JP5576146B2 - Conductive member of solid oxide fuel cell - Google Patents

Conductive member of solid oxide fuel cell Download PDF

Info

Publication number
JP5576146B2
JP5576146B2 JP2010043819A JP2010043819A JP5576146B2 JP 5576146 B2 JP5576146 B2 JP 5576146B2 JP 2010043819 A JP2010043819 A JP 2010043819A JP 2010043819 A JP2010043819 A JP 2010043819A JP 5576146 B2 JP5576146 B2 JP 5576146B2
Authority
JP
Japan
Prior art keywords
mass
less
temperature
fuel cell
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010043819A
Other languages
Japanese (ja)
Other versions
JP2011179063A (en
Inventor
一幸 景岡
尚仁 熊野
幸寛 西田
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2010043819A priority Critical patent/JP5576146B2/en
Publication of JP2011179063A publication Critical patent/JP2011179063A/en
Application granted granted Critical
Publication of JP5576146B2 publication Critical patent/JP5576146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、フェライト系ステンレス鋼よりなる固体酸化物形燃料電池のインターコネクター、またはセパレーター、集電板などの導電部材に関する。   The present invention relates to an interconnector of a solid oxide fuel cell made of ferritic stainless steel, or a conductive member such as a separator and a current collector plate.

近年、石油を代表とする化石燃料の枯渇化,CO排出による地球温暖化現象等の問題から、風力発電,太陽光発電といった、新しい発電システムの実用化が求められている。燃料電池は、分散電源あるいは自動車や一般家庭などの動力源として、クリーンな発電システムであり注目を浴びている。 In recent years, the practical use of new power generation systems such as wind power generation and solar power generation has been demanded due to problems such as depletion of fossil fuels represented by petroleum and global warming due to CO 2 emissions. Fuel cells are attracting attention as a clean power generation system as a distributed power source or a power source for automobiles and general households.

燃料電池には固体高分子形燃料電池(PEFC)を主流としていくつかの種類があるが、その中でも固体酸化物形燃料電池(SOFC)は作動温度,エネルギー効率ともに燃料電池の中では最も高く、実用化が有望視されている発電システムである。   There are several types of fuel cells, mainly polymer electrolyte fuel cells (PEFC). Among them, solid oxide fuel cells (SOFC) have the highest operating temperature and energy efficiency among fuel cells. This power generation system is expected to be put to practical use.

固体酸化物形燃料電池(SOFC)の作動温度は従来1000℃程度と高く、当時は主にセラミックスが使用されており、高温酸化性に優れている金属材料(高Cr,高Ni系オーステナイト系ステンレス鋼)でも使用が非常に困難であった。しかし、近年になって固体電解質膜の改良により600〜800℃程度まで作動温度の低下が可能になった。これは、金属材料での適用が可能となる温度域である。   The operating temperature of solid oxide fuel cells (SOFCs) has conventionally been as high as about 1000 ° C. At that time, ceramics were mainly used, and metal materials with excellent high-temperature oxidation properties (high Cr, high Ni austenitic stainless steel) Steel) was very difficult to use. However, in recent years, the operating temperature can be lowered to about 600 to 800 ° C. by improving the solid electrolyte membrane. This is a temperature range in which application with a metal material is possible.

低温作動形の固体酸化物形燃料電池(SOFC)に必要な要求特性は、600〜800℃の温度域で良好な電気伝導性(30mΩ・cm以下)と耐酸化性、およびセラミックス系の固体酸化物と同等の熱膨張係数(室温〜800℃で13×10−6(1/K)程度)を十分満足でき、加えて起動停止を頻繁に繰り返す場合は耐熱疲労性も要求される。 The required characteristics required for a low temperature operation type solid oxide fuel cell (SOFC) are good electrical conductivity (30 mΩ · cm 2 or less) and oxidation resistance in a temperature range of 600 to 800 ° C., and a ceramic solid. A thermal expansion coefficient equivalent to that of an oxide (room temperature to 800 ° C., about 13 × 10 −6 (1 / K)) can be sufficiently satisfied, and in addition, when starting and stopping are frequently repeated, heat fatigue resistance is also required.

高温での耐水蒸気酸化性に優れている高Cr高Ni系オーステナイト系ステンレス鋼は、熱膨張係数が非常に高いため起動・停止が頻繁に行われるような状況では熱膨張・熱収縮が発生し熱変形およびスケール剥離が発生するため使用不可である。一方、フェライト系ステンレス鋼は、熱膨張係数が電解質と同程度であるため、固体酸化物形燃料電池の高温導電部位用材料に最適である。   High Cr, high Ni austenitic stainless steel, which has excellent resistance to steam oxidation at high temperatures, has a very high coefficient of thermal expansion, causing thermal expansion and contraction in situations where it is frequently started and stopped. Unusable due to thermal deformation and scale peeling. On the other hand, since ferritic stainless steel has the same thermal expansion coefficient as that of the electrolyte, it is most suitable as a material for a high-temperature conductive part of a solid oxide fuel cell.

