフ値を99.98nmとすることによって、算出することができる。 In the present invention, the arithmetic average roughness Sa is a concept obtained by expanding the two-dimensional arithmetic average roughness Ra defined in JIS B0601 into three dimensions, that is, a three-dimensional roughness parameter. The arithmetic mean roughness Sa can be obtained by an atomic force microscope (AFM) method. Specifically, the arithmetic mean roughness Sa is measured by an atomic force microscope with a tapping mode (DFM) as a measurement mode, a cantilever scanning frequency of 1.20 Hz, a scanning range of 500 nm×500 nm, and a cutoff. It can be calculated by setting the value to 99.98 nm.
 前記陰極の前記中間層と反対側の表面又は前記中間層側の表面の算術平均粗さSaは、3.0nm以下であり、好ましくは0.1nm以上である。特に、本発明では、前記陰極の前記中間層と反対側の表面及び前記中間層側の表面の算術平均粗さSaが、いずれも3.0nm以下であることが、陰極の通電性がより良好となる点で好ましい。
 前記算術平均粗さSaを3.0nm以下とするための手段としては、例えば、後述するように、銀粒子及び分散剤を含有する陰極用塗布液中における銀粒子の平均アスペクト比、陰極用塗布液中における銀粒子の平均粒径及び前記(D90-D10)/D50の値を特定範囲に調整することや、陰極用塗布液の塗布方法を上述した各塗布法を用いることが挙げられる。
The arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer side is 3.0 nm or less, preferably 0.1 nm or more. In particular, in the present invention, it is preferable that the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer and the surface of the intermediate layer side is 3.0 nm or less so that the conductivity of the cathode is better. It is preferable in that
As means for making the arithmetic average roughness Sa 3.0 nm or less, for example, as described later, the average aspect ratio of silver particles in the coating solution for cathode containing silver particles and a dispersant, coating for cathode Adjusting the average particle size of the silver particles in the liquid and the value of (D 90 -D 10 )/D 50 within a specific range, and applying each of the above-mentioned coating methods as the coating solution for the cathode. To be
[電子デバイス]
 本発明の電子デバイスとしては、例えば、有機EL素子、有機光電変換素子を有する太陽電池、有機薄膜トランジスター及びタッチパネルセンサー等が挙げられる。中でも、本発明の電子デバイスは、有機EL素子であることが好ましい。
 以下、有機EL素子及有機光電変換素子を有する太陽電池について順に説明する。
[Electronic device]
Examples of the electronic device of the present invention include an organic EL element, a solar cell having an organic photoelectric conversion element, an organic thin film transistor, and a touch panel sensor. Above all, the electronic device of the present invention is preferably an organic EL element.
Hereinafter, a solar cell having an organic EL element and an organic photoelectric conversion element will be described in order.
[有機EL素子]
 図1は、本発明に係る有機EL素子の層構成の一例を示す断面図である。
[Organic EL device]
FIG. 1 is a sectional view showing an example of the layer structure of an organic EL element according to the present invention.
 本発明に係る有機EL素子(EL)は、好ましくは可撓性を有する基板(10)上にガスバリアー層(11)を形成してガスバリアー性を有する基板として用いることが好ましい。
 本発明に係る有機EL素子(EL)は、前記基板上に陽極(12)が形成され、その上に正孔注入層/正孔輸送層/電子阻止層等の第1の有機機能層(有機層)(13)、発光層(14)及び正孔阻止層/電子輸送層/電子注入層などの第2の有機機能層(有機層)(15)が、この順に積層形成されていることが好ましい。そして、前記第1の有機機能層(13)、発光層(14)及び第2の有機機能層(15)で有機機能層ユニット(16)が構成されている。さらに、前記第2の有機機能層(15)の上層として陰極(17)が形成され、第1の有機層(13)、第2の有機機能層(15)、陽極(12)及び陰極(17)を、封止用接着層(18)を介して封止基板(19)で封止されている。
 なお、本発明に係る有機EL素子において、陽極(12)及び陰極(17)の間に配置された有機機能層ユニット(16)が本発明に係る中間層に相当する。
The organic EL device (EL) according to the present invention is preferably used as a substrate having a gas barrier property by forming a gas barrier layer (11) on a substrate (10) having flexibility.
In the organic EL device (EL) according to the present invention, an anode (12) is formed on the substrate, and a first organic functional layer (organic layer such as a hole injection layer/hole transport layer/electron blocking layer) is formed on the anode (12). A second organic functional layer (organic layer) (15) such as a layer) (13), a light emitting layer (14), and a hole blocking layer/electron transporting layer/electron injecting layer (15). preferable. An organic functional layer unit (16) is constituted by the first organic functional layer (13), the light emitting layer (14) and the second organic functional layer (15). Further, a cathode (17) is formed as an upper layer of the second organic functional layer (15), and the first organic layer (13), the second organic functional layer (15), the anode (12) and the cathode (17). ) Is sealed with a sealing substrate (19) via a sealing adhesive layer (18).
In the organic EL device according to the present invention, the organic functional layer unit (16) arranged between the anode (12) and the cathode (17) corresponds to the intermediate layer according to the present invention.
 以下、本発明に係る有機EL素子の各要素について、その詳細を説明する。
 〔1〕基板
 有機EL素子(EL)に適用可能な基板(10)としては、特に制限はなく、例えば、ガラス、プラスチック等の種類を挙げることができる。さらには、基板がフレキシブル性を有していることが好ましい。本発明でいうフレキシブル性とは、直径5mmのABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体樹脂)製の棒に10回巻きつけと開放を繰り返した後、目視確認にて基板に割れや欠け等の損傷がない特性をいう。
Hereinafter, details of each element of the organic EL device according to the present invention will be described.
[1] Substrate The substrate (10) applicable to the organic EL element (EL) is not particularly limited, and examples thereof include glass and plastic. Furthermore, it is preferable that the substrate has flexibility. The term “flexibility” as used in the present invention means that a rod made of an ABS resin (acrylonitrile-butadiene-styrene copolymer resin) having a diameter of 5 mm is wound and opened 10 times, and then the substrate is visually inspected for cracks or chips. Refers to the property of no damage.
 本発明において、最表面(光放射面側)に配置される基板(10)は、透明基板であることが好ましく、「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。 In the present invention, the substrate (10) arranged on the outermost surface (light emitting surface side) is preferably a transparent substrate, and “transparent” means that the average light transmittance in the visible light region is 50% or more. It is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 すなわち、本発明においては、基板(10)側から光Lを取り出す構成では、基板(10)は透明材料であることが必要であり、好ましく用いられる透明なフレキシブル基板(10)としては、ガラス、石英、樹脂基板を挙げることができ、さらに好ましくは、フレキシブル性と安全性の観点から樹脂基板である。 That is, in the present invention, in the structure in which the light L is extracted from the substrate (10) side, the substrate (10) needs to be a transparent material, and the transparent flexible substrate (10) preferably used is glass, Quartz and a resin substrate can be mentioned, and a resin substrate is more preferable from the viewpoint of flexibility and safety.
 本発明に適用可能な樹脂基板としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名、JSR社製)及びアペル(商品名、三井化学社製)等のシクロオレフィン等を挙げることができる。 Examples of the resin substrate applicable to the present invention include polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC). , Cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate and other cellulose esters and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, Polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketone imide, polyamide, fluororesin, nylon And cycloolefins such as polymethylmethacrylate, acrylics and polyarylates, Arton (trade name, manufactured by JSR), and Apel (trade name, manufactured by Mitsui Chemicals, Inc.).
 これら樹脂基板のうち、コストや入手の容易性の点では、ポリエステルフィルムである、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(略称:PEN)等の透明樹脂フィルムが可撓性の樹脂基板として好ましく用いられる。 Among these resin substrates, in terms of cost and availability, transparent resin films such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), which are polyester films, are flexible. It is preferably used as a resin substrate.
 ポリエステルフィルムを構成するポリエステルとしては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。中でも透明性、機械的強度、寸法安定性等の点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。
 透明樹脂フィルムとしては、二軸配向ポリエステルフィルムであることが特に好ましいが、未延伸又は少なくとも一方に延伸された一軸延伸ポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。
The polyester constituting the polyester film is not particularly limited, but it is preferable to use a polyester having a film-forming property containing a dicarboxylic acid component and a diol component as main constituent components. Among them, terephthalic acid or 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component and ethylene glycol or 1,4-cyclohexanedimethanol as a diol component are the main components in terms of transparency, mechanical strength, dimensional stability, etc. Polyester as a component is preferable.
A biaxially oriented polyester film is particularly preferable as the transparent resin film, but an unstretched or at least one stretched uniaxially stretched polyester film can also be used. A stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion.
 透明基板として透明樹脂フィルムを用いる場合、取り扱いを容易にするために、透明性を損なわない範囲内で、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機微粒子や、架橋高分子微粒子、シュウ酸カルシウム等の有機微粒子を含有することが好ましい。また、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料及び紫外線吸収剤等を含有することも好ましい。 When using a transparent resin film as a transparent substrate, in order to facilitate handling, within a range not impairing transparency, calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, It is preferable to contain inorganic fine particles such as lithium fluoride, zeolite and molybdenum sulfide, crosslinked polymer fine particles and organic fine particles such as calcium oxalate. It is also preferable to contain a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an antioxidant, a dye, a pigment, an ultraviolet absorber, and the like.
 樹脂基板の厚さとしては、10~500μmの範囲内にある薄膜の樹脂基板であることが好ましいが、より好ましくは30~400μmの範囲内であり、特に好ましくは、50~300μmの範囲内である。厚さが10μm以上であれば、有機EL素子を安定して保持することができ、厚さが500μm以下であれば、薄型の有機EL素子を提供することができる。 The thickness of the resin substrate is preferably a thin film resin substrate within the range of 10 to 500 μm, more preferably within the range of 30 to 400 μm, and particularly preferably within the range of 50 to 300 μm. is there. When the thickness is 10 μm or more, the organic EL element can be stably held, and when the thickness is 500 μm or less, a thin organic EL element can be provided.
 また、本発明に係る基板(10)上には、ガスバリアー層(11)を設けることができる。ガスバリアー層としては、気体や水分等の遮断効果を有していれば、特に制限はなく、従来公知のガスバリアー層を適宜選択して適用することができる。 Also, a gas barrier layer (11) can be provided on the substrate (10) according to the present invention. The gas barrier layer is not particularly limited as long as it has an effect of blocking gas, moisture, etc., and a conventionally known gas barrier layer can be appropriately selected and applied.
 ガスバリアー層は、無機材料被膜だけでなく、有機材料との複合材料からなる被膜又はこれらの被膜を積層したハイブリッド被膜であってもよい。ガスバリアー層の性能としては、JIS(日本工業規格)-K7129(2008年)に準拠した水蒸気透過度(環境条件:25±0.5℃、相対湿度(90±2)%)が約0.01g/(m2・24h)以下、JIS-K7126(2006年)に準拠した酸素透過度が約0.01mL/(m2・24h・atm)以下、抵抗率が1×1012Ω・cm以上、光線透過率は可視光領域で約80%以上であるような、ガスバリアー性を有する光透過性を有する絶縁膜であることが好ましい。 The gas barrier layer may be not only an inorganic material film but also a film made of a composite material with an organic material or a hybrid film in which these films are laminated. Regarding the performance of the gas barrier layer, the water vapor permeability (environmental conditions: 25±0.5° C., relative humidity (90±2)%) according to JIS (Japanese Industrial Standard)-K7129 (2008) is about 0. 01g/(m 2 ·24h) or less, oxygen permeability according to JIS-K7126 (2006) is about 0.01mL/(m 2 ·24h·atm) or less, and resistivity is 1×10 12 Ω·cm or more. It is preferable that the light-transmitting insulating film having a gas barrier property has a light transmittance of about 80% or more in a visible light region.
