WO2021059813A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2021059813A1
WO2021059813A1 PCT/JP2020/031573 JP2020031573W WO2021059813A1 WO 2021059813 A1 WO2021059813 A1 WO 2021059813A1 JP 2020031573 W JP2020031573 W JP 2020031573W WO 2021059813 A1 WO2021059813 A1 WO 2021059813A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
film
electrode
light emitting
Prior art date
Application number
PCT/JP2020/031573
Other languages
French (fr)
Japanese (ja)
Inventor
彰宏 木村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021548434A priority Critical patent/JPWO2021059813A1/ja
Publication of WO2021059813A1 publication Critical patent/WO2021059813A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to an organic electroluminescence element, and more particularly to an organic electroluminescence element that does not cause an electric leakage abnormality even when an electrode is applied and formed on an organic film formed without using cross-linking.
  • a coatable electrode used for an organic electroluminescence device (hereinafter, also referred to as an “organic EL device”) is formed on a functional layer (hereinafter, also referred to as an “electrode lower layer”)
  • the electrode material is used.
  • the mixed solution did not penetrate into the lower electrode layer, diffuse into the lower electrode layer during or after the film formation, or mechanically destroy the lower electrode layer. This is because if the electrode material gets into the lower layer of the electrode due to permeation, diffusion, or the like, a device failure due to electric leakage occurs (see Patent Documents 1 to 3).
  • the under-electrode layer has been dealt with by cross-linking an organic substance or forming a layer using an inorganic substance.
  • Patent Document 4 a method of coating and forming inorganic nanoparticles and a method of forming a film by firing a precursor (see Patent Document 4) are known, but both of them. It is known that minute gaps and cracks are generated in the membrane, and it is known that the permeation of the solvent easily occurs.
  • the lower layer of the electrode is the uppermost layer of the functional layer of the organic EL element, there are few solvent choices, and further, when the solubility is lowered due to the increase in the molecular weight of the material, the selection range is originally small. The solvent choices will be further narrowed. Further, when the conjugated length is extended due to the increase in molecular weight, the absorption wavelength is lengthened. In an organic EL element, if the absorption wavelength of the material becomes long and a portion overlapping the emission wavelength appears, the luminous efficiency of the device is fatally reduced, and increasing the molecular weight of the material is not an easy means. Taking this into consideration, I tentatively ignored these problems and tried to verify the principle only from the viewpoint of "whether an electric leakage abnormality occurs due to the increase in the molecular weight of the material". It was not a countermeasure, and an electric leakage failure occurred.
  • Japanese Unexamined Patent Publication No. 2001-185363 Japanese Unexamined Patent Publication No. 2003-91246 Japanese Unexamined Patent Publication No. 2010-33972 Japanese Unexamined Patent Publication No. 2011-150803 Japanese Unexamined Patent Publication No. 2009-63850
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is an organic electroluminescence that does not cause an electric leakage abnormality even if an electrode is applied and formed on an organic film formed without using cross-linking. It is to provide a luminescent element.
  • the present inventor constitutes the organic film of the layer in contact with the electrode 2 among the functional layers with a non-crosslinking organic substance, and forms the organic film on the organic film.
  • an electrode that can be applied is formed on the organic film, an electric leakage abnormality does not occur, and the present invention has been made. That is, the above problem according to the present invention is solved by the following means.
  • An organic electroluminescence device including a base material, an electrode 1, a functional layer, and an electrode 2 in this order.
  • the functional layer is composed of a single layer or a plurality of layers.
  • the layer in contact with the electrode 2 is made of an organic film, and the organic substances contained in the organic film are not crosslinked.
  • E derived from the following formula (1) defined by the glass transition point and molecular weight of the organic substance is 3300 cal / mol or more, and An organic electroluminescence device in which the electrode 2 is a coating film.
  • an organic electroluminescence element that does not cause an electric leakage abnormality even when an electrode is applied and formed on an organic film formed without using cross-linking.
  • the mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, it is inferred as follows.
  • the mechanical strength of the lower layer of the electrode is the most important mechanism for avoiding the occurrence of abnormalities in electrode formation by coating on an organic film containing an organic substance having an E of 3300 cal / mol or more in the above formula (1) of the present invention. It is inferred that it will be.
  • the formula (1) according to the present invention is a formula relating to the molar cohesive force obtained with reference to the non-patent document 1, and is a parameter related to the intermolecular interaction in the membrane.
  • the metal or inorganic material used as the electrode material is harder than the organic material under the electrode, and when the coating film of the electrode is formed, the underlayer of the electrode is mechanically destroyed by the influence of flow or convection. Therefore, the larger the E represented by the above formula (1) defined by the glass transition point and the molecular weight, which is the parameter of the intermolecular interaction, the higher the mechanical strength of the lower layer of the electrode can be increased, and the mechanical strength of the lower electrode layer can be increased, and the mechanical strength of the electrode lower layer can be increased. Does not cause anomalies.
  • Schematic diagram showing an example of a method for manufacturing an organic EL element using an inkjet printing method Schematic external view showing an example of the structure of an inkjet head applicable to an inkjet printing method. Schematic external view showing an example of the structure of an inkjet head applicable to an inkjet printing method. Schematic diagram of lighting equipment Schematic diagram of lighting equipment
  • the organic electroluminescence element of the present invention is an organic electroluminescence element provided with a base material, an electrode 1, a functional layer and an electrode 2 in this order, wherein the functional layer is composed of a single layer or a plurality of layers, and the function is described.
  • the layer in contact with the electrode 2 is made of an organic film, and the organic substance contained in the organic film is not crosslinked, and is derived from the following formula (1) defined by the glass transition point and the molecular weight of the organic substance.
  • E is 3300 cal / mol or more
  • the electrode 2 is a coating film.
  • R [cal / K ⁇ mol] represents the gas constant
  • Tg represents the glass transition point [K] of the organic substance
  • M the molecular weight of the organic substance (when the organic substance is a polymer, the number average molecular weight).
  • the E is 4000 cal / mol or more because the leakage abnormality can be further suppressed.
  • the glass transition point (Tg) of the organic substance is 470K or more.
  • the molecular weight (M) of the organic substance is preferably 40,000 or more, and particularly preferably 90,000 or more.
  • the organic electroluminescence element of the present invention is an organic electroluminescence element provided with a base material, an electrode 1, a functional layer and an electrode 2 in this order, wherein the functional layer is composed of a single layer or a plurality of layers, and the function is described.
  • the layer in contact with the electrode 2 is made of an organic film, and the organic substance contained in the organic film is not crosslinked, and is derived from the formula (1) defined by the glass transition point and the molecular weight of the organic substance.
  • the glass transition point was measured by a DSC device (differential scanning calorimetry device), and was determined by, for example, RDC220 (manufactured by Seiko Instruments Inc.) under a temperature rising condition of 10 ° C./min. The temperature.
  • the number average molecular weight when the organic substance is a polymer can be obtained from the molecular weight distribution measured by gel permeation chromatography (GPC). Specifically, first, the measurement sample was added to tetrahydrofuran so as to have a concentration of 1 mg / mL, dispersed at room temperature for 5 minutes using an ultrasonic disperser, and then treated with a membrane filter having a pore size of 0.2 ⁇ m. To prepare the sample solution.
  • a carrier solvent Tetrahydrofuran is flowed at a flow rate of 0.2 mL / min. 10 ⁇ L of the prepared sample solution was injected into the GPC device together with the carrier solvent, the sample was detected using a refractive index detector (RI detector), and the calibration line measured using monodisperse polystyrene standard particles was used. , Calculate the molecular weight distribution of the sample.
  • RI detector refractive index detector
  • the calibration curves have molecular weights of 6 ⁇ 10 2 , 2.1 ⁇ 10 3 , 4 ⁇ 10 3 , 1.75 ⁇ 10 4 , and 5. 10 points of polystyrene standard particles (manufactured by Pressure Chemical) of 1 ⁇ 10 4 , 1.1 ⁇ 10 5 , 3.9 ⁇ 10 5 , 8.6 ⁇ 10 5 , 2 ⁇ 10 6 , 4.48 ⁇ 10 6. ) Is measured.
  • the glass transition point (Tg) of the organic substance is preferably 470 K or more from the viewpoint of improving the mechanical strength of the lower electrode layer.
  • the molecular weight (M) of the organic substance is preferably 40,000 or more from the viewpoint of improving the mechanical strength of the lower layer of the electrode, and particularly preferably 90,000 or more.
  • the organic film may be a film of a mixture of two or more kinds. In that case, an organic substance having an abundance ratio of 29% or more in the membrane and the smallest E value is adopted.
  • an organic substance having an abundance ratio of 29% or more in the membrane and the smallest E value is adopted.
  • 1% of the material is destructively affected during electrode formation.
  • 99% of the strong material is present in the entire film, abnormalities such as electric leakage do not occur.
  • the above-mentioned abundance ratio in the membrane of 29% or more indicates the minimum amount required to break the membrane, and the value of E of the material is 3300 cal / mol or more. It is a condition that satisfies the requirements of the invention. However, from the viewpoint of leakage abnormality, it is desirable that E of all the materials constituting the film is 3300 cal / mol or more.
  • the organic matter contained in the organic film is not crosslinked
  • the organic matter (organic compound) components constituting the organic film are not crosslinked by the crosslinking reaction.
  • a compound having a crosslinkable group is contained as a component constituting the organic film, if the content does not impair the effect of the present invention, for example, the content is less than 23% by mass, It is considered that there is no cross-linking between organic substances.
  • crosslinking refers to a reaction process in which a plurality of molecules are linked so as to bridge each other by a chemical covalent bond.
  • the content of the compound having a crosslinkable group is less than 23% by mass, the introduction of the compound having a crosslinkable group lowers the performance as an organic EL element, so that the compound has a crosslinkable group.
  • the content of the compound is preferably 0% by mass.
  • the layer (organic film) in contact with the electrode has a content that does not impair the effect of the present invention, and for example, when the content is less than 20% by mass, an inorganic compound may be contained. ..
  • organic substance having E of 3300 cal / mol or more in the above formula (1) include the compounds shown below, but the present invention is not limited thereto.
  • Typical element configurations of the organic EL device of the present invention include, but are not limited to, the following configurations.
  • Anode / light emitting layer / cathode ii) anode / light emitting layer / electron transport layer / cathode
  • iii anode / hole transport layer / light emitting layer / cathode
  • iv anode / hole transport layer / light emitting layer / electron Transport layer / cathode
  • anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode
  • the electrode 2 according to the present invention may be an anode or a cathode, but a cathode is preferable from the viewpoint of exhibiting the effect of the present invention.
  • the electrode 2 is a cathode
  • the electrode 1 is an anode
  • the electrode 2 is an anode
  • the electrode 1 is a cathode.
  • the electrode 2 is a cathode and the layer in contact with the cathode (under the electrode) is a light emitting layer, an electron transport layer, or an electron injection layer.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole barrier layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, it may be composed of a plurality of layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Further, it may be composed of a plurality of layers. In the above typical device configuration, the layer excluding the anode and the cathode is also referred to as a "functional layer (or organic functional layer)".
  • the organic EL device of the present invention may be a device having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are laminated.
  • a typical element configuration of the tandem structure for example, the following configuration can be mentioned.
  • the second light emitting unit and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different. Further, the third light emitting unit may not be provided, while a light emitting unit or an intermediate layer may be further provided between the third light emitting unit and the electrode.
  • the plurality of light emitting units may be directly laminated or may be laminated via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate layer.
  • a known material and structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the adjacent layer on the anode side and holes to the adjacent layer on the cathode side.
  • Examples of the material used for the intermediate layer include ITO (inorganic tin oxide), IZO ( inorganic zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2.
  • Preferred configurations in the light emitting unit include, for example, configurations in which the anode and the cathode are removed from the configurations (i) to (vii) mentioned in the above typical element configurations, but the present invention is limited thereto. Not done.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International. Publication No. 2005/09087, Japanese Patent Application Laid-Open No. 2006-228712, Japanese Patent Application Laid-Open No. 2006-24791, Japanese Patent Application Laid-Open No. 2006-49393, Japanese Patent Application Laid-Open No. 2006-49394, Japanese Patent Application Laid-Open No. 2006-49396, Japanese Patent Application Laid-Open No. 2011 -96679, Japanese Patent Application Laid-Open No.
  • the light emitting layer according to the present invention is a layer that provides a place where electrons and holes injected from an electrode or an adjacent layer are recombined and emit light via excitons, and the light emitting portion is a layer of the light emitting layer. It may be inside or at the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but the homogeneity of the formed layer, prevention of applying an unnecessary high voltage at the time of light emission, and improvement of the stability of the light emitting color with respect to the driving current are improved.
  • each light emitting layer is preferably adjusted within the range of 2 nm to 5 ⁇ m, more preferably adjusted within the range of 2 to 500 nm, and further preferably adjusted within the range of 5 to 200 nm.
  • the thickness of each light emitting layer is preferably adjusted within the range of 2 nm to 1 ⁇ m, more preferably adjusted within the range of 2 to 200 nm, and further preferably adjusted within the range of 3 to 150 nm. ..
  • the light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
  • a light emitting dopant compound a dopant compound, also simply referred to as a dopant
  • a host compound a matrix material, a light emitting host compound, also simply referred to as a host.
  • the organic substance having an E derived from the above formula (1) of 3300 cal / mol or more is applied to the light emitting layer. contains.
  • Light-emitting dopant examples include a fluorescent dopant (also referred to as a fluorescent dopant or a fluorescent compound), a delayed fluorescent dopant, or a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound). Is preferably used.
  • the light emitting layer preferably contains the light emitting dopant in the range of 5 to 100% by mass, and more preferably in the range of 10 to 30% by mass.
  • the concentration of the light emitting dopant in the light emitting layer can be arbitrarily determined based on the specific light emitting dopant used and the requirements of the device, and is contained at a uniform concentration with respect to the layer thickness direction of the light emitting layer. It may have an arbitrary concentration distribution. Further, a plurality of types of light emitting dopants may be used in combination, and a combination of light emitting dopants having different structures, a ⁇ -conjugated compound of the present invention, or a combination of a fluorescent light emitting compound and a phosphorescent light emitting compound may be used. You may use it. Thereby, an arbitrary emission color can be obtained.
  • the color emitted by the organic EL element according to the present invention is shown in FIG. 4.16 on page 108 of the "New Color Science Handbook" (edited by the Japan Color Society, edited by the University of Tokyo Press, 1985). It is determined by the color when the result measured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different light emitting colors and exhibits white light emission.
  • the combination of light emitting dopants showing white color is not particularly limited, and examples thereof include a combination of blue and orange, a combination of blue and green and red, and the like.
  • the white color in the organic EL element according to the present invention is not particularly limited and may be white color closer to orange or white color closer to blue, but when the 2 degree viewing angle front luminance is measured by the above method.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescent light at room temperature (25 ° C.), and has a phosphorescent quantum yield of 25. It is defined as a compound of 0.01 or more at ° C, but a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorus photon yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopy II of the 4th edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in a solution can be measured using various solvents, but the phosphorescence dopant according to the present invention can achieve the above phosphorescence quantum yield (0.01 or more) in any of any solvents. Just do it.
  • the phosphorescent dopant that can be used in the present invention can be appropriately selected from known ones used for the light emitting layer of the organic EL element.
  • Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents. Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19,739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, Country (24) JP 2018-70551 A 2018.5.10 10 20 30 40 50 Publication No. 2003/040257, US Patent Application Publication No.
  • preferred phosphorescent dopants include organometallic complexes having Ir as the central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond and metal-sulfur bond is preferable.
  • the luminescent compound contained in the light emitting layer is preferably a fluorescent compound, more preferably a delayed fluorescent compound. It is also preferable that the luminescent compound contained in the light emitting layer is a phosphorescent compound.
  • fluorescent dopant A fluorescent luminescent dopant according to the present invention (hereinafter, also referred to as “fluorescent dopant”) will be described.
  • the fluorescent dopant according to the present invention is a compound capable of emitting light from the excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
  • the fluorescent dopant according to the present invention may be appropriately selected from known fluorescent dopants and delayed fluorescent dopants used in the light emitting layer of the organic EL device.
  • fluorescent dopants examples include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluorantene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylallylen derivatives, styrylamine derivatives, arylamine derivatives, and boron complexes.
  • Examples thereof include coumarin derivatives, pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, and rare earth complex compounds.
  • light emitting dopants using delayed fluorescence have also been developed, and these may be used.
  • Specific examples of the light emitting dopant using delayed fluorescence include the compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2010-11-213643, Japanese Patent Application Laid-Open No. 2010-93181, and Japanese Patent No. 5366106.
  • the present invention is not limited thereto.
  • the host compound according to the present invention is a compound mainly responsible for injection and transport of electric charges in the light emitting layer, and its own light emission is not substantially observed in the organic EL element.
  • a compound having a phosphorescent quantum yield of less than 0.1 at room temperature (25 ° C.) is preferable, and a compound having a phosphorescent quantum yield of less than 0.01 is more preferable.
  • the mass ratio in the layer is preferably 20% or more.
  • the excited state energy of the host compound is preferably higher than the excited state energy of the light emitting dopant contained in the same layer.
  • the host compound may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of electric charges, and it is possible to improve the efficiency of the organic EL device.
  • Tg glass transition temperature
  • the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Calorimetry).
  • Specific examples of known host compounds used in the organic EL device in the present invention include, but are not limited to, the compounds described in the following documents. JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002.
  • JP-A-2015-38941 examples include compounds H-1 to H-230 described in [0255] to [0293] of the specification.
  • the electron transport layer may be made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total film thickness of the electron transport layer in the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and further preferably in the range of 5 to 200 nm. Is.
  • the material used for the electron transport layer may have any of electron injection property, transport property, and hole barrier property, and is available from among conventionally known compounds. Any one can be selected and used.
  • the electron transport material contained in the electron transport layer may be one kind or two or more kinds.
  • the electron transport layer may further contain the following conventionally known electron transport materials.
  • electron transporting materials include, for example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring substituted with nitrogen atoms), pyridine derivatives, and the like.
  • Pyrimidine derivative pyrazine derivative, pyridazine derivative, triazine derivative, quinoline derivative, quinoxalin derivative, phenanthroline derivative, azatriphenylene derivative, oxazole derivative, thiazole derivative, oxaziazole derivative, thiazazole derivative, triazole derivative, benzimidazole derivative, benzoxazole derivative, Benzthiazole derivatives, etc.), dibenzofuran derivatives, dibenzothiophene derivatives, silol derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene derivatives, etc.) and the like.
  • metal complexes having a quinolinol skeleton or a dibenzoquinolinol skeleton as ligands for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-) Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and metal complexes thereof.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as an electron transport material.
  • metal-free or metal phthalocyanine or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like can also be preferably used as an electron transport material.
  • the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si or n-type-SiC is used like the hole injection layer and the hole transport layer. Can also be used as an electron transport material.
  • the electron transport layer may be doped with a doping material as a guest material to form a highly n-type (electron-rich) electron transport layer.
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Mol. Apple. Phys. , 95, 5773 (2004) and the like.
  • the electron transport material used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents.
  • the electron transport material may be used alone or in combination of two or more.
  • the electron transport layer is a layer in contact with the electrode 2 (for example, a cathode)
  • the organic substance having an E derived from the formula (1) of 3300 cal / mol or more is applied to the electron transport layer. contains.
  • the hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes, and holes while transporting electrons. It is possible to improve the recombination probability of electrons and holes by blocking the above.
  • the structure of the electron transport layer described above can be used as the hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
  • the film thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer the material used as the above-mentioned host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness. It is described in detail in Volume 2, Chapter 2, "Electrode Materials” (pages 123-166) of "Forefront of Industrialization (published by NTS Co., Ltd. on November 30, 1998)".
  • the electron injection layer may be provided as needed and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 to 5 nm, although it depends on the material. Further, it may be a non-uniform film in which the constituent material is intermittently present.
  • the details of the electron-injected layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specific examples of materials preferably used for the electron-injected layer include , Metals such as strontium and aluminum, alkali metal compounds such as lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compounds such as magnesium fluoride and calcium fluoride, oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq) and the like. It is also possible to use the above-mentioned electron transport material. Further, the material used for the above-mentioned electron injection layer may be used alone or in combination of two or more.
  • the electron injection layer is a layer in contact with the electrode 2 (for example, a cathode)
  • the organic substance having an E derived from the formula (1) of 3300 cal / mol or more is applied to the electron injection layer. contains.
  • the hole transport layer may be made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total film thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and further preferably in the range of 5 to 200 nm. is there.
  • the material used for the hole transport layer may have any of hole injection property, transport property, and electron barrier property, and is among conventionally known compounds. Any one can be selected and used from. For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stillben derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives.
  • Indolocarbazole derivatives isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polymer materials or oligomers in which polyvinylcarbazole and aromatic amines are introduced into the main chain or side chains, polysilane, conductivity.
  • Sex polymers or oligomers eg, PEDOT: PSS, aniline-based copolymers, polyaniline, polythiophene, etc.
  • Examples of the triarylamine derivative include a benzidine type represented by ⁇ -NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) and a starburst type represented by MTDATA. Examples thereof include compounds having fluorene or anthracene in the triarylamine linking core portion. Hexaazatriphenylene derivatives as described in JP-A-2003-591432 and JP-A-2006-135145 can also be used as the hole transport material in the same manner. Further, a hole transport layer having a high p property doped with impurities can also be used.
  • JP-A-4-297076 JP-A-2000-196140, and JP-A-2001-102175.
  • Japanese Patent Application Laid-Open No. 11-251067, J. Am. Hung et. al. So-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC as described in the authored literature (Applied Physics Letters 80 (2002), p.139) can also be used.
  • an orthometalated organometallic complex having Ir or Pt in the central metal as represented by Ir (ppy) 3 is also preferably used.