例えば、特開2003−105503公報では、質量%にて、C:0.2%以下, Si:0.2%未満(0%を含まず),Mn:1.0%以下(0%を含まず),Cr:15〜30%,Ni:2%以下(0%を含む),Al:1%以下(0%を含む),Zr:1%以下およびY:0.5%以下と希土類元素:0.2%以下の1種又は2種以上を含み、残部Fe及び不可避的不純物からなる固体酸化物型燃料電池セパレーター用鋼が開示されている。これは、700℃〜950℃程度で良好な電気伝導性を有する酸化皮膜を形成させ、これらの鋼種は長時間の使用において良好な耐酸化性,耐スケール剥離性を有し、かつ電解質との熱膨張差が小さいという特徴を有する。   For example, in Japanese Patent Application Laid-Open No. 2003-105503, in mass%, C: 0.2% or less, Si: less than 0.2% (not including 0%), Mn: 1.0% or less (including 0%) ), Cr: 15-30%, Ni: 2% or less (including 0%), Al: 1% or less (including 0%), Zr: 1% or less, and Y: 0.5% or less, rare earth elements : Steel for solid oxide fuel cell separators containing one or more of 0.2% or less, the balance being Fe and unavoidable impurities is disclosed. This forms an oxide film having good electrical conductivity at about 700 ° C. to 950 ° C., and these steel types have good oxidation resistance and scale peeling resistance over a long period of use, and are compatible with the electrolyte. It has the feature that the thermal expansion difference is small.

特開2003−105503JP 2003-105503 A

これらの手段はいずれも高価で、かつ希少金属である希土類金属やYを含むため、高価になるとともに、製造性を困難にする元素であるため、製造コストの増大にも繋がっている。すなわち、必要以上のコスト増にならずに良好な電気伝導性と耐酸化性を改善した固体酸化物形燃料電池の高温導電部位用材料が望まれていた。   All of these means are expensive and contain rare earth metals and Y, which are rare metals, and thus are expensive and are elements that make manufacturability difficult, leading to an increase in manufacturing cost. That is, there has been a demand for a material for a high-temperature conductive part of a solid oxide fuel cell that has improved electrical conductivity and oxidation resistance without increasing costs more than necessary.

本発明は、従来のフェライト系ステンレス鋼をベースとし、高温水蒸気雰囲気に曝される燃料電池の高温機器の環境と、高温での電気伝導性を考慮して鋼組成に種々の検討を加えることにより完成されたものである。加えて、必要に応じてMo,Nb等の添加により中温〜高温域での高温強度をさらに改善させ、更に必要に応じて希土類元素(La,Ce,Nd等)、BやCaの添加により熱間加工性と耐酸化性を高め、600〜800℃で十分な耐久性を有する固体酸化物型燃料電池の高温導電部材を提供することを目的とする。   The present invention is based on conventional ferritic stainless steel, and various studies are made on the steel composition in consideration of the environment of the high-temperature equipment of the fuel cell exposed to a high-temperature steam atmosphere and the electrical conductivity at high temperature. It has been completed. In addition, if necessary, the high temperature strength in the medium to high temperature range is further improved by adding Mo, Nb, etc., and if necessary, heat is added by adding rare earth elements (La, Ce, Nd, etc.), B, and Ca. An object of the present invention is to provide a high-temperature conductive member for a solid oxide fuel cell having improved inter-workability and oxidation resistance and having sufficient durability at 600 to 800 ° C.

請求項1に係る発明は、表層に酸化物層が生成しており、Cr酸化物層と母材との間に、Nb酸化物,Ti酸化物およびAl酸化物が混在する厚さ0.1〜10μmの酸化物層が存在していることを特徴とする、高温の電気伝導性と耐酸化性に優れた固体酸化物形燃料電池の高温導電部位用導電部材である。
ここで「混在」とは、Nb,Ti,AlがFE−EPMAによる断面観察にていずれも母材の5倍以上のカウント数を有する塊状,または層状での濃化状態で存在することを言う。
In the invention according to claim 1, an oxide layer is formed on the surface layer, and a thickness 0.1 that Nb oxide, Ti oxide, and Al oxide are mixed between the Cr oxide layer and the base material. A conductive member for a high-temperature conductive part of a solid oxide fuel cell excellent in high-temperature electrical conductivity and oxidation resistance, characterized in that an oxide layer of 10 μm is present.
Here, “mixed” means that Nb, Ti, and Al all exist in a concentrated state in a lump shape or a layer shape having a count number more than five times that of the base material in cross-sectional observation by FE-EPMA. .

請求項2に係る発明は、C:0.02質量%以下,Si:0.5質量%以下,Mn:1.5質量%以下,S:0.01質量%以下,P:0.05質量%以下,Cr:18〜35質量%,Nb:0.15〜0.5質量%,N:0.02質量%以下,Al:0.01〜0.3%,Ti:0.08〜0.5質量%,かつ、各々質量比でNb/(Nb+Ti+Al),Ti/(Nb+Ti+Al),Al/(Nb+Ti+Al)がいずれも0.1以上であり、残部がFeおよび不可避的不純物からなることを特徴とする、請求項1記載の高温の電気伝導性と耐酸化性に優れた固体酸化物形燃料電池の高温導電部位用導電部材である。   The invention according to claim 2 is: C: 0.02 mass% or less, Si: 0.5 mass% or less, Mn: 1.5 mass% or less, S: 0.01 mass% or less, P: 0.05 mass% %: Cr: 18-35% by mass, Nb: 0.15-0.5% by mass, N: 0.02% by mass or less, Al: 0.01-0.3%, Ti: 0.08-0 0.5% by mass, and Nb / (Nb + Ti + Al), Ti / (Nb + Ti + Al), and Al / (Nb + Ti + Al) are all 0.1 or more, and the balance is Fe and inevitable impurities. The conductive member for a high-temperature conductive part of a solid oxide fuel cell excellent in high-temperature electrical conductivity and oxidation resistance according to claim 1.

