JP5577012B2 - Multilayer substrate and manufacturing method thereof - Google Patents

Multilayer substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5577012B2
JP5577012B2 JP2007121987A JP2007121987A JP5577012B2 JP 5577012 B2 JP5577012 B2 JP 5577012B2 JP 2007121987 A JP2007121987 A JP 2007121987A JP 2007121987 A JP2007121987 A JP 2007121987A JP 5577012 B2 JP5577012 B2 JP 5577012B2
Authority
JP
Japan
Prior art keywords
substrate
embedded
electrode
organic
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007121987A
Other languages
Japanese (ja)
Other versions
JP2008277202A (en
Inventor
涼史 三嶋
勉 森本
修 稲木
玄介 小泉
伸仁 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007121987A priority Critical patent/JP5577012B2/en
Priority to PCT/JP2008/058267 priority patent/WO2008139934A1/en
Publication of JP2008277202A publication Critical patent/JP2008277202A/en
Application granted granted Critical
Publication of JP5577012B2 publication Critical patent/JP5577012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Description

本発明は、表示装置または照明装置に使用される低抵抗透明電極を有する多層基板およびその製造方法に関する。   The present invention relates to a multilayer substrate having a low-resistance transparent electrode used for a display device or a lighting device, and a method for manufacturing the same.

有機EL素子を光源とする面光源照明装置には透明電極が必要であり、一般的には透明電極としてITO透明電極が利用されている。   A surface light source illumination device using an organic EL element as a light source requires a transparent electrode, and an ITO transparent electrode is generally used as the transparent electrode.

ITO透明電極を使用する場合、ITOは電気抵抗の値が銅等の金属に比較して大きいために、大面積のITO透明電極を作成すると、ITO透明電極内で相当の電圧降下が生じてしまう。この電圧降下は面光源における輝度分布にバラツキを生じさせたり、熱を発生させたりし、結果として、有機EL素子の面光源としての寿命特性に大きな影響を与える。   When using an ITO transparent electrode, since ITO has a larger electrical resistance value than metals such as copper, if a large area ITO transparent electrode is created, a considerable voltage drop occurs within the ITO transparent electrode. . This voltage drop causes variations in the luminance distribution in the surface light source or generates heat, and as a result, the life characteristics of the organic EL element as the surface light source are greatly affected.

同様の問題は、液晶表示装置の透明電極にITO透明電極を使用する場合にも生じており、ITO透明電極の配線抵抗を低減するために、ITO透明電極に低抵抗の埋め込み補助電極を接触させる方法が文献1に開示されている。
特開2000−47235
The same problem occurs when an ITO transparent electrode is used as the transparent electrode of the liquid crystal display device. In order to reduce the wiring resistance of the ITO transparent electrode, a low resistance embedded auxiliary electrode is brought into contact with the ITO transparent electrode. A method is disclosed in Document 1.
JP 2000-47235 A

しかしながら、文献1に開示されている方法は、エッチング工程を使用して補助電極を埋め込むものであり、製造コストの低減が困難であった。
また、一般的に補助電極は透明ではないために、補助電極を設置することにより光をさえぎってしまうという問題もある。
However, the method disclosed in Document 1 embeds the auxiliary electrode using an etching process, and it is difficult to reduce the manufacturing cost.
In addition, since the auxiliary electrode is generally not transparent, there is a problem that light is blocked by installing the auxiliary electrode.

そこで、本発明は、エッチング工程を使用せずに、低抵抗の埋め込み電極を形成し、低抵抗の埋め込み電極をITO透明電極に接触させて、ITO透明電極の配線抵抗を低減させるとともに、多層基板を通過する光を増大する機能を有する多層基板及び多層基板の製造方法を提供することを目的とする。   Accordingly, the present invention forms a low-resistance embedded electrode without using an etching process, and contacts the ITO transparent electrode with the low-resistance embedded electrode to reduce the wiring resistance of the ITO transparent electrode, and to provide a multilayer substrate. It is an object to provide a multilayer substrate having a function of increasing light passing through the substrate and a method for manufacturing the multilayer substrate.

請求項1に記載の発明は第1基板と、第2基板と、埋め込み電極と、透明電極と、を有する多層基板であって、
前記埋め込み電極の材料は導電性材料であり、
前記第2基板は前記第1基板の上に積層され、
前記埋め込み電極は前記第2基板に表面を露出する状態で埋め込まれ、
前記透明電極は前記埋め込み電極が埋め込まれた第2基板の上に積層され、
前記埋め込み電極と前記透明電極とは電気的に接触していることを特徴とする。
The invention described in claim 1 is a multilayer substrate having a first substrate, a second substrate, a buried electrode, and a transparent electrode,
The material of the embedded electrode is a conductive material,
The second substrate is laminated on the first substrate;
The embedded electrode is embedded in the second substrate with its surface exposed;
The transparent electrode is stacked on a second substrate in which the embedded electrode is embedded,
The embedded electrode and the transparent electrode are in electrical contact.