  • the hole transporting material the above-mentioned materials can be used, but a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organic metal complex, and an aromatic amine are introduced into the main chain or side chain. High molecular weight materials or oligomers are preferably used.
  • the hole transporting material may be used alone or in combination of two or more. Further, in the present invention, when the hole transport layer is a layer in contact with the electrode 2 (for example, the anode), the E derived from the formula (1) is 3300 cal / mol or more in the hole transport layer. Contains organic matter.
  • the electron blocking layer is a layer having a function of a hole transporting layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and is composed of a material having a small ability to transport electrons while transporting holes. It is possible to improve the recombination probability of electrons and holes by blocking the above. Further, the structure of the hole transport layer described above can be used as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer is preferably provided adjacent to the anode side of the light emitting layer.
  • the thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer the material used for the hole transporting layer described above is preferably used, and the material used as the host compound described above is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness, and is an “organic EL element”. And its industrialization forefront (published by NTS on November 30, 1998), Volume 2, Chapter 2, "Electrode Materials” (pages 123-166).
  • the hole injection layer may be provided as needed and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are also described in JP-A-9-45479, 9-2660062, 8-288609, etc., and examples of the material used for the hole injection layer include. , Materials used for the hole transport layer mentioned above and the like. Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-A-2003-591432 and JP-A-2006-135145, metal oxides typified by vanadium oxide, amorphous carbon.
  • the hole injection layer described above may be used alone or in combination of two or more. Further, in the present invention, when the hole injection layer is a layer in contact with the electrode 2 (for example, the anode), the E derived from the formula (1) is 3300 cal / mol or more in the hole injection layer. Contains organic matter.
  • the functional layer in the present invention described above may further contain other additives.
  • the additive include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals and alkaline earth metals such as Pd, Ca and Na, compounds and complexes of transition metals, salts and the like.
  • the content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less, based on the total mass% of the contained layer. .. However, it is not within this range depending on the purpose of improving the transportability of electrons and holes and the purpose of favoring the energy transfer of excitons.
  • a method for forming a functional layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) in the present invention will be described.
  • the method for forming the functional layer in the present invention is not particularly limited, and a conventionally known method for forming a functional layer, for example, a vacuum vapor deposition method, a wet method (also referred to as a wet process), or the like can be used.
  • the wet method includes a spin coating method, a casting method, an inkjet printing method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, an LB method (Langmuir-Brojet method), and the like.
  • a method having high suitability for the roll-to-roll method such as a die coating method, a roll coating method, an inkjet printing method, and a spray coating method is preferable from the viewpoint of easy to obtain a homogeneous thin film and high productivity.
  • liquid medium for dissolving or dispersing the organic material (including the organic substance according to the present invention) used for the functional layer examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, and halogens such as dichlorobenzene.
  • Hydrocarbons, aromatic hydrocarbons such as toluene, xylene, mesityrene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • dispersion method can be performed by a dispersion method such as ultrasonic waves, high shear force dispersion, or media dispersion.
  • a different film forming method may be applied to each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C, the degree of vacuum is 10-6 to 10-2 Pa, and the vapor deposition rate is 0.01 to. It is desirable to appropriately select in the range of 50 nm / sec, substrate temperature -50 to 300 ° C., film thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the functional layer in the present invention is preferably formed from the hole injection layer to the cathode by one vacuuming, but it may be taken out in the middle and a different film forming method may be applied. In that case, it is preferable to carry out the work in a dry inert gas atmosphere.
  • anode As the anode in the organic EL element, a metal having a large work function (4 eV or more, preferably 4.5 V or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used.
  • an electrode material include metals such as Au and conductive transparent materials such as CuI, indium zinc oxide (ITO), SnO 2, and ZnO.
  • a material such as IDIXO (In 2 O 3- ZnO) which is amorphous and can produce a transparent conductive film may be used.
  • a thin film may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 ⁇ m or more).
  • the pattern may be formed through a mask having a desired shape during vapor deposition or sputtering of the electrode material.
  • a coatable substance such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a metal having a small work function (6 eV or less) (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, silver, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al). 2 O 3 ) Examples include mixtures, indium, lithium / aluminum mixtures, aluminum, and rare earth metals.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture.
  • a magnesium / silver mixture Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum and the like are suitable.
  • the cathode can be used by using these electrode substances as a coatable substance such as metal nanoparticles, and can be formed by a wet film forming method such as a printing method or a coating method.
  • Sheet resistance as a cathode is several hundred ⁇ / sq. The following is preferable, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm. Since the emitted light is transmitted, it is convenient that the emission brightness is improved if either the anode or the cathode of the organic EL element is transparent or translucent.
  • a transparent or translucent cathode can be produced by producing the above metal on the cathode having a thickness of 1 to 20 nm and then producing the conductive transparent material mentioned in the description of the anode on the cathode. By applying the above, it is possible to manufacture an element in which both the anode and the cathode are transparent.
  • the type of support substrate (hereinafter, also referred to as a substrate, substrate, substrate, support, etc.) that can be used for the organic EL element in the present invention is not particularly limited, and is transparent. It may be opaque. When light is taken out from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of imparting flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate.
  • CAP cellulose acetate phthalate
  • cellulose esters such as cellulose nitrate or derivatives thereof
  • polyvinylidene chloride polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (registered trademark) (manufactured by JSR) Alternatively, a cycloolefin resin such as Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be mentioned.
  • Apel registered trademark
  • a film of an inorganic substance, an organic substance, or a hybrid film of both of them may be formed on the surface of the resin film, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • oxygen relative humidity (90 ⁇ 2)% RH) is preferably a barrier film of 0.01g / (m 2 ⁇ 24h) or less, still more, as measured by the method based on JIS K 7126-1987 the permeability, 10 -3 mL / (m 2 ⁇ 24h ⁇ atm) or less
  • the water vapor permeability is preferably a high barrier film of 10-5g / (m 2 ⁇ 24h) or less.
  • the material for forming the gas barrier film may be any material having a function of suppressing infiltration of a material that causes deterioration of the element such as moisture and oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride and the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of an organic material.
  • the stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable to stack the inorganic layer and the organic layer alternately a plurality of times.
  • the method for forming the gas barrier film is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight.
  • plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be used, the atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include a metal plate such as aluminum and stainless steel, a film or opaque resin substrate, and a ceramic substrate.
  • the external extraction quantum efficiency of the light emission of the organic EL device according to the present invention at room temperature is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons passed through the organic EL element ⁇ 100.
  • a hue improving filter such as a color filter may be used in combination, or a color conversion filter that converts the color emitted from the organic EL element into multiple colors using a phosphor may be used in combination.
  • a method for forming a functional layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) in the present invention will be described.
  • the method for forming the functional layer is not particularly limited, and a conventionally known forming method such as a vacuum vapor deposition method or a wet method (also referred to as a wet process) can be used.
  • the wet method include a gravure printing method, a flexographic printing method, a screen printing method, and other printing methods, as well as a spin coating method, a casting method, an inkjet printing method, a die coating method, a blade coating method, a bar coating method, and a roll coating method.
  • a different film forming method may be applied to each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C, the degree of vacuum is 10-6 to 10-2 Pa, and the vapor deposition rate is 0.01 to. It is desirable to appropriately select in the range of 50 nm / sec, substrate temperature -50 to 300 ° C., film thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the functional layer in the present invention is preferably formed from the hole injection layer to the cathode by one vacuuming, but it may be taken out in the middle and a different film forming method may be applied. In that case, it is preferable to carry out the work in a dry inert gas atmosphere.
  • FIG. 1 is a schematic view showing an example of a method for manufacturing an organic EL element using an inkjet printing method.
  • FIG. 1 shows a method of ejecting an organic material or the like (including an organic substance according to the present invention) forming a functional layer of an organic EL element onto a base material 2 using an inkjet printing apparatus provided with an inkjet head 30. An example is shown.
  • the organic material or the like is sequentially ejected as ink droplets onto the base material 2 by the inkjet head 30, and the organic EL element 1 is used. Form a functional layer of.
  • the inkjet head 30 applicable to the method for manufacturing an organic EL element according to the present invention is not particularly limited.
  • the ink pressure chamber has a diaphragm provided with a piezoelectric element, and the ink pressure chamber using the diaphragm has a diaphragm.
  • It may be a shear mode type (piezo type) head that ejects the ink composition by a pressure change, or it has a heat generating element, and the heat energy from the heat generating element causes a sudden volume change due to the film boiling of the ink composition from the nozzle.
  • It may be a thermal type head that ejects the ink composition.
  • An ink composition supply mechanism for injection is connected to the inkjet head 30.
  • the ink composition is supplied to the inkjet head 30 by the tank 38A.
  • the liquid level in the tank is kept constant so that the pressure of the ink composition in the inkjet head 30 is always kept constant.
  • the ink composition is overflowed from the tank 38A and returned to the tank 38B by natural flow.
  • the ink composition is supplied from the tank 38B to the tank 38A by the pump 31, and the liquid level of the tank 38A is controlled to be stable according to the injection conditions.
  • the ink composition When returning the ink composition to the tank 38A by the pump 31, it is performed after passing through the filter 32.
  • the ink composition is passed through a filter medium having an absolute filtration accuracy or a quasi-absolute filtration accuracy of 0.05 to 50 ⁇ m at least once before being supplied to the inkjet head 30.
  • the ink composition can be forcibly supplied from the tank 36 and the cleaning solvent from the tank 37 can be forcibly supplied to the inkjet head 30 by the pump 39 in order to perform the cleaning work and the liquid filling work of the inkjet head 30.
  • tank pumps may be divided into a plurality of such tank pumps with respect to the inkjet head 30, a branch of a pipe may be used, or a combination thereof may be used.
  • the pipe branch 33 is used. Further, in order to sufficiently remove the air in the inkjet head 30, the ink composition is forcibly sent from the tank 36 to the inkjet 30 by the pump 39, and the ink composition is extracted from the air bleeding pipe described below to be a waste liquid tank. It may be sent to 34.
  • FIGS. 2A and 2B are schematic external views showing an example of the structure of the inkjet head applicable to the inkjet printing method.
  • FIG. 2A is a schematic perspective view showing an inkjet head 100 applicable to the present invention
  • FIG. 2B is a bottom view of the inkjet head 100.
  • the inkjet head 100 applicable to the present invention is mounted on an inkjet recording device (not shown), and includes a head chip that ejects ink from a nozzle, a wiring board on which the head chip is arranged, and this wiring.
  • a drive circuit board connected via a substrate and a flexible substrate, a manifold for introducing ink into a channel of a head chip via a filter, a housing 56 in which a manifold is housed inside, and a bottom opening of the housing 56.
  • the cap receiving plate 57 attached so as to close the above, the first and second joints 81a and 81b attached to the first ink port and the second ink port of the manifold, and the third ink port attached to the third ink port of the manifold.
  • It includes a 3-joint 82 and a cover member 59 attached to the housing 56. Further, mounting holes 68 for mounting the housing 56 on the printer main body side are formed.
  • the cap receiving plate 57 shown in FIG. 2B is formed as a substantially rectangular plate whose outer shape is long in the left-right direction corresponding to the shape of the cap receiving plate mounting portion 62, and a plurality of nozzles are formed in the substantially central portion thereof. In order to expose the arranged nozzle plate 61, a long nozzle opening 71 is provided in the left-right direction. Further, regarding the specific structure inside the inkjet head shown in FIG. 2A, for example, FIG. 2 and the like described in Japanese Patent Application Laid-Open No. 2012-140017 can be referred to.
  • FIGS. 2A and 2B A typical example of the inkjet head is shown in FIGS. 2A and 2B, but in addition to the above, for example, Japanese Patent Application Laid-Open No. 2012-140017, Japanese Patent Application Laid-Open No. 2013-010227, Japanese Patent Application Laid-Open No. 2014-058171 and JP-A-2014 -097644, JP2015-142979, JP2015-142980, JP2016-002675, JP2016-002682, JP2016-107401, JP2017-109476
  • An inkjet head having the configuration described in Japanese Patent Application Laid-Open No. 2017-177626 and the like can be appropriately selected and applied.
  • Inkjet heads applicable to the present invention include, for example, Japanese Patent Application Laid-Open No. 2012-140017, Japanese Patent Application Laid-Open No. 2013-010227, Japanese Patent Application Laid-Open No. 2014-058171, JP-A-2014-097644, and Japanese Patent Application Laid-Open No. 2015-142979.
  • An inkjet head having the configuration described in the above can be appropriately selected and applied.
  • the coating liquid used in the wet method may be a solution in which the material forming the functional layer is uniformly dissolved in the liquid medium, or a dispersion liquid in which the material is dispersed in the liquid medium as a solid content.
  • a dispersion method dispersion can be performed by a dispersion method such as ultrasonic waves, high shear force dispersion, or media dispersion.
  • the liquid medium is not particularly limited, and for example, halogen-based solvents such as chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, dichlorobenzene and dichlorohexanone, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone and n-propyl.
  • halogen-based solvents such as chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, dichlorobenzene and dichlorohexanone, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone and n-propyl.
  • Ketone solvents such as methyl ketone and cyclohexanone, aromatic solvents such as benzene, toluene, xylene, mesityrene and cyclohexylbenzene, aliphatic solvents such as cyclohexane, decalin and dodecane, ethyl acetate, n-propyl acetate, n-acetate Ester solvents such as butyl, methyl propionate, ethyl propionate, ⁇ -butyrolactone, diethyl carbonate, ether solvents such as tetrahydrofuran and dioxane, amide solvents such as dimethylformamide and dimethylacetamide, methanol, ethanol, 1-butanol, Examples thereof include alcohol solvents such as ethylene glycol, nitrile solvents such as acetonitrile and propionitrile, dimethyl sulfoxide, water, or a mixed solution medium thereof. The boiling point of
  • the coating liquid contains a surfactant depending on the purpose of controlling the coating range and suppressing the liquid flow (for example, the liquid flow that causes a phenomenon called coffee ring) associated with the surface tension gradient after coating.
  • a surfactant depending on the purpose of controlling the coating range and suppressing the liquid flow (for example, the liquid flow that causes a phenomenon called coffee ring) associated with the surface tension gradient after coating.
  • the surfactant include anionic or nonionic surfactants from the viewpoints of the influence of water contained in the solvent, leveling property, wettability to the substrate f1 and the like.
  • the surfactants listed in International Publication No. 08/146681, JP-A-2-41308, etc. such as fluorine-containing activators, can be used.
  • the viscosity of the coating film can be appropriately selected depending on the function required as the functional layer and the solubility or dispersibility of the organic material. Specifically, for example, 0.3 to 100 mPa. It can be selected within the range of s.
  • the film thickness of the coating film can be appropriately selected depending on the function required as the functional layer and the solubility or dispersibility of the organic material, and specifically, it can be selected in the range of, for example, 1 to 90 ⁇ m.
  • the temperature of the drying step is not particularly limited, but it is preferable to perform the drying treatment at a temperature that does not damage the functional layer, the transparent electrode, or the base material. Specifically, it cannot be said unconditionally because it differs depending on the composition of the coating liquid and the like, but for example, the temperature can be set to 80 ° C. or higher, and the upper limit is considered to be a possible range up to about 300 ° C.
  • the time is preferably about 10 seconds or more and 10 minutes or less. Under such conditions, drying can be performed quickly.
  • sealing means used for sealing the organic EL element include a method of adhering the sealing member, the electrode, and the support substrate with an adhesive.
  • the sealing member may be arranged so as to cover the display area of the organic EL element, and may be intaglio-shaped or flat-plate-shaped. Further, transparency and electrical insulation are not particularly limited. Specific examples thereof include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • polymer plate examples include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • metal plate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum.
  • a polymer film or a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film had an oxygen permeability of 1 ⁇ 10 -3 mL / m 2 / 24h or less measured by a method according to JIS K 7126-1987, and was measured by a method according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • the adhesive include a photocurable and thermosetting adhesive having a reactive vinyl group of an acrylic acid-based oligomer and a methacrylic acid-based oligomer, and a moisture-curable adhesive such as 2-cyanoacrylic acid ester. be able to.
  • heat and chemical curing type such as epoxy type can be mentioned.
  • hot melt type polyamide, polyester and polyolefin can be mentioned.
  • a cation-curable type ultraviolet-curable epoxy resin adhesive can be mentioned.
  • the organic EL element may be deteriorated by heat treatment, it is preferable that the organic EL element can be adhesively cured from room temperature to 80 ° C. Further, the desiccant may be dispersed in the adhesive. A commercially available dispenser may be used to apply the adhesive to the sealing portion, or printing may be performed as in screen printing.
  • the electrode and the functional layer on the outside of the electrode on the side facing the support substrate with the functional layer sandwiched therein, and form a layer of an inorganic substance or an organic substance in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material having a function of suppressing infiltration of a material that causes deterioration of the element such as moisture and oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride or the like may be used. it can.
  • the method for forming these films is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight. Legal, plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be used.
  • an inert gas such as nitrogen or argon or an inert liquid such as fluorinated hydrocarbon or silicone oil may be injected into the gap between the sealing member and the display region of the organic EL element. preferable. It is also possible to create a vacuum. Further, a hygroscopic compound can be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.
  • Metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.
  • perchlorates eg barium perchlorate, etc. Magnesium perchlorate, etc.
  • anhydrous salts are preferably used for sulfates, metal halides and perchlorates.
  • a protective film or protective plate may be provided on the outer side of the sealing film or the sealing film on the side facing the support substrate with the functional layer sandwiched in order to increase the mechanical strength of the element.
  • the mechanical strength thereof is not necessarily high, so it is preferable to provide such a protective film and a protective plate.
  • a glass plate, a polymer plate / film, a metal plate / film, etc. similar to those used for the sealing can be used, but the polymer film is lightweight and thin. Is preferably used.
  • the organic EL element in the present invention emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and 15% to 20% of the light generated in the light emitting layer. It is generally said that only a degree of light can be taken out. This is because light incident on the interface (intersection between the transparent substrate and air) at an angle ⁇ equal to or greater than the critical angle causes total internal reflection and cannot be taken out of the element, and the transparent electrode or light emitting layer and the transparent substrate This is because the light is totally reflected between them, the light is waveguideed through the transparent electrode or the light emitting layer, and as a result, the light escapes toward the side surface of the element.
  • a method for improving the efficiency of light extraction for example, a method of forming irregularities on the surface of a transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435), the substrate A method of improving efficiency by providing light-collecting property (for example, Japanese Patent Application Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an element (for example, Japanese Patent Application Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the light emitting body and the light emitting body (for example, Japanese Patent Application Laid-Open No.
  • a method of introducing a flat layer having a refractive index for example, Japanese Patent Application Laid-Open No. 2001-202827, a method of forming a diffraction lattice between layers (including, between the substrate and the outside world) of a substrate, a transparent electrode layer, or a light emitting layer (inclusive). JP-A-11-283751) and the like.
  • these methods can be used in combination with the organic EL element, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate and a transparent electrode layer.
  • a method of forming a diffraction grating between any layer (including between the substrate and the outside world) of the light emitting layer or the light emitting layer can be preferably used.
  • the low refractive index layer examples include airgel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, it is preferable that the low refractive index layer has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. Further, it is desirable that the thickness of the low refractive index medium is at least twice the wavelength in the medium. This is because the effect of the low refractive index layer diminishes when the thickness of the low refractive index medium becomes about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing the diffraction grating into the interface where total reflection occurs or any medium is characterized in that the effect of improving the light extraction efficiency is high.
  • This method is generated from the light emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction.
  • Bragg diffraction such as first-order diffraction or second-order diffraction.
  • the generated light the light that cannot go out due to total reflection between the layers is diffracted by introducing a diffraction grating in either layer or in the medium (inside the transparent substrate or in the transparent electrode). , Trying to get the light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because the light emitted by the light emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating that has a periodic refractive index distribution only in a certain direction, only the light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is improved.
  • the position where the diffraction grating is introduced may be either between layers or in a medium (inside a transparent substrate or in a transparent electrode), but it is desirable that the diffraction grating is introduced in the vicinity of an organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of the light in the medium.
  • the arrangement of the diffraction grating it is preferable that the arrangement is repeated two-dimensionally, such as a square lattice shape, a triangular lattice shape, and a honeycomb lattice shape.
  • the organic EL element in the present invention is processed so as to provide a structure on a microlens array, for example, on the light extraction side of a support substrate (substrate), or by combining with a so-called condensing sheet, for example, an element By condensing light in the front direction with respect to the light emitting surface, it is possible to increase the brightness in a specific direction.
  • a microlens array a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably in the range of 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and it is colored, and if it is too large, the thickness becomes thick, which is not preferable.
  • the condensing sheet for example, a sheet that has been put into practical use in an LED backlight of a liquid crystal display device can be used.
  • a sheet for example, a brightness increasing film (BEF) manufactured by Sumitomo 3M Ltd. can be used.
  • the shape of the prism sheet may be, for example, a base material having a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or a shape having a rounded apex angle and a random change in pitch. Shape or other shape may be used.
  • the light diffusing plate / film may be used in combination with the condensing sheet in order to control the light emission angle from the organic EL element.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element in the present invention can be used as a display device, a display, and various light emitting light sources.
  • the light source for example, a lighting device (household lighting, in-car lighting), a backlight for a clock or a liquid crystal, a signboard advertisement, a signal, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, light Examples thereof include, but are not limited to, a light source for a sensor, but the light source can be effectively used as a backlight for a liquid crystal display device and a light source for lighting.
  • the organic EL device of the present invention may be patterned by a metal mask, an inkjet printing method, or the like at the time of film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or all the layers of the device may be patterned.
  • a conventionally known method is used. Can be done.
  • the non-light emitting surface of the organic EL element is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toa Synthetic Co., Ltd.) is used as a sealing material around the glass substrate. ) Is applied, this is placed on the cathode and brought into close contact with the transparent support substrate, UV light is irradiated from the glass substrate side, the curing is performed, and the sealing is performed. Can be formed.