請求項3に係る発明は、請求項1の成分に加え、Cu:0.1〜1.5質量%,Mo:0.1〜4.0質量%,W:0.1〜4.0質量%,Zr:0.05〜0.50質量%,V:0.02〜0.2質量%,Ta:0.05〜0.50質量%の1種または2種以上を含む、請求項1または2に記載の高温の電気伝導性と耐酸化性に優れた固体酸化物形燃料電池の高温導電部位用導電部材である。   The invention according to claim 3 includes, in addition to the components of claim 1, Cu: 0.1 to 1.5 mass%, Mo: 0.1 to 4.0 mass%, W: 0.1 to 4.0 mass% %, Zr: 0.05 to 0.50% by mass, V: 0.02 to 0.2% by mass, Ta: 0.05 to 0.50% by mass, or two or more thereof. Or a conductive member for a high-temperature conductive part of a solid oxide fuel cell having excellent high-temperature electrical conductivity and oxidation resistance described in 2;

請求項4に係る発明は、更にB及びCaの1種または2種を合計で0.0005〜0.005%含む、請求項1〜3記載の高温の電気伝導性と耐酸化性に優れた固体酸化物形燃料電池の高温導電部位用導電部材である。   The invention according to claim 4 is excellent in high-temperature electrical conductivity and oxidation resistance according to claims 1 to 3, further comprising 0.0005 to 0.005% of one or two of B and Ca in total. This is a conductive member for a high-temperature conductive part of a solid oxide fuel cell.

以上に説明したように、本発明のフェライト系ステンレス鋼は、高温で良好な電気伝導性と耐酸化性を有する固体酸化物形燃料電池の高温導電部位用材料を提供することができる。このことにより、固体酸化物形燃料電池の性能および耐久性の向上が見込まれ、商品化および一般家庭への普及が促進されるとともに、環境問題の改善にもつながるものと期待される。   As described above, the ferritic stainless steel of the present invention can provide a material for a high-temperature conductive part of a solid oxide fuel cell having good electrical conductivity and oxidation resistance at high temperatures. This is expected to improve the performance and durability of the solid oxide fuel cell, promote commercialization and popularization in general households, and are expected to lead to improvement of environmental problems.

酸化物層を含む、ステンレス鋼表層近傍の断面の概念図である。It is a conceptual diagram of the cross section of the stainless steel surface layer vicinity containing an oxide layer. 皮膜厚さの測定法の模式図である。It is a schematic diagram of the measuring method of film thickness.

燃料電池の高温水蒸気雰囲気(600〜800℃)に曝されると、鋼材の酸化が容易に進行するのに加えて、導電部の電気抵抗が増大し、燃料電池の機能を損なう。加えて起動−停止を頻繁に繰り返す場合、熱疲労による損傷が問題となる。これらのことがフェライト系ステンレス鋼を高温導電部位用材料へ適用する上で大きな問題となる。   When exposed to the high-temperature steam atmosphere (600 to 800 ° C.) of the fuel cell, the oxidation of the steel material proceeds easily, and the electrical resistance of the conductive portion increases to impair the function of the fuel cell. In addition, when starting and stopping are repeated frequently, damage due to thermal fatigue becomes a problem. These are major problems in applying ferritic stainless steel to materials for high-temperature conductive parts.

高温で電気伝導度を有する手段として、表層に良好な導電性を有する酸化物層を形成させるか、あるいは特殊な第2層を形成し、その第2層を経由して電気伝導を行わせることが考えられる。一方で耐酸化性を向上させるためには、その第2層を良好な耐酸化性を有する形態にしなければならない。その両者を両立させる手段として、発明者らはNb,Ti,Alの複合添加に着目した。   As a means of having electric conductivity at high temperature, an oxide layer having good conductivity is formed on the surface layer, or a special second layer is formed, and electric conduction is performed via the second layer. Can be considered. On the other hand, in order to improve oxidation resistance, the second layer must be in a form having good oxidation resistance. As a means of making both of them compatible, the inventors focused on the combined addition of Nb, Ti, and Al.

Alの単独添加の場合は、優れた耐酸化性を有する酸化物を形成するが、この酸化物単一層だと電気伝導度が大幅に低下してしまう。そこで、このAlの単独層にNb,Tiの複合酸化物を形成させるここにより、局所的に導電部を形成させ、電気伝導度を損なわずに耐酸化性を確保することが可能になる。一方で、Nbの酸化物または、Tiの酸化物単独に偏ってしまうと酸化速度の改善効果が乏しくなる。   In the case where Al is added alone, an oxide having excellent oxidation resistance is formed. However, if this oxide single layer is used, the electrical conductivity is greatly reduced. Therefore, by forming a composite oxide of Nb and Ti in this single Al layer, it is possible to locally form a conductive portion and ensure oxidation resistance without impairing electrical conductivity. On the other hand, if it is biased toward the oxide of Nb or the oxide of Ti alone, the effect of improving the oxidation rate becomes poor.

このNb,Ti,Alの複合酸化物を形成させるためには、鋼材中のNb,Ti,Alの総量に対し、各々質量比でNb/(Nb+Ti+Al)>0.1,Ti/(Nb+Ti+Al)>0.1,かつAl/(Nb+Ti+Al)>0.1の関係を保っておく必要がある。   In order to form this Nb, Ti, Al composite oxide, the mass ratio of Nb / (Nb + Ti + Al)> 0.1, Ti / (Nb + Ti + Al)> with respect to the total amount of Nb, Ti, Al in the steel material> It is necessary to maintain the relationship of 0.1 and Al / (Nb + Ti + Al)> 0.1.