 ガスバリアー層の形成材料としては、有機EL素子の劣化を招く、例えば水や酸素等のガスの有機EL素子への浸入を抑制できる材料であれば、任意の材料を用いることができる。 As the material for forming the gas barrier layer, any material can be used as long as it can prevent the deterioration of the organic EL element, for example, the infiltration of gas such as water or oxygen into the organic EL element.
 例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化モリブデン等の無機材料からなる被膜で構成することができ、好ましくは、窒化ケイ素や酸化ケイ素等のケイ素化合物を主原料とする構成である。 For example, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, niobium oxide, can be composed of a film made of an inorganic material such as molybdenum oxide, Preferably, the main raw material is a silicon compound such as silicon nitride or silicon oxide.
 ガスバリアー層の形成方法としては、従来公知の成膜方法を適宜選択して用いることができ、例えば、真空蒸着法、スパッタ法、マグネトロンスパッタ法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法(特開2004-68143号公報参照)、プラズマCVD(Chemical Vapor Deposition)法、レーザーCVD法、熱CVD法、ALD(原子層堆積)法、また、ポリシラザン等を用いた湿式塗布法を適用することもできる。 As a method for forming the gas barrier layer, a conventionally known film forming method can be appropriately selected and used, and examples thereof include a vacuum vapor deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method. Coating method, plasma polymerization method, atmospheric pressure plasma polymerization method (see Japanese Patent Laid-Open No. 2004-68143), plasma CVD (Chemical Vapor Deposition) method, laser CVD method, thermal CVD method, ALD (atomic layer deposition) method, and A wet coating method using polysilazane or the like can also be applied.
 〔2〕陰極
 本発明に係る陰極は、単層の形態又は複数の層が積層された形態をとりうる。また、本発明に係る陰極は塗布法により形成される。
 前記陰極を塗布法により形成する際に用いられる陰極用塗布液は、銀粒子及び分散剤を含有する。
[2] Cathode The cathode according to the present invention may have a single-layer form or a laminate of a plurality of layers. The cathode according to the present invention is formed by a coating method.
The coating liquid for the cathode used when the cathode is formed by the coating method contains silver particles and a dispersant.
 (銀粒子)
 前記陰極用塗布液中における前記銀粒子の平均アスペクト比は、1.0~5.0の範囲内であることが、陰極の通電性が良好で反射率が高く、均一発光に優れた有機EL素子とすることができる点で好ましく、1.0~1.5の範囲内であることがより好ましい。
(Silver particles)
When the average aspect ratio of the silver particles in the coating liquid for the cathode is within the range of 1.0 to 5.0, the organic EL having good conductivity of the cathode, high reflectance, and excellent uniform light emission. It is preferable that it can be used as an element, and more preferably within the range of 1.0 to 1.5.
 前記銀粒子の平均アスペクト比の測定方法としては、まず、前記陰極用塗布液を乾燥させた後、走査型電子顕微鏡(SEM)「JSM-7401F」(日本電子株式会社製)を用いて電子顕微鏡写真において銀粒子を測定し、長径(球状に近い場合は最大径)、短径(球状に近い場合は最小径)をそれぞれ測定し、n=20の平均値を求めて個数平均長径及び個数平均短径とする。そして、上記方法で求めた個数平均長径及び個数平均短径を用いて、下記式により平均アスペクト比を算出することができる。
 式:平均アスペクト比=(個数平均長径)/(個数平均短径)
As a method of measuring the average aspect ratio of the silver particles, first, after drying the coating liquid for the cathode, a scanning electron microscope (SEM) "JSM-7401F" (manufactured by JEOL Ltd.) is used. In the photograph, the silver particles are measured, and the major axis (the maximum diameter when the shape is close to a sphere) and the short diameter (the minimum diameter when the shape is close to a sphere) are respectively measured, and the average value of n=20 is calculated to obtain the number average major axis and the number average. Use a short diameter. Then, using the number average major axis and number average minor axis obtained by the above method, the average aspect ratio can be calculated by the following formula.
Formula: Average aspect ratio=(number average major axis)/(number average minor axis)
 また、前記陰極用塗布液中における前記銀粒子の平均粒径が4~100nmの範囲内であり、かつ、体積基準粒度分布によるD10、D50及びD90において、(D90-D10)/D50の値が、1.50~3.00の範囲内であることが、陰極の通電性がより良好となる点で好ましい。より好ましくは、前記平均粒径が8~50nmの範囲内でかつ、(D90-D10)/D50の値が、2.00~2.50の範囲内である。 Further, the average particle size of the silver particles in the coating liquid for the cathode is in the range of 4 to 100 nm, and (D 90 -D 10 ) at D 10 , D 50 and D 90 according to the volume standard particle size distribution. It is preferable that the value of /D 50 is in the range of 1.50 to 3.00 in order to improve the conductivity of the cathode. More preferably, the average particle size is in the range of 8 to 50 nm, and the value of (D 90 -D 10 )/D 50 is in the range of 2.00 to 2.50.
 前記銀粒子の平均粒径は、体積基準のメジアン径(D50)であり、当該メジアン径は種々の方法で測定することができるが、本発明では、SEMにより粒子径の測定を行い、画像処理ソフトImageJを用いて体積換算でメジアン径(D50)を算出した、
 また、前記(D90-D10)/D50の値も上記方法で算出することができる。
 なお、前記(D90-D10/D50)の値は、例えば、陰極用塗布液の調製時において加熱時間と撹拌時間で制御することができる。また、前記銀粒子の平均粒径は、例えば、陰極用塗布液の調製時における分散剤の量で制御することができる。
The average particle diameter of the silver particles is a volume-based median diameter (D 50 ), and the median diameter can be measured by various methods. However, in the present invention, the particle diameter is measured by SEM to obtain an image. The median diameter (D 50 ) was calculated by volume conversion using the processing software ImageJ,
The value of (D 90 −D 10 )/D 50 can also be calculated by the above method.
The value of (D 90 -D 10 /D 50 ) can be controlled by, for example, the heating time and the stirring time during the preparation of the cathode coating liquid. Further, the average particle size of the silver particles can be controlled by, for example, the amount of the dispersant at the time of preparing the coating liquid for the cathode.
 また、前記陰極は、銀粒子以外の金属粒子をさらに含有してもよく、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金を電極物質とするものが好適に用いられる。 Further, the cathode may further contain metal particles other than silver particles, and a metal having a small work function (4 eV or less) (referred to as an electron injecting metal) or an alloy as an electrode substance is preferably used. ..
 銀粒子以外の金属粒子としては、金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、及び銅等などの微粒子で、特に、粒径が1μm以下の粒子をいう。中でも、金、白金、及び銅が好ましい。 As metal particles other than silver particles, fine particles of gold, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, etc., particularly particles having a particle size of 1 μm or less are referred to. Of these, gold, platinum, and copper are preferable.
 前記銀粒子以外の金属粒子のアスペクト比は、1~5の範囲が好ましく、1~3の範囲がより好ましい。アスペクト比が1に近く真球に近い方が、金属粒子からなる膜の密度が高くなり有機機能層との接触面積も高くなり、密着性や折り曲げ耐性が良くなる。 The aspect ratio of the metal particles other than the silver particles is preferably in the range of 1 to 5, more preferably 1 to 3. When the aspect ratio is closer to 1 and closer to a true sphere, the density of the film made of metal particles is higher, the contact area with the organic functional layer is higher, and the adhesion and bending resistance are better.
 (分散剤)
 本発明に係る分散剤は、沸点が300℃以上の不揮発性の有機物であることが好ましい。
 前記不揮発性の有機物は、銀粒子の分散液中で、銀粒子の分散安定性を高め、又、有機EL素子中では有機機能層と銀粒子から形成されてなる陰極の密着性を向上させるため添加される。
(Dispersant)
The dispersant according to the present invention is preferably a non-volatile organic substance having a boiling point of 300°C or higher.
The non-volatile organic material enhances the dispersion stability of the silver particles in the dispersion liquid of the silver particles, and also improves the adhesion between the organic functional layer and the cathode formed of the silver particles in the organic EL device. Is added.
 不揮発性の有機物としては、スチレン-アクリル酸共重合体、スチレン-アクリル酸-アクリル酸アルキルエステル共重合体、スチレン-アクリル酸共重合体、スチレン-マレイン酸-アクリル酸アルキルエステル共重合体、スチレン-マレイン酸共重合体、スチレン-メタクリル酸-アクリル酸アルキルエステル共重合体、スチレン-メタクリル酸共重合体、スチレン-マレイン酸ハーフエステル共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、ポリビニルアルコール類、ゼラチン、セルロース類、増粘多糖類、アミンと脂肪族を有するポリマー(例えば、ポリエチレンイミン)などを用いることができる。 Non-volatile organic substances include styrene-acrylic acid copolymers, styrene-acrylic acid-acrylic acid alkyl ester copolymers, styrene-acrylic acid copolymers, styrene-maleic acid-acrylic acid alkyl ester copolymers, styrene -Maleic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene-methacrylic acid copolymer, styrene-maleic acid half ester copolymer, vinylnaphthalene-acrylic acid copolymer, vinylnaphthalene- Maleic acid copolymers, polyvinyl alcohols, gelatins, celluloses, thickening polysaccharides, polymers having amines and aliphatics (for example, polyethyleneimine) and the like can be used.
 また、特開平11-80647号公報の明細書段落〔0020〕~〔0037に記載の高分子量顔料分散剤、特開2018-81246号公報の明細書段落〔0030〕~〔0039〕に記載のラジカル重合性モノマー、及び特開2008-117656号公報の明細書段落〔0027〕及び〔0028〕記載の重合体又は界面活性剤等の材料なども用いることができる。 Further, high molecular weight pigment dispersants described in paragraphs [0020] to [0037] of JP-A No. 11-80647 and radicals described in paragraphs [0030] to [0039] of JP-A-2018-81246. Polymerizable monomers and materials such as polymers or surfactants described in paragraphs [0027] and [0028] of the specification of JP-A-2008-117656 can also be used.
 銀粒子及び不揮発性の有機物を含有する分散液を調製する際には、水及び有機溶媒を下記所定の量を用いることが好ましい。 When preparing a dispersion containing silver particles and a non-volatile organic substance, it is preferable to use water and an organic solvent in the following predetermined amounts.
 陰極の塗布溶媒は水であることが、下層への溶媒の拡散による溶解等の影響を抑制する観点から好ましいが、有機溶媒等を少量添加すると、有機機能層に対する分散液の濡れ広がり性が良くなり、有機機能層と銀粒子及び不揮発性の有機物から形成される電極の密着性がより向上するため、好ましい。 The coating solvent of the cathode is preferably water from the viewpoint of suppressing the influence of dissolution and the like due to the diffusion of the solvent into the lower layer, but when a small amount of an organic solvent or the like is added, the wettability and spreadability of the dispersion liquid to the organic functional layer is good. This is preferable because the adhesion between the organic functional layer and the electrodes formed of silver particles and a non-volatile organic substance is further improved.
 すなわち、本発明に係る陰極は、1mm3当たり20~300μgの範囲内の水を含有することや、1mm3当たり4~100μgの範囲内の有機溶媒を含有することが好ましく、当該含有量の範囲になるように、水及び有機溶媒を分散液の調製に用いることが好ましい。水と有機溶媒の混合比率は、水:有機溶媒が質量比で4:6~95:5の範囲であることが好ましく、6:4~95:5の範囲であることがより好ましい。
 陰極における水分やアルコールの量は、ガスクロマトグラフ質量分析計や昇温熱脱離分析装置などで測定することができる。また、具体的な装置として、電子科学社製の昇温熱脱離分析装置により測定を行うことができる。
That is, the cathode according to the present invention preferably contains water within a range of 20 to 300 μg per 1 mm 3 , and contains an organic solvent within a range of 4 to 100 μg per 1 mm 3 , and the range of the content is preferably. Therefore, it is preferable to use water and an organic solvent for preparing the dispersion liquid. The mixing ratio of water to the organic solvent is preferably in the range of water:organic solvent of 4:6 to 95:5, and more preferably 6:4 to 95:5.