  • FIG. 3 shows a schematic view of the lighting device, and the organic EL element 101 according to the present invention is covered with a glass cover 102 (note that the sealing operation with the glass cover brings the organic EL element 101 into contact with the atmosphere.
  • the glove box was carried out in a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 4 shows a cross-sectional view of the lighting device.
  • reference numeral 105 indicates a cathode
  • reference numeral 106 indicates an organic EL layer
  • reference numeral 107 indicates a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108, and a water catching agent 109 is provided.
  • OFPO represents 1H, 1H, 5H-octafluoro-1-pentanol.
  • compounds B3, B4 and B5 those manufactured by Aldrich are used.
  • the compounds B1 to B10 used in the examples are as follows.
  • Example 1 In Example 1, the electron-only device shown below (also referred to as a single-charge device, hereinafter referred to as “EOD”) was produced, and its reverse current was evaluated.
  • EOD electron-only device
  • a non-volatile organic substance Dispersant
  • ITO indium tin oxide
  • a glass substrate having a length of 50 mm, a width of 50 mm, and a thickness of 0.7 mm to perform patterning to form an anode made of an ITO transparent electrode. Then, it was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone washed for 5 minutes.
  • the formed transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent materials of each layer in the optimum amount for manufacturing the device.
  • the resistance heating boat for vapor deposition was made of tungsten or molybdenum. After reducing the vacuum to a degree of vacuum of 1 ⁇ 10 -4 Pa, calcium was vapor-deposited at a film formation rate of 0.2 nm / s at 5 nm to form a hole block layer.
  • the above-mentioned coating liquid 101 for a cathode was applied to a substrate having a film formed up to the electron transport layer using a dispenser to form a cathode.
  • the amount of liquid and the coating rate were adjusted in advance so that the film thickness after drying would be 200 nm. After application, it was dried in a constant temperature bath at 120 ° C. for 30 minutes.
  • To measure the above film thickness apply a coating liquid on a separately prepared glass substrate, peel off a part of the film, and use Bruker's stylus profiling system Dektak to remove the step between the peeled part and the part where the film remains. Measured using.
  • the sealing resin layer forming surface of the gas barrier film was continuously superposed on the sealing surface side of the organic EL element so that the ends of the anode and the ejection portion of the cathode were exposed to the outside.
  • the sample to which the gas barrier film was attached was placed in a decompression device, pressed under a decompression condition of 0.1 MPa at 90 ° C., and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
  • the sealing step is based on JIS B 9920 under atmospheric pressure and a nitrogen atmosphere with a moisture content of 1 ppm or less, the measured cleanliness is class 100, the dew point temperature is -80 ° C or less, and the oxygen concentration is 0.8 volume. It was carried out at atmospheric pressure of ppm or less. Through the above steps, evaluation EOD1-1 was prepared.
  • the reverse current is 0.2 mA / cm 2 or less, which shows that electric leakage is prevented.
  • the reverse current value is very small in EOD using an organic substance (the present invention) in which E is 4000 cal / mol or more.
  • Example 2 In Example 2, the organic EL device shown below was produced, and its reverse current value was evaluated.
  • an atmospheric pressure plasma discharge treatment apparatus having the configuration described in JP-A-2004-68143 is used on the entire surface of the polyethylene naphthalate film (manufactured by Teijin DuPont, hereinafter abbreviated as PEN) on the side where the anode is formed. Therefore, an inorganic gas barrier layer made of SiO x was formed so as to have a layer thickness of 500 nm. Accordingly, the oxygen permeability of 0.001mL / (m 2 ⁇ 24h ⁇ atom) or less, to produce a water vapor permeability of 0.001g / (m 2 ⁇ 24h) flexible substrate having the gas barrier properties.
  • ITO indium tin oxide
  • the pattern was set so that the area of the light emitting region was 5 cm ⁇ 5 cm.
  • the base material on which the hole injection layer was formed was coated by an inkjet method using a coating solution for forming a hole transport layer having the following composition in an atmospheric environment, dried at 130 ° C. for 30 minutes, and layered to a thickness. A hole transport layer of 30 nm was formed.
  • the base material on which the hole transport layer was formed was applied by an inkjet method using a coating liquid for forming a light emitting layer having the following composition, and dried at 120 ° C. for 30 minutes to form a light emitting layer having a layer thickness of 50 nm. ..
  • Host compound (Coating liquid for forming a light emitting layer) Host compound (Compound B7) 10 parts by mass Phosphorescent material (Compound B8) 1 part by mass Fluorescent material (Compound B9) 0.1 parts by mass Normal butyl acetate 2200 parts by mass
  • Electron transport material (organic matter) (Compound B1) 6 parts by mass OFPO 2000 parts by mass
  • the above-mentioned coating liquid 101 for a cathode was applied to a substrate having a film formed up to the electron transport layer using a dispenser to form a cathode.
  • the amount of liquid and the coating rate were adjusted in advance so that the film thickness after drying would be 200 nm. After application, it was dried in a constant temperature bath at 120 ° C. for 30 minutes.
  • To measure the above film thickness apply a coating liquid on a separately prepared glass substrate, peel off a part of the film, and use Bruker's stylus profiling system Dektak to remove the step between the peeled part and the part where the film remains. Measured using.
  • a sealing base material was adhered to the laminate formed by the above steps using a commercially available roll laminating apparatus.
  • a sealing base material a flexible aluminum foil (manufactured by Toyo Aluminum K.K. Co., Ltd.) with a thickness of 30 ⁇ m is bonded to a layer thickness of 1.5 ⁇ m using a two-component reaction type urethane adhesive for dry lamination.
  • An agent layer was provided, and a 12 ⁇ m-thick polyethylene terephthalate (PET) film was laminated.
  • PET polyethylene terephthalate
  • a thermosetting adhesive was uniformly applied to a thickness of 20 ⁇ m along the adhesive surface (glossy surface) of the aluminum foil of the sealing base material using a dispenser.
  • thermosetting adhesive an epoxy-based adhesive in which the following (A) to (C) were mixed was used.
  • A Bisphenol A Diglycidyl Ether (DGEBA)
  • B Dicyanodiamide (DICY)
  • C Epoxy adduct-based curing accelerator
  • DGEBA Bisphenol A Diglycidyl Ether
  • DIY Dicyanodiamide
  • C Epoxy adduct-based curing accelerator
  • the sealing base material is adhered to and arranged on the laminated body, and a crimping roll is used, the crimping roll temperature is 100 ° C., the pressure is 0.5 MPa, and the device speed is 0.3 m / It was tightly sealed under the crimping condition of min.
  • the evaluation organic EL element 2-1 was manufactured.
  • an organic EL device (comparative example) using an organic substance having an E of less than 3300 cal / mol has a large amount of reverse current flowing and does not have semiconductor characteristics.
  • the organic EL device (invention) using an organic substance having E of 3300 cal / mol or more the device suddenly has semiconductor characteristics, and the reverse current value is 0.2 mA / cm 2 or less in each case. It has become.
  • the reverse current value is very small in an organic EL device using an organic substance (the present invention) in which E is 4000 cal / mol or more.
  • Example 3 In Example 3, a hole-only device (hereinafter referred to as “HOD”) shown below was produced, and its reverse current value was evaluated.
  • HOD hole-only device
  • the cathode was formed in the same procedure as the evaluation EOD1-1.
  • the present invention can be used for an organic electroluminescence element that does not cause an electric leakage abnormality even when an electrode is applied and formed on an organic film formed without using cross-linking.

Abstract

An organic electroluminescent element according to the present invention is provided with a substrate, an electrode 1, a functional layer, and an electrode 2 in this order, wherein: the functional layer is configured from a single layer or a plurality of layers; a layer, of the functional layer, that is in contact with the electrode 2 is formed of an organic film; an organic substance contained in the organic film is non-crosslinked; E, derived from formula (1) specified by the glass transition point and molecular weight of the organic substance, is 3,300 cal/mol or more; and the electrode 2 is of a coating film. Formula (1): E=0.5×R×Tg×ln(M) [In the formula, R[cal/K・mol] represents the gas constant, Tg represents the glass transition point [K] of the organic substance, and M represents the molecular weight (the number average molecular weight when the organic substance is a polymer) of the organic substance.]

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関し、特に、架橋を用いずに成膜した有機膜上に、電極を塗布成膜しても漏電異常を発生させない有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element, and more particularly to an organic electroluminescence element that does not cause an electric leakage abnormality even when an electrode is applied and formed on an organic film formed without using cross-linking.
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)に用いられる塗布可能な電極を機能層(以下、「電極下層」ともいう。)上に成膜する際には、その電極材料を混ぜた溶液が電極下層中に浸透せず、かつ成膜中又は成膜後に電極下層中へ拡散したり、電極下層を機械的に破壊しないことがデバイスを作製する上で必要であった。これは電極材料が電極下層中に浸透・拡散等により入り込んでしまった場合、漏電によるデバイスの故障が発生するためである(特許文献1~3参照。)。
 この問題に対応するために、この電極下層はこれまで、有機物を架橋させたり、無機物を用いた層を形成することで対応してきた。
When a coatable electrode used for an organic electroluminescence device (hereinafter, also referred to as an “organic EL device”) is formed on a functional layer (hereinafter, also referred to as an “electrode lower layer”), the electrode material is used. In order to fabricate the device, it was necessary that the mixed solution did not penetrate into the lower electrode layer, diffuse into the lower electrode layer during or after the film formation, or mechanically destroy the lower electrode layer. This is because if the electrode material gets into the lower layer of the electrode due to permeation, diffusion, or the like, a device failure due to electric leakage occurs (see Patent Documents 1 to 3).
In order to deal with this problem, the under-electrode layer has been dealt with by cross-linking an organic substance or forming a layer using an inorganic substance.
 しかしながら、無機物を用いた層を形成するためには、無機ナノ粒子を塗布形成する手法や前駆体を焼成することで成膜する手法(特許文献4参照。)が知られているが、いずれも膜中に微小な隙間やクラックが発生することが知られており、溶媒の浸透が容易に起こってしまうことが知られていた。 However, in order to form a layer using an inorganic substance, a method of coating and forming inorganic nanoparticles and a method of forming a film by firing a precursor (see Patent Document 4) are known, but both of them. It is known that minute gaps and cracks are generated in the membrane, and it is known that the permeation of the solvent easily occurs.
 一方、有機物を架橋した膜では未反応の架橋末端が残存することから、有機EL素子としての性能を落とす結果となっていた。
 次に考えられる対策として、架橋ではなく、材料を高分子量化することで分子量だけを上げていく方法が考えられる。しかしながら、ここでは別の問題が生じる。すなわち、塗布型の有機EL素子では、「下層を溶かさずに上層の材料を溶解させる溶媒」を積層ごとに選択する必要があり(特許文献5参照。)、その特性上、必然的に上層になるほど溶媒の選択幅が狭くなる。
 そのため、電極下層は、有機EL素子の機能層の最上層となるため、溶媒選択肢が少ない状況であり、この上さらに、材料の高分子量化による溶解性の低下が起こると、もともと選択幅の少ない溶媒選択肢をさらに狭めることとなる。また、高分子量化により共役長が伸びると、吸収波長の長波化が起こる。有機EL素子において、材料の吸収波長が長波化し、発光波長に重なる部分が出てきてしまうとデバイスとして致命的に発光効率を落とすこととなり、材料の高分子量化は安易に取れる手段ではない。これを加味した上で、これらの諸問題を仮に無視して、「材料の高分子量化により漏電異常を起こさないか」という観点のみの原理検証を行ってみたが、単純な高分子量化では本対策にはならず、漏電故障が発生した。
On the other hand, in the film crosslinked with an organic substance, unreacted crosslinked ends remain, resulting in a decrease in performance as an organic EL device.
The next possible countermeasure is to increase only the molecular weight by increasing the molecular weight of the material instead of cross-linking. However, another problem arises here. That is, in a coating type organic EL device, it is necessary to select "a solvent that dissolves the material of the upper layer without dissolving the lower layer" for each lamination (see Patent Document 5), and due to its characteristics, it is inevitably applied to the upper layer. Indeed, the selection range of the solvent becomes narrow.
Therefore, since the lower layer of the electrode is the uppermost layer of the functional layer of the organic EL element, there are few solvent choices, and further, when the solubility is lowered due to the increase in the molecular weight of the material, the selection range is originally small. The solvent choices will be further narrowed. Further, when the conjugated length is extended due to the increase in molecular weight, the absorption wavelength is lengthened. In an organic EL element, if the absorption wavelength of the material becomes long and a portion overlapping the emission wavelength appears, the luminous efficiency of the device is fatally reduced, and increasing the molecular weight of the material is not an easy means. Taking this into consideration, I tentatively ignored these problems and tried to verify the principle only from the viewpoint of "whether an electric leakage abnormality occurs due to the increase in the molecular weight of the material". It was not a countermeasure, and an electric leakage failure occurred.
特開2001-185363号公報Japanese Unexamined Patent Publication No. 2001-185363 特開2003-91246号公報Japanese Unexamined Patent Publication No. 2003-91246 特開2010-33972号公報Japanese Unexamined Patent Publication No. 2010-33972 特開2011-150803号公報Japanese Unexamined Patent Publication No. 2011-150803 特開2009-63850号公報Japanese Unexamined Patent Publication No. 2009-63850
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、架橋を用いずに成膜した有機膜上に、電極を塗布成膜しても漏電異常を発生させない有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is an organic electroluminescence that does not cause an electric leakage abnormality even if an electrode is applied and formed on an organic film formed without using cross-linking. It is to provide a luminescent element.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、機能層のうち電極2と接する層の有機膜を、架橋しない有機物で構成し、当該有機膜上に、塗布可能な電極を成膜しても異常を発生させない有機膜の要件を明らかにした。すなわち、下記式(1)に示されるように分子量だけではなく、ガラス転移点との2つのパラメーターから表されるEが3300cal/mol以上となる有機物を用いて有機膜を成膜することで、当該有機膜上に塗布可能な電極を成膜しても、漏電異常が発生しなくなることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In the process of examining the cause of the above problem in order to solve the above-mentioned problems, the present inventor constitutes the organic film of the layer in contact with the electrode 2 among the functional layers with a non-crosslinking organic substance, and forms the organic film on the organic film. We have clarified the requirements for an organic film that does not cause abnormalities even when a film of coatable electrodes is formed. That is, as shown in the following formula (1), an organic film is formed by forming an organic film using an organic substance having an E of 3300 cal / mol or more, which is represented by not only the molecular weight but also the two parameters of the glass transition point. We have found that even if an electrode that can be applied is formed on the organic film, an electric leakage abnormality does not occur, and the present invention has been made.
That is, the above problem according to the present invention is solved by the following means.
 1.基材、電極1、機能層及び電極2をこの順に備えた有機エレクトロルミネッセンス素子であって、
 前記機能層が、単層又は複数の層で構成され、
 前記機能層のうち前記電極2と接する層が、有機膜からなり、当該有機膜に含有される有機物が架橋されておらず、
 前記有機物のガラス転移点と分子量より規定される下記式(1)から導き出されるEが3300cal/mol以上であり、かつ、
 前記電極2が塗布膜である有機エレクトロルミネッセンス素子。
 式(1):E=0.5×R×Tg×ln(M)
〔式中、R[cal/K・mol]は気体定数、Tgは前記有機物のガラス転移点[K]、Mは前記有機物の分子量(前記有機物が高分子の場合は数平均分子量)を表す。〕
1. 1. An organic electroluminescence device including a base material, an electrode 1, a functional layer, and an electrode 2 in this order.
The functional layer is composed of a single layer or a plurality of layers.
Of the functional layers, the layer in contact with the electrode 2 is made of an organic film, and the organic substances contained in the organic film are not crosslinked.
E derived from the following formula (1) defined by the glass transition point and molecular weight of the organic substance is 3300 cal / mol or more, and
An organic electroluminescence device in which the electrode 2 is a coating film.
Equation (1): E = 0.5 × R × Tg × ln (M)
[In the formula, R [cal / K · mol] represents the gas constant, Tg represents the glass transition point [K] of the organic substance, and M represents the molecular weight of the organic substance (when the organic substance is a polymer, the number average molecular weight). ]
 2.前記式(1)において、前記Eが、4000cal/mol以上である第1項に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to item 1, wherein in the formula (1), the E is 4000 cal / mol or more.
 3.前記式(1)において、前記有機物のガラス転移点(Tg)が、470K以上である第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to item 1 or 2, wherein the glass transition point (Tg) of the organic substance in the formula (1) is 470 K or more.
 4.前記式(1)において、前記有機物の分子量(M)が、40000以上である第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescence device according to any one of items 1 to 3, wherein the organic substance has a molecular weight (M) of 40,000 or more in the formula (1).
 5.前記式(1)において、前記有機物の分子量(M)が、90000以上である第4項に記載の有機エレクトロルミネッセンス素子。 5. The organic electroluminescence device according to item 4, wherein in the formula (1), the molecular weight (M) of the organic substance is 90,000 or more.
 本発明の上記手段により、架橋を用いずに成膜した有機膜上に、電極を塗布成膜しても漏電異常を発生させない有機エレクトロルミネッセンス素子を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 本発明の、前記式(1)におけるEが3300cal/mol以上となる有機物を含有する有機膜上への塗布による電極形成での異常発生回避のメカニズムは、電極下層の機械
的強度が最も重要となると推察される。
 本発明に係る式(1)は、前記非特許文献1を参照に得られたモル凝集力に関する式であり、膜中における分子間相互作用に関連するパラメーターとなる。電極材料となる金属や無機材料は電極下層の有機材料と比べて硬い材料であり、電極の塗布膜を成膜する際に、流動や対流の影響によって電極下層を機械的に破壊する。
 そこで、分子間相互作用のパラメーターとなる、ガラス転移点と分子量から規定される前記式(1)で表されるEが大きいものほど電極下層の機械的強度を増すことができ、電極成膜時に異常を発生させない。前記式(1)において、Eはガラス転移点と分子量の積で表現されることから、分子量を単純に上げるだけではEは十分とならない場合がある。本発明者が事前検証した単純な高分子量化で漏電異常に対する対策とならなかったのは、ガラス転移点が不十分であったことが予測される。そのため、分子量とガラス転移点の両者を上昇させることが、本発明においてはキーとなり、前記式(1)におけるEが3300cal/mol以上となる有機物を含有する有機膜とすることで、本発明の効果が得られると推察される。
According to the above means of the present invention, it is possible to provide an organic electroluminescence element that does not cause an electric leakage abnormality even when an electrode is applied and formed on an organic film formed without using cross-linking.
Although the mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, it is inferred as follows.
The mechanical strength of the lower layer of the electrode is the most important mechanism for avoiding the occurrence of abnormalities in electrode formation by coating on an organic film containing an organic substance having an E of 3300 cal / mol or more in the above formula (1) of the present invention. It is inferred that it will be.
The formula (1) according to the present invention is a formula relating to the molar cohesive force obtained with reference to the non-patent document 1, and is a parameter related to the intermolecular interaction in the membrane. The metal or inorganic material used as the electrode material is harder than the organic material under the electrode, and when the coating film of the electrode is formed, the underlayer of the electrode is mechanically destroyed by the influence of flow or convection.
Therefore, the larger the E represented by the above formula (1) defined by the glass transition point and the molecular weight, which is the parameter of the intermolecular interaction, the higher the mechanical strength of the lower layer of the electrode can be increased, and the mechanical strength of the lower electrode layer can be increased, and the mechanical strength of the electrode lower layer can be increased. Does not cause anomalies. In the above formula (1), since E is expressed by the product of the glass transition point and the molecular weight, E may not be sufficient simply by increasing the molecular weight. It is predicted that the glass transition point was insufficient because the simple high molecular weight increase that the present inventor verified in advance did not take measures against the leakage abnormality. Therefore, increasing both the molecular weight and the glass transition point is the key in the present invention, and by forming an organic film containing an organic substance in which E in the above formula (1) is 3300 cal / mol or more, the present invention is used. It is presumed that the effect will be obtained.
インクジェット印刷方式を用いた有機EL素子の製造方法の一例を示す概略図Schematic diagram showing an example of a method for manufacturing an organic EL element using an inkjet printing method. インクジェット印刷方式に適用可能なインクジェットヘッドの構造の一例を示す概略外観図Schematic external view showing an example of the structure of an inkjet head applicable to an inkjet printing method. インクジェット印刷方式に適用可能なインクジェットヘッドの構造の一例を示す概略外観図Schematic external view showing an example of the structure of an inkjet head applicable to an inkjet printing method. 照明装置の概略図Schematic diagram of lighting equipment 照明装置の模式図Schematic diagram of lighting equipment
 本発明の有機エレクトロルミネッセンス素子は、基材、電極1、機能層及び電極2をこの順に備えた有機エレクトロルミネッセンス素子であって、前記機能層が、単層又は複数の層で構成され、前記機能層のうち前記電極2と接する層が、有機膜からなり、当該有機膜に含有される有機物が架橋されておらず、前記有機物のガラス転移点と分子量より規定される下記式(1)から導き出されるEが3300cal/mol以上であり、かつ、前記電極2が塗布膜である。
 式(1):E=0.5×R×Tg×ln(M)
〔式中、R[cal/K・mol]は気体定数、Tgは前記有機物のガラス転移点[K]、Mは前記有機物の分子量(前記有機物が高分子の場合は数平均分子量)を表す。〕
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
The organic electroluminescence element of the present invention is an organic electroluminescence element provided with a base material, an electrode 1, a functional layer and an electrode 2 in this order, wherein the functional layer is composed of a single layer or a plurality of layers, and the function is described. Of the layers, the layer in contact with the electrode 2 is made of an organic film, and the organic substance contained in the organic film is not crosslinked, and is derived from the following formula (1) defined by the glass transition point and the molecular weight of the organic substance. E is 3300 cal / mol or more, and the electrode 2 is a coating film.