また、この複合酸化物層をCr酸化物と母材との間に形成させるためには、通常の使用温度(600〜800℃)より高い温度、すなわち900〜1100℃の温度域で300秒以上予備加熱させる必要がある。このことで、Cr酸化物と母材との間に0.1μm以上の効果的な複合酸化物層を得ることが可能となる。なお、複合酸化物層が10μm以上の厚みを有した場合、熱応力によるスケール剥離が生ずる。   Further, in order to form this composite oxide layer between the Cr oxide and the base material, the temperature is higher than the normal use temperature (600 to 800 ° C.), that is, at a temperature range of 900 to 1100 ° C. for 300 seconds or more. It is necessary to preheat. This makes it possible to obtain an effective composite oxide layer of 0.1 μm or more between the Cr oxide and the base material. When the composite oxide layer has a thickness of 10 μm or more, scale peeling due to thermal stress occurs.

固体酸化物形燃料電池の高温導電部位用材料に使用されるフェライト系ステンレス鋼の成分・組成を次のように定めた。
C,N:0.02質量%以下
高温強度,特にクリープ特性を改善する成分であるが、フェライト系ステンレス鋼に過剰添加すると加工性,低温靱性を著しく低下させる。また、Ti,Nbとの反応によって炭窒化物を生成しやすく、高温強度の改善に有効な固溶Tiや固溶Nbを減少させる。したがって、本成分系ではC,N含有量は少ない程好ましく、共に上限を0.02質量%以下に設定した。好ましくは0.01質量%未満である。
The composition and composition of the ferritic stainless steel used for the high temperature conductive part material of the solid oxide fuel cell were determined as follows.
C, N: 0.02% by mass or less C, N is a component that improves high-temperature strength, particularly creep properties, but if added excessively to ferritic stainless steel, workability and low-temperature toughness are significantly reduced. In addition, carbonitrides are easily generated by reaction with Ti and Nb, and solid solution Ti and solid solution Nb effective in improving high temperature strength are reduced. Therefore, in this component system, the C and N contents are preferably as low as possible, and the upper limit is set to 0.02% by mass or less for both. Preferably it is less than 0.01 mass%.

Si:0.5質量%以下
Cr系酸化物の安定化に有効な合金成分であり、耐水蒸気酸化性の向上に有効な成分である。しかし、0.5質量%以上を超える過剰量のSiが含まれると、表層に電気抵抗の高いSiOの酸化物層を形成し、電気伝導度を低下させる。また、低温靱性も低下し鋼表面に疵が生成しやすくなり、製造性も低下する。好ましくは0.2質量%以下である。
Mn:1.5質量%以下
フェライト系ステンレス鋼のスケール剥離性を向上させる成分であるが、1.5質量%を超える過剰量のMnが含まれると鋼材が硬質化し、加工性,低温靱性が低下する。好ましくは0.3質量%以下である。
Si: 0.5% by mass or less Si is an alloy component effective for stabilizing a Cr-based oxide, and is an effective component for improving steam oxidation resistance. However, if an excessive amount of Si exceeding 0.5% by mass or more is contained, a SiO 2 oxide layer having a high electrical resistance is formed on the surface layer, and the electrical conductivity is lowered. Moreover, low temperature toughness is also reduced, so that flaws are easily generated on the steel surface, and manufacturability is also reduced. Preferably it is 0.2 mass% or less.
Mn: 1.5% by mass or less A component that improves the scale peelability of ferritic stainless steel. If an excess amount of Mn exceeding 1.5% by mass is contained, the steel material becomes hard, and workability and low temperature toughness are improved. descend. Preferably it is 0.3 mass% or less.

S:0.01質量%以下
熱間加工性,耐溶接高温割れ性に悪影響を及ぼす成分であり、異常酸化の起点にもなる。そのため、S含有量は可能な限り低くすることが望ましく、上限を0.01質量%に設定した。好ましくは0.003質量%以下である。
S: 0.01% by mass or less S is a component that adversely affects hot workability and weld hot cracking resistance, and also serves as a starting point for abnormal oxidation. Therefore, the S content is desirably as low as possible, and the upper limit is set to 0.01% by mass. Preferably it is 0.003 mass% or less.

Cr:18〜35質量%,
ステンレス鋼に必要な耐食性,耐酸化性,電気伝導性を付与するうえで必要な合成成分である。700℃前後での耐水蒸気酸化および良好な電気伝導性を確保するためには、18質量%以上のCrが必要である。750℃以上の水蒸気雰囲気に曝される場合は、20質量%以上の添加が好ましい。35質量%を超えるCrの添加は、フェライト系ステンレス鋼の加工性,低温靱性および475℃脆化感受性を低下させるため、上限を35質量%とした。
Cr: 18 to 35% by mass,
It is a synthetic component necessary for imparting the necessary corrosion resistance, oxidation resistance and electrical conductivity to stainless steel. In order to ensure steam oxidation resistance at around 700 ° C. and good electrical conductivity, 18 mass% or more of Cr is necessary. When exposed to a steam atmosphere of 750 ° C. or higher, addition of 20% by mass or more is preferable. The addition of Cr exceeding 35% by mass reduces the workability, low temperature toughness and 475 ° C. embrittlement susceptibility of ferritic stainless steel, so the upper limit was made 35% by mass.

Cu:0.1〜1.5質量%
Cuは固溶または析出強化により高温強度,熱疲労特性を向上させるとともに、600〜800℃における電気伝導性を著しく向上させる。この効果は0.1質量%以上の添加により顕著になるが、過剰量のCuが含まれると鋼材が過度に硬質化するので、上限を1.5質量%に設定した。好ましくは0.4質量%超〜1.5質量%、更に好ましくは、1.0%超〜1.5質量%である。
Cu: 0.1-1.5 mass%
Cu improves the high temperature strength and thermal fatigue characteristics by solid solution or precipitation strengthening, and remarkably improves the electrical conductivity at 600 to 800 ° C. This effect becomes remarkable by the addition of 0.1% by mass or more, but if the excessive amount of Cu is contained, the steel material becomes excessively hardened, so the upper limit was set to 1.5% by mass. Preferably it is more than 0.4 mass%-1.5 mass%, More preferably, it is more than 1.0%-1.5 mass%.