請求項2に記載の発明は請求項1に記載の多層基板に係り、
前記第2基板の材料は有機無機ハイブリッド材料であり、
前記埋め込み電極はナノインプリント技術を用いた製造方法であって、前記第2基板の材料である有機無機ハイブリッド材料を第1基板に塗布するステップと、
前記有機無機ハイブリッド材料に微細な凹凸部を有する金型を、圧着し、加熱するステップと、
前記金型を前記有機無機ハイブリッド材料から離型して、前記有機無機ハイブリッド材料に凹部を形成するステップと、
前記凹部に導電性材料を埋め込みながら、前記有機無機ハイブリッド材料よりなる前記第2基板の表面に導電性材料を積層するステップと、
前記積層された導電性材料の表面を研磨して、前記凹部に埋め込まれた導電性材料のみを残して、他の前記積層された導電性材料を削り取って、表面を平坦化するステップと、を有する製造方法によって形成されることを特徴とする。
The invention according to claim 2 relates to the multilayer substrate according to claim 1,
The material of the second substrate is an organic-inorganic hybrid material,
The embedded electrode is a manufacturing method using nanoimprint technology, and an organic-inorganic hybrid material that is a material of the second substrate is applied to the first substrate;
Crimping and heating a mold having fine irregularities on the organic-inorganic hybrid material; and
Releasing the mold from the organic-inorganic hybrid material to form a recess in the organic-inorganic hybrid material;
Laminating a conductive material on the surface of the second substrate made of the organic-inorganic hybrid material while embedding a conductive material in the recess;
Polishing the surface of the laminated conductive material, leaving only the conductive material embedded in the recess, scraping off the other laminated conductive material, and flattening the surface; It is formed by the manufacturing method which has.

請求項3に記載の発明は請求項1または2に記載の多層基板に係り、
前記第2基板は、屈折率が調整されていることを特徴とする。
The invention according to claim 3 relates to the multilayer substrate according to claim 1 or 2,
The second substrate has a refractive index adjusted.

請求項4に記載の発明は請求項1乃至3のいずれかに記載の多層基板に係り、
前記埋め込み電極が埋め込まれている溝の側面を前記側面の法線が前記第1基板側に向くように構成することにより、透明電極側から第2基板に向かって入射した光を前記埋め込み電極の側面で、第1基板を通過し易い方向に反射させることを特徴とする。
Invention of Claim 4 is related with the multilayer substrate in any one of Claim 1 thru | or 3,
By configuring the side surface of the groove in which the embedded electrode is embedded so that the normal of the side surface is directed to the first substrate side, light incident from the transparent electrode side toward the second substrate is transmitted to the embedded electrode. The side surface is reflected in a direction that easily passes through the first substrate.

請求項5に記載の発明は有機EL素子であって、
請求項1乃至4のいずれかに記載の多層基板を有することを特徴とする。
The invention according to claim 5 is an organic EL element,
A multilayer substrate according to any one of claims 1 to 4 is provided.

請求項6に記載の発明は有機EL素子を光源とする照明装置であって、
請求項1乃至4のいずれかに記載の多層基板を有することを特徴とする。
Invention of Claim 6 is an illuminating device which uses an organic EL element as a light source,
A multilayer substrate according to any one of claims 1 to 4 is provided.

請求項7に記載の発明は第1基板と、第2基板と、埋め込み電極と、透明電極と、を有する多層基板の製造方法であって、
前記第2基板の材料は有機無機ハイブリッド材料であり、
前記第2基板の材料である有機無機ハイブリッド材料を第1基板に塗布するステップと
前記有機無機ハイブリッド材料に微細な凹凸部を有する金型を、圧着し、加熱するステップと、
前記金型を前記有機無機ハイブリッド材料から離型して、前記有機無機ハイブリッド材料に凹部を形成するステップと、
前記凹部に導電性材料を埋め込みながら、前記有機無機ハイブリッド材料よりなる前記第2基板の表面に導電性材料を積層するステップと、
前記積層された導電性材料の表面を研磨して、前記凹部に埋め込まれた導電性材料のみを残して、他の前記積層された導電性材料を削り取って、表面を平坦化するステップと、を有することを特徴とする。
The invention according to claim 7 is a method of manufacturing a multilayer substrate having a first substrate, a second substrate, a buried electrode, and a transparent electrode,
The material of the second substrate is an organic-inorganic hybrid material,
Applying an organic-inorganic hybrid material, which is a material of the second substrate, to the first substrate, pressing a mold having fine irregularities on the organic-inorganic hybrid material, and heating;
Releasing the mold from the organic-inorganic hybrid material to form a recess in the organic-inorganic hybrid material;
Laminating a conductive material on the surface of the second substrate made of the organic-inorganic hybrid material while embedding a conductive material in the recess;
Polishing the surface of the laminated conductive material, leaving only the conductive material embedded in the recess, scraping off the other laminated conductive material, and flattening the surface; It is characterized by having.

請求項8に記載の発明は請求項7に記載の多層基板の製造方法に係り、
前記微細な凹凸部を有する金型の凸部の形状を台形にすることにより、埋め込み電極の側面の法線が第1基板側に向くことを特徴とする。
The invention according to claim 8 relates to a method for manufacturing the multilayer substrate according to claim 7,
The normal of the side surface of the embedded electrode is directed to the first substrate side by making the shape of the convex portion of the mold having the fine concavo-convex portion trapezoidal.