The amount of water and alcohol in the cathode can be measured by a gas chromatograph mass spectrometer, a temperature programmed thermal desorption analyzer, or the like. Further, as a specific device, the measurement can be carried out by a temperature programmed thermal desorption analysis device manufactured by Denshi Kagaku.
 有機溶媒としては、沸点が50~250℃の範囲の有機溶媒を用いることが好ましい。 As the organic solvent, it is preferable to use an organic solvent having a boiling point in the range of 50 to 250°C.
 中でもアルコールが好ましく、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチルプロピルアルコール、エチレングリコール、プロピレングリコール、メトキシエタノール、1-メトキシ-2-プロパノール、プロピレングリコールモノプロピルエーテル、3-メトキシ-1-ブタノール、1-エトキシ-2-プロパノール、2-n-ブトキシエタノール、メチルプロピレンジグリコール、2-(2-n-ブトキシエトキシ)エタノールなどを用いることができる。 Among them, alcohol is preferable, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methylpropyl alcohol, ethylene glycol, propylene glycol, methoxyethanol, 1-methoxy-2-propanol, propylene glycol monopropyl. Ether, 3-methoxy-1-butanol, 1-ethoxy-2-propanol, 2-n-butoxyethanol, methylpropylenediglycol, 2-(2-n-butoxyethoxy)ethanol and the like can be used.
 前記陰極用塗布液を調製するときの分散方法としては、前記銀粒子、前記不揮発性の有機物及び溶媒を混合して、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 As a dispersion method when preparing the coating liquid for the cathode, the silver particles, the non-volatile organic substance and a solvent are mixed and dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion. it can.
 前記陰極用塗布液の塗布方法には制限はないが、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法又はインクジェット法のいずれかであることが膜厚を適切にコントロールできるため好ましい。中でも、インクジェット印刷法であることが塗布における容易性と精度の観点から、好ましい。 The method for applying the coating liquid for the cathode is not limited, but spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating Method, screen printing method, flexographic printing method, offset printing method or inkjet method is preferable because the film thickness can be appropriately controlled. Among them, the inkjet printing method is preferable from the viewpoint of ease and accuracy in coating.
 銀粒子及び不揮発性の有機物を含む分散液の塗布後の乾燥方法としては、特に制限はないが、赤外線乾燥や送風乾燥、温風乾燥で初期乾燥を行うことが好ましく、その後、恒温槽、ホットプレートなどで焼成することが好ましい。このように乾燥することで、銀粒子から形成されてなる電極の有機機能層側の界面から厚さ方向に10nmの範囲部位の不揮発性の有機物の濃度を適切にコントロールすることができる。 The drying method after coating the dispersion containing silver particles and a non-volatile organic matter is not particularly limited, but it is preferable to perform initial drying by infrared drying, blast drying, warm air drying, and then a constant temperature bath, hot It is preferable to bake with a plate or the like. By drying in this manner, the concentration of the non-volatile organic substance in the region of 10 nm in the thickness direction from the interface of the electrode formed of silver particles on the organic functional layer side can be appropriately controlled.
 陰極全体としてのシート抵抗は数百Ω/sq.以下が好ましく、厚さは通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。 Sheet resistance of the cathode as a whole is several hundred Ω/sq. The following is preferable, and the thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
 〔3〕陽極
 本発明に係る陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウム・スズ酸化物(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
[3] Anode As the anode according to the present invention, those having a high work function (4 eV or more, preferably 4.5 V or more) metal, alloy, electrically conductive compound or a mixture thereof as an electrode substance are preferably used. Specific examples of such an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 and ZnO. Alternatively, a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 The anode may be formed into a thin film by a method such as vapor deposition or sputtering of these electrode substances, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 μm or more). A pattern may be formed through a mask having a desired shape during vapor deposition or sputtering of the electrode material.
 又は、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。
 陽極の膜厚は材料にもよるが、通常10nm~1μmの範囲、好ましくは10~200nmの範囲で選ばれる。
Alternatively, when a coatable substance such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used. When the emitted light is taken out from this anode, it is desirable that the transmittance is higher than 10%, and the sheet resistance as the anode is several hundred Ω/sq. The following are preferred.
Although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably in the range of 10 to 200 nm.
 〔4〕有機機能層
 以下の構成説明では、便宜上、一つの発光層(14)による構成のみを示し、積層したタンデム構成についての記載は省略する。
[4] Organic Functional Layer In the following description of the structure, for convenience, only the structure of one light emitting layer (14) is shown, and the description of the stacked tandem structure is omitted.
 以下に、有機EL素子の構成の代表例を示す。陽極と陰極を除く層が有機機能層(単に、有機層ともいう。)である。 A typical example of the structure of the organic EL element is shown below. The layers excluding the anode and the cathode are organic functional layers (simply referred to as organic layers).
 (i)陽極/有機機能層ユニット〔第1の有機機能層(正孔注入輸送層)/発光層/第2の有機機能層〕/陰極
 (ii)陽極/有機機能層ユニット〔第1の有機機能層(正孔注入輸送層)/発光層/第2の有機機能層(正孔阻止層/電子注入輸送層)〕/陰極
 (iii)陽極/有機機能層ユニット〔第1の有機機能層(正孔注入輸送層/電子阻止層)/発光層/第2の有機機能層(正孔阻止層/電子注入輸送層)〕/陰極
 (iv)陽極/有機機能層ユニット〔第1の有機機能層(正孔注入層/正孔輸送層)/発光層/第2の有機機能層(電子輸送層/電子注入層)〕/陰極
 (v)陽極/有機機能層ユニット〔第1の有機機能層(正孔注入層/正孔輸送層)/発光層/第2の有機機能層(正孔阻止層/電子輸送層/電子注入層)〕/陰極
 (vi)陽極/有機機能層ユニット〔第1の有機機能層(正孔注入層/正孔輸送層/電子阻止層)/発光層/第2の有機機能層(正孔阻止層/電子輸送層/電子注入層)〕/陰極
 更に、複数の発光層を構成する場合には、発光層間に非発光性の非発光性中間層を有していてもよい。非発光性中間層は、電荷発生層であってもよく、マルチフォトンユニット構成であってもよい。
(I) Anode/organic functional layer unit [first organic functional layer (hole injection/transport layer)/light emitting layer/second organic functional layer]/cathode (ii) Anode/organic functional layer unit [first organic Functional layer (hole injecting and transporting layer)/light emitting layer/second organic functional layer (hole blocking layer/electron injecting and transporting layer)]/cathode (iii) anode/organic functional layer unit [first organic functional layer ( Hole injecting/transporting layer/electron blocking layer)/light emitting layer/second organic functional layer (hole blocking layer/electron injecting/transporting layer)]/cathode (iv) anode/organic functional layer unit [first organic functional layer] (Hole injection layer/hole transport layer)/light emitting layer/second organic functional layer (electron transport layer/electron injection layer)]/cathode (v) anode/organic functional layer unit [first organic functional layer ( Hole injection layer/hole transport layer)/light emitting layer/second organic functional layer (hole blocking layer/electron transport layer/electron injection layer)]/cathode (vi) anode/organic functional layer unit [first Organic functional layer (hole injection layer/hole transport layer/electron blocking layer)/light emitting layer/second organic functional layer (hole blocking layer/electron transport layer/electron injection layer)]/cathode When the layer is formed, a non-light emitting non-light emitting intermediate layer may be provided between the light emitting layers. The non-emissive intermediate layer may be a charge generation layer or may have a multi-photon unit structure.
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。 For an outline of the organic EL element applicable to the present invention, see, for example, JP-A-2013-157634, JP-A-2013-168552, JP-A-2013-177361, JP-A-2013-187211, and JP-A-2013-187211. JP2013-191644A, JP2013-191804A, JP2013-225678A, JP2013-235994A, JP2013-243234A, JP2013-243236A, JP2013-2013A. No. 242366, No. 2013-243371, No. 2013-245179, No. 2014-003249, No. 2014-003299, No. 2014-013910, No. 2014-017493. The configurations described in Japanese Patent Laid-Open No. 2014-017494 and the like can be mentioned.
 また、タンデム型の有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/009087号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 更に、有機EL素子を構成する各層について説明する。
Specific examples of the tandem type organic EL device include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, and US Pat. No. 6107734, US Pat. No. 6,337,492, JP 2006-228712 A, JP 2006-24791 A, JP 2006-49393 A, JP 2006-49394 A, JP 2006-A. 49396, JP2011-96679A, JP2005-340187A, JP47111424A, JP34969681A, JP3884564A, JP4213169A, JP2010-192719A. Publications, JP-A-2009-076929, JP-A-2008-078414, JP-A-2007-059848, JP-A-2003-272860, JP-A-2003-045676, and WO 2005/009087, Examples include element configurations and constituent materials described in WO 2005/094130, but the present invention is not limited thereto.
Further, each layer constituting the organic EL element will be described.
 (発光層)
 有機EL素子(EL)を構成する発光層は、発光材料としてリン光発光化合物、又は蛍光性化合物を用いることができるが、本発明においては、特に、発光材料としてリン光発光化合物が含有されている構成が好ましい。
(Light emitting layer)
The light emitting layer constituting the organic EL device (EL) can use a phosphorescent compound or a fluorescent compound as a light emitting material. In the present invention, the phosphorescent compound is contained particularly as a light emitting material. The configuration is preferable.
 この発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であってもよい。 This light emitting layer is a layer in which electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer are recombined to emit light, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の中間層を有していることが好ましい。 The structure of such a light emitting layer is not particularly limited as long as the light emitting material contained therein satisfies the light emitting requirements. Further, there may be a plurality of layers having the same emission spectrum or emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内がさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性中間層が存在する場合には、当該非発光性中間層も含む厚さである。 The total thickness of the light emitting layer is preferably in the range of 1 to 100 nm, more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the total thickness of the light emitting layer is the thickness including the non-light emitting intermediate layer when the non-light emitting intermediate layer is present between the light emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット法等の公知の方法により形成することができる。 For the light emitting layer as described above, known materials such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir Blodgett, Langmuir Blodgett method), and an inkjet method can be used for the light emitting material and the host compound described below. Can be formed by.
 また発光層は、複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 The light emitting layer may be a mixture of a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer. The light-emitting layer preferably contains a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
 〈ホスト化合物〉
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
<Host compound>
As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Further, among the compounds contained in the light emitting layer, the volume ratio in the layer is preferably 50% or more.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種のホスト化合物を用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the transfer of charges and improve the efficiency of the organic electroluminescent device. Further, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emissions, and thereby an arbitrary emission color can be obtained.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular weight compound or a high molecular compound having a repeating unit, and a low molecular weight compound having a polymerizable group such as a vinyl group or an epoxy group (a vapor deposition polymerizable light emitting host). ) Is OK.
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357977, 2002-8860, 2002-43056, 2002-105445, and No. 2002-352957, No. 2002-231453, No. 2002-234888, No. 2002-260861, No. 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication Examples thereof include compounds described in WO 2009/086028, WO 2012/023947, JP 2007-254297 A, EP 2034538 and the like.
 〈発光材料〉
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられるが、特に、リン光発光性化合物を用いることが、高い発光効率を得ることができる観点から好ましい。
<Light emitting material>
Examples of the light-emitting material that can be used in the present invention include a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (also referred to as a fluorescent compound or a fluorescent material). ,), but it is particularly preferable to use a phosphorescent compound from the viewpoint of obtaining high luminous efficiency.
 〈リン光発光性化合物〉
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
<Phosphorescent compound>
The phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25° C.), and has a phosphorescence quantum yield of 0 at 25° C. Although it is defined as a compound of 0.01 or more, a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The above-mentioned phosphorescence quantum yield can be measured by the method described on page 398 of Spectroscopy II of 4th edition Experimental Chemistry Course 7 (1992 version, Maruzen). The phosphorescent quantum yield in a solution can be measured using various solvents, but when the phosphorescent compound is used in the present invention, the phosphorescent quantum yield is 0.01 or more in any one of the solvents. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected and used from known compounds used for a light emitting layer of a general organic EL device, and preferably contains a metal of Group 8 to 10 in the periodic table of elements. Complex compounds, more preferably iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferably iridium compounds.