Mo:0.1〜4.0質量%,W:0.1〜4.0質量%
Moは固溶強化により高温強度および耐熱疲労特性を向上させるため、特に熱疲労特性が考慮される部位においては、必要に応じて添加される。過剰量のMo,Wが含まれると鋼材が過度に硬質化するので、上限を4.0質量%に設定した。
Mo: 0.1-4.0% by mass, W: 0.1-4.0% by mass
Since Mo improves the high temperature strength and heat fatigue resistance by solid solution strengthening, it is added as necessary, particularly in a portion where thermal fatigue characteristics are considered. If an excessive amount of Mo or W is contained, the steel material becomes excessively hardened, so the upper limit was set to 4.0% by mass.

Nb:0.15〜0.50質量%,Ti:0.08〜0.50質量%
本発明における重要元素であり、Alとともに複合酸化物層を形成することによって導電性を発現する。
また、固溶または析出強化によりフェライト系ステンレス鋼の高温強度に寄与する。Ti:0.08質量%以上,Nb:0.15質量%以上で添加効果が顕著になる。しかし、過剰に含まれると鋼材が過度に硬化するので、それぞれの上限を0.50質量%に設定した。
Nb: 0.15 to 0.50 mass%, Ti: 0.08 to 0.50 mass%
It is an important element in the present invention, and exhibits conductivity by forming a composite oxide layer together with Al.
Moreover, it contributes to the high temperature strength of ferritic stainless steel by solid solution or precipitation strengthening. When Ti: 0.08% by mass or more and Nb: 0.15% by mass or more, the effect of addition becomes remarkable. However, since steel materials harden | cured excessively when contained excessively, each upper limit was set to 0.50 mass%.

Al:0.01〜0.3質量%,
Alは脱酸材として使用されるのみでなく、耐酸化性表面にAlの酸化皮膜を形成させるため、耐高温酸化性を著しく向上させる元素であり、必要に応じて添加される。0.02質量%以上の添加でそれらの効果は顕著になる。しかし、過剰の添加は加工性・溶接性を低減させるのみでなく、高温導電部位用材料の電気伝導度も損なうため、上限を0.3質量%とした。好ましくは0.02〜0.2質量%である。
Al: 0.01 to 0.3% by mass,
Al is not only used as a deoxidizing material, but also forms an Al 2 O 3 oxide film on the oxidation-resistant surface, and therefore is an element that remarkably improves high-temperature oxidation resistance, and is added as necessary. The effect becomes remarkable by addition of 0.02 mass% or more. However, excessive addition not only reduces workability and weldability, but also impairs the electrical conductivity of the high-temperature conductive part material, so the upper limit was made 0.3 mass%. Preferably it is 0.02-0.2 mass%.

Zr:0.05〜0.50質量%,V:0.02〜0.20質量%,Ta:0.05〜0.50質量%
いずれも必要に応じて添加される成分であり、固溶または析出強化によりフェライト系ステンレス鋼の高温強度を更に向上させる。V:0.02質量%以上,Zr,Ta:0.05質量%以上で添加効果が顕著になる。しかし、過剰量のZr,VおよびTaが含まれると鋼材が過度に硬化するので、それぞれの上限をV:0.20質量%,Ta,Zr:0.50質量%に設定した。
Zr: 0.05 to 0.50 mass%, V: 0.02 to 0.20 mass%, Ta: 0.05 to 0.50 mass%
All are components added as necessary, and further improve the high temperature strength of ferritic stainless steel by solid solution or precipitation strengthening. V: 0.02% by mass or more, Zr, Ta: 0.05% by mass or more, the effect of addition becomes remarkable. However, when an excessive amount of Zr, V and Ta is contained, the steel material is excessively hardened, so the upper limits of the respective materials were set to V: 0.20% by mass and Ta, Zr: 0.50% by mass.

B,Ca:合計で0.0005〜0.005質量%
ステンレス鋼の熱間加工性および耐酸化性を改善する元素であり、必要に応じて1種または2種を添加する。過剰添加は逆に熱間加工性および鋼表面の表面性状を低下させるため、上限を合計で0.005質量%とした。
B, Ca: 0.0005 to 0.005 mass% in total
It is an element that improves the hot workability and oxidation resistance of stainless steel, and one or two are added as necessary. On the contrary, excessive addition lowers the hot workability and the surface properties of the steel surface, so the upper limit was made 0.005 mass% in total.

その他の成分について本発明では特に規定するものではないが、一般的な不純物元素であるO,Ni等は可能な限り低減することが好ましい。通常はO:0.02質量%以下,Ni:2.0質量%以下に規制されるが、高レベルの加工性や溶接性を確保する場合には、O,Niを更に厳しく規制する。また、強度の改善に有効なRe,快削性の改善に有効なSn,熱間加工性の改善に有効なCo,Hf,Sc等の元素も必要に応じてRe≦2.0質量%,Sn≦1.0質量%,Co:≦2.0質量%,Hf:≦1.0質量%,Sc:0.1質量%を上限に添加できる。   Other components are not particularly defined in the present invention, but it is preferable to reduce general impurity elements such as O and Ni as much as possible. Usually, O: 0.02 mass% or less and Ni: 2.0 mass% or less are regulated, but O and Ni are more strictly regulated in order to ensure a high level of workability and weldability. Re, which is effective for improving strength, Sn, which is effective for improving free machinability, and elements such as Co, Hf, Sc, which are effective for improving hot workability, are also required if Re ≦ 2.0 mass%, Sn ≦ 1.0 mass%, Co: ≦ 2.0 mass%, Hf: ≦ 1.0 mass%, Sc: 0.1 mass% can be added to the upper limit.