本発明による多層配線基板によれば、透明電極の配線抵抗の値を小さくすることができる。その結果、この透明電極を使用した有機EL素子面光源において、配線抵抗による発熱および発光の輝度むらを低減できる。また、従来の多層配線基板の場合より、ITO透明電極の配線抵抗を下げるために必要な埋め込み電極の製造コストを低減できる。 According to the multilayer wiring board of the present invention, the wiring resistance value of the transparent electrode can be reduced. As a result, in the organic EL element surface light source using this transparent electrode, it is possible to reduce heat generation due to wiring resistance and uneven luminance of light emission. Moreover, the manufacturing cost of the embedded electrode necessary for reducing the wiring resistance of the ITO transparent electrode can be reduced as compared with the case of the conventional multilayer wiring board.

また、埋め込み電極をインプリント法を利用して形成することにより、埋め込み電極の長手方向の側面の法線を第1基板側に向かせ、透明電極から第2基板に入射した光が埋め込み電極の側面に入射して、反射し、第1基板に入射する入射角を小さくすることが可能となる。その結果、第2基板と第1基板の境界面において、第1基板に入射する光の量を増大させ、該多層基板側から光を取り出す場合に、光を外に取り出す効率を向上させることができる。   Further, by forming the embedded electrode using the imprint method, the normal of the side surface in the longitudinal direction of the embedded electrode is directed to the first substrate side, and light incident on the second substrate from the transparent electrode is transmitted to the embedded electrode. The incident angle that is incident on the side surface, reflected, and incident on the first substrate can be reduced. As a result, at the boundary surface between the second substrate and the first substrate, the amount of light incident on the first substrate is increased, and when light is extracted from the multilayer substrate side, the light extraction efficiency can be improved. it can.

以下、図を参照しつつ、発明を実施するための最良の形態につき説明する。   Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings.

図1は本発明の実施の形態に係る多層基板の断面図である。
図1において、101は第1基板であり、102は第2基板であり、103は埋め込み電極であり、104は透明電極である。
FIG. 1 is a cross-sectional view of a multilayer substrate according to an embodiment of the present invention.
In FIG. 1, 101 is a first substrate, 102 is a second substrate, 103 is a buried electrode, and 104 is a transparent electrode.

第1基板101はガラス基板である。また、第2基板102は有機無機ハイブリッド材料からなる基板であり、その成分を調整することによって、屈折率を調整することができる。また、埋め込み電極103は導電性材料からなる。導電性材料としては、例えば、銀(Ag)を含有する導電性ペーストを使用する。透明電極104はITO透明電極であり、埋め込み電極103と電気的に接触している。   The first substrate 101 is a glass substrate. The second substrate 102 is a substrate made of an organic-inorganic hybrid material, and the refractive index can be adjusted by adjusting its components. The embedded electrode 103 is made of a conductive material. As the conductive material, for example, a conductive paste containing silver (Ag) is used. The transparent electrode 104 is an ITO transparent electrode and is in electrical contact with the embedded electrode 103.

図5は図1の多層基板を透明電極側から視た平面図である。
図5において、103は埋め込み電極であり、第2基板の中をストライプ状に設置されている。埋め込み電極103は、その上に積層されているITO透明電極と電気的に接触している。その結果、ITO透明電極が相当に大面積になっても、配線抵抗は小さなものとなる。
したがって、配線抵抗による電圧効果や、発熱を低減させることができ、該多層基板を有機EL素子に利用した場合に、従来の多層基板において生じていた輝度ムラの発生を防止できる。なお、図1は本発明の実施の形態に係る多層基板の構造を説明するための図であり、図上の大きさは、実際のサイズとは一致しない。
図3は図1を第1基板101、第2基板102、埋め込み電極103及び透明電極104のサイズを実際のサイズに接近させた断面図である。
FIG. 5 is a plan view of the multilayer substrate of FIG. 1 viewed from the transparent electrode side.
In FIG. 5, reference numeral 103 denotes a buried electrode, which is arranged in a stripe shape in the second substrate. The embedded electrode 103 is in electrical contact with the ITO transparent electrode laminated thereon. As a result, even if the ITO transparent electrode has a considerably large area, the wiring resistance is small.
Therefore, the voltage effect and heat generation due to the wiring resistance can be reduced, and when the multilayer substrate is used for an organic EL element, it is possible to prevent the occurrence of luminance unevenness that has occurred in the conventional multilayer substrate. FIG. 1 is a view for explaining the structure of the multilayer substrate according to the embodiment of the present invention, and the size on the drawing does not match the actual size.
FIG. 3 is a cross-sectional view of FIG. 1 in which the sizes of the first substrate 101, the second substrate 102, the embedded electrode 103, and the transparent electrode 104 are made closer to the actual size.

次に、本発明の実施の形態に係る多層基板の製造方法について説明する。
本発明の実施の形態に係る多層基板と従来の同様の埋め込み電極との主要な相違は、埋め込み電極の作成方法である。
図2は本発明に係る多層基板の製造方法の概略を示す工程図である。
図2において、101は第1基板であり、本実施の形態ではガラス基板である。102は第2基板であり、本実施の形態では、有機無機ハイブリッド材料からなる基板である。103は埋め込み電極である。104は透明電極であり、本実施の形態では、ITO透明電極である。以下、製造方法を説明する。
Next, a method for manufacturing a multilayer substrate according to an embodiment of the present invention will be described.
The main difference between the multilayer substrate according to the embodiment of the present invention and a conventional similar buried electrode is a method for producing the buried electrode.
FIG. 2 is a process diagram showing an outline of a method for producing a multilayer substrate according to the present invention.
In FIG. 2, reference numeral 101 denotes a first substrate, which is a glass substrate in the present embodiment. Reference numeral 102 denotes a second substrate, which is a substrate made of an organic-inorganic hybrid material in the present embodiment. Reference numeral 103 denotes a buried electrode. Reference numeral 104 denotes a transparent electrode, which is an ITO transparent electrode in the present embodiment. Hereinafter, the manufacturing method will be described.