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。 In the present invention, at least one light-emitting layer may contain two or more phosphorescent compounds, the concentration ratio of the phosphorescent compound in the light-emitting layer changes in the thickness direction of the light-emitting layer. It may be in the form.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78, 1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006/ Examples thereof include compounds described in No. 0202194, US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, and the like.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許出願公開第2009/0039776号、米国特許第6687266号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2008/0015355号明細書、米国特許 第7396598号明細書、米国特許出願公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86,153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, U.S. Patent No. 7332232, U.S. Patent Application Publication No. 2009/00397776, U.S. Patent No. 6,687,266, U.S. Pat. Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2008/0015355, US Patent No. 7396598, US Patent Application Publication No. 2003/0138657, US Patent No. 7090928. And the like.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許出願公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許出願公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2006/056418, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2006/082742, US Patent Application Publication No. 2005/0260441. , U.S. Pat. No. 7,534,505, U.S. Patent Application Publication No. 2007/0190359, U.S. Patent No. 7,338,722, U.S. Patent No. 7,279,704, U.S. Patent Application Publication No. 2006/103874, etc. Mention may also be made of the compounds mentioned.
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2008/140115, International Publication No. 2011/134013, International Publication No. 2010/086089, International Publication No. 2012/020327, International Publication No. 2011/051404. The compounds described in WO 2011/073149, JP 2009-114086 A, JP 2003-81988 A, JP 2002-363552 A, and the like can also be mentioned.
 本発明においては、好ましいリン光発光性化合物としてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 In the present invention, preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond and a metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。 The phosphorescent compound (also referred to as a phosphorescent metal complex) described above is described in, for example, Organic Letter magazine, vol. 16, pp. 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Volume 40, No. 7, pp. 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002). , New Journal of Chemistry. , Vol. 26, p. 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pp. 695-709 (2004), and the methods disclosed in the references cited in these documents. Can be synthesized by applying
 〈蛍光発光性化合物〉
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
<Fluorescent compound>
Examples of the fluorescent compound include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. Examples include dyes, polythiophene dyes, rare earth complex phosphors, and the like.
 (その他有機機能層)
 次いで、有機機能層ユニットを構成する各層について、電荷注入層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
(Other organic functional layers)
Next, each layer constituting the organic functional layer unit will be described in the order of the charge injection layer, the hole transport layer, the electron transport layer and the blocking layer.
 〈電荷注入層〉
 電荷注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層と電子注入層とがある。
<Charge injection layer>
The charge injection layer is a layer provided between the electrode and the light emitting layer in order to reduce the driving voltage and improve the light emission brightness. “The organic EL element and its industrial front line (November 30, 1998, NT The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166), Vol. 2, published by S. Co., Ltd.), which includes a hole injection layer and an electron injection layer.
 電荷注入層としては、一般には、正孔注入層であれば、陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができるが、本発明においては、陽極に隣接して電荷注入層を配置させる。また、中間電極で用いられる場合は、隣接する電子注入層及び正孔注入層の少なくとも一方が、本発明の要件を満たしていれば良い。 The charge injection layer is generally present between the anode and the light emitting layer or the hole transport layer in the case of the hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of the electron injection layer. However, in the present invention, the charge injection layer is arranged adjacent to the anode. When used in the intermediate electrode, at least one of the electron injection layer and the hole injection layer adjacent to each other may satisfy the requirements of the present invention.
 正孔注入層は、駆動電圧低下や発光輝度向上のために、透明電極である陽極に隣接して配置される層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The hole injection layer is a layer arranged adjacent to the anode, which is a transparent electrode, for the purpose of lowering the driving voltage and improving the light emission brightness, and is referred to as "organic EL element and its frontier of industrialization (November 30, 1998).・Published by TS Co., Ltd.)", Chapter 2, "Electrode Materials" (Pages 123 to 166).
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、それらの化合物を正孔注入層に用いることができる。 The hole injection layer is described in detail in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc., and these compounds can be used in the hole injection layer. it can.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 Further, a hexaazatriphenylene derivative as described in JP-B-2003-515432, JP-A-2006-135145, etc. can also be used as a hole transporting material.
 電子注入層は、駆動電圧低下や発光輝度向上のために、陰極と発光層との間に設けられる層のことであり、陰極が透明電極で構成されている場合には、当該透明電極に隣接して設けられ、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The electron injecting layer is a layer provided between the cathode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness. When the cathode is formed of a transparent electrode, it is adjacent to the transparent electrode. The details are provided in Chapter 2, "Electrode Materials" (Pages 123 to 166) of Volume 2 of "Organic EL Devices and their Forefront of Industrialization (Published on Nov. 30, 1998, NTS)". Have been described.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、これらに記載されている材料を、電子注入層に好ましく用いることができる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。 Details of the electron injection layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and the materials described therein are used for the electron injection layer. It can be preferably used. The electron injection layer is preferably a very thin film, and its layer thickness is preferably in the range of 1 nm to 10 μm, although it depends on the constituent material.
 〈正孔輸送層〉
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
<Hole transport layer>
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole injection layer and the electron blocking layer also have a function of the hole transport layer in a broad sense. The hole transport layer may be a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。 The hole-transporting material has any of hole injection or transport and electron barrier properties, and may be an organic substance or an inorganic substance.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, the above materials can be used, but a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound can be used, and an aromatic tertiary amine compound is particularly preferably used. preferable.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよい。 The hole transport layer is formed by using the above hole transport material by a known method such as a vacuum vapor deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir Blodgett method, Langmuir Blodgett method). Can be formed by thinning. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single-layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, by doping the material of the hole transport layer with impurities, it is possible to increase the p property. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, and J. Appl. Phys. , 95, 5773 (2004) and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 As described above, it is preferable to increase the p-type property of the hole transport layer, because an element with lower power consumption can be manufactured.
 〈電子輸送層〉
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
<Electron transport layer>
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer and the hole blocking layer are also included in the electron transport layer. The electron-transporting layer can be provided as a single-layer structure or a layered structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a laminated structure, as an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer, an electron injected from a cathode is used as a light emitting layer. It only has to have a function of transmitting. As such a material, any one of conventionally known compounds can be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethanes, anthrone derivatives and oxadiazole derivatives. Further, in the oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Further, a polymer material obtained by introducing these materials into a polymer chain or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, a metal complex of an 8-quinolinol derivative, for example, tris(8-quinolinol)aluminum (abbreviation: Alq 3 ), tris(5,7-dichloro-8-quinolinol)aluminum, tris(5,7-dibromo-8-). The central metal of quinolinol)aluminum, tris(2-methyl-8-quinolinol)aluminum, tris(5-methyl-8-quinolinol)aluminum, bis(8-quinolinol)zinc (abbreviation: Znq), and their metal complexes are A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単一構造であってもよい。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. The layer thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
 〈阻止層〉
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層ユニット3の各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
<Stop layer>
Examples of the blocking layer include a hole blocking layer and an electron blocking layer, which are layers provided as necessary in addition to the constituent layers of the organic functional layer unit 3 described above. For example, it is described in JP-A-11-204258, JP-A-11-204359, and "237 pages of "organic EL element and its forefront of industrialization (published on November 30, 1998, NTS Co., Ltd.)". Hole blocking (hole blocking) layers and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 In a broad sense, the hole blocking layer has the function of an electron transport layer. The hole blocking layer is made of a hole blocking material which has a function of transporting electrons and has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. The probability can be improved. Further, the structure of the electron transport layer can be used as a hole blocking layer, if necessary. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons. By blocking the electrons while transporting the holes, the recombination probability of electrons and holes is improved. Can be made Further, the structure of the hole transport layer can be used as an electron blocking layer, if necessary. The thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably 5 to 30 nm.
 本発明に係る有機機能層の形成方法としては、特に制限はなく、従来公知の、例えば、真空蒸着法、湿式法(ウェットプロセスともいう。)等による形成方法を用いることができる。 The method for forming the organic functional layer according to the present invention is not particularly limited, and conventionally known methods such as a vacuum deposition method and a wet method (also referred to as a wet process) can be used.
 湿式法としては、スピンコート法、キャスト法、ディスペンサー法、インクジェット印刷法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ディスペンサー法、ダイコート法、インクジェット印刷法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。中でも、インクジェット印刷法であることが、塗布における容易性と精度の観点から、好ましい。 As a wet method, a spin coating method, a casting method, a dispenser method, an inkjet printing method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, an LB method (Langmuir-Blodgett method) However, from the viewpoint of easy production of a uniform thin film and high productivity, a roll-to-roll method having high suitability such as a dispenser method, a die coating method, an inkjet printing method, a spray coating method is preferable. Among them, the inkjet printing method is preferable from the viewpoint of ease and accuracy in coating.
 例えば、本発明に適用可能なインクジェットヘッドは、例えば、特開2012-140017号公報、特開2013-010227号公報、特開2014-058171号公報、特開2014-097644号公報、特開2015-142979号公報、特開2015-142980号公報、特開2016-002675号公報、特開2016-002682号公報、特開2016-107401号公報、特開2017-109476号公報、特開2017-177626号公報等に記載されている構成からなるインクジェットヘッド及び印刷法を適宜選択して適用することができる。 For example, an inkjet head applicable to the present invention is, for example, Japanese Patent Application Laid-Open No. 2012-140017, Japanese Patent Application Laid-Open No. 2013-010227, Japanese Patent Application Laid-Open No. 2014-058171, Japanese Patent Application Laid-Open No. 2014-097644, and Japanese Patent Application Laid-Open No. 2015-2015. 142979, JP2015-142980, JP2016-002675, JP2016-002682, JP2016-107401, JP2017-109476, JP2017-177626. An inkjet head and a printing method having the configurations described in the publications and the like can be appropriately selected and applied.
 湿式法に用いる塗布液は、有機機能層を形成する材料が液媒体に均一に溶解される溶液でも、材料が固形分として液媒体に分散される分散液でも良い。分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 The coating liquid used in the wet method may be a solution in which the material forming the organic functional layer is uniformly dissolved in the liquid medium, or a dispersion liquid in which the material is dispersed as a solid content in the liquid medium. As a dispersion method, it is possible to disperse by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
 液媒体としては、特に制限はなく、例えば、クロロホルム、四塩化炭素、ジクロロメタン、1,2-ジクロロエタン、ジクロロベンゼン、ジクロロヘキサノン等のハロゲン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、n-プロピルメチルケトン、シクロヘキサノン等のケトン系溶媒、ベンゼン、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族系溶媒、シクロヘキサン、デカリン、ドデカン等の脂肪族系溶媒、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、炭酸ジエチル等のエステル系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、メタノール、エタノール、1-ブタノール、エチレングリコール等のアルコール系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、ジメチルスルホキシド、水又はこれらの混合液媒体等が挙げられる。 The liquid medium is not particularly limited, and examples thereof include halogen solvents such as chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, dichlorobenzene, dichlorohexanone, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, n- Ketone solvents such as propyl methyl ketone and cyclohexanone, aromatic solvents such as benzene, toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic solvents such as cyclohexane, decalin and dodecane, ethyl acetate, n-propyl acetate, n acetate -Butyl, methyl propionate, ethyl propionate, γ-butyrolactone, diethyl carbonate and other ester solvents, tetrahydrofuran, dioxane and other ether solvents, dimethylformamide, dimethylacetamide and other amide solvents, methanol, ethanol, 1-butanol , Alcohol solvents such as ethylene glycol, nitrile solvents such as acetonitrile and propionitrile, dimethylsulfoxide, water or a mixed liquid medium thereof.