Equation (1): E = 0.5 × R × Tg × ln (M)
[In the formula, R [cal / K · mol] represents the gas constant, Tg represents the glass transition point [K] of the organic substance, and M represents the molecular weight of the organic substance (when the organic substance is a polymer, the number average molecular weight). ]
This feature is a technical feature common to or corresponding to each of the following embodiments.
 本発明の実施態様としては、前記式(1)において、前記Eが、4000cal/mol以上であることが、漏電異常をより抑制できる点で好ましい。 As an embodiment of the present invention, in the above formula (1), it is preferable that the E is 4000 cal / mol or more because the leakage abnormality can be further suppressed.
 また、前記式(1)において、前記有機物のガラス転移点(Tg)が470K以上であることが、点で好ましい。 Further, in the above formula (1), it is preferable that the glass transition point (Tg) of the organic substance is 470K or more.
 また、前記式(1)において、前記有機物の分子量(M)が、40000以上であることが点で好ましく、90000以上であることが特に好ましい。 Further, in the formula (1), the molecular weight (M) of the organic substance is preferably 40,000 or more, and particularly preferably 90,000 or more.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
[本発明の有機エレクトロルミネッセンス素子の概要]
 本発明の有機エレクトロルミネッセンス素子は、基材、電極1、機能層及び電極2をこの順に備えた有機エレクトロルミネッセンス素子であって、前記機能層が、単層又は複数の層で構成され、前記機能層のうち前記電極2と接する層が、有機膜からなり、当該有機膜に含有される有機物が架橋されておらず、前記有機物のガラス転移点と分子量より規定される式(1)から導き出されるEが3300cal/mol(13807J/mol=13.81kJ/mol)以上であり、かつ、前記電極2が塗布膜である。
 式(1):E=0.5×R×Tg×ln(M)
〔式中、R[cal/K・mol]は気体定数、Tgは前記有機物のガラス転移点[K]、Mは前記有機物の分子量(前記有機物が高分子の場合は数平均分子量)を表す。〕
[Overview of the Organic Electroluminescence Device of the Present Invention]
The organic electroluminescence element of the present invention is an organic electroluminescence element provided with a base material, an electrode 1, a functional layer and an electrode 2 in this order, wherein the functional layer is composed of a single layer or a plurality of layers, and the function is described. Of the layers, the layer in contact with the electrode 2 is made of an organic film, and the organic substance contained in the organic film is not crosslinked, and is derived from the formula (1) defined by the glass transition point and the molecular weight of the organic substance. E is 3300 cal / mol (13807 J / mol = 13.81 kJ / mol) or more, and the electrode 2 is a coating film.
Equation (1): E = 0.5 × R × Tg × ln (M)
[In the formula, R [cal / K · mol] represents the gas constant, Tg represents the glass transition point [K] of the organic substance, and M represents the molecular weight of the organic substance (when the organic substance is a polymer, the number average molecular weight). ]
 前記ガラス転移点(転移温度)は、DSC装置(示差走査熱量分析装置)において測定したものであり、例えば、RDC220(セイコーインスツル社製)にて、10℃/分の昇温条件によって求めた温度である。
 前記有機物が高分子の場合の数平均分子量は、ゲルパーミエーションクロマトグ ラフィー(GPC:Gel Permeation Chromatography)によって測定した分子量分布から求めることができる。具体的には、まず、測定試料を濃度1mg/mLとなるようにテトラヒドロフラン中に 添加し、室温において超音波分散機を用いて5分間分散処理した後、ポアサイズ0.2μmのメンブレンフィルターで処理して、試料液を調製する。例えば、GPC装置HLC-8120GPC(東ソー社製)及びカラム(「TSKgel guardcolumn SuperHZ-L」及び「TSKgel SuperHZM-M」(東ソー社製))を用い、カラム温度を40℃に保持しながら、キャリア溶媒としてテトラヒドロフランを流 速0.2mL/minで流す。キャリア溶媒とともに、調製した試料液10μLをGPC 装置内に注入し、屈折率検出器(RI検出器)を用いて試料を検出し、単分散のポリスチレン標準粒子を用いて測定した検量線を用いて、試料の分子量分布を算出する。検量線は 、分子量がそれぞれ6×102、2.1×103、4×103、1.75×104、5. 1×104、1.1×105、3.9×105、8.6×105、2×106、4.48 ×106である10点のポリスチレン標準粒子(Pressure Chemical社製)を測定することにより、作成する。
The glass transition point (transition temperature) was measured by a DSC device (differential scanning calorimetry device), and was determined by, for example, RDC220 (manufactured by Seiko Instruments Inc.) under a temperature rising condition of 10 ° C./min. The temperature.
The number average molecular weight when the organic substance is a polymer can be obtained from the molecular weight distribution measured by gel permeation chromatography (GPC). Specifically, first, the measurement sample was added to tetrahydrofuran so as to have a concentration of 1 mg / mL, dispersed at room temperature for 5 minutes using an ultrasonic disperser, and then treated with a membrane filter having a pore size of 0.2 μm. To prepare the sample solution. For example, using a GPC apparatus HLC-8120GPC (manufactured by Tosoh Corporation) and a column (“TSKgel guard culture SuperHZ-L” and “TSKgel SuperHZM-M” (manufactured by Tosoh Corporation)) while maintaining the column temperature at 40 ° C., a carrier solvent. Tetrahydrofuran is flowed at a flow rate of 0.2 mL / min. 10 μL of the prepared sample solution was injected into the GPC device together with the carrier solvent, the sample was detected using a refractive index detector (RI detector), and the calibration line measured using monodisperse polystyrene standard particles was used. , Calculate the molecular weight distribution of the sample. The calibration curves have molecular weights of 6 × 10 2 , 2.1 × 10 3 , 4 × 10 3 , 1.75 × 10 4 , and 5. 10 points of polystyrene standard particles (manufactured by Pressure Chemical) of 1 × 10 4 , 1.1 × 10 5 , 3.9 × 10 5 , 8.6 × 10 5 , 2 × 10 6 , 4.48 × 10 6. ) Is measured.
 前記有機物のガラス転移点(Tg)は、470K以上であることが電極下層の機械的強度を向上させる点で好ましい。
 また、前記有機物の分子量(M)は、40000以上であることが電極下層の機械的強度を向上させる点で好ましく、90000以上であることが特に好ましい。
The glass transition point (Tg) of the organic substance is preferably 470 K or more from the viewpoint of improving the mechanical strength of the lower electrode layer.
The molecular weight (M) of the organic substance is preferably 40,000 or more from the viewpoint of improving the mechanical strength of the lower layer of the electrode, and particularly preferably 90,000 or more.
 本発明の式(1)におけるEが3300cal/mol以上となる有機物を用いた有機膜において、当該有機膜は2種以上の混合物の膜となっていてもよい。その場合、膜中の存在比が29%以上でかつ、Eの値が最も小さい有機物を採用する。例えば、極端な例として、Eが3300cal/molを超える材料が99%、3300cal/molを下回る材料を1%含む膜を想定したときに、1%の材料は電極成膜時に破壊影響を受ける。しかし、膜全体としては99%の強固な材料が存在することから、漏電等の異常は発生しない。上述の、膜中の存在比が29%以上というのは、膜を破壊し得るのに必要な最小限の量を示しており、その材料のEの値が3300cal/mol以上であることが本発明の要件を満たす条件となる。ただし、漏電異常という観点においては、膜を構成する材料は、いずれもEが3300cal/mol以上であることが望ましい。 In the organic film using an organic substance having E of 3300 cal / mol or more in the formula (1) of the present invention, the organic film may be a film of a mixture of two or more kinds. In that case, an organic substance having an abundance ratio of 29% or more in the membrane and the smallest E value is adopted. For example, as an extreme example, assuming a film containing 99% of a material having an E of more than 3300 cal / mol and 1% of a material having an E of less than 3300 cal / mol, 1% of the material is destructively affected during electrode formation. However, since 99% of the strong material is present in the entire film, abnormalities such as electric leakage do not occur. The above-mentioned abundance ratio in the membrane of 29% or more indicates the minimum amount required to break the membrane, and the value of E of the material is 3300 cal / mol or more. It is a condition that satisfies the requirements of the invention. However, from the viewpoint of leakage abnormality, it is desirable that E of all the materials constituting the film is 3300 cal / mol or more.
 本発明における、「有機膜に含有される有機物が架橋されておらず」とは、有機膜を構成する有機物(有機化合物)成分同士が架橋反応により架橋されていないことをいう。ただし、当該有機膜を構成する成分として、架橋性基を有する化合物が含有されていても、本願発明の効果を阻害しない含有量、例えば、その含有量が23質量%未満である場合には、有機物間の架橋はされていないものとみなすことにする。
 ここで、「架橋」とは、化学的共有結合により複数分子の間に橋を架けるように連結させる反応プロセスをいう。
 また、前記架橋性基を有する化合物の含有量が23質量%未満であるとしたが、架橋性基を有する化合物を導入すると有機EL素子としての性能を下げることになるため、架橋性基を有する化合物の含有量は0質量%である方が望ましい。
 本発明における、電極に接する層(有機膜)は、本発明の効果を阻害しない含有量で、例えば、その含有量が20質量%未満である場合には、無機化合物が含有されていてもよい。
In the present invention, "the organic matter contained in the organic film is not crosslinked" means that the organic matter (organic compound) components constituting the organic film are not crosslinked by the crosslinking reaction. However, even if a compound having a crosslinkable group is contained as a component constituting the organic film, if the content does not impair the effect of the present invention, for example, the content is less than 23% by mass, It is considered that there is no cross-linking between organic substances.
Here, "crosslinking" refers to a reaction process in which a plurality of molecules are linked so as to bridge each other by a chemical covalent bond.
Further, although the content of the compound having a crosslinkable group is less than 23% by mass, the introduction of the compound having a crosslinkable group lowers the performance as an organic EL element, so that the compound has a crosslinkable group. The content of the compound is preferably 0% by mass.
In the present invention, the layer (organic film) in contact with the electrode has a content that does not impair the effect of the present invention, and for example, when the content is less than 20% by mass, an inorganic compound may be contained. ..
 本発明の式(1)におけるEは、4000cal/mol(16736J/mol=16.74kJ/mol)以上であることがより好ましく、原則的には値が大きければ大きいほど良いが、前記有機膜中の有機物(「電極下層の有機材料」ともいう。)のガラス転移点と分子量から決定される都合上、π共役系材料の高分子量化とガラス転移点の向上限界から、7000cal/mol(29288J/mol=29.29kJ/mol)が理論的限界値となる。 E in the formula (1) of the present invention is more preferably 4000 cal / mol (16736 J / mol = 16.74 kJ / mol) or more, and in principle, the larger the value, the better, but in the organic film. Because it is determined from the glass transition point and molecular weight of the organic matter (also referred to as "organic material under the electrode"), 7000 cal / mol (29288J /) due to the high molecular weight of the π-conjugated material and the improvement limit of the glass transition point. mol = 29.29 kJ / mol) is the theoretical limit value.
 前記式(1)におけるEが3300cal/mol以上となる有機物の具体例としては、以下に示す化合物が挙げられるが、本発明はこれらに限定されるものではない。 Specific examples of the organic substance having E of 3300 cal / mol or more in the above formula (1) include the compounds shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 以下、本発明の有機エレクトロルミネッセンス素子について詳細に説明する。 Hereinafter, the organic electroluminescence device of the present invention will be described in detail.
[有機EL素子の構成]
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(i)陽極/発光層/陰極
(ii)陽極/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/陰極
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極
(v)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(vii)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記の中で(vii)の構成が好ましく用いられるが、これに限定されるものではない。
[Structure of organic EL element]
Typical element configurations of the organic EL device of the present invention include, but are not limited to, the following configurations.
(I) Anode / light emitting layer / cathode (ii) anode / light emitting layer / electron transport layer / cathode (iii) anode / hole transport layer / light emitting layer / cathode (iv) anode / hole transport layer / light emitting layer / electron Transport layer / cathode (v) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (vi) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( vii) Electron / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode Among the above, the configuration of (vii) is preferable. Used, but not limited to.
 前記した素子構成を有する有機EL素子において、本発明に係る電極2は、陽極であっても陰極であってもよいが、陰極であることが本発明の効果発現の観点で好ましい。
 前記電極2が陰極である場合には電極1は陽極であり、電極2が陽極である場合には電極1は陰極となる。
 特に、本発明では、前記電極2が陰極で、陰極に接する層(電極下層)が、発光層又は電子輸送層又は電子注入層であることが好ましい。
In the organic EL device having the above-described device configuration, the electrode 2 according to the present invention may be an anode or a cathode, but a cathode is preferable from the viewpoint of exhibiting the effect of the present invention.
When the electrode 2 is a cathode, the electrode 1 is an anode, and when the electrode 2 is an anode, the electrode 1 is a cathode.
In particular, in the present invention, it is preferable that the electrode 2 is a cathode and the layer in contact with the cathode (under the electrode) is a light emitting layer, an electron transport layer, or an electron injection layer.
 本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう。)や電子注入層(陰極バッファー層ともいう。)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう。)や正孔注入層(陽極バッファー層ともいう。)を設けてもよい。
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
 上記の代表的な素子構成において、陽極と陰極を除いた層を「機能層(又は有機機能層)」ともいう。
The light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers. If necessary, a hole blocking layer (also referred to as a hole barrier layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode, and the light emitting layer and the electrode may be provided. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided between the two.
The electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, it may be composed of a plurality of layers.
The hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Further, it may be composed of a plurality of layers.
In the above typical device configuration, the layer excluding the anode and the cathode is also referred to as a "functional layer (or organic functional layer)".
 (タンデム構造)
 本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 また、第3発光ユニットはなくてもよく、一方で第3発光ユニットと電極の間にさらに発光ユニットや中間層を設けてもよい。
(Tandem structure)
The organic EL device of the present invention may be a device having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are laminated.
As a typical element configuration of the tandem structure, for example, the following configuration can be mentioned.
Anode / 1st light emitting unit / 2nd light emitting unit / 3rd light emitting unit / cathode Anode / 1st light emitting unit / intermediate layer / 2nd light emitting unit / intermediate layer / 3rd light emitting unit / cathode Here, the first light emitting unit , The second light emitting unit and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different.
Further, the third light emitting unit may not be provided, while a light emitting unit or an intermediate layer may be further provided between the third light emitting unit and the electrode.
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料及び構成を用いることができる。 The plurality of light emitting units may be directly laminated or may be laminated via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate layer. A known material and structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the adjacent layer on the anode side and holes to the adjacent layer on the cathode side.
 中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO2、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO2、CuGaO2、SrCu22、LaB6、RuO2、Al等の導電性無機化合物層や、Au/Bi23等の2層膜や、SnO2/Ag/SnO2、ZnO/Ag/ZnO、Bi23/Au/Bi23、TiO2/TiN/TiO2、TiO2/ZrN/TiO2等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 Examples of the material used for the intermediate layer include ITO (inorganic tin oxide), IZO ( inorganic zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al and other conductive inorganic compound layers, Au / Bi 2 O 3 and other bilayer films, SnO 2 / Ag / SnO 2 , ZnO / Ag / Multilayer films such as ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , and conductive organic substances such as oligothiophene. , Metallic phthalocyanines, metal-free phthalocyanines, metal porphyrins, conductive organic compound layers such as metal-free porphyrins, etc., but the present invention is not limited thereto.
 発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(i)~(vii)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。 Preferred configurations in the light emitting unit include, for example, configurations in which the anode and the cathode are removed from the configurations (i) to (vii) mentioned in the above typical element configurations, but the present invention is limited thereto. Not done.
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号、米国特許第7420203号、米国特許第7473923号、米国特許第6872472号、米国特許第6107734号、米国特許第6337492号、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。 Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International. Publication No. 2005/09087, Japanese Patent Application Laid-Open No. 2006-228712, Japanese Patent Application Laid-Open No. 2006-24791, Japanese Patent Application Laid-Open No. 2006-49393, Japanese Patent Application Laid-Open No. 2006-49394, Japanese Patent Application Laid-Open No. 2006-49396, Japanese Patent Application Laid-Open No. 2011 -96679, Japanese Patent Application Laid-Open No. 2005-340187, Japanese Patent No. 4711424, Japanese Patent No. 3496681, Japanese Patent No. 3884564, Japanese Patent No. 421369, Japanese Patent Application Laid-Open No. 2010-192719, Japanese Patent Application Laid-Open No. 2009-07629, The element configurations and constituent materials described in Japanese Patent Application Laid-Open No. 2008-0784414, Japanese Patent Application Laid-Open No. 2007-059848, Japanese Patent Application Laid-Open No. 2003-272860, Japanese Patent Application Laid-Open No. 2003-045676, International Publication No. 2005/094130, etc. are listed. However, the present invention is not limited thereto.
 以下、本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。
 発光層の厚さの総和は、特に制限はないが、形成する層の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲内に調整することが好ましく、より好ましくは2~500nmの範囲内に調整され、さらに好ましくは5~200nmの範囲内に調整される。
 また、個々の発光層の厚さとしては、2nm~1μmの範囲内に調整することが好ましく、より好ましくは2~200nmの範囲内に調整され、さらに好ましくは3~150nmの範囲に調整される。
Hereinafter, each layer constituting the organic EL device of the present invention will be described.
《Light emitting layer》
The light emitting layer according to the present invention is a layer that provides a place where electrons and holes injected from an electrode or an adjacent layer are recombined and emit light via excitons, and the light emitting portion is a layer of the light emitting layer. It may be inside or at the interface between the light emitting layer and the adjacent layer.
The total thickness of the light emitting layer is not particularly limited, but the homogeneity of the formed layer, prevention of applying an unnecessary high voltage at the time of light emission, and improvement of the stability of the light emitting color with respect to the driving current are improved. From the viewpoint, it is preferably adjusted within the range of 2 nm to 5 μm, more preferably adjusted within the range of 2 to 500 nm, and further preferably adjusted within the range of 5 to 200 nm.
The thickness of each light emitting layer is preferably adjusted within the range of 2 nm to 1 μm, more preferably adjusted within the range of 2 to 200 nm, and further preferably adjusted within the range of 3 to 150 nm. ..
 発光層には、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう。)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう。)と、を含有することが好ましい。
 また、本発明においては、発光層が電極2(例えば陰極又は陽極)に接する層である場合には、当該発光層に前記式(1)から導き出されるEが3300cal/mol以上となる前記有機物を含有する。
The light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
Further, in the present invention, when the light emitting layer is a layer in contact with the electrode 2 (for example, a cathode or an anode), the organic substance having an E derived from the above formula (1) of 3300 cal / mol or more is applied to the light emitting layer. contains.
 (1)発光ドーパント
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう。)と、遅延蛍光性ドーパント、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。
 本発明においては、発光層が発光ドーパントを5~100質量%の範囲内で含有することが好ましく、10~30質量%の範囲内で含有することがより好ましい。
 発光層中の発光ドーパントの濃度については、使用される特定の発光ドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 また、発光ドーパントは、複数種を併用して用いてもよく、構造の異なる発光ドーパント同士の組み合わせや、本発明のπ共役系化合物や、蛍光発光性化合物とリン光発光性化合物とを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
(1) Light-emitting dopant Examples of the light-emitting dopant include a fluorescent dopant (also referred to as a fluorescent dopant or a fluorescent compound), a delayed fluorescent dopant, or a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound). Is preferably used.
In the present invention, the light emitting layer preferably contains the light emitting dopant in the range of 5 to 100% by mass, and more preferably in the range of 10 to 30% by mass.
The concentration of the light emitting dopant in the light emitting layer can be arbitrarily determined based on the specific light emitting dopant used and the requirements of the device, and is contained at a uniform concentration with respect to the layer thickness direction of the light emitting layer. It may have an arbitrary concentration distribution.
Further, a plurality of types of light emitting dopants may be used in combination, and a combination of light emitting dopants having different structures, a π-conjugated compound of the present invention, or a combination of a fluorescent light emitting compound and a phosphorescent light emitting compound may be used. You may use it. Thereby, an arbitrary emission color can be obtained.
 本発明に係る有機EL素子の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
 本発明に係る有機EL素子における白色とは、特に限定はなく、橙色寄りの白色であっても青色寄りの白色であってもよいが、2度視野角正面輝度を前述の方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
The color emitted by the organic EL element according to the present invention is shown in FIG. 4.16 on page 108 of the "New Color Science Handbook" (edited by the Japan Color Society, edited by the University of Tokyo Press, 1985). It is determined by the color when the result measured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
In the present invention, it is also preferable that the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different light emitting colors and exhibits white light emission.
The combination of light emitting dopants showing white color is not particularly limited, and examples thereof include a combination of blue and orange, a combination of blue and green and red, and the like.
The white color in the organic EL element according to the present invention is not particularly limited and may be white color closer to orange or white color closer to blue, but when the 2 degree viewing angle front luminance is measured by the above method. In addition, it is preferable that the chromaticity in the CIE 1931 color system at 1000 cd / m2 is within the region of x = 0.39 ± 0.09 and y = 0.38 ± 0.08.
 (1.1)リン光発光性ドーパント
 本発明に係るリン光発光性ドーパント(以下、「リン光ドーパント」ともいう。)について説明する。
 本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
(1.1) Phosphorescent Dopant A phosphorescent dopant according to the present invention (hereinafter, also referred to as “phosphorescent dopant”) will be described.
The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescent light at room temperature (25 ° C.), and has a phosphorescent quantum yield of 25. It is defined as a compound of 0.01 or more at ° C, but a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorus photon yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopy II of the 4th edition Experimental Chemistry Course 7. The phosphorescence quantum yield in a solution can be measured using various solvents, but the phosphorescence dopant according to the present invention can achieve the above phosphorescence quantum yield (0.01 or more) in any of any solvents. Just do it.