最初に、図2の(a)と(b)に示されているように第1基板であるガラス基板101の上に、有機無機ハイブリッド材料を積層する。積層方法は、例えばスピンコート法により均一に成膜する。スリットコート法、スプレイコート法でもよい。   First, as shown in FIGS. 2A and 2B, an organic-inorganic hybrid material is laminated on a glass substrate 101 as a first substrate. As a lamination method, for example, a uniform film is formed by a spin coating method. A slit coat method or a spray coat method may be used.

次に、所謂インプリント法により、凹凸部を有する金型を有機無機ハイブリッド材料からなる第2基板に加熱しながら圧着する。そして、有機無機ハイブリッド材料からなる第2基板から、圧着した金型を離型する。その結果、図2の(c)に示されているように有機無機ハイブリッド材料からなる第2基板に溝が形成される。なお、金型は図2に図示されていない。   Next, by a so-called imprint method, the mold having the concavo-convex portion is pressure-bonded to the second substrate made of the organic-inorganic hybrid material while being heated. Then, the pressure-bonded mold is released from the second substrate made of the organic-inorganic hybrid material. As a result, as shown in FIG. 2C, a groove is formed in the second substrate made of the organic-inorganic hybrid material. The mold is not shown in FIG.

次に、図2の(c)と(d)に示されているように溝が形成された有機無機ハイブリッド材料からなる第2基板の上に、導電性材料103を成膜する。成膜方法としては、例えば、溝にAgペーストを埋め込みながら、Agペーストを塗布する。次に、加熱し乾燥させ、焼成して、表面を研磨砥石で研磨し、溝に埋め込まれたAgペーストを露出させる。そして、さらに、図2の(d)と(e)に示されているようにCMP(化学的機械研磨)法により、表面全体を研磨して、溝に埋め込まれたAgペースト以外のAgペーストを削り取り、表面を平坦化する。   Next, the conductive material 103 is formed on the second substrate made of the organic-inorganic hybrid material in which the grooves are formed as shown in FIGS. As a film forming method, for example, the Ag paste is applied while the Ag paste is embedded in the groove. Next, it is heated and dried, fired, and the surface is polished with a polishing grindstone to expose the Ag paste embedded in the groove. Further, as shown in FIGS. 2D and 2E, the entire surface is polished by a CMP (Chemical Mechanical Polishing) method, and an Ag paste other than the Ag paste embedded in the groove is obtained. Sharpen and flatten the surface.

最後に、図2の(f)に示されているように,導電性材料103が埋め込まれて、表面が平坦化された有機無機ハイブリッド材料からなる第2基板の上に、スパッタリング法により、ITO層を成膜し、焼成し、CMP法により表面を研磨して、ITO透明電極104を形成する。次に、実際に作成した実施例1について、説明する。   Finally, as shown in FIG. 2 (f), the ITO is formed on the second substrate made of the organic-inorganic hybrid material in which the conductive material 103 is embedded and the surface is planarized by sputtering. A layer is formed, baked, and the surface is polished by a CMP method to form the ITO transparent electrode 104. Next, Example 1 actually created will be described.

図4は実施例1の多層基板の断面図である。実施例1では、埋め込み電極はストライプ状に形成した。
図4において、AはITO透明電極104の膜厚であり、Bは第2基板の厚みであり、Cはストライプ状に形成した埋め込み電極の間隔であり、Dは埋め込み電極の埋め込まれた深さであり、Eは埋め込み電極の表面側の幅であり、Fは埋め込み電極の底の幅であり、Gは第1基板の厚みである。実際のサイズはITO透明電極の膜厚Aは150ナノメートルで、第2基板の厚みBは1.5マイクロメートルで、ストライプ状に形成された埋め込み電極のストライプの間隔Cは1ミリメートルで、埋め込み電極の埋め込まれた深さDは0.5マイクロメートルで、埋め込み電極の表面側の幅Eは1マイクロメートルで、埋め込み電極の底の幅Fは0.8マイクロメートルであり、第1基板の厚みGは0.7ミリメートルである。また、埋め込み電極の材料はAgペーストであり、第1基板の材料は無アルカリガラスである。
4 is a cross-sectional view of the multilayer substrate of Example 1. FIG. In Example 1, the embedded electrode was formed in a stripe shape.
In FIG. 4, A is the thickness of the ITO transparent electrode 104, B is the thickness of the second substrate, C is the interval between the embedded electrodes formed in stripes, and D is the depth at which the embedded electrodes are embedded. E is the width of the buried electrode on the surface side, F is the width of the bottom of the buried electrode, and G is the thickness of the first substrate. The actual size is that the ITO transparent electrode thickness A is 150 nanometers, the second substrate thickness B is 1.5 micrometers, and the stripe spacing C of the embedded electrodes formed in stripes is 1 millimeter. The embedded depth D of the electrode is 0.5 μm, the width E on the surface side of the embedded electrode is 1 μm, the width F of the bottom of the embedded electrode is 0.8 μm, The thickness G is 0.7 millimeters. The material of the embedded electrode is Ag paste and the material of the first substrate is alkali-free glass.