 これらの液媒体の沸点としては、迅速に液媒体を乾燥させる観点から乾燥処理の温度未満の沸点が好ましく、具体的には60~200℃の範囲内が好ましく、さらに好ましくは、80~180℃の範囲内である。 The boiling point of these liquid mediums is preferably lower than the temperature of the drying treatment from the viewpoint of drying the liquid medium rapidly, specifically in the range of 60 to 200°C, and more preferably 80 to 180°C. Within the range of.
 塗布液は、塗布範囲を制御する目的や、塗布後の表面張力勾配に伴う液流動(例えば、コーヒーリングと呼ばれる現象を引き起こす液流動)を抑制する目的に応じて、界面活性剤を含有することができる。 The coating liquid contains a surfactant for the purpose of controlling the coating range and suppressing the liquid flow (for example, liquid flow that causes a phenomenon called coffee ring) accompanying the surface tension gradient after coating. You can
 界面活性剤としては、溶媒に含まれる水分の影響、レベリング性、基板f1への濡れ性等の観点から、例えばアニオン性又はノニオン性の界面活性剤等が挙げられる。具体的には、含フッ素系活性剤等、国際公開第08/146681号、特開平2-41308号公報等に挙げられた界面活性剤を用いることができる。 Examples of the surfactant include anionic or nonionic surfactants from the viewpoint of the influence of water contained in the solvent, the leveling property, the wettability to the substrate f1 and the like. Specifically, the surfactants described in WO 08/146681 and JP-A-2-41308 can be used, such as fluorine-containing surfactants.
 塗布膜の粘度についても、膜厚と同様に、有機機能層として必要とされる機能と有機材料の溶解度又は分散性により、適宜選択することが可能で、具体的には例えば0.3~100mPa・sの範囲内で選択することができる。 Similarly to the film thickness, the viscosity of the coating film can be appropriately selected depending on the function required as the organic functional layer and the solubility or dispersibility of the organic material. Specifically, for example, 0.3 to 100 mPa・It can be selected within the range of s.
 塗布膜の膜厚は、有機機能層として必要とされる機能と有機材料の溶解度又は分散性により適宜選択することが可能で、具体的には例えば1~90μmの範囲内で選択することができる。 The thickness of the coating film can be appropriately selected depending on the function required as the organic functional layer and the solubility or dispersibility of the organic material, and specifically, can be selected within a range of 1 to 90 μm, for example. ..
 また、成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、支持基板温度-50~300℃、厚さ0.1nm~5μm、好ましくは5~200nmの範囲内で適宜選ぶことが望ましい。 When a vapor deposition method is adopted for film formation, the vapor deposition conditions generally differ depending on the type of compound used, but the boat heating temperature is 50 to 450° C., the vacuum degree is 1×10 −6 to 1×10 −2 Pa, It is desirable that the vapor deposition rate is 0.01 to 50 nm/sec, the supporting substrate temperature is -50 to 300° C., and the thickness is 0.1 nm to 5 μm, preferably 5 to 200 nm.
 有機機能層の形成は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。 It is preferable to form the organic functional layer from the hole injecting layer to the cathode consistently by vacuuming once, but it is also possible to take out in the middle and apply a different film forming method. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
 〔5〕封止部材
 有機EL素子を封止するのに用いられる封止手段としては、例えば、フレキシブル封止部材と、陰極及び透明基板とを封止用接着剤で接着する方法を挙げることができる。
[5] Sealing member As a sealing means used for sealing the organic EL element, for example, a method of bonding the flexible sealing member, the cathode and the transparent substrate with a sealing adhesive is given. it can.
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また透明性及び電気絶縁性は特に限定されない。 The sealing member may be arranged so as to cover the display area of the organic EL element, and may have a concave plate shape or a flat plate shape. Further, the transparency and the electric insulation are not particularly limited.
 具体的には、フレキシブル性を備えた薄膜ガラス板、ポリマー板、フィルム、金属フィルム(金属箔)等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属フィルムとしては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金が挙げられる。 Specific examples include flexible thin film glass plates, polymer plates, films, and metal films (metal foils). Examples of the glass plate include soda-lime glass, barium/strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Further, examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like. Examples of the metal film include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum.
 本発明においては、封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。さらに、ポリマーフィルムは、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m2・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm(1atmは、1.01325×105Paである)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m2・24h以下であることが好ましい。これらは、前述の水分や酸素に対して高い遮蔽能を有するガスバリアー層を設けることで達成することができる。 In the present invention, as the sealing member, a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned. Further, the polymer film has a water vapor permeability of 1×10 −3 g/m 2 · at a temperature of 25±0.5° C. and a relative humidity of 90±2% RH measured by a method according to JIS K 7129-1992. It is preferably 24 h or less, and moreover, the oxygen permeability measured by the method according to JIS K 7126-1987 is 1×10 −3 ml/m 2 ·24 h·atm (1 atm is 1.01325× 10 5 a Pa) equal to or lower than a temperature of 25 ± 0.5 ° C., water vapor permeability at a relative humidity of 90 ± 2% RH is preferably not more than 1 × 10 -3 g / m 2 · 24h. These can be achieved by providing the above-mentioned gas barrier layer having a high shielding ability against moisture and oxygen.
 有機EL素子と封止材の接着に用いる接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(2液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive used for adhering the organic EL element and the encapsulant include photocurable and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomer and methacrylic acid-based oligomer, and 2-cyanoacrylic acid ester. Examples of such adhesives include moisture-curable adhesives. In addition, epoxy and other heat and chemical curing types (mixing of two liquids) can be used. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Further, a cation-curing type UV-curing type epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止基板への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Note that the organic EL element may be deteriorated by heat treatment, so a material that can be adhesively cured from room temperature (25°C) to 80°C is preferable. A desiccant may be dispersed in the adhesive. The adhesive may be applied to the sealing substrate by using a commercially available dispenser or by printing such as screen printing.
 封止部材と有機EL素子の表示領域(発光領域)との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコーンオイルのような不活性液体を注入することもできる。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area (light emitting area) of the organic EL element, an inert gas such as nitrogen or argon or an inert liquid such as fluorocarbon or silicone oil is injected in the vapor phase and the liquid phase. You can also do it. Further, a gap between the sealing member and the display region of the organic EL element can be evacuated or a hygroscopic compound can be filled in the gap.
 また、有機EL素子における発光機能層ユニットを完全に覆い、かつ有機EL素子における陽極と、陰極の端子部分を露出させる状態で、透明基板上に封止膜を設けることもできる。 Also, a sealing film may be provided on the transparent substrate in a state where the light emitting functional layer unit in the organic EL element is completely covered and the anode and cathode terminal portions of the organic EL element are exposed.
[有機光電変換素子を有する太陽電池]
 図2は、バルクヘテロジャンクション型の有機光電変換素子からなるシングル構成(バルクヘテロジャンクション層が1層の構成)の太陽電池の一例を示す断面図である。
[Solar cell having organic photoelectric conversion element]
FIG. 2 is a cross-sectional view showing an example of a solar cell having a single structure (a structure having one bulk heterojunction layer) including a bulk heterojunction type organic photoelectric conversion element.
 図2において、バルクヘテロジャンクション型の有機光電変換素子(200)は、基板(201)の一方面上に、陽極(202)、正孔輸送層(207)、バルクヘテロジャンクション層の光電変換部(204)、電子輸送層(又はバッファー層ともいう。208)及び陰極(203)が順次積層されている。
 なお、本発明に係る有機光電変換素子(200)において、陽極(202)と陰極(203)の間に配置された正孔輸送層(207)、バルクヘテロジャンクション層の光電変換部(204)、電子輸送層(208)が本発明に係る中間層に相当する。
In FIG. 2, a bulk heterojunction type organic photoelectric conversion device (200) includes an anode (202), a hole transport layer (207), and a bulk heterojunction layer photoelectric conversion unit (204) on one surface of a substrate (201). An electron transport layer (also referred to as a buffer layer 208) and a cathode (203) are sequentially stacked.
In the organic photoelectric conversion element (200) according to the present invention, the hole transport layer (207) arranged between the anode (202) and the cathode (203), the photoelectric conversion part (204) of the bulk heterojunction layer, the electron The transport layer (208) corresponds to the intermediate layer according to the present invention.
 基板(201)は、順次積層された陽極(202)、光電変換部(204)及び陰極(203)を保持する部材である。本実施形態では、基板(201)側から光電変換される光が入射するので、基板(201)は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材であることが好ましい。基板(201)は、例えば、ガラス基板や樹脂基板等が用いられる。この基板(201)は、必須ではなく、例えば、光電変換部(204)の両面に陽極(202)及び陰極(203)を形成することでバルクヘテロジャンクション型の有機光電変換素子(200)が構成されてもよい。 The substrate (201) is a member that holds an anode (202), a photoelectric conversion unit (204) and a cathode (203) that are sequentially stacked. In this embodiment, since the photoelectrically converted light is incident from the substrate (201) side, the substrate (201) can transmit the photoelectrically converted light, that is, the light to be photoelectrically converted. A member transparent to the wavelength is preferable. As the substrate (201), for example, a glass substrate or a resin substrate is used. This substrate (201) is not essential. For example, a bulk heterojunction type organic photoelectric conversion element (200) is formed by forming an anode (202) and a cathode (203) on both surfaces of a photoelectric conversion part (204). May be.
 光電変換部(204)は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。ここで、電子供与体及び電子受容体は、"光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体"であり、電極のように単に電子を供与又は受容するものではなく、光反応によって、電子を供与又は受容するものである。 The photoelectric conversion unit (204) is a layer that converts light energy into electric energy, and is configured to have a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material relatively functions as an electron donor (donor), and the n-type semiconductor material relatively functions as an electron acceptor (acceptor). Here, the electron donor and the electron acceptor are "an electron donor that, when absorbing light, moves from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state). And “electron acceptor”, which donates or accepts electrons as in an electrode, but donates or accepts electrons by a photoreaction.
 図2において、基板(201)を介して陽極(202)から入射された光は、光電変換部(204)のバルクヘテロジャンクション層における電子受容体又は電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、陽極(202)と陰極(203)の仕事関数が異なる場合では陽極(202)と陰極(203)との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ光電流が検出される。例えば、陽極(202)の仕事関数が陰極(203)の仕事関数よりも大きい場合では、電子は陽極(202)へ、正孔は陰極(203)へ輸送される。なお、仕事関数の大小が逆転すれば、電子と正孔はこれとは逆方向に輸送される。また、陽極(202)と陰極(203)との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。 In FIG. 2, the light incident from the anode (202) through the substrate (201) is absorbed by the electron acceptor or the electron donor in the bulk heterojunction layer of the photoelectric conversion unit (204), and the electron acceptor receives the electron. Electrons move to the body, forming a pair of holes and electrons (charge separation state). The generated electric charge is caused by the internal electric field, for example, when the work functions of the anode (202) and the cathode (203) are different, the electrons pass between the electron acceptors due to the potential difference between the anode (202) and the cathode (203), and The holes pass between the electron donors and are carried to different electrodes to detect photocurrent. For example, if the work function of the anode (202) is greater than that of the cathode (203), then electrons will be transported to the anode (202) and holes will be transported to the cathode (203). If the magnitude of the work function is reversed, the electrons and holes will be transported in the opposite directions. Further, by applying a potential between the anode (202) and the cathode (203), it is possible to control the transport direction of electrons and holes.
 なお、図2には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、又は平滑化層等の他の層を有していてもよい。 Although not shown in FIG. 2, it may have other layers such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer.
 また、さらなる太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成(バルクヘテロジャンクション層を複数有する構成)であってもよい。 Also, for the purpose of further improving the solar light utilization rate (photoelectric conversion efficiency), a tandem type structure (a structure having a plurality of bulk heterojunction layers) in which such photoelectric conversion elements are stacked may be used.
 上記のような層に用いることができる材料については、例えば、特開2015-149483号公報の段落0045~0113に記載のn型半導体材料、及びp型半導体材料が挙げられる。 Examples of the material that can be used for the layer as described above include the n-type semiconductor material and the p-type semiconductor material described in paragraphs 0045 to 0113 of JP-A-2015-149483.