 本発明において使用できるリン光ドーパントとしては、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78, 1622(2001)、Adv.Mater.19,739(2007)、Chem.M ater.17,3532(2005)、Adv.Mater.17,1059(200 5)、国際公開第2009/100991号、国際公開第2008/101842号、国 (24) JP 2018-70551 A 2018.5.10 10 20
 30 40 50 際公開第2003/040257号、米国特許出願公開第2006/835469号明細 書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第200 7/0087321号明細書、米国特許出願公開第2005/0244673号明細書、 Inorg.Chem.40,1704(2001)、Chem.Mater.16,2 480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許 第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細 書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願 公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特願2011-181303号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
As the phosphorescent dopant that can be used in the present invention, it can be appropriately selected from known ones used for the light emitting layer of the organic EL element.
Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19,739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, Country (24) JP 2018-70551 A 2018.5.10 10 20
30 40 50 Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006/20202194, US Patent Application Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, Inorg. Chem. 40,1704 (2001), Chem. Mater. 16, 2 480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86,153505 (2005), Chem. Lett. 34,592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42,1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, US Patent No. 7332232 , US Patent Application Publication No. 2009/01087737, US Patent Application Publication No. 2009/00397776, US Patent Application Publication No. 6921915, US Patent No. 6687266, US Patent Application Publication No. 2007/0190359 Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/015846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. 7396598, US Patent Application Publication No. 2006/0263635, US Patent Application Publication No. 2003/0138657, US Patent Application Publication No. 2003/0152802, US Patent Application Publication No. 70090928, Angew .. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18,5119 (2006), Inorg. Chem. 46,4308 (2007), Organometallics 23,3745 (2004), Appl. Phys. Lett. 74,1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/090024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/02060441, US Patent No. 73935999 Specification, US Patent No. 7534505, US Patent No. 7445855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Patent No. 73338722. , US Patent Application Publication No. 2002/0134984, US Patent No. 7279704, US Patent Application Publication No. 2006/098120, US Patent Application Publication No. 2006/103874, International Publication No. 2005 / 07680, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/05/2431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089 , International Publication No. 2009/113646, International Publication No. 2012/20327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/228583 Specification, US Patent Application Publication No. 2012/212126, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application Laid-Open No. 2011-181303, Japanese Patent Application Laid-Open No. 2009-114086, Japanese Patent Application Laid-Open No. 2003-81988, Japanese Patent Application Laid-Open No. 2002 -302671A, JP-A-2002-363552, and the like.
 中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
 発光層に含まれる発光性化合物は、蛍光発光性化合物であることが好 ましく、遅延蛍光性化合物であることがより好ましい。また、発光層に含まれる発光性化合物はリン光発光性化合物であることも同様に好ましい。
Among them, preferred phosphorescent dopants include organometallic complexes having Ir as the central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond and metal-sulfur bond is preferable.
The luminescent compound contained in the light emitting layer is preferably a fluorescent compound, more preferably a delayed fluorescent compound. It is also preferable that the luminescent compound contained in the light emitting layer is a phosphorescent compound.
 (1.2)蛍光発光性ドーパント
 本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう。)について説明する。
 本発明に係る蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
 本発明に係る蛍光ドーパントは、有機EL素子の発光層に使用される公知の蛍光ドーパントや遅延蛍光性ドーパントの中から適宜選択して用いてもよい。
(1.2) Fluorescent Luminescent Dopant A fluorescent luminescent dopant according to the present invention (hereinafter, also referred to as “fluorescent dopant”) will be described.
The fluorescent dopant according to the present invention is a compound capable of emitting light from the excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
The fluorescent dopant according to the present invention may be appropriately selected from known fluorescent dopants and delayed fluorescent dopants used in the light emitting layer of the organic EL device.
 本発明に使用できる蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオ レン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオ フェン誘導体、又は希土類錯体系化合物等が挙げられる。また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。
 遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開20 11-213643号公報、特開2010-93181号公報、特許5366106号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
Examples of fluorescent dopants that can be used in the present invention include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluorantene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylallylen derivatives, styrylamine derivatives, arylamine derivatives, and boron complexes. Examples thereof include coumarin derivatives, pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, and rare earth complex compounds. Further, in recent years, light emitting dopants using delayed fluorescence have also been developed, and these may be used.
Specific examples of the light emitting dopant using delayed fluorescence include the compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2010-11-213643, Japanese Patent Application Laid-Open No. 2010-93181, and Japanese Patent No. 5366106. However, the present invention is not limited thereto.
 (2)ホスト化合物
 本発明に係るホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、さらに好ましくはリン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
 また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
(2) Host Compound The host compound according to the present invention is a compound mainly responsible for injection and transport of electric charges in the light emitting layer, and its own light emission is not substantially observed in the organic EL element.
A compound having a phosphorescent quantum yield of less than 0.1 at room temperature (25 ° C.) is preferable, and a compound having a phosphorescent quantum yield of less than 0.01 is more preferable. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more.
Further, the excited state energy of the host compound is preferably higher than the excited state energy of the light emitting dopant contained in the same layer.
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。 The host compound may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of electric charges, and it is possible to improve the efficiency of the organic EL device.
 ホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
As a host compound, it has hole-transporting ability or electron-transporting ability, prevents the wavelength of light emission from being lengthened, and operates stably against heat generation when the organic EL element is driven at a high temperature or while the element is being driven. It is preferable to have a high glass transition temperature (Tg) from the viewpoint of allowing the particles to grow. Tg is preferably 90 ° C. or higher, and more preferably 120 ° C. or higher.
Here, the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Calorimetry).
 本発明における有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書、国際公開第2011/055933号、国際公開第2012/035853号、特開2015-38941号公報等である。特開2015-38941号公報に記載のホスト化合物の例には、明細書の[0255]~[0293]に記載の化合物H-1~H-230が含まれる。
Specific examples of known host compounds used in the organic EL device in the present invention include, but are not limited to, the compounds described in the following documents.
JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002. 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003 -3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002- 302516, 2002-305083, 2002-305084, 2002-308837, US Patent Application Publication No. 2003/0175553, US Patent Application Publication No. 2006/0280965, USA Publication No. 2005/0112407, US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent Application Publication No. 2005/0238919, International Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/0637996, International Publication No. 2007 / 063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. 2012/0293947 , Japanese Patent Application Laid-Open No. 2008-074939, Japanese Patent Application Laid-Open No. 2007-254297, European Patent No. 2034538, International Publication No. 2011/055933, International Publication No. 2012/035853, Japanese Patent Application Laid-Open No. 2015-38941, etc. Ah To. Examples of host compounds described in JP-A-2015-38941 include compounds H-1 to H-230 described in [0255] to [0293] of the specification.
 《電子輸送層》
 本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 本発明における電子輸送層の総膜厚については特に制限はないが、通常は2nm~5μmの範囲内であり、より好ましくは2~500nmの範囲内であり、さらに好ましくは5~200nmの範囲内である。
《Electron transport layer》
In the present invention, the electron transport layer may be made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
The total film thickness of the electron transport layer in the present invention is not particularly limited, but is usually in the range of 2 nm to 5 μm, more preferably in the range of 2 to 500 nm, and further preferably in the range of 5 to 200 nm. Is.
 電子輸送層に用いられる材料(以下、電子輸送材料という。)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 電子輸送層に含まれる電子輸送材料は、1種類であってもよいし、2種類以上であってもよい。例えば、電子輸送層は、従来公知の下記電子輸送材料をさらに含んでいてもよい。
The material used for the electron transport layer (hereinafter referred to as an electron transport material) may have any of electron injection property, transport property, and hole barrier property, and is available from among conventionally known compounds. Any one can be selected and used.
The electron transport material contained in the electron transport layer may be one kind or two or more kinds. For example, the electron transport layer may further contain the following conventionally known electron transport materials.
 従来公知の電子輸送材料としては、例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン誘導体等)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
Conventionally known electron transporting materials include, for example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring substituted with nitrogen atoms), pyridine derivatives, and the like. Pyrimidine derivative, pyrazine derivative, pyridazine derivative, triazine derivative, quinoline derivative, quinoxalin derivative, phenanthroline derivative, azatriphenylene derivative, oxazole derivative, thiazole derivative, oxaziazole derivative, thiazazole derivative, triazole derivative, benzimidazole derivative, benzoxazole derivative, Benzthiazole derivatives, etc.), dibenzofuran derivatives, dibenzothiophene derivatives, silol derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene derivatives, etc.) and the like.
Further, metal complexes having a quinolinol skeleton or a dibenzoquinolinol skeleton as ligands, for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-) Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and metal complexes thereof. A metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as an electron transport material.
In addition, metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like can also be preferably used as an electron transport material. Further, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si or n-type-SiC is used like the hole injection layer and the hole transport layer. Can also be used as an electron transport material.
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
In the electron transport layer, the electron transport layer may be doped with a doping material as a guest material to form a highly n-type (electron-rich) electron transport layer. Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Mol. Apple. Phys. , 95, 5773 (2004) and the like.
 本発明の有機EL素子に用いられる、電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 また、本発明においては、電子輸送層が電極2(例えば陰極)に接する層である場合には、当該電子輸送層に前記式(1)から導き出されるEが3300cal/mol以上となる前記有機物を含有する。
Specific examples of the electron transport material used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents.
US Patent No. 6528187, US Patent No. 7230107, US Patent Application Publication No. 2005/0025993, US Patent Application Publication No. 2004/0036077, US Patent Application Publication No. 2009/0115316. , US Patent Application Publication No. 2009/0101870, US Patent Application Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/132805, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79,449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), US Patent No. 7964293, US Patent Application Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387 , International Publication No. 2006/067931, International Publication No. 2007/0865552, International Publication No. 2008/114690, International Publication No. 2009/0694242, International Publication No. 2009/066797, International Publication No. 2009/054253, International Publication No. 2011/086935, International Publication No. 2010/150593, International Publication No. 2010/047707, European Patent No. 2311826, Japanese Patent Application Laid-Open No. 2010-251675, Japanese Patent Application Laid-Open No. 2009-209133, Japanese Patent Application Laid-Open No. 2009-209133. -124114, Japanese Patent Application Laid-Open No. 2008-277810, Japanese Patent Application Laid-Open No. 2006-156445, Japanese Patent Application Laid-Open No. 2005-340122, Japanese Patent Application Laid-Open No. 2003-45662, Japanese Patent Application Laid-Open No. 2003-31367, Japanese Patent Application Laid-Open No. 2003-282270 No., International Publication No. 2012/11034, etc.
The electron transport material may be used alone or in combination of two or more.
Further, in the present invention, when the electron transport layer is a layer in contact with the electrode 2 (for example, a cathode), the organic substance having an E derived from the formula (1) of 3300 cal / mol or more is applied to the electron transport layer. contains.
 《正孔阻止層》
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
 前記正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 また、正孔阻止層の膜厚としては、好ましくは3~100nmの範囲内であり、さらに好ましくは5~30nmの範囲内である。
 正孔阻止層に用いられる材料としては、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
《Hole blocking layer》
The hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes, and holes while transporting electrons. It is possible to improve the recombination probability of electrons and holes by blocking the above.
In addition, the structure of the electron transport layer described above can be used as the hole blocking layer according to the present invention, if necessary.
The hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
The film thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
As the material used for the hole blocking layer, the material used as the above-mentioned host compound is also preferably used for the hole blocking layer.
 《電子注入層》
 本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において電子注入層は必要に応じて設け、上記のように陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその膜厚は0.1~5nmの範囲内が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
《Electron injection layer》
The electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness. It is described in detail in Volume 2, Chapter 2, "Electrode Materials" (pages 123-166) of "Forefront of Industrialization (published by NTS Co., Ltd. on November 30, 1998)".
In the present invention, the electron injection layer may be provided as needed and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
The electron injection layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 to 5 nm, although it depends on the material. Further, it may be a non-uniform film in which the constituent material is intermittently present.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
 また、本発明においては、電子注入層が電極2(例えば陰極)に接する層である場合には、当該電子注入層に前記式(1)から導き出されるEが3300cal/mol以上となる前記有機物を含有する。
The details of the electron-injected layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specific examples of materials preferably used for the electron-injected layer include , Metals such as strontium and aluminum, alkali metal compounds such as lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compounds such as magnesium fluoride and calcium fluoride, oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq) and the like. It is also possible to use the above-mentioned electron transport material.
Further, the material used for the above-mentioned electron injection layer may be used alone or in combination of two or more.
Further, in the present invention, when the electron injection layer is a layer in contact with the electrode 2 (for example, a cathode), the organic substance having an E derived from the formula (1) of 3300 cal / mol or more is applied to the electron injection layer. contains.
 《正孔輸送層》
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 前記正孔輸送層の総膜厚については特に制限はないが、通常は5nm~5μmの範囲内であり、より好ましくは2~500nmの範囲内であり、さらに好ましくは5~200nmの範囲内である。
《Hole transport layer》
In the present invention, the hole transport layer may be made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
The total film thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, more preferably in the range of 2 to 500 nm, and further preferably in the range of 5 to 200 nm. is there.
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
The material used for the hole transport layer (hereinafter referred to as the hole transport material) may have any of hole injection property, transport property, and electron barrier property, and is among conventionally known compounds. Any one can be selected and used from.
For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stillben derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives. , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polymer materials or oligomers in which polyvinylcarbazole and aromatic amines are introduced into the main chain or side chains, polysilane, conductivity. Sex polymers or oligomers (eg, PEDOT: PSS, aniline-based copolymers, polyaniline, polythiophene, etc.) and the like can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
Examples of the triarylamine derivative include a benzidine type represented by α-NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) and a starburst type represented by MTDATA. Examples thereof include compounds having fluorene or anthracene in the triarylamine linking core portion.
Hexaazatriphenylene derivatives as described in JP-A-2003-591432 and JP-A-2006-135145 can also be used as the hole transport material in the same manner.
Further, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Apple. Phys. , 95, 5773 (2004) and the like.
In addition, Japanese Patent Application Laid-Open No. 11-251067, J. Am. Hung et. al. So-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC as described in the authored literature (Applied Physics Letters 80 (2002), p.139) can also be used. Further, an orthometalated organometallic complex having Ir or Pt in the central metal as represented by Ir (ppy) 3 is also preferably used.
As the hole transporting material, the above-mentioned materials can be used, but a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organic metal complex, and an aromatic amine are introduced into the main chain or side chain. High molecular weight materials or oligomers are preferably used.
 本発明に係る有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 例えば、Appl. Phys. Lett. 69, 2160 (1996)、J. Lumin. 72-74, 985 (1997)、Appl. Phys. Lett. 78, 673 (2001)、Appl. Phys. Lett. 90, 183503(2007)、Appl. Phys. Lett. 90, 183503 (2007)、
Appl. Phys. Lett. 51, 913 (1987)、Synth. Met. 87, 171 (1997)、Synth. Met. 91, 209 (1997)
、Synth. Met. 111,421 (2000)、SID SymposiumDigest, 37, 923 (2006)、J. Mater. Chem. 3, 31
9 (1993)、Adv. Mater. 6, 677 (1994)、Chem. Mater. 15,3148 (2003)、米国特許公開第2003/0162053号、米国特許公開第2002/0158242号、米国特許公開第2006/0240279号、米国特許公開第2008/0220265号、米国特許第5061569号、国際公開第2007/002683号、国際公開第2009/018009号、EP650955、米国特許公開第2008/0124572号、米国特許公開第2007/0278938号、米国特許公開第2008/0106190号、米国特許公開第2008/0018221号、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号等である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 また、本発明においては、正孔輸送層が電極2(例えば陽極)に接する層である場合には、当該正孔輸送層に前記式(1)から導き出されるEが3300cal/mol以上となる前記有機物を含有する。
Specific examples of known and preferable hole transporting materials used in the organic EL device according to the present invention include the compounds described in the following documents in addition to the above-mentioned documents, and the present invention includes these. Not limited.
For example, Appl. Phys. Lett. 69, 2160 (1996), J. Mol. Lumin. 72-74, 985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 90, 183503 (2007),
Apple. Phys. Lett. 51, 913 (1987), Synth. Met. 87, 171 (1997), Synth. Met. 91, 209 (1997)
, Synth. Met. 111,421 (2000), SID SymposiumDigest, 37, 923 (2006), J. Mol. Mater. Chem. 3, 31
9 (1993), Adv. Mater. 6, 677 (1994), Chem. Mater. 15,3148 (2003), U.S. Patent Publication No. 2003/0162053, U.S. Patent Publication No. 2002/0158242, U.S. Patent Publication No. 2006/0240279, U.S. Patent Publication No. 2008/0220265, U.S. Patent No. 5061569, International Publication No. 2007/002683, International Publication No. 2009/01809, EP650955, US Patent Publication No. 2008/01245772, US Patent Publication No. 2007/0278938, US Patent Publication No. 2008/0106190, US Patent Publication No. 2008 / 0018221, International Publication No. 2012/115344, Japanese Patent Application Laid-Open No. 2003-591432, Japanese Patent Application Laid-Open No. 2006-135145, US Patent Application No. 13/585981, and the like.
The hole transporting material may be used alone or in combination of two or more.
Further, in the present invention, when the hole transport layer is a layer in contact with the electrode 2 (for example, the anode), the E derived from the formula (1) is 3300 cal / mol or more in the hole transport layer. Contains organic matter.
 《電子阻止層》
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
 前記電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 また、電子阻止層の層厚としては、好ましくは3~100nmの範囲内であり、さらに好ましくは5~30nmの範囲内である。
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
《Electronic blocking layer》
The electron blocking layer is a layer having a function of a hole transporting layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and is composed of a material having a small ability to transport electrons while transporting holes. It is possible to improve the recombination probability of electrons and holes by blocking the above.
Further, the structure of the hole transport layer described above can be used as an electron blocking layer according to the present invention, if necessary.
The electron blocking layer is preferably provided adjacent to the anode side of the light emitting layer.
The thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
As the material used for the electron blocking layer, the material used for the hole transporting layer described above is preferably used, and the material used as the host compound described above is also preferably used for the electron blocking layer.
 《正孔注入層》
 本発明に係る正孔注入層(「陽極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において正孔注入層は必要に応じて設け、上記のように陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
《Hole injection layer》
The hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer in order to reduce the driving voltage and improve the emission brightness, and is an “organic EL element”. And its industrialization forefront (published by NTS on November 30, 1998), Volume 2, Chapter 2, "Electrode Materials" (pages 123-166).
In the present invention, the hole injection layer may be provided as needed and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、前述の正孔輸送層に用いられる材料等が挙げられる。
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 また、本発明においては、正孔注入層が電極2(例えば陽極)に接する層である場合には、当該正孔注入層に前記式(1)から導き出されるEが3300cal/mol以上となる前記有機物を含有する。
The details of the hole injection layer are also described in JP-A-9-45479, 9-2660062, 8-288609, etc., and examples of the material used for the hole injection layer include. , Materials used for the hole transport layer mentioned above and the like.
Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-A-2003-591432 and JP-A-2006-135145, metal oxides typified by vanadium oxide, amorphous carbon. , Polyaniline (emeraldine), polythiophene and other conductive polymers, tris (2-phenylpyridine) iridium complexes and the like, orthometallated complexes, triarylamine derivatives and the like are preferable.
The material used for the hole injection layer described above may be used alone or in combination of two or more.
Further, in the present invention, when the hole injection layer is a layer in contact with the electrode 2 (for example, the anode), the E derived from the formula (1) is 3300 cal / mol or more in the hole injection layer. Contains organic matter.
 《その他添加剤》
 前述した本発明における機能層は、さらに他の添加剤が含まれていてもよい。
 添加剤としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 添加剤の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
<< Other additives >>
The functional layer in the present invention described above may further contain other additives.
Examples of the additive include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals and alkaline earth metals such as Pd, Ca and Na, compounds and complexes of transition metals, salts and the like.
The content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less, based on the total mass% of the contained layer. ..
However, it is not within this range depending on the purpose of improving the transportability of electrons and holes and the purpose of favoring the energy transfer of excitons.
 《機能層の形成方法》
 本発明における機能層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 本発明における機能層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット印刷法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット印刷法、スプレーコート法などのロール・to・ロール方式適性の高い方法が好ましい。
<< Method of forming functional layer >>
A method for forming a functional layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) in the present invention will be described.
The method for forming the functional layer in the present invention is not particularly limited, and a conventionally known method for forming a functional layer, for example, a vacuum vapor deposition method, a wet method (also referred to as a wet process), or the like can be used.
The wet method includes a spin coating method, a casting method, an inkjet printing method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, an LB method (Langmuir-Brojet method), and the like. However, a method having high suitability for the roll-to-roll method such as a die coating method, a roll coating method, an inkjet printing method, and a spray coating method is preferable from the viewpoint of easy to obtain a homogeneous thin film and high productivity.
 前記機能層に用いる有機材料(本発明に係る有機物を含む。)を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
Examples of the liquid medium for dissolving or dispersing the organic material (including the organic substance according to the present invention) used for the functional layer include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, and halogens such as dichlorobenzene. Hydrocarbons, aromatic hydrocarbons such as toluene, xylene, mesityrene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
Further, as a dispersion method, dispersion can be performed by a dispersion method such as ultrasonic waves, high shear force dispersion, or media dispersion.
 さらに層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 本発明における機能層の形成は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施してもかまわない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
Further, a different film forming method may be applied to each layer. When a thin-film deposition method is used for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C, the degree of vacuum is 10-6 to 10-2 Pa, and the vapor deposition rate is 0.01 to. It is desirable to appropriately select in the range of 50 nm / sec, substrate temperature -50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.