次に、本発明の実施の形態に係る多層基板の有する機能である埋め込み電極103の側面と透明電極面とがなす角度を調整して、多層基板の透明電極側から、第2基板側に入射した光のうち第1基板を通過する光の量を増加させる機能について説明する。最初に従来の多層基板の場合について説明する。   Next, the angle formed between the side surface of the embedded electrode 103 and the transparent electrode surface, which is a function of the multilayer substrate according to the embodiment of the present invention, is adjusted to enter the second substrate side from the transparent electrode side of the multilayer substrate. The function of increasing the amount of light passing through the first substrate among the light that has been performed will be described. First, the case of a conventional multilayer substrate will be described.

図7は埋め込み電極の側面が透明電極面と直交する従来の多層基板の場合において、透明電極側から入射した光が埋め込み電極の側面に入射し、反射して、さらに、第1基板と第2基板の境界面に入射し、反射する光の様子を示す説明用断面図である。
図7において、610は埋め込み電極の側面であり、Xは埋め込み電極の側面610と透明電極104と第2基板の境界面とがなす角度であり、601は透明電極104側から第2基板102に入射した光であり、602は光601が第2基板と第1基板の境界面に入射し、反射した光であり、603は光602が透明電極104と外部との境界面に入射し、反射した光であり、604は光603が埋め込み電極の側面610に入射して反射した光であり、Zは光604が第2基板102と第1基板101の境界面に入射する入射角であり、605は光604が第2基板102と第1基板101の境界面に入射し反射した光である。ただし、光601、602、603については透明電極104と第2基板102の境界面での屈折については省略している。
FIG. 7 shows a conventional multilayer substrate in which the side surface of the embedded electrode is orthogonal to the transparent electrode surface. Light incident from the transparent electrode side is incident on the side surface of the embedded electrode, reflected, and further, the first substrate and the second substrate. It is sectional drawing for description which shows the mode of the light which injects into the boundary surface of a board | substrate and reflects.
In FIG. 7, 610 is a side surface of the embedded electrode, X is an angle formed by the side surface 610 of the embedded electrode, the transparent electrode 104, and the boundary surface of the second substrate. The incident light is 602, the light 601 is incident on the boundary surface between the second substrate and the first substrate and reflected, and the light 602 is incident on the boundary surface between the transparent electrode 104 and the outside to be reflected. 604 is light reflected by the light 603 incident on the side surface 610 of the embedded electrode, Z is an incident angle at which the light 604 is incident on the boundary surface between the second substrate 102 and the first substrate 101, Reference numeral 605 denotes light that is reflected by the light 604 incident on the boundary surface between the second substrate 102 and the first substrate 101. However, refraction at the boundary surface between the transparent electrode 104 and the second substrate 102 is omitted for the light 601, 602, and 603.

図7に示されるように、従来の埋め込み電極の側面が透明電極面と直交する多層基板の場合には、光604が第2基板102と第1基板101の境界面に入射する入射角Zが大きいために、光604は第2基板102と第1基板101の境界面で反射してしまい、第1基板に入ることができない。   As shown in FIG. 7, in the case of a multilayer substrate in which the side surface of the conventional embedded electrode is orthogonal to the transparent electrode surface, the incident angle Z at which the light 604 is incident on the boundary surface between the second substrate 102 and the first substrate 101 is Since it is large, the light 604 is reflected at the interface between the second substrate 102 and the first substrate 101 and cannot enter the first substrate.

次に、図6に基づいて、本発明の実施の形態に係る多層基板に、図7に示された光601が透明電極104に同じ入射角で入射した場合について説明する。   Next, a case where the light 601 shown in FIG. 7 is incident on the transparent electrode 104 at the same incident angle on the multilayer substrate according to the embodiment of the present invention will be described with reference to FIG.