 有機光電変換素子を構成する電極については、前記した有機EL素子で用いられる陽極と陰極を同様に用いることが好ましい。すなわち、陰極(203)は、銀粒子及び分散剤を含有し、かつ、前記陰極(203)の前記中間層である電子輸送層(208)と反対側の表面(S2)、又は中間層である電子輸送層側の表面(K2)の算術平均粗さSaが、3.0nm以下である。その他の詳細な説明は、上述した有機EL素子で用いられる陰極と同様のためここでは省略する。
 また、有機光電変換素子は、バルクヘテロジャンクション層で生成した正電荷と負電荷とが、それぞれp型有機半導体材料、及びn型有機半導体材料を経由して、それぞれ陽極及び陰極から取り出され、電池として機能するものである。それぞれの電極には、電極を通過するキャリアに適した特性が求められる。
As for the electrodes constituting the organic photoelectric conversion element, it is preferable to use the same anode and cathode as those used in the above-mentioned organic EL element. That is, the cathode (203) contains silver particles and a dispersant, and is the surface (S2) opposite to the electron transport layer (208) which is the intermediate layer of the cathode (203), or an intermediate layer. The arithmetic average roughness Sa of the surface (K2) on the electron transport layer side is 3.0 nm or less. The other detailed description is omitted here since it is the same as that of the cathode used in the organic EL element described above.
Further, in the organic photoelectric conversion element, the positive charge and the negative charge generated in the bulk heterojunction layer are taken out from the anode and the cathode via the p-type organic semiconductor material and the n-type organic semiconductor material, respectively, to obtain a battery. It works. Each electrode is required to have characteristics suitable for a carrier passing through the electrode.
 有機光電変換素子は、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、バルクヘテロジャンクション層と陽極との中間には正孔輸送層・電子ブロック層を有していることが好ましい。 The organic photoelectric conversion device has a hole transport layer/electron block layer between the bulk heterojunction layer and the anode because it makes it possible to more efficiently extract the charges generated in the bulk heterojunction layer. Is preferred.
 これらの層を構成する材料としては、例えば、正孔輸送層としては、ヘレウス社製Clevios等のPEDOT、ポリアニリン及びそのドープ材料、WO2006/019270号等に記載のシアン化合物等を用いることができる。 As a material for forming these layers, for example, for the hole transport layer, PEDOT such as Clevios manufactured by Heraeus, polyaniline and a doped material thereof, and a cyan compound described in WO2006/019270 can be used.
 有機光電変換素子は、バルクヘテロジャンクション層と陰極との中間には電子輸送層・正孔ブロック層・バッファー層を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。 In the organic photoelectric conversion device, by forming an electron transport layer, a hole blocking layer, and a buffer layer between the bulk heterojunction layer and the cathode, it is possible to more efficiently extract the charges generated in the bulk heterojunction layer. Therefore, it is preferable to have these layers.
 有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度バルクヘテロジャンクション層に入射させることができるような光拡散層等を設けてもよい。 The organic photoelectric conversion element may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, an antireflection film, a light condensing layer such as a microlens array, or a light diffusing layer capable of scattering the light reflected by the cathode and re-entering the bulk heterojunction layer may be provided. Good.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, "parts" or "%" are used, but unless otherwise specified, "parts by mass" or "mass%" are shown.
[陰極用塗布液101の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、60℃で3時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液101を得た。
 得られた金属微粒子分散液101、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液101を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 101 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After sufficiently stirring, 15 g of triethanolamine was added, and the mixture was stirred at 60°C for 3 hours. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 101 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the resulting fine metal particle dispersion 101, and the mixture was stirred well to obtain a coating liquid 101 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液102の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、70℃で2時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液102を得た。
 得られた金属微粒子分散液102、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液102を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 102 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After thoroughly stirring, 15 g of triethanolamine was added, and the mixture was stirred at 70°C for 2 hours. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 102 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the obtained metal fine particle dispersion liquid 102 and well stirred to obtain a coating liquid 102 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液103の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、80℃で1時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液103を得た。
 得られた金属微粒子分散液103、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液103を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 103 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After sufficiently stirring, 15 g of triethanolamine was added, and the mixture was stirred at 80°C for 1 hour. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 103 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the obtained metal fine particle dispersions 103 and well stirred to obtain a coating liquid 103 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液104の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を0.2gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、85℃で1時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液104を得た。
 得られた金属微粒子分散液104、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液104を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 104 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 0.2 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After thoroughly stirring, 15 g of triethanolamine was added, and the mixture was stirred at 85°C for 1 hour. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 104 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the resulting fine metal particle dispersion 104, and the mixture was stirred well to obtain a coating liquid 104 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液105の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、80℃で30分間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液105を得た。
 得られた金属微粒子分散液105、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液105を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 105 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After sufficiently stirring, 15 g of triethanolamine was added, and the mixture was stirred at 80°C for 30 minutes. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 105 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the obtained fine metal particle dispersions 105 and well stirred to obtain a coating liquid 105 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液106の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、60℃で6時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液106を得た。
 得られた金属微粒子分散液106、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液106を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 106 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After sufficiently stirring, 15 g of triethanolamine was added, and the mixture was stirred at 60°C for 6 hours. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 106 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the resulting fine metal particle dispersion 106, and the mixture was stirred well to obtain a coating liquid 106 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液107の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、90℃で30分間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液107を得た。
 得られた金属微粒子分散液107、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液107を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 107 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After thoroughly stirring, 15 g of triethanolamine was added, and the mixture was stirred at 90°C for 30 minutes. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 107 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the obtained metal fine particle dispersion liquid 107 and well stirred to obtain a coating liquid 107 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液108の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を0.3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、70℃で2時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液108を得た。
 得られた金属微粒子分散液108、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液108を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of cathode coating liquid 108]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. Into another beaker, 0.3 g of a non-volatile organic substance (Disperse Bick 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After thoroughly stirring, 15 g of triethanolamine was added, and the mixture was stirred at 70°C for 2 hours. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 108 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the resulting fine metal particle dispersion 108, and the mixture was stirred well to obtain a coating liquid 108 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液109の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を0.2gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、70℃で2時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液109を得た。
 得られた金属微粒子分散液109、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液109を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 109 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 0.2 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After thoroughly stirring, 15 g of triethanolamine was added, and the mixture was stirred at 70°C for 2 hours. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 109 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the obtained fine metal particle dispersions 109 and well stirred to obtain a coating liquid 109 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[陰極用塗布液110の調製]
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名)、ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、80℃で1時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて、合計50gとし、銀粒子が分散された金属微粒子分散液110を得た。
 得られた金属微粒子分散液110、10gに、純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液110を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
[Preparation of coating liquid 110 for cathode]
100 mL of 1000 mM silver nitrate aqueous solution was taken in a beaker. In a separate beaker, 3 g of a non-volatile organic substance (Dispersevic 190 (trade name), manufactured by Big Chemie, 40% aqueous solution) was placed as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous solution of silver nitrate, 27 g of the Disperbic 190 aqueous solution prepared in another beaker was added. After sufficiently stirring, 15 g of triethanolamine was added, and the mixture was stirred at 80°C for 1 hour. Then, centrifugation and purification were performed 3 times. Pure water was added to the obtained silver particles to make a total of 50 g to obtain a metal fine particle dispersion liquid 110 in which silver particles were dispersed.
1.1 g of pure water and 2.3 g of 2-propanol were added to 10 g of the obtained fine metal particle dispersion liquid 110, and the mixture was stirred well to obtain a coating liquid 110 for cathode. The ratio of the solvent in this coating solution is 0.2 to 2-propanol to 0.8 of water.
[有機EL素子101の作製]
 (基材の準備)
 まず、ポリエチレンナフタレートフィルム(帝人フィルムソリューション株式会社製)の陽極を形成する側の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOxからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m2・24h・atm)以下、水蒸気透過度0.001g/(m2・24h)以下のガスバリアー性を有する可撓性の基板を作製した。
[Production of Organic EL Element 101]
(Preparation of base material)
First, an inorganic substance composed of SiOx was formed on the entire surface of the polyethylene naphthalate film (manufactured by Teijin Film Solutions Co., Ltd.) on the side where the anode was formed, by using the atmospheric pressure plasma discharge treatment device having the configuration described in JP 2004-68143 A. The gas barrier layer of was formed to have a layer thickness of 500 nm. Thus, a flexible substrate having a gas barrier property with an oxygen permeability of 0.001 mL/(m 2 ·24 h·atm) or less and a water vapor permeability of 0.001 g/(m 2 ·24 h) or less was produced.
 (陽極の形成)
 上記基材上に厚さ120nmのITO(インジウム・スズ酸化物)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、陽極を形成した。なお、パターンは発光領域の面積が5cm×5cmになるようなパターンとした。
(Formation of anode)
An ITO (indium tin oxide) film having a thickness of 120 nm was formed on the base material by a sputtering method and patterned by a photolithography method to form an anode. The pattern was such that the area of the light emitting region was 5 cm×5 cm.
 (正孔注入層の形成)
 陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、陽極を形成した基材上に、特許第4509787号公報の実施例16と同様に調製したポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)の分散液をイソプロピルアルコールで希釈した2質量%溶液をインクジェットプリント法にて塗布、80℃で5分乾燥し、層厚40nmの正孔注入層を形成した。
(Formation of hole injection layer)
The substrate on which the anode was formed was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. Then, a poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) dispersion prepared in the same manner as in Example 16 of Japanese Patent No. 4509787 was added to the base material on which the anode was formed by using isopropyl alcohol. The 2 mass% solution diluted with was applied by an inkjet printing method and dried at 80° C. for 5 minutes to form a hole injection layer having a layer thickness of 40 nm.
 (正孔輸送層の形成)
 次に、正孔注入層を形成した基材を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、下記組成の正孔輸送層形成用塗布液を用いて、インクジェットプリント法にて塗布、150℃で30分乾燥し、層厚30nmの正孔輸送層を形成した。
 〈正孔輸送層形成用塗布液〉
 正孔輸送材料 HT-3(重量平均分子量Mw=80000)  10質量部
 パラ(p)-キシレン                  3000質量部
(Formation of hole transport layer)
Next, the substrate on which the hole injection layer is formed is transferred to a nitrogen atmosphere using nitrogen gas (grade G1), and is applied by an inkjet printing method using a hole transport layer forming coating solution having the following composition. After drying at 150° C. for 30 minutes, a hole transport layer having a layer thickness of 30 nm was formed.
<Coating liquid for forming hole transport layer>
Hole transport material HT-3 (weight average molecular weight Mw=80,000) 10 parts by mass Para (p)-xylene 3000 parts by mass
 (発光層の形成)
 次に、正孔輸送層を形成した基材を、下記組成の発光層形成用塗布液を用い、インクジェットプリント法にて塗布し、130℃で30分間乾燥し、層厚50nmの発光層を形成した。
 〈発光層形成用塗布液〉
 ホスト化合物 H-4                     9質量部
 金属錯体CD-2                       1質量部
 蛍光材料F-1                      0.1質量部
 酢酸ノルマルブチル                   2000質量部
(Formation of light emitting layer)
Next, the substrate on which the hole transport layer is formed is applied by an inkjet printing method using a coating solution for forming a light emitting layer having the following composition and dried at 130° C. for 30 minutes to form a light emitting layer having a layer thickness of 50 nm. did.
<Emitting layer forming coating liquid>
Host compound H-4 9 parts by weight Metal complex CD-2 1 part by weight Fluorescent material F-1 0.1 part by weight Normal butyl acetate 2000 parts by weight
 (電子輸送層の形成)
 次に、ブロック層を形成した基材を、下記組成の電子輸送層形成用塗布液を用い、インクジェットプリント法にて塗布し、80℃で30分間乾燥し、層厚30nmの電子輸送層を形成した。
 〈電子輸送層形成用塗布液〉
 ET-1                           6質量部
 2,2,3,3-テトラフルオロ-1-プロパノール    2000質量部
(Formation of electron transport layer)
Next, the substrate on which the block layer is formed is coated by an inkjet printing method using a coating liquid for forming an electron transport layer having the following composition, and dried at 80° C. for 30 minutes to form an electron transport layer having a layer thickness of 30 nm. did.
<Coating liquid for forming electron transport layer>
ET-1 6 parts by weight 2,2,3,3-tetrafluoro-1-propanol 2000 parts by weight
 (電子注入層の形成)
 続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した。その後、ボートに通電して加熱し、フッ化ナトリウムを0.02nm/秒で前記電子輸送層上に蒸着し、膜厚1nmの薄膜を形成した。同様に、フッ化カリウムを0.02nm/秒でフッ化ナトリウム薄膜上に蒸着し、層厚1.5nmの電子注入層を形成した。
(Formation of electron injection layer)
Subsequently, the substrate was attached to a vacuum vapor deposition device without exposing it to the atmosphere. Further, a molybdenum resistance heating boat containing sodium fluoride and potassium fluoride was attached to a vacuum vapor deposition apparatus, and the vacuum chamber was depressurized to 4×10 −5 Pa. Then, the boat was energized and heated, and sodium fluoride was vapor-deposited on the electron transport layer at 0.02 nm/sec to form a thin film having a thickness of 1 nm. Similarly, potassium fluoride was vapor-deposited at 0.02 nm/sec on the sodium fluoride thin film to form an electron injection layer having a layer thickness of 1.5 nm.
 なお、用いた化合物を下記に示す。 The compounds used are shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (陰極の形成)
 電子注入層まで成膜した基板に、ディスペンサーを用いて、上記陰極用塗布液101を塗布し、陰極を形成した。なお、事前に乾燥後の膜厚が200nmになるように、液量と塗布速度を調節した。塗布後、120℃の恒温槽で30分間乾燥させた。
 上記膜厚の測定は、別途用意したガラス基板上に、塗布液を塗布し、一部を剥離し、剥離した部分と膜が残った部分の段差を、ブルカー社製触針式プロファイリングシステムDektakを用いて測定した。
(Formation of cathode)
The coating liquid 101 for cathode was applied to the substrate on which the electron injection layer was formed by using a dispenser to form a cathode. The amount of liquid and the coating speed were adjusted in advance so that the film thickness after drying was 200 nm. After application, it was dried in a constant temperature bath at 120° C. for 30 minutes.
To measure the film thickness, a coating solution is applied on a glass substrate prepared separately, a part of the film is peeled off, and the step between the peeled part and the part where the film remains is measured by using a Bruker stylus profiling system Dektak. It was measured using.
 (封止層の形成)
 ポリエチレンナフタレートフィルム(帝人フィルムソリューション株式会社製)の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOxからなる無機物のガスバリアー層を層厚500nmとなるように形成した。
(Formation of sealing layer)
An inorganic gas barrier layer made of SiOx having a layer thickness of 500 nm was formed on the entire surface of the polyethylene naphthalate film (manufactured by Teijin Film Solutions Co., Ltd.) by using the atmospheric pressure plasma discharge treatment device having the configuration described in JP 2004-68143 A. It was formed so that
 これにより、酸素透過度0.001mL/(m2・24h・atm)以下、水蒸気透過度0.001g/(m2・24h)以下のガスバリアー性を有する可撓性のガスバリアーフィルムを作製した。ガスバリアーフィルムの片面に、封止樹脂層として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで形成した。そして、この封止樹脂層を設けたガスバリアーフィルムを、前記作製した素子に重ね合わせた。このとき、陽極及び陰極の取出し部の端部が外に出るように、ガスバリアーフィルムの封止樹脂層形成面を、有機EL素子の封止面側に連続的に重ね合わせた。 Thereby, a flexible gas barrier film having a gas barrier property with an oxygen permeability of 0.001 mL/(m 2 ·24 h·atm) or less and a water vapor permeability of 0.001 g/(m 2 ·24 h) or less was produced. .. A thermosetting liquid adhesive (epoxy resin) having a thickness of 25 μm was formed as a sealing resin layer on one surface of the gas barrier film. Then, the gas barrier film provided with this sealing resin layer was overlaid on the above-prepared element. At this time, the sealing resin layer formation surface of the gas barrier film was continuously overlapped with the sealing surface side of the organic EL element so that the ends of the extraction portions of the anode and the cathode were exposed to the outside.
 次に、ガスバリアーフィルムを貼り合せた試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させた。 Next, the sample to which the gas barrier film was attached was placed in a decompression device, and pressed at 90° C. under a decompression condition of 0.1 MPa for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90° C. for 30 minutes to cure the adhesive.
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8体積ppm以下の大気圧で行った。
 以上の工程により、有機EL素子101を作製した。
The sealing step is performed under atmospheric pressure in a nitrogen atmosphere having a water content of 1 ppm or less according to JIS B 9920, the cleanliness measured is Class 100, the dew point temperature is −80° C. or less, and the oxygen concentration is 0.8 volume. It was carried out at atmospheric pressure below ppm.
Through the above steps, the organic EL element 101 was manufactured.
[有機EL素子102~110の作製]
 前記有機EL素子101の作製の陰極の形成において、陰極用塗布液101に代えて下記表Iに示す陰極用塗布液をそれぞれ用いた以外は、前記有機EL素子101の作製と同様にして各有機EL素子102~110を得た。
[Production of Organic EL Elements 102 to 110]
In the formation of the cathode of the organic EL element 101, each organic compound was prepared in the same manner as in the production of the organic EL element 101, except that the cathode coating liquid 101 was used instead of the cathode coating liquid 101. EL devices 102 to 110 were obtained.
<銀粒子の平均粒径の測定>
 前記得られた各陰極用塗布液中の銀粒子の平均粒径(体積基準のメジアン径(D50))は、陰極用塗布液を乾燥させた後、走査型電子顕微鏡(SEM)「JSM-7401F」(日本電子株式会社製)を用いて電子顕微鏡写真において銀粒子を観察し、画像処理ソフトImageJを用いて体積換算で算出し、下記表Iに示した。
<Measurement of average particle size of silver particles>
The average particle diameter (volume-based median diameter (D 50 )) of the silver particles in each of the obtained cathode coating solutions was determined by drying the cathode coating solution and then using a scanning electron microscope (SEM) “JSM- 7401F" (manufactured by JEOL Ltd.) was used to observe silver particles in an electron micrograph, and the volume conversion was calculated using image processing software ImageJ, and the results are shown in Table I below.
<銀粒子のアスペクト比>
 前記得られた各陰極用塗布液を乾燥させた後、走査型電子顕微鏡(SEM)「JSM-7401F」(日本電子株式会社製)を用いて電子顕微鏡写真において銀粒子を観察し、長径(球状に近い場合は最大径)、短径(球状に近い場合は最小径)をそれぞれ測定し、n=20の平均値を求めて個数平均長径及び個数平均短径とする。そして、上記方法で求めた個数平均長径及び個数平均短径を用いて、下記式により平均アスペクト比を算出した。
 式:平均アスペクト比=(個数平均長径)/(個数平均短径)
<Aspect ratio of silver particles>
After drying the obtained coating liquid for each cathode, the silver particles were observed in an electron micrograph using a scanning electron microscope (SEM) “JSM-7401F” (manufactured by JEOL Ltd.), and the long diameter (spherical) When the value is close to, the maximum diameter) and the short diameter (when the shape is close to a sphere, the minimum diameter) are measured, and the average value of n=20 is determined to be the number average major axis and the number average minor axis. Then, using the number average major axis and number average minor axis obtained by the above method, the average aspect ratio was calculated by the following formula.
Formula: Average aspect ratio=(number average major axis)/(number average minor axis)
<粒径のばらつき>
 前記得られた陰極用塗布液中の銀粒子について、走査型電子顕微鏡(SEM)「JSM-7401F」(日本電子株式会社製)を用いて電子顕微鏡写真において銀粒子を観察し、画像処理ソフトImageJを用いて体積換算で(D90-D10/D50)の値を求
め、下記表Iに示した。
<Variation in particle size>
Regarding the silver particles in the obtained coating liquid for cathode, the silver particles were observed in an electron micrograph using a scanning electron microscope (SEM) "JSM-7401F" (manufactured by JEOL Ltd.), and image processing software ImageJ was used. The value of (D 90 -D 10 /D 50 ) was obtained by converting the volume by using and is shown in Table I below.
<算術平均粗さSa>
 上記作製した各有機EL素子について、陰極の有機層(具体的には、電子注入層)と反対側の表面及び有機層(電子注入層)側の表面の算術平均粗さSaを原子間力顕微鏡(AFM)法によって算出した。具体的には、原子間力顕微鏡において、測定モードをタッピングモード(DFM)とし、カンチレバーの走査周波数を1.20Hzとし、走査範囲を500nm×500nmとし、かつカットオフ値を99.98nmとすることによって算出し、その結果を下記表Iに示した。なお、下記表では、陰極の有機層と反対側を「上面側」、陰極の有機層側を「基板側」と表記した。
<Arithmetic mean roughness Sa>
For each of the organic EL devices produced above, the arithmetic mean roughness Sa of the surface of the cathode opposite to the organic layer (specifically, the electron injection layer) and the surface of the organic layer (electron injection layer) side was measured by an atomic force microscope. It was calculated by the (AFM) method. Specifically, in the atomic force microscope, the measurement mode is tapping mode (DFM), the scanning frequency of the cantilever is 1.20 Hz, the scanning range is 500 nm×500 nm, and the cutoff value is 99.98 nm. The results are shown in Table I below. In the table below, the side opposite to the organic layer of the cathode is referred to as "upper surface side", and the organic layer side of the cathode is referred to as "substrate side".
[評価]
<通電性>
 上記作製した有機EL素子の陰極について、抵抗率計(三菱化学アナリテック社製MCPT610)を用い、4端子4探針法定電流印加方式でシート抵抗値(Ω/sq.)の測定を行った。シート抵抗値において80Ω/sq.以下のものについては通電性が高いと判断し、評価を◎とし、シート抵抗値において80Ω/sq.より大きく100Ω/sq.以下のものについては通電性が高いと判断し、評価を○とし、100Ω/sq.より大きい抵抗値を持つものの評価を×とした。
[Evaluation]
<Conductivity>
The sheet resistance value (Ω/sq.) of the cathode of the produced organic EL element was measured by a 4-terminal 4-probe method constant current application method using a resistivity meter (MCPT610 manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The sheet resistance value is 80Ω/sq. The following materials were judged to have high electrical conductivity and were evaluated as ⊚, and the sheet resistance value was 80 Ω/sq. Greater than 100 Ω/sq. The following materials were judged to have high electrical conductivity, and were evaluated as ◯, and 100Ω/sq. The one having a larger resistance value was evaluated as x.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[電極11の作製]
 表面側の算術平均粗さSaが1.0で作成されたガラス基板上に、ディスペンサーを用いて、前記陰極用塗布液101を塗布し、電極11を形成した。なお、事前に乾燥後の膜厚が200nmになるように、液量と塗布速度を調節した。塗布後、120℃の恒温槽で30分間乾燥させた。
 上記膜厚の測定は、別途用意したガラス基板上に、塗布液を塗布し、一部を剥離し、剥離した部分と膜が残った部分の段差を、ブルカー社製触針式プロファイリングシステムDektakを用いて測定した。
[Production of electrode 11]
The coating liquid 101 for a cathode was applied on a glass substrate having a surface-side arithmetic average roughness Sa of 1.0 with a dispenser to form an electrode 11. The amount of liquid and the coating speed were adjusted in advance so that the film thickness after drying was 200 nm. After application, it was dried in a constant temperature bath at 120° C. for 30 minutes.
To measure the film thickness, a coating solution is applied on a glass substrate prepared separately, a part of the film is peeled off, and the step between the peeled part and the part where the film remains is measured by using a Bruker stylus profiling system Dektak. It was measured using.
[電極12~17の作製]
 前記電極11の作製において、陰極用塗布液101を102~107にそれぞれ変更した以外は電極11と同様にして電極12~17を作製した。
[Production of electrodes 12 to 17]
Electrodes 12 to 17 were produced in the same manner as the electrode 11 except that the cathode coating liquid 101 was changed to 102 to 107 in the production of the electrode 11.
[電極21の作製]
 表面側の算術平均粗さSa4.0で作成されたガラス基板上に、ディスペンサーを用いて、前記陰極用塗布液101を塗布し、電極21を形成した。なお、事前に乾燥後の膜厚が200nmになるように、液量と塗布速度を調節した。塗布後、120℃の恒温槽で30分間乾燥させた。
 上記膜厚の測定は、別途用意したガラス基板上に、塗布液を塗布し、一部を剥離し、剥離した部分と膜が残った部分の段差を、ブルカー社製触針式プロファイリングシステムDektakを用いて測定した。
[Production of electrode 21]
The coating liquid 101 for cathodes was applied to the glass substrate formed with the arithmetic average roughness Sa4.0 on the front surface side using a dispenser to form the electrode 21. The amount of liquid and the coating speed were adjusted in advance so that the film thickness after drying was 200 nm. After application, it was dried in a constant temperature bath at 120° C. for 30 minutes.
To measure the film thickness, a coating solution is applied on a glass substrate prepared separately, a part of the film is peeled off, and the step between the peeled part and the part where the film remains is measured by using a Bruker stylus profiling system Dektak. It was measured using.
[電極22~27の作製]
 前記電極21の作製において、陰極用塗布液101を102~107にそれぞれ変更した以外は電極21と同様にして電極22~27を作製した。
[Production of electrodes 22 to 27]
Electrodes 22 to 27 were produced in the same manner as the electrode 21, except that the cathode coating liquid 101 was changed to 102 to 107 in the production of the electrode 21.
<算術平均粗さSa>
 上記作製した各電極について、電極の上面側(基板と反対側)の表面の算術平均粗さSaを原子間力顕微鏡(AFM)法によって算出した。具体的には、原子間力顕微鏡において、測定モードをタッピングモード(DFM)とし、カンチレバーの走査周波数を1.20Hzとし、走査範囲を500nm×500nmとし、かつカットオフ値を99.98nmとすることによって算出し、その結果を下記表Iに示した。なお、下記表では、電極の基板側を「基板側」、電極の上面側を「上面側」と表記した。
<Arithmetic mean roughness Sa>
For each of the electrodes prepared above, the arithmetic mean roughness Sa of the surface on the upper surface side (the side opposite to the substrate) of the electrode was calculated by an atomic force microscope (AFM) method. Specifically, in the atomic force microscope, the measurement mode is tapping mode (DFM), the scanning frequency of the cantilever is 1.20 Hz, the scanning range is 500 nm×500 nm, and the cutoff value is 99.98 nm. The results are shown in Table I below. In the table below, the substrate side of the electrode is referred to as “substrate side”, and the upper surface side of the electrode is referred to as “upper surface side”.
[評価]
<通電性>
 上記作製した電極について、抵抗率計(三菱化学アナリテック社製MCPT610)を用い、4端子4探針法定電流印加方式でシート抵抗値(Ω/sq.)の測定を行った。シート抵抗値において80Ω/sq.以下のものについては通電性が高いと判断し、評価を◎とし、シート抵抗値において80Ω/sq.より大きく100Ω/sq.以下のものについては通電性が高いと判断し、評価を○とし、100Ω/sq.より大きい抵抗値を持つものの評価を×とした。
[Evaluation]
<Conductivity>
The sheet resistance value (Ω/sq.) of the prepared electrode was measured using a resistivity meter (MCPT610 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) by a 4-terminal 4-probe method with constant current application method. The sheet resistance value is 80Ω/sq. The following materials were judged to have high electrical conductivity and were evaluated as ⊚, and the sheet resistance value was 80 Ω/sq. Greater than 100 Ω/sq. The following materials were judged to have high electrical conductivity, and were evaluated as ◯, and 100Ω/sq. The one having a larger resistance value was evaluated as x.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記の結果に示されるように、本発明の有機EL素子及び電極は、比較例の有機EL素子及び電極に比べて、通電性に優れていることが分かる。 As shown in the above results, it can be seen that the organic EL device and electrode of the present invention are superior in electrical conductivity to the organic EL device and electrode of Comparative Example.
 本発明は、特に、塗布法により陰極を形成した場合であっても、陰極の通電性に優れた電子デバイス及び電子デバイスの製造方法に利用することができる。 The present invention can be used particularly for an electronic device having excellent conductivity of the cathode and a method for manufacturing the electronic device even when the cathode is formed by a coating method.
 EL 有機EL素子
 10 基板
 11 ガスバリアー層
 12 陽極
 13 第1の有機機能層
 14 発光層
 15 第2の有機機能層
 16 有機機能層ユニット
 17 陰極
 18 封止用接着層
 19 封止基板
 S1、S2 陰極の中間層と反対側の表面
 K1、K2 陰極の中間層側の表面
 h 発光点
 L 発光光
 200 バルクヘテロジャンクション型の有機光電変換素子
 201 基板
 202 陽極
 203 陰極
 204 光電変換部(バルクヘテロジャンクション層)
 207 正孔輸送層
 208 電子輸送層
EL organic EL device 10 substrate 11 gas barrier layer 12 anode 13 first organic functional layer 14 light emitting layer 15 second organic functional layer 16 organic functional layer unit 17 cathode 18 sealing adhesive layer 19 sealing substrate S1, S2 cathode Surface opposite to the intermediate layer of K1, K2 surface of the intermediate layer of the cathode h emission point L emission light 200 bulk heterojunction type organic photoelectric conversion element 201 substrate 202 anode 203 cathode 204 photoelectric conversion part (bulk heterojunction layer)
207 hole transport layer 208 electron transport layer

Claims (6)

  1.  少なくとも陽極、中間層及び陰極を備えた電子デバイスであって、
     前記陰極が、銀粒子及び分散剤を含有し、かつ、
     前記陰極の前記中間層と反対側の表面又は前記中間層側の表面の算術平均粗さSaが、3.0nm以下である電子デバイス。
    An electronic device comprising at least an anode, an intermediate layer and a cathode,
    The cathode contains silver particles and a dispersant, and
    An electronic device in which the arithmetic mean roughness Sa of the surface of the cathode opposite to the intermediate layer or the surface of the intermediate layer side is 3.0 nm or less.
  2.  前記陰極の前記中間層と反対側の表面及び前記中間層側の表面の算術平均粗さSaが、3.0nm以下である請求項1に記載の電子デバイス。 The electronic device according to claim 1, wherein an arithmetic mean roughness Sa of a surface of the cathode opposite to the intermediate layer and a surface of the intermediate layer side is 3.0 nm or less.
  3.  有機エレクトロルミネッセンス素子である請求項1又は請求項2に記載の電子デバイス。 The electronic device according to claim 1 or 2, which is an organic electroluminescent element.
  4.  請求項1から請求項3までのいずれか一項に記載の電子デバイスを製造する電子デバイスの製造方法であって、
     銀粒子及び分散剤を含有する陰極用塗布液を塗布して前記陰極を形成する工程を有し、
     前記陰極用塗布液中における前記銀粒子の平均アスペクト比が、1.0~5.0の範囲内である電子デバイスの製造方法。
    An electronic device manufacturing method for manufacturing the electronic device according to any one of claims 1 to 3.
    There is a step of forming a cathode by applying a coating liquid for a cathode containing silver particles and a dispersant,
    The method for producing an electronic device, wherein the average aspect ratio of the silver particles in the coating liquid for the cathode is in the range of 1.0 to 5.0.
  5.  前記陰極用塗布液中における前記銀粒子の平均粒径が4~100nmの範囲内であり、かつ、体積基準粒度分布によるD10、D50及びD90において、(D90-D10)/D50の値が、1.50~3.00の範囲内である請求項4に記載の電子デバイスの製造方法。 The average particle size of the silver particles in the coating liquid for the cathode is in the range of 4 to 100 nm, and at D 10 , D 50 and D 90 according to the volume standard particle size distribution, (D 90 −D 10 )/D The method for manufacturing an electronic device according to claim 4, wherein the value of 50 is in the range of 1.50 to 3.00.
  6.  前記陰極を形成する工程が、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法又はインクジェット法のいずれかにより前記陰極用塗布液を塗布する請求項4又は請求項5に記載の電子デバイスの製造方法。 The step of forming the cathode is spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexo. The method for manufacturing an electronic device according to claim 4, wherein the cathode coating liquid is applied by any one of a printing method, an offset printing method, and an inkjet method.
PCT/JP2019/049549 2018-12-18 2019-12-18 Electronic device and method of manufacturing electronic device WO2020130021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561488A JPWO2020130021A1 (en) 2018-12-18 2019-12-18 Electronic devices and manufacturing methods for electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236681 2018-12-18
JP2018236681 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020130021A1 true WO2020130021A1 (en) 2020-06-25

Family

ID=71100885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049549 WO2020130021A1 (en) 2018-12-18 2019-12-18 Electronic device and method of manufacturing electronic device

Country Status (2)

Country Link
JP (1) JPWO2020130021A1 (en)
WO (1) WO2020130021A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216531A (en) * 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd Light emitting element and method for manufacturing the same
WO2018051831A1 (en) * 2016-09-16 2018-03-22 株式会社ノリタケカンパニーリミテド Silver paste for resin substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216531A (en) * 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd Light emitting element and method for manufacturing the same
WO2018051831A1 (en) * 2016-09-16 2018-03-22 株式会社ノリタケカンパニーリミテド Silver paste for resin substrate

Also Published As

Publication number Publication date
JPWO2020130021A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP5472299B2 (en) Transparent electrode, method for purifying conductive fiber used for transparent electrode, and organic electroluminescence device
CN107852793B (en) Organic thin film laminate and organic electroluminescent element
JP5581816B2 (en) Gas barrier film and organic element device using the same
WO2011046011A1 (en) Transparent conductor film with barrier properties, manufacturing method thereof, and organic electroluminescence element and organic solar cell using the transparent conductor film with barrier properties
JP5565129B2 (en) Gas barrier film and organic element device using the same
JP2011512673A (en) Organic optoelectronic device and manufacturing method thereof
WO2012029750A1 (en) Organic electroluminescent element, process for production thereof, display device, and lighting device
JP2012086393A (en) Method of manufacturing functional multilayer film, gas barrier film, and organic element device
WO2013172399A1 (en) Method for producing conductive substrate, conductive substrate, and organic electronic element
JP6984649B2 (en) Composition for manufacturing electronic devices, manufacturing method of composition for manufacturing electronic devices, manufacturing method of organic thin film and organic thin film
JP5181920B2 (en) Method for manufacturing organic electroluminescence element
JP2021007074A (en) Electronic device and manufacturing method thereof
JP2016091793A (en) Organic electroluminescent device and method for manufacturing the same
JP5609524B2 (en) Gas barrier film and organic element device using the same
JP6592915B2 (en) Transparent electrode substrate and manufacturing method thereof, electronic device and organic EL device
WO2022163199A1 (en) Organic electroluminescent element, method for producing same, lighting device provided with same, display device and printed model
WO2020130021A1 (en) Electronic device and method of manufacturing electronic device
WO2020130025A1 (en) Electronic device and method of manufacturing electronic device
JP7336381B2 (en) Light-receiving/light-emitting elements, optical sensors and biosensors
JP5472107B2 (en) Method for manufacturing organic electroluminescent element
JP2010165769A (en) Method of manufacturing organic electronic element, organic electronic element, organic photoelectric conversion element, and organic electroluminescent device
JP7052705B2 (en) Organic electroluminescence device and its manufacturing method
JP2020021582A (en) Transparent electrode, organic electronic device, and method for manufacturing organic electronic device
TWI777271B (en) Electronic components, anti-vulcanization agents and sealing materials
WO2021059813A1 (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561488

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897647

Country of ref document: EP

Kind code of ref document: A1