表1の成分・組成をもつ各種フェライト系ステンレス鋼を30kg真空溶解炉で溶製し、インゴットに鍛造した。インゴットを粗圧延した後、熱延,焼鈍酸洗,冷延,仕上焼鈍を経て板厚1.5mmまたは0.2mmの冷延焼鈍材を製造した。   Various ferritic stainless steels having the components and compositions shown in Table 1 were melted in a 30 kg vacuum melting furnace and forged into ingots. After roughly rolling the ingot, a cold-rolled annealed material having a plate thickness of 1.5 mm or 0.2 mm was manufactured through hot rolling, annealing pickling, cold rolling, and finish annealing.

Figure 0005576146
Figure 0005576146

各フェライト系ステンレス鋼から試験片を切り出し、最終仕上条件として湿式研磨により#400の番手で研磨仕上を施した材料で、800℃での電気抵抗率と930℃での耐水蒸気酸化性を測定した。   A test piece was cut out from each ferritic stainless steel, and the material was polished and finished with # 400 by wet polishing as the final finishing condition, and the electrical resistivity at 800 ° C. and the steam oxidation resistance at 930 ° C. were measured. .

電気抵抗率の測定は、板厚1.5mm,20mm×20mmに加工した試験片を用い、この試験片を両側から、半径9mmのランタンストロンチウムマンガン(La0.6−Sr0.4−Mn)製固体酸化物の円板にPtペーストを塗布して挟み込み、当該挟み込み測定試料の上下に電流供給用の白金電極を配置し、試験片とランタンストロンチウムマンガン(La0.6−Sr0.4−Mn)製固体酸化物円板の接触面の面圧が2kg/cmとなるように白金電極上に荷重をかけ、白金電極間に10mAの定電流を流して、試験片を挟み込んだランタンストロンチウムマンガン(La0.6−Sr0.4−Mn)製固体酸化物間の電位差を測定することにより抵抗測定を行った。この状態で大気中で1000℃に昇温し6時間保持させて焼結処理したのちに800℃に降下し、800℃を保持したまま電気抵抗を1000時間まで200h毎に測定し、電気抵抗率(面積抵抗率)に換算した。電気抵抗率の値が25mΩ・cm以下を○とし、25mΩ・cmを超える電気抵抗値があったものを×として、電気伝導性を評価した。 The electrical resistivity was measured using a test piece processed to a plate thickness of 1.5 mm and 20 mm × 20 mm, and this test piece was lanthanum strontium manganese (La 0.6 -Sr 0.4 -Mn 1) having a radius of 9 mm from both sides. ) Pt paste is applied and sandwiched between solid oxide discs, platinum electrodes for current supply are arranged above and below the sandwich measurement sample, and the test piece and lanthanum strontium manganese (La 0.6 -Sr 0.4) -Mn 1 ) A load was applied on the platinum electrode so that the contact pressure of the contact surface of the solid oxide disk made of 2 kg / cm 2 was applied, and a constant current of 10 mA was passed between the platinum electrodes to sandwich the test piece. Resistance measurement was performed by measuring a potential difference between solid oxides made of lanthanum strontium manganese (La 0.6 -Sr 0.4 -Mn 1 ). In this state, the temperature was raised to 1000 ° C. in the atmosphere, held for 6 hours, sintered, then lowered to 800 ° C., and the electrical resistance was measured every 200 hours up to 1000 hours while maintaining 800 ° C. Converted to (area resistivity). The electrical conductivity was evaluated by assuming that the value of electrical resistivity was 25 mΩ · cm 2 or less as ◯, and the value having an electrical resistance value exceeding 25 mΩ · cm 2 as x.

耐酸化性は、板厚0.2mm,25mm×35mmに切出した試験片を用い、大気雰囲気で1000℃×6hの加熱処理を行ったものを供試材とした。加速条件として930℃,20%水蒸気を含む大気雰囲気中で酸化試験を実施した。400h後の酸化増量が1.5mg/cm以下を○,1.5mg/cmを超えたものを×とした。なお、これらはいずれも600〜800℃で使用する固体酸化物形燃料電池の高温導電部材として、必要十分のスペックである。複合酸化物の形成状態は、FE−EPMAによる断面観察を行い、図1に示すような形態の酸化物が形成されていることを確認した。皮膜厚さは、FE−EPMA面分析を行い図2に示すようなA層(Ti,Nb,Alの酸化物が混在する酸化物)を測定した。すなわち、A層中に、Ti,Al,Nbがいずれも母材中の5倍以上のカウント数を有する塊状,または層状での濃化状態で存在することを確認できたものを所定の複合酸化物層とし、A層の厚みは、層の長さ50μmにおける凸凹の平均距離χを測定し、0.1〜10μmの範囲内にあるものを○,複合酸化物が認められなかったものを×とした。 Oxidation resistance was obtained by using a test piece cut to a plate thickness of 0.2 mm and 25 mm × 35 mm and heat-treated at 1000 ° C. for 6 hours in an air atmosphere. The oxidation test was performed in an air atmosphere containing 930 ° C. and 20% water vapor as acceleration conditions. The oxidation increase after 400 h was 1.5 mg / cm 2 or less, and the one exceeding 1.5 mg / cm 2 was rated as x. All of these are necessary and sufficient specifications as a high-temperature conductive member of a solid oxide fuel cell used at 600 to 800 ° C. The formation state of the complex oxide was observed by cross-section using FE-EPMA, and it was confirmed that an oxide having a form as shown in FIG. 1 was formed. The film thickness was measured by performing FE-EPMA surface analysis and measuring layer A (oxide containing a mixture of Ti, Nb, and Al oxides) as shown in FIG. That is, in the layer A, it was confirmed that Ti, Al, and Nb were all present in a lump-like or layered state having a count number more than five times that of the base material. The thickness of the layer A is determined by measuring the average unevenness χ of the unevenness in the layer length of 50 μm, ○ in the range of 0.1 to 10 μm, and × in which no complex oxide was observed It was.

Figure 0005576146
Figure 0005576146

表2の試験結果に見られるように、本発明に従った鋼種番号A1〜A15のフェライト系ステンレス鋼では耐酸化性が凸凹平均距離の値が0.1〜10μm範囲内であり、電気伝導性についても電気抵抗率のいずれも25mΩ・cm以下であった。これに対し、比較鋼種番号B1〜B6のフェライト系ステンレス鋼は耐酸化性,電気伝導性を両立することが出来ずに高温導電部位用材料としては不適と判断された。 As can be seen from the test results in Table 2, the ferritic stainless steels of steel types A1 to A15 according to the present invention have an oxidation resistance within the range of 0.1 to 10 μm, and the electrical conductivity is within the range of 0.1 to 10 μm. Also, the electrical resistivity of each was 25 mΩ · cm 2 or less. On the other hand, the ferritic stainless steels of comparative steel type numbers B1 to B6 were judged to be unsuitable as materials for high-temperature conductive parts because they could not achieve both oxidation resistance and electrical conductivity.

本発明によれば、必要以上のコスト増にならずに良好な電気伝導性と耐酸化性を改善した固体酸化物形燃料電池の高温導電部材を提供できる。   According to the present invention, it is possible to provide a high-temperature conductive member for a solid oxide fuel cell with improved electrical conductivity and oxidation resistance without increasing costs more than necessary.

1 ステンレス鋼母材
2 内部酸化物
3 A層(Ti,Al,Nbの酸化物が混在する酸化物)
4 Cr
1 Stainless steel base material 2 Internal oxide 3 A layer (oxide mixed with oxides of Ti, Al, Nb)
4 Cr 2 O 3 layers

Claims (4)

表層に酸化物層が生成しており、Cr酸化物層と母材との間に、Nb酸化物,Ti酸化物およびAl酸化物が混在する、Ti,Al,Nbがいずれも母材中の5倍以上のカウント数を有する塊状,または層状での濃化状態で存在することを確認できたものを所定の複合酸化物層とし、層の長さ50μmにおける凸凹の平均距離χ厚さが0.1〜10μmの酸化物層が存在しているフェライト系ステンレス鋼であることを特徴とする、高温の電気伝導性と耐酸化性に優れた固体酸化物形燃料電池の高温導電部位用導電部材。 An oxide layer is formed on the surface layer, and Nb oxide, Ti oxide, and Al oxide are mixed between the Cr oxide layer and the base material . Ti, Al, and Nb are all in the base material. What is confirmed to be present in a concentrated state in the form of a lump or a layer having a count number of 5 times or more is defined as a predetermined composite oxide layer, and the average distance χ thickness of unevenness in the layer length of 50 μm is 0 Conductive member for a high-temperature conductive part of a solid oxide fuel cell excellent in high-temperature electrical conductivity and oxidation resistance, characterized by being a ferritic stainless steel having an oxide layer of 1 to 10 μm . フェライト系ステンレス鋼がC:0.02質量%以下,Si:0.5質量%以下,Mn:1.5質量%以下,S:0.01質量%以下,P:0.05質量%以下,Cr:18〜35質量%,Nb:0.15〜0.5質量%,N:0.02質量%以下,Al:0.01〜0.3%,Ti:0.08〜0.5質量%,かつ、各々質量比でNb/(Nb+Ti+Al),Ti/(Nb+Ti+Al),Al/(Nb+Ti+Al)がいずれも0.1以上であり、残部がFeおよび不可避的不純物からなることを特徴とする、請求項1に記載の固体酸化物形燃料電池の高温導電部位用導電部材。 Ferritic stainless steel is C: 0.02 mass% or less, Si: 0.5 mass% or less, Mn: 1.5 mass% or less, S: 0.01 mass% or less, P: 0.05 mass% or less, Cr: 18 to 35% by mass, Nb: 0.15 to 0.5% by mass, N: 0.02% by mass or less, Al: 0.01 to 0.3%, Ti: 0.08 to 0.5% by mass %, And Nb / (Nb + Ti + Al), Ti / (Nb + Ti + Al), and Al / (Nb + Ti + Al) are each 0.1 or more, and the balance is made of Fe and inevitable impurities. The conductive member for high temperature conductive parts of the solid oxide fuel cell according to claim 1 . 請求項2の成分に加え、Cu:0.1〜1.5質量%,Mo:0.1〜4.0質量%,W:0.1〜4.0質量%,Zr:0.05〜0.50質量%,V:0.02〜0.2質量%,Ta:0.05〜0.50質量%の1種または2種以上を含む、請求項1または2に記載の高温の電気伝導性と耐酸化性に優れた固体酸化物形燃料電池の高温導電部位用導電部材。   In addition to the components of claim 2, Cu: 0.1-1.5% by mass, Mo: 0.1-4.0% by mass, W: 0.1-4.0% by mass, Zr: 0.05- 3. High-temperature electricity according to claim 1, comprising one or more of 0.50 mass%, V: 0.02 to 0.2 mass%, Ta: 0.05 to 0.50 mass%. A conductive member for a high temperature conductive part of a solid oxide fuel cell having excellent conductivity and oxidation resistance. 更にB,Caの1種または2種以上を合計で0.0005〜0.005%含む、請求項1〜3記載の高温の電気伝導性と耐酸化性に優れた固体酸化物形燃料電池の高温導電部位用導電部材。   The solid oxide fuel cell excellent in high-temperature electrical conductivity and oxidation resistance according to claim 1, further comprising 0.0005 to 0.005% in total of one or more of B and Ca. Conductive member for high temperature conductive parts.
JP2010043819A 2010-03-01 2010-03-01 Conductive member of solid oxide fuel cell Active JP5576146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043819A JP5576146B2 (en) 2010-03-01 2010-03-01 Conductive member of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043819A JP5576146B2 (en) 2010-03-01 2010-03-01 Conductive member of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2011179063A JP2011179063A (en) 2011-09-15
JP5576146B2 true JP5576146B2 (en) 2014-08-20

Family

ID=44690888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043819A Active JP5576146B2 (en) 2010-03-01 2010-03-01 Conductive member of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5576146B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093523A1 (en) * 2013-12-20 2015-06-25 日本特殊陶業株式会社 Single cell with metal plate, fuel cell stack, and method for producing single cell with metal plate
JP5935792B2 (en) * 2013-12-27 2016-06-15 Jfeスチール株式会社 Ferritic stainless steel
WO2016072485A1 (en) * 2014-11-06 2016-05-12 京セラ株式会社 Conductive member, cell stack device, module, module housing device, and method for manufacturing conductive member
JP6354772B2 (en) * 2015-04-10 2018-07-11 Jfeスチール株式会社 Ferritic stainless steel
EP3480334B1 (en) 2016-07-04 2021-10-20 NIPPON STEEL Stainless Steel Corporation Ferritic stainless steel, steel sheet thereof, and methods for producing these
JP2018055913A (en) * 2016-09-28 2018-04-05 Toto株式会社 Collector member and solid oxide fuel battery cell unit
JP6888201B2 (en) * 2017-02-13 2021-06-16 日鉄ステンレス株式会社 Separator for solid oxide fuel cell with excellent heat resistance and fuel cell using this
EP3604588B1 (en) * 2017-03-30 2021-03-03 JFE Steel Corporation Ferritic stainless steel
TWI761482B (en) * 2017-03-31 2022-04-21 日商大阪瓦斯股份有限公司 Manufacturing method for alloy member, alloy member, electrochemical element , electrochemical module, electrochemical device, energy system and solid oxide fuel cell
TWI763812B (en) * 2017-03-31 2022-05-11 日商大阪瓦斯股份有限公司 Electrochemical device, energy system and solid oxide fuel cell
JP6910179B2 (en) * 2017-03-31 2021-07-28 大阪瓦斯株式会社 Manufacturing methods for electrochemical elements, electrochemical modules, electrochemical devices, energy systems, solid oxide fuel cells, and electrochemical elements

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675066B2 (en) * 2004-06-23 2011-04-20 日新製鋼株式会社 Ferritic stainless steel for solid oxide fuel cell separator
JP2008285731A (en) * 2007-05-18 2008-11-27 Nisshin Steel Co Ltd Stainless steel sheet having excellent surface electrical conductivity, and method for producing the same

Also Published As

Publication number Publication date
JP2011179063A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5576146B2 (en) Conductive member of solid oxide fuel cell
JP5704823B2 (en) Ferritic stainless steel with no rare earth metals and excellent oxidation resistance at high temperatures
JP4310723B2 (en) Steel for solid oxide fuel cell separator
JP5460101B2 (en) High temperature conductive member
RU2567144C2 (en) Heat resisting iron-chrome-aluminium alloy with low speed of chrome evaporation and increased heat resistance
CN109196133B (en) Ferritic stainless steel, steel sheet thereof, and method for producing same
JP4756905B2 (en) Solid oxide fuel cell separator material
JP5660331B2 (en) Solid oxide fuel cell steel with excellent oxidation resistance
JP4737600B2 (en) Steel for solid oxide fuel cell separator
JP4675066B2 (en) Ferritic stainless steel for solid oxide fuel cell separator
JP5257803B2 (en) Steel for solid oxide fuel cell excellent in oxidation resistance and member for solid oxide fuel cell using the same
US6776956B2 (en) Steel for separators of solid-oxide type fuel cells
JP2018131643A (en) Separator excellent in heat resistance for solid oxide type fuel cell and fuel cell using the same
JP3321888B2 (en) Metal materials for solid oxide fuel cells
JPWO2009060900A1 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP7270444B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2003187828A (en) Ferritic stainless steel for solid oxide type fuel cell member
JP2009185387A (en) Ferritic stainless steel for separator of solid oxide fuel cell
JPH10280103A (en) Steel for solid electrolytic type fuel battery separator
JP6418362B1 (en) Stainless steel materials, components, cells and fuel cell stacks
JP4524760B2 (en) Oxidation resistant steel and solid oxide fuel cell parts using the same
JP2010037614A (en) Stainless steel for fuel cell separator and fuel cell separator
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JP2005226083A (en) Ferritic stainless steel for separator of solid oxide fuel cell
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5576146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250