図6は本発明の実施の形態に係る多層基板の透明電極側から入射した光が埋め込み電極の側面に反射して、さらに第1基板に入射し、第1基板を通過する概略を示す断面図である。
図6においても図7と同様に、610は埋め込み電極の側面であり、Yは埋め込み電極の側面610と透明電極104と第2基板の境界面とがなす角度であり、601は透明電極104側から第2基板102に入射した光であり、602は光601が第2基板と第1基板の境界面に入射し、反射した光であり、603は光602が透明電極104と外部との境界面に入射し、反射した光であり、604は光603が埋め込み電極の側面610に入射して反射した光であり、Zは光604が第2基板102と第1基板101の境界面に入射する入射角である。
光605については図7の場合とは、進行方向が大きく異なり、光604は第2基板102と第1基板101の境界面に入射したときは、境界面で反射しないで、第1基板に入射する。このように、光605が境界面で反射しないで、第1基板101に入射する理由は、本発明の実施の形態の場合には、埋め込み電極の側面610と透明電極面とがなす角度Yが90度より大きいために、埋め込み電極の側面610の法線が、下方、すなわち第1基板側に向くこととなり、光603は埋め込み電極の側面610に入射し反射したときに、第2基板と第1基板の境界面に入射する入射角が、図7の場合より小さくなる。その結果、光604は境界面で反射しないで、第1基板に入射し、光605となる。光605はその後、第1基板101を通過して、外部に放射される。
FIG. 6 is a cross-sectional view schematically showing that light incident from the transparent electrode side of the multilayer substrate according to the embodiment of the present invention is reflected on the side surface of the buried electrode, further enters the first substrate, and passes through the first substrate. It is.
Also in FIG. 6, as in FIG. 7, 610 is a side surface of the embedded electrode, Y is an angle formed by the side surface 610 of the embedded electrode, the transparent electrode 104, and the boundary surface of the second substrate, and 601 is the transparent electrode 104 side. 602 is the light incident on the boundary surface between the second substrate and the first substrate and reflected, and 603 is the boundary between the transparent electrode 104 and the outside. 604 is light reflected by the light 603 incident on the side surface 610 of the embedded electrode, and Z is light incident on the boundary surface between the second substrate 102 and the first substrate 101. Is the incident angle.
The traveling direction of the light 605 is significantly different from that in FIG. 7. When the light 604 is incident on the boundary surface between the second substrate 102 and the first substrate 101, the light 605 is incident on the first substrate without being reflected by the boundary surface. To do. Thus, in the case of the embodiment of the present invention, the angle Y formed between the side surface 610 of the embedded electrode and the transparent electrode surface is the reason why the light 605 does not reflect on the boundary surface but enters the first substrate 101. Since it is larger than 90 degrees, the normal line of the side surface 610 of the embedded electrode is directed downward, that is, toward the first substrate, and when the light 603 is incident on the side surface 610 of the embedded electrode and is reflected, The incident angle incident on the boundary surface of one substrate is smaller than in the case of FIG. As a result, the light 604 is incident on the first substrate without being reflected by the boundary surface, and becomes the light 605. Thereafter, the light 605 passes through the first substrate 101 and is emitted to the outside.

したがって、光601は従来の多層基板では、第1基板102と第2基板の境界面で反射をしてしまって、第1基板を通過して第1基板の下側に抜け出ることができないが、本発明に係る多層基板においては、光601は最終的に、第1基板の下側に抜け出ることができる。よって、本発明に係る多層基板の上に有機EL素子を形成して、有機EL素子の発光を第1基板側から取り出す構成とした場合において、従来の構成よりも、より効率よく光線を取り出すことができる。   Therefore, in the conventional multilayer substrate, the light 601 is reflected at the boundary surface between the first substrate 102 and the second substrate, and cannot pass through the first substrate and escape below the first substrate. In the multilayer substrate according to the present invention, the light 601 can finally escape to the lower side of the first substrate. Therefore, in the case where the organic EL element is formed on the multilayer substrate according to the present invention and the light emission of the organic EL element is extracted from the first substrate side, the light beam can be extracted more efficiently than the conventional configuration. Can do.

本発明の実施の形態に係る多層基板の断面図である。It is sectional drawing of the multilayer substrate which concerns on embodiment of this invention. 本発明に係る多層基板の製造方法の概略を示す工程図である。It is process drawing which shows the outline of the manufacturing method of the multilayer substrate which concerns on this invention. 図1を第1基板101、第2基板102、埋め込み電極103及び透明電極104のサイズを実際のサイズに接近させた断面図である。FIG. 1 is a cross-sectional view in which the sizes of the first substrate 101, the second substrate 102, the embedded electrode 103, and the transparent electrode 104 are made closer to the actual size. 実施例1の多層基板の断面図である。1 is a cross-sectional view of a multilayer substrate of Example 1. FIG. 図1の多層基板を透明電極側から視た平面図である。It is the top view which looked at the multilayer substrate of Drawing 1 from the transparent electrode side. 本発明の実施の形態に係る多層基板の透明電極側から入射した光が埋め込み電極の側面に反射して、さらに第1基板に入射し、第1基板を通過する概略を示す断面図である。It is sectional drawing which shows the outline which the light which injected from the transparent electrode side of the multilayer board | substrate which concerns on embodiment of this invention reflects in the side surface of a buried electrode, and injects into a 1st board | substrate, and passes a 1st board | substrate. 埋め込み電極の側面が透明電極面と直交する従来の多層基板の場合において、透明電極側から入射した光が埋め込み電極の側面に入射し、反射して、さらに、第1基板と第2基板の境界面に入射し、反射する光の様子を示す説明用断面図である。In the case of a conventional multilayer substrate in which the side surface of the embedded electrode is orthogonal to the transparent electrode surface, light incident from the transparent electrode side is incident on the side surface of the embedded electrode, reflected, and further, the boundary between the first substrate and the second substrate It is sectional drawing for description which shows the mode of the light which injects into a surface and reflects.