The functional layer in the present invention is preferably formed from the hole injection layer to the cathode by one vacuuming, but it may be taken out in the middle and a different film forming method may be applied. In that case, it is preferable to carry out the work in a dry inert gas atmosphere.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, a metal having a large work function (4 eV or more, preferably 4.5 V or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such an electrode material include metals such as Au and conductive transparent materials such as CuI, indium zinc oxide (ITO), SnO 2, and ZnO. Further, a material such as IDIXO (In 2 O 3- ZnO) which is amorphous and can produce a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 又は、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。
 陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。
For the anode, a thin film may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 μm or more). , The pattern may be formed through a mask having a desired shape during vapor deposition or sputtering of the electrode material.
Alternatively, when a coatable substance such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can also be used. When emitting light from this anode, it is desirable to increase the transmittance to more than 10%, and the sheet resistance as the anode is several hundred Ω / sq. The following is preferable.
The film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
 《陰極》
 陰極としては仕事関数の小さい(6eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、銀、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
As the cathode, a metal having a small work function (6 eV or less) (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, silver, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al). 2 O 3 ) Examples include mixtures, indium, lithium / aluminum mixtures, aluminum, and rare earth metals.
Among these, from the viewpoint of electron injectability and durability against oxidation and the like, a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture. Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum and the like are suitable.
 陰極はこれらの電極物質を金属ナノ粒子のような塗布可能な物質にして用いることができ、印刷方式、コーティング方式等湿式成膜法により成膜できる。陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
The cathode can be used by using these electrode substances as a coatable substance such as metal nanoparticles, and can be formed by a wet film forming method such as a printing method or a coating method. Sheet resistance as a cathode is several hundred Ω / sq. The following is preferable, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
Since the emitted light is transmitted, it is convenient that the emission brightness is improved if either the anode or the cathode of the organic EL element is transparent or translucent.
Further, a transparent or translucent cathode can be produced by producing the above metal on the cathode having a thickness of 1 to 20 nm and then producing the conductive transparent material mentioned in the description of the anode on the cathode. By applying the above, it is possible to manufacture an element in which both the anode and the cathode are transparent.
 《支持基板》
 本発明における有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support board》
The type of support substrate (hereinafter, also referred to as a substrate, substrate, substrate, support, etc.) that can be used for the organic EL element in the present invention is not particularly limited, and is transparent. It may be opaque. When light is taken out from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of imparting flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(登録商標)(JSR社製)又はアペル(登録商標)(三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate. CAP), cellulose acetate phthalate, cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (registered trademark) (manufactured by JSR) Alternatively, a cycloolefin resin such as Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3mL/(m2・24h・atm)以下、水蒸気透過度が、10-5g/(m2・24h)以下の高バリアー性フィルムであることが好ましい。 A film of an inorganic substance, an organic substance, or a hybrid film of both of them may be formed on the surface of the resin film, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. oxygen relative humidity (90 ± 2)% RH) is preferably a barrier film of 0.01g / (m 2 · 24h) or less, still more, as measured by the method based on JIS K 7126-1987 the permeability, 10 -3 mL / (m 2 · 24h · atm) or less, the water vapor permeability is preferably a high barrier film of 10-5g / (m 2 · 24h) or less.
 ガスバリアー膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the gas barrier film may be any material having a function of suppressing infiltration of a material that causes deterioration of the element such as moisture and oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride and the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of an organic material. The stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable to stack the inorganic layer and the organic layer alternately a plurality of times.
 ガスバリアー膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the gas barrier film is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight. Although legal, plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be used, the atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明に係る有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
Examples of the opaque support substrate include a metal plate such as aluminum and stainless steel, a film or opaque resin substrate, and a ceramic substrate.
The external extraction quantum efficiency of the light emission of the organic EL device according to the present invention at room temperature is preferably 1% or more, more preferably 5% or more.
Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons passed through the organic EL element × 100.
Further, a hue improving filter such as a color filter may be used in combination, or a color conversion filter that converts the color emitted from the organic EL element into multiple colors using a phosphor may be used in combination.
<有機EL素子の作製方法>
 本発明における機能層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 前記機能層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、例えばグラビア印刷法、フレキソ印刷法、スクリーン印刷法等の印刷法のほか、スピンコート法、キャスト法、インクジェット印刷法、ダイコート法、ブレードコート法、バーコート法、ロールコート法、ディップコート法、スプレーコート法、カーテンコート法、ドクターコート法、LB法(ラングミュア-ブロジェット法)等があるが、塗布液を容易に精度良く塗布することが可能で、かつ高生産性の点から、インクジェットヘッドを用いたインクジェット印刷法により塗布することがより好ましい。
<Method of manufacturing organic EL elements>
A method for forming a functional layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) in the present invention will be described.
The method for forming the functional layer is not particularly limited, and a conventionally known forming method such as a vacuum vapor deposition method or a wet method (also referred to as a wet process) can be used.
Examples of the wet method include a gravure printing method, a flexographic printing method, a screen printing method, and other printing methods, as well as a spin coating method, a casting method, an inkjet printing method, a die coating method, a blade coating method, a bar coating method, and a roll coating method. There are dip coating method, spray coating method, curtain coating method, doctor coating method, LB method (Langmuir-brodget method), etc., but the coating liquid can be applied easily and accurately, and it is highly productive. Therefore, it is more preferable to apply by an inkjet printing method using an inkjet head.
 さらに層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 本発明における機能層の形成は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施してもかまわない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
Further, a different film forming method may be applied to each layer. When a thin-film deposition method is used for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C, the degree of vacuum is 10-6 to 10-2 Pa, and the vapor deposition rate is 0.01 to. It is desirable to appropriately select in the range of 50 nm / sec, substrate temperature -50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.
The functional layer in the present invention is preferably formed from the hole injection layer to the cathode by one vacuuming, but it may be taken out in the middle and a different film forming method may be applied. In that case, it is preferable to carry out the work in a dry inert gas atmosphere.
 《インクジェット印刷法》
 以下、インクジェット印刷法による機能層の形成方法について、その一例を、図を交えて説明する。
《Inkjet printing method》
Hereinafter, an example of the method of forming the functional layer by the inkjet printing method will be described with reference to the drawings.
 図1は、インクジェット印刷方式を用いた有機EL素子の製造方法の一例を示す概略図である。 FIG. 1 is a schematic view showing an example of a method for manufacturing an organic EL element using an inkjet printing method.
 図1には、インクジェットヘッド30を具備したインクジェット印刷装置を用いて、基材2上に、有機EL素子の機能層を形成する有機材料等(本発明に係る有機物を含む。)を吐出する方法の一例を示してある。 FIG. 1 shows a method of ejecting an organic material or the like (including an organic substance according to the present invention) forming a functional layer of an organic EL element onto a base material 2 using an inkjet printing apparatus provided with an inkjet head 30. An example is shown.
 図1に示すように、一例として、基材2を連続的に搬送しながら、インクジェットヘッド30により、前記有機材料等をインク液滴として順次、基材2上に射出して、有機EL素子1の機能層を形成する。 As shown in FIG. 1, as an example, while continuously transporting the base material 2, the organic material or the like is sequentially ejected as ink droplets onto the base material 2 by the inkjet head 30, and the organic EL element 1 is used. Form a functional layer of.
 本発明に係る有機EL素子の製造方法に適用可能なインクジェットヘッド30としては、特に限定はなく、例えば、インク圧力室に圧電素子を備えた振動板を有し、この振動板によるインク圧力室の圧力変化でインク組成物を吐出させる剪断モード型(ピエゾ型)のヘッドでもよいし、発熱素子を有し、この発熱素子からの熱エネルギーによりインク組成物の膜沸騰による急激な体積変化によりノズルからインク組成物を吐出させるサーマルタイプのヘッドであってもよい。 The inkjet head 30 applicable to the method for manufacturing an organic EL element according to the present invention is not particularly limited. For example, the ink pressure chamber has a diaphragm provided with a piezoelectric element, and the ink pressure chamber using the diaphragm has a diaphragm. It may be a shear mode type (piezo type) head that ejects the ink composition by a pressure change, or it has a heat generating element, and the heat energy from the heat generating element causes a sudden volume change due to the film boiling of the ink composition from the nozzle. It may be a thermal type head that ejects the ink composition.
 インクジェットヘッド30には、射出用のインク組成物の供給機構などが接続されている。インク組成物のインクジェットヘッド30への供給は、タンク38Aにより行われる。インクジェットヘッド30内のインク組成物の圧力を常に一定に保つようにこの例ではタンク液面を一定にする。その方法としては、インク組成物をタンク38Aからオーバーフローさせてタンク38Bに自然流下で戻している。タンク38Bからタンク38Aへのインク組成物の供給は、ポンプ31により行われており、射出条件に合わせて安定的にタンク38Aの液面が一定となるように制御されている。 An ink composition supply mechanism for injection is connected to the inkjet head 30. The ink composition is supplied to the inkjet head 30 by the tank 38A. In this example, the liquid level in the tank is kept constant so that the pressure of the ink composition in the inkjet head 30 is always kept constant. As a method, the ink composition is overflowed from the tank 38A and returned to the tank 38B by natural flow. The ink composition is supplied from the tank 38B to the tank 38A by the pump 31, and the liquid level of the tank 38A is controlled to be stable according to the injection conditions.
 なお、ポンプ31によりタンク38Aへインク組成物を戻す際には、フィルター32を通してから行われている。このように、インク組成物はインクジェットヘッド30へ供給される前に絶対濾過精度又は準絶対濾過精度が0.05~50μmの濾材を少なくとも1回は通過させることが好ましい。 When returning the ink composition to the tank 38A by the pump 31, it is performed after passing through the filter 32. As described above, it is preferable that the ink composition is passed through a filter medium having an absolute filtration accuracy or a quasi-absolute filtration accuracy of 0.05 to 50 μm at least once before being supplied to the inkjet head 30.
 また、インクジェットヘッド30の洗浄作業や液体充填作業などを実施するためにタンク36よりインク組成物が、タンク37より洗浄溶媒がポンプ39によりインクジェットヘッド30へ強制的に供給可能となっている。インクジェットヘッド30に対してこうしたタンクポンプ類は複数に分けても良いし、配管の分岐を使用しても良い、またそれらの組み合わせでもかまわない。 Further, the ink composition can be forcibly supplied from the tank 36 and the cleaning solvent from the tank 37 can be forcibly supplied to the inkjet head 30 by the pump 39 in order to perform the cleaning work and the liquid filling work of the inkjet head 30. Such tank pumps may be divided into a plurality of such tank pumps with respect to the inkjet head 30, a branch of a pipe may be used, or a combination thereof may be used.
 図1では配管分岐33を使用している。さらにインクジェットヘッド30内のエアーを十分に除去するためにタンク36よりポンプ39にてインクジェット30へインク組成物を強制的に送液しながら下記に記すエアー抜き配管からインク組成物を抜き出して廃液タンク34に送ることもある。 In FIG. 1, the pipe branch 33 is used. Further, in order to sufficiently remove the air in the inkjet head 30, the ink composition is forcibly sent from the tank 36 to the inkjet 30 by the pump 39, and the ink composition is extracted from the air bleeding pipe described below to be a waste liquid tank. It may be sent to 34.
 図2A及び図2Bは、インクジェット印刷方式に適用可能なインクジェットヘッドの構造の一例を示す概略外観図である。 2A and 2B are schematic external views showing an example of the structure of the inkjet head applicable to the inkjet printing method.
 図2Aは、本発明に適用可能なインクジェットヘッド100を示す概略斜視図であり、図2Bは、インクジェットヘッド100の底面図である。 FIG. 2A is a schematic perspective view showing an inkjet head 100 applicable to the present invention, and FIG. 2B is a bottom view of the inkjet head 100.
 本発明に適用可能なインクジェットヘッド100は、インクジェット記録装置(図示略)に搭載されるものであり、インクをノズルから吐出させるヘッドチップと、このヘッドチップが配設された配線基板と、この配線基板とフレキシブル基板を介して接続された駆動回路基板と、ヘッドチップのチャネルにフィルターを介してインクを導入するマニホールドと、内側にマニホールドが収納された筐体56と、この筐体56の底面開口を塞ぐように取り付けられたキャップ受板57と、マニホールドの第1インクポート及び第2インクポートに取り付けられた第1及び第2ジョイント81a、81bと、マニホールドの第3インクポートに取り付けられた第3ジョイント82と、筐体56に取り付けられたカバー部材59とを備えている。また、筐体56をプリンタ本体側に取り付けるための取り付け用孔68がそれぞれ形成されている。 The inkjet head 100 applicable to the present invention is mounted on an inkjet recording device (not shown), and includes a head chip that ejects ink from a nozzle, a wiring board on which the head chip is arranged, and this wiring. A drive circuit board connected via a substrate and a flexible substrate, a manifold for introducing ink into a channel of a head chip via a filter, a housing 56 in which a manifold is housed inside, and a bottom opening of the housing 56. The cap receiving plate 57 attached so as to close the above, the first and second joints 81a and 81b attached to the first ink port and the second ink port of the manifold, and the third ink port attached to the third ink port of the manifold. It includes a 3-joint 82 and a cover member 59 attached to the housing 56. Further, mounting holes 68 for mounting the housing 56 on the printer main body side are formed.
 また、図2Bで示すキャップ受板57は、キャップ受板取り付け部62の形状に対応して、外形が左右方向に長尺な略矩形板状として形成され、その略中央部に複数のノズルが配置されているノズルプレート61を露出させるため、左右方向に長尺なノズル用開口部71が設けられている。また、図2Aで示すインクジェットヘッド内部の具体的な構造に関しては、例えば、特開2012-140017号公報に記載されている図2等を参照することができる。 Further, the cap receiving plate 57 shown in FIG. 2B is formed as a substantially rectangular plate whose outer shape is long in the left-right direction corresponding to the shape of the cap receiving plate mounting portion 62, and a plurality of nozzles are formed in the substantially central portion thereof. In order to expose the arranged nozzle plate 61, a long nozzle opening 71 is provided in the left-right direction. Further, regarding the specific structure inside the inkjet head shown in FIG. 2A, for example, FIG. 2 and the like described in Japanese Patent Application Laid-Open No. 2012-140017 can be referred to.
 図2A及び図2Bにはインクジェットヘッドの代表例を示したが、そのほかにも、例えば、特開2012-140017号公報、特開2013-010227号公報、特開2014-058171号公報、特開2014-097644号公報、特開2015-142979号公報、特開2015-142980号公報、特開2016-002675号公報、特開2016-002682号公報、特開2016-107401号公報、特開2017-109476号公報、特開2017-177626号公報等に記載されている構成からなるインクジェットヘッドを適宜選択して適用することができる。 A typical example of the inkjet head is shown in FIGS. 2A and 2B, but in addition to the above, for example, Japanese Patent Application Laid-Open No. 2012-140017, Japanese Patent Application Laid-Open No. 2013-010227, Japanese Patent Application Laid-Open No. 2014-058171 and JP-A-2014 -097644, JP2015-142979, JP2015-142980, JP2016-002675, JP2016-002682, JP2016-107401, JP2017-109476 An inkjet head having the configuration described in Japanese Patent Application Laid-Open No. 2017-177626 and the like can be appropriately selected and applied.
 《インクジェットヘッド》
 本発明に適用可能なインクジェットヘッドは、例えば、特開2012-140017号公報、特開2013-010227号公報、特開2014-058171号公報、特開2014-097644号公報、特開2015-142979号公報、特開2015-142980号公報、特開2016-002675号公報、特開2016-002682号公報、特開2016-107401号公報、特開2017-109476号公報、特開2017-177626号公報等に記載されている構成からなるインクジェットヘッドを適宜選択して適用することができる。
《Inkjet head》
Inkjet heads applicable to the present invention include, for example, Japanese Patent Application Laid-Open No. 2012-140017, Japanese Patent Application Laid-Open No. 2013-010227, Japanese Patent Application Laid-Open No. 2014-058171, JP-A-2014-097644, and Japanese Patent Application Laid-Open No. 2015-142979. JP-A-2015-142980, JP-A-2016-002675, JP-A-2016-002682, JP-A-2016-107401, JP-A-2017-109476, JP-A-2017-177626, etc. An inkjet head having the configuration described in the above can be appropriately selected and applied.
 湿式法に用いる塗布液は、機能層を形成する材料が液媒体に均一に溶解される溶液でも、材料が固形分として液媒体に分散される分散液でも良い。分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 液媒体としては特に制限はなく、例えば、クロロホルム、四塩化炭素、ジクロロメタン、1,2-ジクロロエタン、ジクロロベンゼン、ジクロロヘキサノン等のハロゲン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、n-プロピルメチルケトン、シクロヘキサノン等のケトン系溶媒、ベンゼン、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族系溶媒、シクロヘキサン、デカリン、ドデカン等の脂肪族系溶媒、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、炭酸ジエチル等のエステル系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、メタノール、エタノール、1-ブタノール、エチレングリコール等のアルコール系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、ジメチルスルホキシド、水又はこれらの混合液媒体等が挙げられる。
 これらの液媒体の沸点としては、迅速に液媒体を乾燥させる観点から乾燥処理の温度未満の沸点が好ましく、具体的には60~200℃の範囲内が好ましく、さらに好ましくは、80~180℃の範囲内である。
The coating liquid used in the wet method may be a solution in which the material forming the functional layer is uniformly dissolved in the liquid medium, or a dispersion liquid in which the material is dispersed in the liquid medium as a solid content. As a dispersion method, dispersion can be performed by a dispersion method such as ultrasonic waves, high shear force dispersion, or media dispersion.
The liquid medium is not particularly limited, and for example, halogen-based solvents such as chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, dichlorobenzene and dichlorohexanone, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone and n-propyl. Ketone solvents such as methyl ketone and cyclohexanone, aromatic solvents such as benzene, toluene, xylene, mesityrene and cyclohexylbenzene, aliphatic solvents such as cyclohexane, decalin and dodecane, ethyl acetate, n-propyl acetate, n-acetate Ester solvents such as butyl, methyl propionate, ethyl propionate, γ-butyrolactone, diethyl carbonate, ether solvents such as tetrahydrofuran and dioxane, amide solvents such as dimethylformamide and dimethylacetamide, methanol, ethanol, 1-butanol, Examples thereof include alcohol solvents such as ethylene glycol, nitrile solvents such as acetonitrile and propionitrile, dimethyl sulfoxide, water, or a mixed solution medium thereof.
The boiling point of these liquid media is preferably a boiling point lower than the temperature of the drying treatment from the viewpoint of quickly drying the liquid medium, specifically in the range of 60 to 200 ° C, more preferably 80 to 180 ° C. Is within the range of.
 塗布液は、塗布範囲を制御する目的や、塗布後の表面張力勾配に伴う液流動(例えば、コーヒーリングと呼ばれる現象を引き起こす液流動)を抑制する目的に応じて、界面活性剤を含有することができる。
 界面活性剤としては、溶媒に含まれる水分の影響、レベリング性、基板f1への濡れ性等の観点から、例えばアニオン性又はノニオン性の界面活性剤等が挙げられる。具体的には、含フッ素系活性剤等、国際公開第08/146681号、特開平2-41308号公報等に挙げられた界面活性剤を用いることができる。
The coating liquid contains a surfactant depending on the purpose of controlling the coating range and suppressing the liquid flow (for example, the liquid flow that causes a phenomenon called coffee ring) associated with the surface tension gradient after coating. Can be done.
Examples of the surfactant include anionic or nonionic surfactants from the viewpoints of the influence of water contained in the solvent, leveling property, wettability to the substrate f1 and the like. Specifically, the surfactants listed in International Publication No. 08/146681, JP-A-2-41308, etc., such as fluorine-containing activators, can be used.
 塗布膜の粘度についても、膜厚と同様に、機能層として必要とされる機能と有機材料の溶解度又は分散性により、適宜選択することが可能で、具体的には例えば0.3~100mPa・sの範囲内で選択することができる。
 塗布膜の膜厚は、機能層として必要とされる機能と有機材料の溶解度又は分散性により適宜選択することが可能で、具体的には例えば1~90μmの範囲内で選択することができる。
 湿式法により塗布膜を形成した後、上述した液媒体を除去する塗布工程を有することができる。乾燥工程の温度は特に制限されないが、機能層や透明電極や基材が損傷しない程度の温度で乾燥処理することが好ましい。具体的には、塗布液の組成等によって異なるため一概には言えないが、例えば、80℃以上の温度とすることができ、上限は300℃程度までは可能な領域と考えられる。時間は10秒以上10分以下程度とすることが好ましい。このような条件とすることにより、乾燥を迅速に行うことができる。
Similar to the film thickness, the viscosity of the coating film can be appropriately selected depending on the function required as the functional layer and the solubility or dispersibility of the organic material. Specifically, for example, 0.3 to 100 mPa. It can be selected within the range of s.
The film thickness of the coating film can be appropriately selected depending on the function required as the functional layer and the solubility or dispersibility of the organic material, and specifically, it can be selected in the range of, for example, 1 to 90 μm.
After forming the coating film by the wet method, it is possible to have a coating step of removing the above-mentioned liquid medium. The temperature of the drying step is not particularly limited, but it is preferable to perform the drying treatment at a temperature that does not damage the functional layer, the transparent electrode, or the base material. Specifically, it cannot be said unconditionally because it differs depending on the composition of the coating liquid and the like, but for example, the temperature can be set to 80 ° C. or higher, and the upper limit is considered to be a possible range up to about 300 ° C. The time is preferably about 10 seconds or more and 10 minutes or less. Under such conditions, drying can be performed quickly.
 《封止》
 有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
《Seal》
Examples of the sealing means used for sealing the organic EL element include a method of adhering the sealing member, the electrode, and the support substrate with an adhesive. The sealing member may be arranged so as to cover the display area of the organic EL element, and may be intaglio-shaped or flat-plate-shaped. Further, transparency and electrical insulation are not particularly limited.
Specific examples thereof include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum.
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/m2/24h以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m2/24h)以下のものであることが好ましい。 In the present invention, a polymer film or a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film had an oxygen permeability of 1 × 10 -3 mL / m 2 / 24h or less measured by a method according to JIS K 7126-1987, and was measured by a method according to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably 1 × 10 -3 g / (m 2 / 24h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
Sandblasting, chemical etching, etc. are used to process the sealing member into a concave shape.
Specific examples of the adhesive include a photocurable and thermosetting adhesive having a reactive vinyl group of an acrylic acid-based oligomer and a methacrylic acid-based oligomer, and a moisture-curable adhesive such as 2-cyanoacrylic acid ester. be able to. In addition, heat and chemical curing type (two-component mixture) such as epoxy type can be mentioned. Further, hot melt type polyamide, polyester and polyolefin can be mentioned. In addition, a cation-curable type ultraviolet-curable epoxy resin adhesive can be mentioned.
Since the organic EL element may be deteriorated by heat treatment, it is preferable that the organic EL element can be adhesively cured from room temperature to 80 ° C. Further, the desiccant may be dispersed in the adhesive. A commercially available dispenser may be used to apply the adhesive to the sealing portion, or printing may be performed as in screen printing.
 また、機能層を挟み支持基板と対向する側の電極の外側に該電極と機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。 Further, it is also possible to preferably cover the electrode and the functional layer on the outside of the electrode on the side facing the support substrate with the functional layer sandwiched therein, and form a layer of an inorganic substance or an organic substance in contact with the support substrate to form a sealing film. .. In this case, the material for forming the film may be any material having a function of suppressing infiltration of a material that causes deterioration of the element such as moisture and oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride or the like may be used. it can.
 さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 Further, in order to improve the fragility of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of an organic material. The method for forming these films is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight. Legal, plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコーンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
In the gas phase and liquid phase, an inert gas such as nitrogen or argon or an inert liquid such as fluorinated hydrocarbon or silicone oil may be injected into the gap between the sealing member and the display region of the organic EL element. preferable. It is also possible to create a vacuum. Further, a hygroscopic compound can be enclosed inside.
Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.). , Metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchlorates (eg barium perchlorate, etc.) Magnesium perchlorate, etc.) and the like, and anhydrous salts are preferably used for sulfates, metal halides and perchlorates.
 《保護膜、保護板》
 機能層を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜又は保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
A protective film or protective plate may be provided on the outer side of the sealing film or the sealing film on the side facing the support substrate with the functional layer sandwiched in order to increase the mechanical strength of the element. In particular, when the sealing is performed by the sealing film, the mechanical strength thereof is not necessarily high, so it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, a glass plate, a polymer plate / film, a metal plate / film, etc. similar to those used for the sealing can be used, but the polymer film is lightweight and thin. Is preferably used.
 《光取り出し向上技術》
 本発明における有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極又は発光層と透明基板との間で光が全反射を起こし、光が透明電極又は発光層を導波し、結果として、光が素子側面方向に逃げるためである。
<< Technology for improving light extraction >>
The organic EL element in the present invention emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and 15% to 20% of the light generated in the light emitting layer. It is generally said that only a degree of light can be taken out. This is because light incident on the interface (intersection between the transparent substrate and air) at an angle θ equal to or greater than the critical angle causes total internal reflection and cannot be taken out of the element, and the transparent electrode or light emitting layer and the transparent substrate This is because the light is totally reflected between them, the light is waveguideed through the transparent electrode or the light emitting layer, and as a result, the light escapes toward the side surface of the element.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。 As a method for improving the efficiency of light extraction, for example, a method of forming irregularities on the surface of a transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435), the substrate A method of improving efficiency by providing light-collecting property (for example, Japanese Patent Application Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an element (for example, Japanese Patent Application Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the light emitting body and the light emitting body (for example, Japanese Patent Application Laid-Open No. 62-172691), which has a lower refractive index than the substrate between the substrate and the light emitting body. A method of introducing a flat layer having a refractive index (for example, Japanese Patent Application Laid-Open No. 2001-202827), a method of forming a diffraction lattice between layers (including, between the substrate and the outside world) of a substrate, a transparent electrode layer, or a light emitting layer (inclusive). JP-A-11-283751) and the like.
 本発明においては、これらの方法を前記有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 本発明は、これらの手段を組み合わせることにより、さらに高輝度又は耐久性に優れた素子を得ることができる。
In the present invention, these methods can be used in combination with the organic EL element, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate and a transparent electrode layer. A method of forming a diffraction grating between any layer (including between the substrate and the outside world) of the light emitting layer or the light emitting layer can be preferably used.
When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the lower the refractive index of the medium, the higher the efficiency of extracting the light emitted from the transparent electrode to the outside. Become.
In the present invention, by combining these means, it is possible to obtain an element having higher brightness or excellent durability.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
Examples of the low refractive index layer include airgel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, it is preferable that the low refractive index layer has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
Further, it is desirable that the thickness of the low refractive index medium is at least twice the wavelength in the medium. This is because the effect of the low refractive index layer diminishes when the thickness of the low refractive index medium becomes about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間又は、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、又は媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
The method of introducing the diffraction grating into the interface where total reflection occurs or any medium is characterized in that the effect of improving the light extraction efficiency is high. This method is generated from the light emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction. Of the generated light, the light that cannot go out due to total reflection between the layers is diffracted by introducing a diffraction grating in either layer or in the medium (inside the transparent substrate or in the transparent electrode). , Trying to get the light out.
It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because the light emitted by the light emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating that has a periodic refractive index distribution only in a certain direction, only the light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is improved.
The position where the diffraction grating is introduced may be either between layers or in a medium (inside a transparent substrate or in a transparent electrode), but it is desirable that the diffraction grating is introduced in the vicinity of an organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of the light in the medium. As for the arrangement of the diffraction grating, it is preferable that the arrangement is repeated two-dimensionally, such as a square lattice shape, a triangular lattice shape, and a honeycomb lattice shape.
 《集光シート》
 本発明における有機EL素子は、支持基板(基板)の光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工すること、又は、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
《Condensing sheet》
The organic EL element in the present invention is processed so as to provide a structure on a microlens array, for example, on the light extraction side of a support substrate (substrate), or by combining with a so-called condensing sheet, for example, an element By condensing light in the front direction with respect to the light emitting surface, it is possible to increase the brightness in a specific direction.
As an example of a microlens array, a quadrangular pyramid having a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably in the range of 10 to 100 μm. If it is smaller than this, the effect of diffraction is generated and it is colored, and if it is too large, the thickness becomes thick, which is not preferable.
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
As the condensing sheet, for example, a sheet that has been put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness increasing film (BEF) manufactured by Sumitomo 3M Ltd. can be used. The shape of the prism sheet may be, for example, a base material having a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 μm, or a shape having a rounded apex angle and a random change in pitch. Shape or other shape may be used.
Further, the light diffusing plate / film may be used in combination with the condensing sheet in order to control the light emission angle from the organic EL element. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《用途》
 本発明における有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
 発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明における有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェット印刷法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
《Use》
The organic EL element in the present invention can be used as a display device, a display, and various light emitting light sources.
As the light source, for example, a lighting device (household lighting, in-car lighting), a backlight for a clock or a liquid crystal, a signboard advertisement, a signal, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, light Examples thereof include, but are not limited to, a light source for a sensor, but the light source can be effectively used as a backlight for a liquid crystal display device and a light source for lighting.
If necessary, the organic EL device of the present invention may be patterned by a metal mask, an inkjet printing method, or the like at the time of film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or all the layers of the device may be patterned. In the fabrication of the device, a conventionally known method is used. Can be done.
 《照明装置の一態様≫
 本発明における有機EL素子を具備した、照明装置の一態様について説明する。
 前記有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図3、図4に示すような照明装置を形成することができる。
 図3は、照明装置の概略図を示し、本発明に係る有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図4は、照明装置の断面図を示し、図4において、符号105は陰極、符号106は有機EL層、符号107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
<< One aspect of lighting equipment >>
An aspect of the lighting device provided with the organic EL element in the present invention will be described.
The non-light emitting surface of the organic EL element is covered with a glass case, a glass substrate having a thickness of 300 μm is used as a sealing substrate, and an epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toa Synthetic Co., Ltd.) is used as a sealing material around the glass substrate. ) Is applied, this is placed on the cathode and brought into close contact with the transparent support substrate, UV light is irradiated from the glass substrate side, the curing is performed, and the sealing is performed. Can be formed.
FIG. 3 shows a schematic view of the lighting device, and the organic EL element 101 according to the present invention is covered with a glass cover 102 (note that the sealing operation with the glass cover brings the organic EL element 101 into contact with the atmosphere. The glove box was carried out in a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
FIG. 4 shows a cross-sectional view of the lighting device. In FIG. 4, reference numeral 105 indicates a cathode, reference numeral 106 indicates an organic EL layer, and reference numeral 107 indicates a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108, and a water catching agent 109 is provided.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, "%" and "parts" mean "mass%" and "parts by mass", respectively.
 以下の実施例において、OFPOは1H,1H,5H-オクタフルオロ-1-ペンタノールを示す。また、化合物B3、B4及びB5はいずれもAldrich製のものを使用している。
 また、実施例で使用した化合物B1~B10は下記のとおりである。
In the following examples, OFPO represents 1H, 1H, 5H-octafluoro-1-pentanol. Further, as the compounds B3, B4 and B5, those manufactured by Aldrich are used.
The compounds B1 to B10 used in the examples are as follows.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(1)実施例1
 実施例1では、下記に示すエレクトロンオンリーデバイス(単電荷デバイスともいう。以下、「EOD」と表記する。)を作製し、その逆電流について評価した。
(1) Example 1
In Example 1, the electron-only device shown below (also referred to as a single-charge device, hereinafter referred to as “EOD”) was produced, and its reverse current was evaluated.
<陰極用塗布液101の調製>
 1000mM硝酸銀水溶液100mLをビーカーにとった。別のビーカーに分散剤として不揮発性有機物(ディスパービック190(商品名):ビックケミー社製、40%水溶液)を3gとり、そこに純水を100g加えた。
 硝酸銀水溶液が入ったビーカーに、別ビーカーで調製したディスパービック190水溶液を27g加えた。十分に撹拌したのちトリエタノールアミンを15g加え、60℃で6時間撹拌した。その後、遠心分離精製を3回行った。得られた銀粒子に、純水を加えて合計50gとし、銀粒子が分散された金属微粒子分散液101を得た。
 得られた金属微粒子分散液101を10g用意し、当該金属微粒子分散液101に純水1.1g、2-プロパノール 2.3gを加えよく撹拌し、陰極用塗布液101を得た。この塗布液中の溶媒の比率は水0.8に対して2-プロパノール0.2となっている。
<Preparation of coating liquid 101 for cathode>
100 mL of a 1000 mM silver nitrate aqueous solution was placed in a beaker. In another beaker, 3 g of a non-volatile organic substance (Disperbic 190 (trade name): manufactured by Big Chemie, 40% aqueous solution) was taken as a dispersant, and 100 g of pure water was added thereto.
To a beaker containing an aqueous silver nitrate solution, 27 g of a Disperbic 190 aqueous solution prepared in another beaker was added. After sufficiently stirring, 15 g of triethanolamine was added, and the mixture was stirred at 60 ° C. for 6 hours. Then, centrifugation and purification were performed three times. Pure water was added to the obtained silver particles to make a total of 50 g, to obtain a metal fine particle dispersion 101 in which silver particles were dispersed.
10 g of the obtained metal fine particle dispersion 101 was prepared, 1.1 g of pure water and 2.3 g of 2-propanol were added to the metal fine particle dispersion 101 and stirred well to obtain a cathode coating liquid 101. The ratio of the solvent in this coating liquid is 2-propanol 0.2 with respect to water 0.8.
<評価用EOD1-1の作製>
 (陽極の形成)
 縦50mm、横50mm、厚さ0.7mmのガラス基板上に、ITO(インジウム・スズ酸化物)を120nmの厚さで成膜してパターニングを行い、ITO透明電極からなる陽極を形成した。その後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<Preparation of EOD1-1 for evaluation>
(Formation of anode)
ITO (indium tin oxide) was formed into a film having a thickness of 120 nm on a glass substrate having a length of 50 mm, a width of 50 mm, and a thickness of 0.7 mm to perform patterning to form an anode made of an ITO transparent electrode. Then, it was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone washed for 5 minutes.
 (ホールブロック層の形成)
 次に、形成した透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を各々素子作製に最適の量を充填した。前記蒸着用抵抗加熱ボートはタングステン製又はモリブデン製を用いた。
 真空度1×10-4Paまで減圧した後、カルシウムを成膜レート0.2nm/sにて5nmを蒸着してホールブロック層を形成した。
(Formation of hole block layer)
Next, the formed transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.
Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent materials of each layer in the optimum amount for manufacturing the device. The resistance heating boat for vapor deposition was made of tungsten or molybdenum.
After reducing the vacuum to a degree of vacuum of 1 × 10 -4 Pa, calcium was vapor-deposited at a film formation rate of 0.2 nm / s at 5 nm to form a hole block layer.
 (電子輸送層の形成)
 次に、大気環境下で、導電性材料である化合物B1(有機物)を1.3質量%の濃度でOFPOに溶解させ、750rpm、30秒でスピンコート法により、ホールブロック層を形成した基板上に120nmの厚さで化合物A1を成膜し、100℃、30分乾燥して電子輸送層を形成した。
(Formation of electron transport layer)
Next, in an atmospheric environment, compound B1 (organic substance), which is a conductive material, was dissolved in OFPO at a concentration of 1.3% by mass, and on a substrate on which a hole block layer was formed by a spin coating method at 750 rpm for 30 seconds. Compound A1 was formed in a film having a thickness of 120 nm and dried at 100 ° C. for 30 minutes to form an electron transport layer.
 (陰極の形成)
 電子輸送層まで成膜した基板に、ディスペンサーを用いて、上記陰極用塗布液101を塗布し、陰極を形成した。なお、事前に乾燥後の膜厚が200nmになるように、液量と塗布速度を調節した。塗布後、120℃の恒温槽で30分間乾燥させた。
 上記膜厚の測定は、別途用意したガラス基板上に、塗布液を塗布し、一部を剥離し、剥離した部分と膜が残った部分の段差を、ブルカー社製触針式プロファイリングシステムDektakを用いて測定した。
(Cathode formation)
The above-mentioned coating liquid 101 for a cathode was applied to a substrate having a film formed up to the electron transport layer using a dispenser to form a cathode. The amount of liquid and the coating rate were adjusted in advance so that the film thickness after drying would be 200 nm. After application, it was dried in a constant temperature bath at 120 ° C. for 30 minutes.
To measure the above film thickness, apply a coating liquid on a separately prepared glass substrate, peel off a part of the film, and use Bruker's stylus profiling system Dektak to remove the step between the peeled part and the part where the film remains. Measured using.
 (封止層の形成)
 厚さ20μmのアルミ箔と厚さ100μmのペットフィルムが積層されたフィルム(パナック社製)を酸素透過度0.001mL/(m2・24h・atm)以下、水蒸気透過度0.001g/(m2・24h)以下のガスバリアー性を有する可撓性のガスバリアーフィルムとした。このフィルムのアルミ箔の面に、封止樹脂層として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで形成した。そして、この封止樹脂層を設けたガスバリアーフィルムを、前記作製した陰極まで作製した素子に重ね合わせた。このとき、陽極及び陰極の取出し部の端部が外に出るように、ガスバリアーフィルムの封止樹脂層形成面を、有機EL素子の封止面側に連続的に重ね合わせた。
 次に、ガスバリアーフィルムを貼り合せた試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させた。
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8体積ppm以下の大気圧で行った。
 以上の工程により、評価用EOD1-1を作製した。
(Formation of sealing layer)
PET film of aluminum foil and the thickness 100μm thick 20μm was laminated film (Panac Inc.) Oxygen permeability 0.001mL / (m 2 · 24h · atm) or less, the water vapor permeability of 0.001 g / (m 2 · 24h) and a flexible gas barrier film having the gas barrier properties. A thermosetting liquid adhesive (epoxy resin) was formed as a sealing resin layer on the surface of the aluminum foil of this film to a thickness of 25 μm. Then, the gas barrier film provided with the sealing resin layer was superposed on the device produced up to the produced cathode. At this time, the sealing resin layer forming surface of the gas barrier film was continuously superposed on the sealing surface side of the organic EL element so that the ends of the anode and the ejection portion of the cathode were exposed to the outside.
Next, the sample to which the gas barrier film was attached was placed in a decompression device, pressed under a decompression condition of 0.1 MPa at 90 ° C., and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
The sealing step is based on JIS B 9920 under atmospheric pressure and a nitrogen atmosphere with a moisture content of 1 ppm or less, the measured cleanliness is class 100, the dew point temperature is -80 ° C or less, and the oxygen concentration is 0.8 volume. It was carried out at atmospheric pressure of ppm or less.
Through the above steps, evaluation EOD1-1 was prepared.
<評価用EOD1-2~1-14の作製>
 評価用EOD1-1の作製において、電子輸送層の形成で用いた化合物B1を下記表Iに記載の有機物(電極下層の有機材料)に、それぞれ変更して作製した。
 なお、化合物B3は原液を1.3質量%にOFPOで希釈して使用した。B4、B5及びA25は酢酸ノルマルブチルに1.5質量%になるよう溶解させ使用した。それ以外は同様にして、評価用EOD1-2~1-14の作製を行った。
<Preparation of EOD1-2 to 1-14 for evaluation>
In the preparation of the evaluation EOD1-1, the compound B1 used in the formation of the electron transport layer was changed to the organic matter (organic material under the electrode) shown in Table I below.
Compound B3 was used by diluting the stock solution to 1.3% by mass with OFPO. B4, B5 and A25 were dissolved in normal butyl acetate in an amount of 1.5% by mass and used. Other than that, evaluation EOD1-2 to 1-14 were prepared in the same manner.
<評価用EODの逆電流評価>
 ここで、各評価用EODの-5V時の電流密度[mA/cm2]の値の絶対値を測定した。ただし、リミット電流値を±250mA/cm2と設定している。
 表Iは、有機物(電極下層の有機材料)のガラス転移点(Tg)、有機物(電極下層の有機材料)の分子量(高分子の場合は数平均分子量)、式(1)におけるE[cal/mol]、-5V時の逆電流値の計算結果及び測定結果を示す。なお、B3のガラス転移点は0℃以下であったため、今回は0℃(273K)と見做してEの計算を行っている。
<Reverse current evaluation of evaluation EOD>
Here, the absolute value of the current density [mA / cm 2] at −5 V of each evaluation EOD was measured. However, the limit current value is set to ± 250 mA / cm 2 .
Table I shows the glass transition point (Tg) of the organic matter (organic material under the electrode), the molecular weight of the organic matter (organic material under the electrode) (number average molecular weight in the case of polymer), and E [cal / in formula (1). mol], the calculation result and the measurement result of the reverse current value at -5V are shown. Since the glass transition point of B3 was 0 ° C. or lower, E is calculated assuming that it is 0 ° C. (273K) this time.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上記結果に示されるように、Eが3300cal/mol未満となる有機物を用いたEOD(比較例)では逆電流が大量に流れており、半導体特性を有していない。また、化合物B3~B5は絶縁材料であるにも関わらず、漏電していることが分かる。念のため、EOD1-3~1-5に対して、真空蒸着法によりAg陰極を形成したものについても-5V時の逆電流評価を行った結果、いずれのEODにおいても0.01mA/cm2以下の値となっていることを確認した。また、Eが3300cal/mol以上の有機物を用いたEOD(本発明)についてはいずれも逆電流が0.2mA/cm2以下となっており、漏電を防いでいることが分かる。特に、Eが4000cal/mol以上となる有機物(本発明)を用いたEODでは逆電流値が非常に小さくなっている。 As shown in the above results, in the EOD (comparative example) using an organic substance in which E is less than 3300 cal / mol, a large amount of reverse current flows and the semiconductor property is not obtained. Further, it can be seen that the compounds B3 to B5 are leaking even though they are insulating materials. As a precaution, as a result of reverse current evaluation at -5V for EOD 1-3 to 1-5 with Ag cathode formed by vacuum deposition, 0.01 mA / cm 2 for all EODs. It was confirmed that the values were as follows. Further, for EOD (the present invention) using an organic substance having an E of 3300 cal / mol or more, the reverse current is 0.2 mA / cm 2 or less, which shows that electric leakage is prevented. In particular, the reverse current value is very small in EOD using an organic substance (the present invention) in which E is 4000 cal / mol or more.
[実施例2]
 実施例2では、下記に示す有機EL素子を作製し、その逆電流値について評価した。
[Example 2]
In Example 2, the organic EL device shown below was produced, and its reverse current value was evaluated.
 <評価用有機EL素子2-1の作製>
 以下のように、基材上に、陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極を積層した後封止し、ボトムエミッション型の有機EL素子2-1を作製した。
<Manufacturing of organic EL element 2-1 for evaluation>
As shown below, the anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode are laminated on the substrate and then sealed, and the bottom emission type organic EL element 2- 1 was produced.
 (基材の準備)
 まず、ポリエチレンナフタレートフィルム(帝人デュポン社製、以下、PENと略記する。)の陽極を形成する側の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOxからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m2・24h・atom)以下、水蒸気透過度0.001g/(m2・24h)以下のガスバリアー性を有する可撓性の基材を作製した。
(Preparation of base material)
First, an atmospheric pressure plasma discharge treatment apparatus having the configuration described in JP-A-2004-68143 is used on the entire surface of the polyethylene naphthalate film (manufactured by Teijin DuPont, hereinafter abbreviated as PEN) on the side where the anode is formed. Therefore, an inorganic gas barrier layer made of SiO x was formed so as to have a layer thickness of 500 nm. Accordingly, the oxygen permeability of 0.001mL / (m 2 · 24h · atom) or less, to produce a water vapor permeability of 0.001g / (m 2 · 24h) flexible substrate having the gas barrier properties.
 (陽極の形成)
 上記基材上に厚さ120nmのITO(インジウム・スズ酸化物)をスパッタ法により製膜し、フォトリソグラフィー法によりパターニングを行い、陽極を形成した。なお、パターンは発光領域の面積が5cm×5cmになるようなパターンとした。
(Formation of anode)
An ITO (indium tin oxide) having a thickness of 120 nm was formed on the base material by a sputtering method and patterned by a photolithography method to form an anode. The pattern was set so that the area of the light emitting region was 5 cm × 5 cm.
 (正孔注入層の形成)
 陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン処理を5分間行った。そして、陽極を形成した基材上に、特許第4509787号公報の実施例16と同様に調製したポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)の分散液をイソプロピルアルコールで希釈した2質量%溶液をインクジェット法にて塗布、80℃で5分乾燥し、層厚40nmの正孔注入層を形成した。
(Formation of hole injection layer)
The base material on which the anode was formed was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and treated with UV ozone for 5 minutes. Then, on the base material on which the anode is formed, a dispersion of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT / PSS) prepared in the same manner as in Example 16 of Japanese Patent No. 4509787 is isopropyl alcohol. The 2% by mass solution diluted with (1) was applied by an inkjet method and dried at 80 ° C. for 5 minutes to form a hole injection layer having a layer thickness of 40 nm.
 (正孔輸送層の形成)
 次に、正孔注入層を形成した基材を、大気環境下で、下記組成の正孔輸送層形成用塗布液を用いて、インクジェット法にて塗布、130℃で30分乾燥し、層厚30nmの正孔輸送層を形成した。
(Formation of hole transport layer)
Next, the base material on which the hole injection layer was formed was coated by an inkjet method using a coating solution for forming a hole transport layer having the following composition in an atmospheric environment, dried at 130 ° C. for 30 minutes, and layered to a thickness. A hole transport layer of 30 nm was formed.
 (正孔輸送層形成用塗布液)
 正孔輸送材料(重量平均分子量Mw=80000)(化合物A35)
                          10質量部
 クロロベンゼン                3000質量部
(Coating liquid for forming hole transport layer)
Hole transport material (weight average molecular weight Mw = 80000) (Compound A35)
10 parts by mass Chlorobenzene 3000 parts by mass
 (発光層の形成)
 次に、正孔輸送層を形成した基材を、下記組成の発光層形成用塗布液を用い、インクジェット法にて塗布し、120℃で30分間乾燥し、層厚50nmの発光層を形成した。
(Formation of light emitting layer)
Next, the base material on which the hole transport layer was formed was applied by an inkjet method using a coating liquid for forming a light emitting layer having the following composition, and dried at 120 ° C. for 30 minutes to form a light emitting layer having a layer thickness of 50 nm. ..
 (発光層形成用塗布液)
 ホスト化合物(化合物B7)            10質量部
 リン光発光材料(化合物B8)            1質量部
 蛍光発光材料(化合物B9)           0.1質量部
 酢酸ノルマルブチル              2200質量部
(Coating liquid for forming a light emitting layer)
Host compound (Compound B7) 10 parts by mass Phosphorescent material (Compound B8) 1 part by mass Fluorescent material (Compound B9) 0.1 parts by mass Normal butyl acetate 2200 parts by mass
 (電子輸送層の形成)
 次に、下記組成の電子輸送層形成用塗布液を用い、インクジェット法にて塗布し、80℃で30分間乾燥し、層厚30nmの電子輸送層を形成した。
(Formation of electron transport layer)
Next, using a coating liquid for forming an electron transport layer having the following composition, the coating liquid was applied by an inkjet method and dried at 80 ° C. for 30 minutes to form an electron transport layer having a layer thickness of 30 nm.
 (電子輸送層形成用塗布液)
 電子輸送材料(有機物)(化合物B1)        6質量部
 OFPO                   2000質量部
(Coating liquid for forming electron transport layer)
Electron transport material (organic matter) (Compound B1) 6 parts by mass OFPO 2000 parts by mass
 (陰極の形成)
 電子輸送層まで成膜した基板に、ディスペンサーを用いて、上記陰極用塗布液101を塗布し、陰極を形成した。なお、事前に乾燥後の膜厚が200nmになるように、液量と塗布速度を調節した。塗布後、120℃の恒温槽で30分間乾燥させた。
 上記膜厚の測定は、別途用意したガラス基板上に、塗布液を塗布し、一部を剥離し、剥離した部分と膜が残った部分の段差を、ブルカー社製触針式プロファイリングシステムDektakを用いて測定した。
(Cathode formation)
The above-mentioned coating liquid 101 for a cathode was applied to a substrate having a film formed up to the electron transport layer using a dispenser to form a cathode. The amount of liquid and the coating rate were adjusted in advance so that the film thickness after drying would be 200 nm. After application, it was dried in a constant temperature bath at 120 ° C. for 30 minutes.
To measure the above film thickness, apply a coating liquid on a separately prepared glass substrate, peel off a part of the film, and use Bruker's stylus profiling system Dektak to remove the step between the peeled part and the part where the film remains. Measured using.
 (封止)
 以上の工程により形成した積層体に対し、市販のロールラミネート装置を用いて封止基材を接着した。
 封止基材として、可撓性を有する厚さ30μmのアルミニウム箔(東洋アルミニウム(株)製)に、ドライラミネーション用の2液反応型のウレタン系接着剤を用いて層厚1.5μmの接着剤層を設け、厚さ12μmのポリエチレンテレフタレート(PET)フィルムをラミネートしたものを作製した。
 封止用接着剤として熱硬化性接着剤を、ディスペンサーを使用して封止基材のアルミニウム箔の接着面(つや面)に沿って厚さ20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。更に、その封止基材を露点温度-80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動して、12時間以上乾燥させ、封止用接着剤の含水率が100ppm以下となるように調整した。
 熱硬化性接着剤としては下記の(A)~(C)を混合したエポキシ系接着剤を用いた。
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 上記封止基材を上記積層体に対して密着・配置して、圧着ロールを用いて、圧着ロール温度100℃、圧力0.5MPa、装置速度0.3m/minの圧着条件で密着封止した。
 以上のようにして、評価用有機EL素子2-1を作製した。
(Sealing)
A sealing base material was adhered to the laminate formed by the above steps using a commercially available roll laminating apparatus.
As a sealing base material, a flexible aluminum foil (manufactured by Toyo Aluminum K.K. Co., Ltd.) with a thickness of 30 μm is bonded to a layer thickness of 1.5 μm using a two-component reaction type urethane adhesive for dry lamination. An agent layer was provided, and a 12 μm-thick polyethylene terephthalate (PET) film was laminated.
As the sealing adhesive, a thermosetting adhesive was uniformly applied to a thickness of 20 μm along the adhesive surface (glossy surface) of the aluminum foil of the sealing base material using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Further, the sealing base material is moved to a nitrogen atmosphere having a dew point temperature of -80 ° C or less and an oxygen concentration of 0.8 ppm and dried for 12 hours or more so that the water content of the sealing adhesive is 100 ppm or less. It was adjusted.
As the thermosetting adhesive, an epoxy-based adhesive in which the following (A) to (C) were mixed was used.
(A) Bisphenol A Diglycidyl Ether (DGEBA)
(B) Dicyanodiamide (DICY)
(C) Epoxy adduct-based curing accelerator The sealing base material is adhered to and arranged on the laminated body, and a crimping roll is used, the crimping roll temperature is 100 ° C., the pressure is 0.5 MPa, and the device speed is 0.3 m / It was tightly sealed under the crimping condition of min.
As described above, the evaluation organic EL element 2-1 was manufactured.
<評価用有機EL素子2-2~2-9の作製>
 前記評価用有機EL素子2-1の作製において、前記電子輸送層の形成で用いた化合物B1を下記表IIに記載の有機物(電極下層の有機材料)に、それぞれ変更した以外は同様にして評価用有機EL素子2-2~2-9を作製した。
<Manufacturing of organic EL elements 2-2 to 2-9 for evaluation>
In the production of the organic EL element 2-1 for evaluation, the compound B1 used in the formation of the electron transport layer was evaluated in the same manner except that the compound B1 was changed to the organic matter (organic material under the electrode) shown in Table II below. Organic EL elements 2-2 to 2-9 for use were manufactured.
<評価用有機EL素子の逆電流評価>
 ここで、各評価用有機EL素子の-5V時の電流密度[mA/cm2]の値の絶対値を測定した。ただし、リミット電流値を±250mA/cm2と設定している。
 表IIは有機物(電極下層の有機材料)のガラス転移点(Tg)、有機物(電極下層の有機材料)の分子量(高分子の場合は数平均分子量)、式(1)におけるE[cal/mol]、-5V時の逆電流値の計算結果及び測定結果を示す。
<Reverse current evaluation of organic EL element for evaluation>
Here, the absolute value of the current density [mA / cm 2 ] at −5 V of each evaluation organic EL element was measured. However, the limit current value is set to ± 250 mA / cm 2 .
Table II shows the glass transition point (Tg) of the organic matter (organic material under the electrode), the molecular weight of the organic matter (organic material under the electrode) (number average molecular weight in the case of polymer), and E [cal / mol] in the formula (1). ], The calculation result and the measurement result of the reverse current value at -5V are shown.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 上記結果に示されるように、Eが3300cal/mol未満となる有機物を用いた有機EL素子(比較例)では逆電流が大量に流れており、半導体特性を有していない。一方で、Eが3300cal/mol以上となる有機物を用いた有機EL素子(本発明)では、急激にデバイスが半導体特性を有するようになり、逆電流値がいずれも0.2mA/cm2以下となっている。特に、Eが4000cal/mol以上となる有機物(本発明)を用いた有機EL素子では逆電流値が非常に小さくなっている。 As shown in the above results, an organic EL device (comparative example) using an organic substance having an E of less than 3300 cal / mol has a large amount of reverse current flowing and does not have semiconductor characteristics. On the other hand, in the organic EL device (invention) using an organic substance having E of 3300 cal / mol or more, the device suddenly has semiconductor characteristics, and the reverse current value is 0.2 mA / cm 2 or less in each case. It has become. In particular, the reverse current value is very small in an organic EL device using an organic substance (the present invention) in which E is 4000 cal / mol or more.
(3)実施例3
 実施例3では、下記に示すホールオンリーデバイス(以下、「HOD」と表記する。)を作製し、その逆電流値について評価した。
(3) Example 3
In Example 3, a hole-only device (hereinafter referred to as “HOD”) shown below was produced, and its reverse current value was evaluated.
<評価用HOD3-1の作製>
 (陽極の形成)
 評価用EOD1-1と同様の手順で陽極の形成を行った。
<Preparation of HOD3-1 for evaluation>
(Formation of anode)
The anode was formed in the same procedure as the evaluation EOD1-1.
 (正孔注入層の形成)
 前記で形成した透明基板上に、大気環境下で、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
(Formation of hole injection layer)
Poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) diluted to 70% with pure water on the transparent substrate formed above in an air environment. The solution was formed into a film by a spin coating method at 3000 rpm for 30 seconds, and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a film thickness of 30 nm.
 (正孔輸送層の形成)
 次に、大気環境下で、ジクロロベンゼンに化合物B10を1.5質量%の濃度で溶解させ、1000rpm、30秒でスピンコート法により、120nmの厚さで化合物B10を成膜し、100℃、30分乾燥して正孔輸送層を形成した。
(Formation of hole transport layer)
Next, in an air environment, compound B10 was dissolved in dichlorobenzene at a concentration of 1.5% by mass, and compound B10 was formed to a thickness of 120 nm by a spin coating method at 1000 rpm for 30 seconds at 100 ° C. It was dried for 30 minutes to form a hole transport layer.
 (陰極の形成)
 評価用EOD1-1と同様の手順で陰極の形成を行った。
(Cathode formation)
The cathode was formed in the same procedure as the evaluation EOD1-1.
 (封止)
 評価用EOD1-1と同様の手順で封止を行った。
(Sealing)
Sealing was performed in the same procedure as for evaluation EOD1-1.
<評価用HOD3-2~3-10の作製>
 評価用HOD3-1の作製において、機能層の形成で用いた化合物B10を表IIIに記載の化合物に変更した以外は同様にして評価用EOD3-2~3-10を作製した。
<Preparation of HOD3-2 to 3-10 for evaluation>
In the preparation of the evaluation HOD3-1, the evaluation EODs 3-2 to 3-10 were prepared in the same manner except that the compound B10 used for forming the functional layer was changed to the compound shown in Table III.
<評価用HODの逆電流評価>
 ここで、各評価用HODの-5V時の電流密度[mA/cm2]の値の絶対値を測定した。ただし、リミット電流値を±250mA/cm2と設定している。
 表IIIは有機物(電極下層の有機材料)のガラス転移点(Tg)、有機物(電極下層の有機材料)の分子量(高分子の場合は数平均分子量)、式(1)におけるE[cal/mol]、-5V時の逆電流値の計算結果及び測定結果を示す。
<Reverse current evaluation of HOD for evaluation>
Here, the absolute value of the current density [mA / cm 2] at −5 V of each evaluation HOD was measured. However, the limit current value is set to ± 250 mA / cm 2 .
Table III shows the glass transition point (Tg) of the organic matter (organic material under the electrode), the molecular weight of the organic matter (organic material under the electrode) (number average molecular weight in the case of polymer), and E [cal / mol] in the formula (1). ], The calculation result and the measurement result of the reverse current value at -5V are shown.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記結果に示されるように、Eが3300cal/mol未満となる有機物を用いたHOD(比較例)では逆電流が大量に流れており、半導体特性を有していない。一方で、Eが3300cal/mol以上となる有機物を用いたHOD(本発明)では、急激にデバイスが半導体特性を有するようになり、逆電流値がいずれも0.2mA/cm2以下となっている。特に、Eが4000cal/mol以上となる有機物(本発明)を用いたHODでは逆電流値が非常に小さくなっている。 As shown in the above results, in HOD (comparative example) using an organic substance having E of less than 3300 cal / mol, a large amount of reverse current flows and the semiconductor property is not obtained. On the other hand, in HOD (the present invention) using an organic substance having E of 3300 cal / mol or more, the device suddenly has semiconductor characteristics, and the reverse current value is 0.2 mA / cm 2 or less in each case. There is. In particular, the reverse current value is very small in HOD using an organic substance (the present invention) in which E is 4000 cal / mol or more.
 本発明は、架橋を用いずに成膜した有機膜上に、電極を塗布成膜しても漏電異常を発生させない有機エレクトロルミネッセンス素子に利用することができる。 The present invention can be used for an organic electroluminescence element that does not cause an electric leakage abnormality even when an electrode is applied and formed on an organic film formed without using cross-linking.
1、101 有機EL素子
2 基材
30、100 インクジェットヘッド
31、39 ポンプ
32 フィルター
33 配管分岐
34 廃液タンク
35 制御部
36、37、38A、38B タンク
56 筐体
57 キャップ受板
59 カバー部材
61 ノズルプレート
62 キャップ受板取り付け部
68 取り付け用孔
71 ノズル用開口部
81a 第1ジョイト
81b 第2ジョイント
82 第3ジョイント102 ガラスカバー
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
1, 101 Organic EL element 2 Base material 30, 100 Inkjet head 31, 39 Pump 32 Filter 33 Piping branch 34 Waste liquid tank 35 Control unit 36, 37, 38A, 38B Tank 56 Housing 57 Cap receiving plate 59 Cover member 61 Nozzle plate 62 Cap receiving plate mounting part 68 Mounting hole 71 Nozzle opening 81a 1st join 81b 2nd joint 82 3rd joint 102 Glass cover 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with transparent electrode 108 Nitrogen gas 109 Water catching agent

Claims (5)

  1.  基材、電極1、機能層及び電極2をこの順に備えた有機エレクトロルミネッセンス素子であって、
     前記機能層が、単層又は複数の層で構成され、
     前記機能層のうち前記電極2と接する層が、有機膜からなり、当該有機膜に含有される有機物が架橋されておらず、
     前記有機物のガラス転移点と分子量より規定される下記式(1)から導き出されるEが3300cal/mol以上であり、かつ、
     前記電極2が塗布膜である有機エレクトロルミネッセンス素子。
     式(1):E=0.5×R×Tg×ln(M)
    〔式中、R[cal/K・mol]は気体定数、Tgは前記有機物のガラス転移点[K]、Mは前記有機物の分子量(前記有機物が高分子の場合は数平均分子量)を表す。〕
    An organic electroluminescence device including a base material, an electrode 1, a functional layer, and an electrode 2 in this order.
    The functional layer is composed of a single layer or a plurality of layers.
    Of the functional layers, the layer in contact with the electrode 2 is made of an organic film, and the organic substances contained in the organic film are not crosslinked.
    E derived from the following formula (1) defined by the glass transition point and molecular weight of the organic substance is 3300 cal / mol or more, and
    An organic electroluminescence device in which the electrode 2 is a coating film.
    Equation (1): E = 0.5 × R × Tg × ln (M)
    [In the formula, R [cal / K · mol] represents the gas constant, Tg represents the glass transition point [K] of the organic substance, and M represents the molecular weight of the organic substance (when the organic substance is a polymer, the number average molecular weight). ]
  2.  前記式(1)において、前記Eが、4000cal/mol以上である請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein in the formula (1), the E is 4000 cal / mol or more.
  3.  前記式(1)において、前記有機物のガラス転移点(Tg)が、470K以上である請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1 or 2, wherein the glass transition point (Tg) of the organic substance in the formula (1) is 470 K or more.
  4.  前記式(1)において、前記有機物の分子量(M)が、40000以上である請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 3, wherein in the formula (1), the molecular weight (M) of the organic substance is 40,000 or more.
  5.  前記式(1)において、前記有機物の分子量(M)が、90000以上である請求項4に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 4, wherein in the formula (1), the molecular weight (M) of the organic substance is 90,000 or more.
PCT/JP2020/031573 2019-09-27 2020-08-21 Organic electroluminescent element WO2021059813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548434A JPWO2021059813A1 (en) 2019-09-27 2020-08-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-176460 2019-09-27
JP2019176460 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059813A1 true WO2021059813A1 (en) 2021-04-01

Family

ID=75166049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031573 WO2021059813A1 (en) 2019-09-27 2020-08-21 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2021059813A1 (en)
WO (1) WO2021059813A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033845A (en) * 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd Laminate structure, polymer, electroluminescent element, and photoelectric conversion element
JP2017084721A (en) * 2015-10-30 2017-05-18 住友化学株式会社 Method of manufacturing organic el element
JP2018104674A (en) * 2016-12-27 2018-07-05 三星電子株式会社Samsung Electronics Co.,Ltd. Polymer compound, composition, liquid composition, thin film, electroluminescent element material and electroluminescent element
JP2018184603A (en) * 2012-12-24 2018-11-22 ケンブリッジ ディスプレイ テクノロジー リミテッド Polymer and device
JP2019019326A (en) * 2017-07-19 2019-02-07 東ソー株式会社 Conjugated polymer compound, and use therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033845A (en) * 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd Laminate structure, polymer, electroluminescent element, and photoelectric conversion element
JP2018184603A (en) * 2012-12-24 2018-11-22 ケンブリッジ ディスプレイ テクノロジー リミテッド Polymer and device
JP2017084721A (en) * 2015-10-30 2017-05-18 住友化学株式会社 Method of manufacturing organic el element
JP2018104674A (en) * 2016-12-27 2018-07-05 三星電子株式会社Samsung Electronics Co.,Ltd. Polymer compound, composition, liquid composition, thin film, electroluminescent element material and electroluminescent element
JP2019019326A (en) * 2017-07-19 2019-02-07 東ソー株式会社 Conjugated polymer compound, and use therefor

Also Published As

Publication number Publication date
JPWO2021059813A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US11910628B2 (en) Luminescent film, organic electroluminescent element, organic material composition and method for producing organic electroluminescent element
JP6307993B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
KR20180132129A (en) Materials for Organic Electroluminescence Devices, Organic Electroluminescence Devices, Display Devices and Lighting Devices
KR20170021300A (en) Organic electroluminescent element display device lighting device -conjugated compound and light-emitting thin film
KR20170082447A (en) Organic electroluminescent element, method for manufacturing the same, display device, and lighting device
JP2016225498A (en) Organic electroluminescent element
US9843008B2 (en) Organic electroluminescent element and electronic device
JP5181920B2 (en) Method for manufacturing organic electroluminescence element
JP6197404B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
JP6755261B2 (en) Organic electroluminescence element material, organic electroluminescence element, display device and lighting device
JP6838268B2 (en) Light conversion material, light conversion film, and light emitting element
WO2021059813A1 (en) Organic electroluminescent element
JP6941160B2 (en) Manufacturing method of organic electroluminescence device and organic electroluminescence device
WO2015125533A1 (en) Luminescent thin film laminate, method for producing luminescent thin film laminate, organic electroluminescent element and method for manufacturing organic electroluminescent element
JP6996869B2 (en) Organic electroluminescence element
JP5472107B2 (en) Method for manufacturing organic electroluminescent element
JPWO2019146396A1 (en) Luminescent thin film, luminescent laminated film, organic electroluminescence device, and its manufacturing method
JP7351310B2 (en) Mixed composition for organic electroluminescent devices
JP7334577B2 (en) Method for producing organic electroluminescence element
JP7416079B2 (en) Method for manufacturing organic electroluminescent device and organic electroluminescent device
JP7196926B2 (en) Mixed composition for organic electroluminescence device
JP7476786B2 (en) Organic electroluminescence element, its manufacturing method, display device and lighting device
JP7060490B2 (en) Solutions for making nonionic organic electronics materials, electronic devices, organic electroluminescent devices and organic electroluminescent devices
JP7404878B2 (en) Organic electroluminescent device and its manufacturing method
WO2021106366A1 (en) Organic electroluminescence element and light-emitting film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868900

Country of ref document: EP

Kind code of ref document: A1