符号の説明Explanation of symbols

101 第1基板
102 第2基板
103 埋め込み電極
104 透明電極
610 埋め込み電極の側面
101 First substrate 102 Second substrate 103 Embedded electrode 104 Transparent electrode 610 Side surface of embedded electrode

Claims (4)

第1基板と、
第2基板と、
埋め込み電極と、
透明電極と、を有する多層基板であって、
前記埋め込み電極の材料は銀を含有する導電性ペーストであり、
前記埋め込み電極はナノインプリント技術を用いて形成され、
前記埋め込み電極の形状は前記埋め込み電極の 両側の側面が斜めに形成され、
前記第2基板の材料は有機無機ハイブリッド材料であり、
前記第2基板は第2基板の材料を前記第1基板に塗布されることで
前記第1基板の上に積層され、
前記埋め込み電極は前記第2基板に表面を露出する状態で埋め込まれ、
前記透明電極は前記埋め込み電極が埋め込まれた第2基板の上に積層され、
前記埋め込み電極と前記透明電極とは電気的に接触している多層基板の製造方法であって、
前記有機無機ハイブリッド材料を第1基板に塗布するステップと、
前記有機無機ハイブリッド材料に微細な凹凸部を有する金型を、圧着し、加熱するステップと、
前記金型を前記有機無機ハイブリッド 材料から離型して、前記有機無機ハイブリッド材料に両側の側面が斜めに形成された形状の凹部を形成するステップと、
前記凹部に前記銀を含有する導電性ペーストを埋め込みながら、前記有機無機ハイブリッド材料よりなる前記第2基板の表面の全面に前記導電性ペーストを積層するステップと、
前記導電性ペーストを加熱し乾燥させるステップと、
前記導電性ペーストの積層された表面を研磨して、前記凹部に埋め込まれた導電性ペーストのみを残して、他の前記積層された導電性材料を削り取って、表面を平坦化するステップと、を有している
ことを特徴とする多層基板の製造方法
A first substrate;
A second substrate;
An embedded electrode;
A multilayer substrate having a transparent electrode,
The material of the embedded electrode is a conductive paste containing silver,
The embedded electrode is formed using nanoimprint technology,
The shape of the embedded electrode is such that side surfaces on both sides of the embedded electrode are formed obliquely,
The material of the second substrate is an organic-inorganic hybrid material,
The second substrate is laminated on the first substrate by applying the material of the second substrate to the first substrate ,
The embedded electrode is embedded in the second substrate with its surface exposed;
The transparent electrode is stacked on a second substrate in which the embedded electrode is embedded,
The embedded electrode and the transparent electrode are a method of manufacturing a multilayer substrate in electrical contact ,
Applying the organic-inorganic hybrid material to the first substrate;
Crimping and heating a mold having fine irregularities on the organic-inorganic hybrid material; and
Releasing the mold from the organic-inorganic hybrid material, and forming concave portions having a shape in which side surfaces on both sides are formed obliquely in the organic-inorganic hybrid material;
Laminating the conductive paste on the entire surface of the second substrate made of the organic-inorganic hybrid material while embedding the conductive paste containing silver in the recess;
Heating and drying the conductive paste;
Polishing the laminated surface of the conductive paste, leaving only the conductive paste embedded in the recesses, scraping off the other laminated conductive material, and flattening the surface; Have
A method for producing a multilayer substrate .
請求項1に記載の多層基板の製造方法において、
前記第2基板は、前記有機 無機ハイブリッド材料の成分を調整することによって、屈折率が調整されていることを特徴とする多層基板の製造方法
In the method for producing a multilayer substrate according to claim 1,
The method for producing a multilayer substrate , wherein the second substrate has a refractive index adjusted by adjusting components of the organic-inorganic hybrid material .
請求項1又は2に記載の多層基板の製造方法において、
前記埋め込み電極が埋め込まれている溝の側面を前記側面の法線が前記第1基板側に向くように構成することにより、透明電極側から第2基板に向かって入射した光を前記埋め込み電極の側面で、第1 基板を通過し易い方向に反射させるようにした多層基板の製造方法
In the manufacturing method of the multilayer substrate according to claim 1 or 2 ,
By configuring the side surface of the groove in which the embedded electrode is embedded so that the normal of the side surface is directed to the first substrate side, light incident from the transparent electrode side toward the second substrate is transmitted to the embedded electrode. A method for manufacturing a multilayer substrate , wherein the side surface is reflected in a direction that easily passes through the first substrate.
請求項1乃至のいずれかに記載の多層基板の製造方法を含む有機EL素子の製造方法 The method for manufacturing an organic EL device including a method for manufacturing a multilayer substrate according to any one of claims 1 to 3.
JP2007121987A 2007-05-03 2007-05-03 Multilayer substrate and manufacturing method thereof Expired - Fee Related JP5577012B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007121987A JP5577012B2 (en) 2007-05-03 2007-05-03 Multilayer substrate and manufacturing method thereof
PCT/JP2008/058267 WO2008139934A1 (en) 2007-05-03 2008-04-30 Multilayer board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121987A JP5577012B2 (en) 2007-05-03 2007-05-03 Multilayer substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008277202A JP2008277202A (en) 2008-11-13
JP5577012B2 true JP5577012B2 (en) 2014-08-20

Family

ID=40002147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121987A Expired - Fee Related JP5577012B2 (en) 2007-05-03 2007-05-03 Multilayer substrate and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5577012B2 (en)
WO (1) WO2008139934A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730938B (en) * 2007-07-04 2012-10-10 皇家飞利浦电子股份有限公司 A method for forming a patterned layer on a substrate
US8080584B2 (en) 2009-01-23 2011-12-20 Teva Pharmaceuticals Industries, Ltd. Delayed release rasagiline citrate formulation
JP2010272466A (en) * 2009-05-25 2010-12-02 Fujifilm Corp Transparent conductor and its manufacturing method
EP2282360A1 (en) * 2009-08-06 2011-02-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Opto-electric device and method for manufacturing the same
KR101094300B1 (en) * 2009-10-12 2011-12-19 삼성모바일디스플레이주식회사 Organic light emitting diode lighting apparatus and method for manufacturing the same
KR20120112004A (en) * 2011-03-31 2012-10-11 모저 베어 인디아 엘티디 Method for patterning a lacquer layer to hold electrical gridlines
EP2506330A1 (en) 2011-04-01 2012-10-03 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for providing an embedded structure and for providing an electro-optical device including the same
JP5899583B2 (en) * 2011-08-11 2016-04-06 株式会社ブイ・テクノロジー Vacuum deposition method, vacuum deposition apparatus, organic EL display device manufacturing method, and organic EL display apparatus
WO2013153700A1 (en) * 2012-04-12 2013-10-17 Necライティング株式会社 Organic el illumination panel substrate, organic el illumination panel and organic el illumination device
KR101335913B1 (en) 2012-06-14 2013-12-02 한국기계연구원 Organic light emitting diodes including metal wiring buried substrates, and the preparation method thereof
US9775236B2 (en) 2013-03-07 2017-09-26 Lg Chem, Ltd. Method of manufacturing a transparent substrate
FR3003084B1 (en) * 2013-03-08 2015-02-27 Saint Gobain ELECTROCONDUCTIVE SUPPORT FOR OLED, OLED INCORPORATING THE SAME, AND MANUFACTURING THE SAME
KR101668326B1 (en) * 2013-05-16 2016-10-25 주식회사 잉크테크 Method for preparing hybrid tranparent electrode and hybrid tranparent electrode
US9831487B2 (en) * 2013-05-16 2017-11-28 Inktec Co., Ltd. Method for manufacturing transparent electrode film
FR3023979B1 (en) 2014-07-17 2016-07-29 Saint Gobain ELECTROCONDUCTIVE SUPPORT FOR OLED, OLED INCORPORATING THE SAME, AND MANUFACTURING THE SAME.
FR3025944B1 (en) * 2014-09-11 2017-11-24 Saint Gobain ELECTROCONDUCTIVE SUPPORT FOR ELECTROCHROMIC DEVICE, ELECTROCHROMIC DEVICE INCORPORATING IT, AND MANUFACTURE THEREOF.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266870A (en) * 1988-08-31 1990-03-06 Matsushita Electric Ind Co Ltd Thin film el element and manufacture thereof
JP2914355B2 (en) * 1997-07-17 1999-06-28 日本電気株式会社 Organic EL device
JP2000252081A (en) * 1999-02-26 2000-09-14 Hokuriku Electric Ind Co Ltd Organic el element
JP2000260573A (en) * 1999-03-11 2000-09-22 Hokuriku Electric Ind Co Ltd Organic el element
JP4302914B2 (en) * 2001-07-30 2009-07-29 三星モバイルディスプレイ株式會社 LIGHT EMITTING ELEMENT AND DISPLAY DEVICE
JP2003108029A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Display device and its manufacturing method
JP2004152699A (en) * 2002-10-31 2004-05-27 Matsushita Electric Works Ltd Light emitting device and lighting device
JP2004356255A (en) * 2003-05-28 2004-12-16 Cluster Technology Co Ltd Manufacturing method for high-density wiring board
JP4549751B2 (en) * 2004-06-17 2010-09-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2007109422A (en) * 2005-10-11 2007-04-26 Konica Minolta Holdings Inc Organic electroluminescent element

Also Published As

Publication number Publication date
WO2008139934A1 (en) 2008-11-20
JP2008277202A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5577012B2 (en) Multilayer substrate and manufacturing method thereof
JP5551200B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
EP2618395A1 (en) Organic electroluminescent device, lighting apparatus, and method for manufacturing the organic electroluminescent device
JP5258817B2 (en) LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF
WO2011016086A1 (en) Organic electroluminescence element and method for manufacturing same
JP6226279B2 (en) Organic electroluminescence device
US9203047B2 (en) Organic electroluminescent element
TW201535821A (en) Organic electroluminescent element, lighting device and display device
JP2015158981A (en) Organic electroluminescent element and illumination device
JP2014096334A (en) Organic electroluminescent element
TW201324894A (en) Light emitting device and method for manufacturing the same
JP2006073338A5 (en)
US20150069349A1 (en) Method of preparing organic electroluminescent element and organic electroluminescent element
BRPI0907493B8 (en) MANUFACTURING PROCESS OF A HEATING ELEMENT BY DEPOSITION OF FINE LAYERS ON AN INSULATING SUBSTRATE AND THE OBTAINED ELEMENT
TW201737223A (en) Light-emitting element, method of forming light-emitting element, display device and lighting device
WO2014181515A1 (en) Organic electroluminescence element and production method therefor
WO2015118799A1 (en) Organic electroluminescent element and illumination device
JP6047038B2 (en) Organic EL device
US10763456B2 (en) EL device use front plate and lighting device
TWI692896B (en) Method of manufacturing organic light-emitting diode and organic light-emitting diode
KR102558858B1 (en) Light extraction substrate of organic light emitting device and method of fabricating the same
WO2013190621A1 (en) Electroluminescence element
TWI539640B (en) Organic light emitting diode device and manufacturing method thereof
WO2014084049A1 (en) Organic el element, and image display device and lighting device equipped with same
DE102016101872A1 (en) Luminaire and method for producing a luminaire

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5577012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees