JP5575623B2 - Insulator used for pressure vessel sensor for dielectric property measurement - Google Patents

Insulator used for pressure vessel sensor for dielectric property measurement Download PDF

Info

Publication number
JP5575623B2
JP5575623B2 JP2010270681A JP2010270681A JP5575623B2 JP 5575623 B2 JP5575623 B2 JP 5575623B2 JP 2010270681 A JP2010270681 A JP 2010270681A JP 2010270681 A JP2010270681 A JP 2010270681A JP 5575623 B2 JP5575623 B2 JP 5575623B2
Authority
JP
Japan
Prior art keywords
pressure vessel
electrode
dielectric
cylindrical
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010270681A
Other languages
Japanese (ja)
Other versions
JP2012118023A (en
Inventor
宗広 星野
裕 上野
雅裕 田中
卓也 末次
明子 高橋
元信 後藤
Original Assignee
マルボシ酢株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルボシ酢株式会社 filed Critical マルボシ酢株式会社
Priority to JP2010270681A priority Critical patent/JP5575623B2/en
Publication of JP2012118023A publication Critical patent/JP2012118023A/en
Application granted granted Critical
Publication of JP5575623B2 publication Critical patent/JP5575623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、食品等の各種流体の誘電特性を測定する小型耐圧容器センサーに用いる絶縁体に関する。   The present invention relates to an insulator used for a small pressure vessel sensor for measuring dielectric characteristics of various fluids such as food.

物質は固有の誘電特性を持つことから、電場に置くことにより誘電分極を示し、電気容量、誘電率、誘電損失、誘電緩和などを知ることができる。これらの特性は、原子団や分子の運動状態を直接反映する。従って、誘電特性を測定することは、測定試料における構成成分の分子状態やその変化を検出する有効的な手段となる。   Since substances have inherent dielectric properties, they can exhibit dielectric polarization when placed in an electric field, and can know capacitance, dielectric constant, dielectric loss, dielectric relaxation, and the like. These characteristics directly reflect the state of motion of atomic groups and molecules. Therefore, measuring the dielectric characteristics is an effective means for detecting the molecular state of the constituent component in the measurement sample and its change.

誘電特性の測定は、非破壊条件下で直接的に測定できる有効な手段であることから、食品、医療、化学等の分野で広く応用が試みられている。応用例としては、食品においては、含水率や食用油の劣化状態(例えば特許文献1など)、巨視的観点からのソース等調味料の品質管理、また発酵現場においては菌体数のモニタリング等が挙げられる。医療分野では、非観血的に皮膚より血中のグルコースレベルを測定する方法が考案されている(特許文献2)。また、混合燃料中のアルコール含有率などの測定にも応用されている。   Since the measurement of dielectric properties is an effective means that can be directly measured under nondestructive conditions, it has been widely applied in the fields of food, medicine, chemistry, and the like. Application examples include the moisture content and the state of deterioration of edible oil (for example, Patent Document 1), the quality control of seasonings such as sauces from a macroscopic viewpoint, and the monitoring of the number of cells at the fermentation site. Can be mentioned. In the medical field, a method for non-invasively measuring blood glucose level from the skin has been devised (Patent Document 2). It is also applied to the measurement of alcohol content in mixed fuel.

天然物からの食品素材や機能性物質などの抽出においては、目的とする溶質に対する適切な溶媒を選択する必要があるが、従来、溶解挙動の指標として溶解度パラメータを用いた抽出プロセスが検討されてきている。溶解度パラメータは個々の蒸発潜熱により定義され、経験的に溶質−溶媒間の溶解度パラメータ値が近いほど相溶性が高まる事が分かっており、溶けやすさを判断する目安として用いられているが、極性が高い水素結合性の物質間ではあてはめることが困難である。   In the extraction of food materials and functional substances from natural products, it is necessary to select an appropriate solvent for the target solute. Conventionally, extraction processes using solubility parameters as an indicator of dissolution behavior have been studied. ing. The solubility parameter is defined by the latent heat of vaporization, and it is empirically known that the closer the solubility parameter value between the solute and the solvent is, the higher the compatibility is, and it is used as a guideline for judging the solubility. However, it is difficult to fit between materials having high hydrogen bonding properties.

一方、個々の物質は電場内において、単一相に限らず混合相においての全体的な誘電特性を実測する事が可能である。誘電特性の変化を測定するに当たり、電極表面積(S)と電極間距離(d)が一定である電場領域に誘電体(測定試料)を挿入した場合、誘電率(ε)と電気容量(C)との関係はC=ε(S/d)で表わされる。従って、電気容量(C)はインピーダンスアナライザーやLCRメーターを用いることで容易に計測する事が可能であるため、測定試料の誘電率の変化を電気容量の変化として測定できる。そして、溶解度パラメータと同様に溶質−溶媒間の誘電率差が小さいほど混合性が高いことが報告されていることから、電気容量の測定によって適切な溶媒選択が可能となる。   On the other hand, it is possible to actually measure the overall dielectric characteristics of each substance in an electric field, not only in a single phase but also in a mixed phase. When measuring the change in dielectric properties, when a dielectric (measurement sample) is inserted in an electric field region where the electrode surface area (S) and the distance between electrodes (d) are constant, the dielectric constant (ε) and the electric capacity (C) Is represented by C = ε (S / d). Therefore, since the electric capacity (C) can be easily measured by using an impedance analyzer or an LCR meter, a change in dielectric constant of the measurement sample can be measured as a change in electric capacity. Further, since it is reported that the smaller the dielectric constant difference between the solute and the solvent is, the higher the mixing property is, like the solubility parameter, it is possible to select an appropriate solvent by measuring the electric capacity.

このように、食品等の各種流体の誘電特性を測定することは、これらの物理的変化や性質を非破壊で直接観測できるという大きな利点を有しており非常に有効であるが、電極設置等の点から測定装置が大型化してしまう、測定対象流体の性質により構造を変える必要がでてくる等の傾向が見られる。このため、幅広い流体の誘電特性を簡便に測定するための汎用性の高い測定機器の開発が求められていた。   In this way, measuring the dielectric properties of various fluids such as foods has the great advantage of being able to directly observe these physical changes and properties in a non-destructive manner. From this point of view, there is a tendency that the measuring apparatus is enlarged and the structure needs to be changed depending on the properties of the fluid to be measured. For this reason, there has been a demand for the development of a highly versatile measuring instrument for simply measuring the dielectric properties of a wide range of fluids.

特表2005−515436号公報JP 2005-515436 A 特開2010−188135号公報JP 2010-188135 A

本発明は、食品等の各種流体(気体、液体、高温高圧下における超臨界流体等の様々な流体、及び、流体に溶解した試料等)に幅広く適用する、小スペースで誘電特性を簡便に測定するための汎用性の高い測定機器を提供すること、及びその好適な構成等を提供することを目的とする。   The present invention is widely applied to various fluids such as food (gas, liquid, various fluids such as supercritical fluid under high temperature and high pressure, and samples dissolved in fluid), and easily measures dielectric properties in a small space. It is an object of the present invention to provide a highly versatile measuring instrument and a suitable configuration thereof.

上記目的を達成するため、本発明者らは鋭意研究の結果、以下の構成を有する誘電特性測定用小型耐圧容器センサーを開発するに至った。なお、下記の(1)〜(5)は、図1の各符号に対応している。   In order to achieve the above object, as a result of intensive studies, the present inventors have developed a small pressure vessel sensor for measuring dielectric characteristics having the following configuration. The following (1) to (5) correspond to the respective symbols in FIG.

電極となる金属性の円筒型耐圧容器(2)と上下耐圧容器蓋(1)を有し、容器中央部に耐圧容器電極の対となる円柱状若しくは円筒状電極(3)が平行に絶縁体(4)を介して設置され、該円柱状若しくは円筒状電極(3)は導線(5)を介して耐圧容器外部に絶縁状態で導かれてなること、を特徴とする誘電特性測定用耐圧容器センサー。   A cylindrical cylindrical pressure vessel (2) serving as an electrode and an upper and lower pressure vessel lid (1), and a columnar or cylindrical electrode (3) serving as a pair of pressure vessel electrodes is disposed in parallel at the center of the vessel. A pressure-resistant container for measuring dielectric characteristics, characterized in that the columnar or cylindrical electrode (3) is installed via (4) and is led to the outside of the pressure-resistant container via a conducting wire (5). sensor.

そして、本発明者らはさらに、上記誘電特性測定用耐圧容器センサーに用いる下記絶縁体を開発した。   Further, the present inventors have further developed the following insulator used for the dielectric container for pressure characteristic measurement.

(I)上記誘電特性測定用耐圧容器センサーにおいて、電極間の絶縁に用いるための絶縁体であって、細孔が設けられ、且つ、円筒型耐圧容器と上下耐圧容器蓋に密着してこれらをシールする形状を有しており、これにより容器中央部の円柱状若しくは円筒状電極を上下方向から固定すること、を特徴とする絶縁体。
(II)試料ポケットが設けられていること、を特徴とする(I)に記載の絶縁体。
(III)細孔及び試料ポケットがいずれも複数(例えば4〜5個)設けられていること、を特徴とする(II)に記載の絶縁体。
(I) The dielectric property measurement pressure vessel sensor is an insulator for use in insulation between electrodes, and has pores, and is in close contact with the cylindrical pressure vessel and the upper and lower pressure vessel lids. An insulator having a shape to be sealed, and thereby fixing a columnar or cylindrical electrode at the center of the container from above and below.
(II) The insulator according to (I), wherein a sample pocket is provided.
(III) The insulator according to (II), wherein a plurality of (for example, 4 to 5) pores and sample pockets are provided.

本発明によれば、食品等の各種流体の誘電特性測定用耐圧容器センサーの対電極を絶縁しながら、一定の距離を保って電極を固定させることができる。これにより、高圧液体を含む様々な流体の連続的な誘電特性測定がより容易に可能となる。さらに、絶縁体に試料ポケットを設けることで、誘電測定用耐圧容器内における試料の流体に対する溶解の場を提供することもできる。   ADVANTAGE OF THE INVENTION According to this invention, an electrode can be fixed maintaining a fixed distance, insulating the counter electrode of the pressure-resistant container sensor for dielectric property measurement of various fluids, such as foodstuffs. This makes it easier to continuously measure dielectric properties of various fluids including high pressure liquids. Further, by providing a sample pocket in the insulator, it is possible to provide a field for dissolving the sample in the dielectric container for pressure measurement.

誘電特性測定用耐圧容器センサーの一例の断面図を示す。Sectional drawing of an example of the pressure-resistant container sensor for dielectric property measurement is shown. 対電極を固定するための絶縁体構造の例を示す。上段及び下段は上面及び背面図、中段は断面図を示す。The example of the insulator structure for fixing a counter electrode is shown. The upper and lower stages are top and rear views, and the middle stage is a cross-sectional view.

誘電特性測定用耐圧容器センサーの耐圧容器は、円筒型および上下のナットとなる蓋によって構成される。材質(素材)はステンレス等の金属製のものを用いることで、この容器自体が電極としての役割を果たすことが特徴のひとつである。これにより、従来から用いられている平板電極やシリンダー型の電極を圧力容器内に設置する必要が無く、容器の小型化及び設計の簡便性を実現している。特にSUS316等の耐腐食性、耐熱性の高いものを素材として用いることで、超臨界流体等の過酷な反応場にも適用できる。これと対となる容器内部の円柱状若しくは円筒状電極は、円筒型耐圧容器と平行に絶縁体を介して設置される。この柱状若しくは円筒状電極の素材については、耐圧容器電極と同一素材を用いることが好ましい。   The pressure-resistant container of the pressure-resistant container sensor for measuring dielectric characteristics is composed of a cylindrical shape and lids that are upper and lower nuts. One of the characteristics is that the container itself plays a role as an electrode by using a metal material such as stainless steel. As a result, it is not necessary to install a plate electrode or a cylinder-type electrode that has been conventionally used in the pressure vessel, and the size of the vessel and the simplicity of the design are realized. In particular, by using a material having high corrosion resistance and high heat resistance such as SUS316 as a material, it can be applied to a severe reaction field such as a supercritical fluid. The columnar or cylindrical electrode inside the container that forms a pair with this is installed in parallel with the cylindrical pressure-resistant container via an insulator. About the material of this columnar or cylindrical electrode, it is preferable to use the same material as the pressure vessel electrode.

容器体積は20〜30mL程度とし、円筒の肉厚は6mm程度とする。これにより、小型であり且つ高い耐圧性を保持する事ができる。耐圧容器の外表面は、外部からの電気的な干渉から保護するため、ポリテトラフルオロエチレン(PTFE)等、耐熱性、耐薬品性に優れた絶縁素材による塗装を施すことが好ましい。   The container volume is about 20 to 30 mL, and the thickness of the cylinder is about 6 mm. Thereby, it is small and can hold | maintain high pressure | voltage resistance. The outer surface of the pressure vessel is preferably coated with an insulating material having excellent heat resistance and chemical resistance, such as polytetrafluoroethylene (PTFE), in order to protect it from external electrical interference.

円柱状若しくは円筒状電極は、テフロン(登録商標)樹脂等の絶縁体で被覆されたPt等の導線を介することで、耐圧容器外部に導く。そして、このような誘電特性測定容器は、ヒーターまたはオーブン等で適切な温度条件下に置いて、流体および測定試料をポンプ等で流入させ、背圧弁またはレギュレーターにより適切な圧力条件下を達成する事で目的の誘電特性を測定する。誘電特性の測定は、例えば10Hz〜100MHzの低周波から高周波範囲における誘電体の誘電特性をLCRメーターまたはインピーダンスアナライザーを接続することで行う。   The columnar or cylindrical electrode is led to the outside of the pressure vessel through a lead wire such as Pt covered with an insulator such as Teflon (registered trademark) resin. Such a dielectric property measurement container is placed under an appropriate temperature condition with a heater or an oven, and the fluid and the measurement sample are allowed to flow in with a pump or the like, and an appropriate pressure condition is achieved with a back pressure valve or a regulator. To measure the desired dielectric properties. For example, the dielectric characteristics are measured by connecting an LCR meter or an impedance analyzer to the dielectric characteristics of the dielectric in the low frequency to high frequency range of 10 Hz to 100 MHz.

そして、本発明の絶縁体は、様々な状況に応じた構造に容易に加工するができるようテフロン(登録商標)樹脂等を用いることが好ましい。当該絶縁体は、耐圧容器電極の円筒及び上下蓋ナットの接触面に対してシールの役割を兼ね備え、容器内の密閉状態を補助する。そして、当該絶縁体は細孔を設けることで、各種流体の誘電特性の連続測定をより簡便且つ容易に可能とする。また、この細孔は、円柱状若しくは円筒状電極を外部に連絡するための導線通路として用いることもできる。   The insulator of the present invention preferably uses Teflon (registered trademark) resin or the like so that it can be easily processed into a structure corresponding to various situations. The insulator also serves as a seal for the contact surfaces of the cylinder of the pressure vessel electrode and the upper and lower lid nuts, and assists the sealed state in the vessel. And the said insulator makes it possible to measure the dielectric properties of various fluids more simply and easily by providing pores. Moreover, this pore can also be used as a conducting wire path for connecting a columnar or cylindrical electrode to the outside.

また、該絶縁体は適当なサイズの試料ポケットを設けることで、誘電測定容器内における試料の流体に対する溶解の場を提供する事ができる。これにより、特に有極性成分の溶解挙動、溶解度等を知ることができ、品質管理等が可能となる。なお、例えば、図2の例においては4つポケットを示しているが、これらは容器内に満たされた流体にサンプル成分が十分に飽和できる体積である。   Further, the insulator can provide a field for dissolution of the sample in the dielectric measurement container by providing a sample pocket of an appropriate size. This makes it possible to know the dissolution behavior, solubility and the like of the polar component, and to perform quality control and the like. For example, although four pockets are shown in the example of FIG. 2, these are volumes that can sufficiently saturate the sample components in the fluid filled in the container.

測定対象となる流体は、水、メタノール、エタノール、アセトン、n−ヘキサン、フェノール、クロロホルム、ジクロロメタン、アセトニトリル、二酸化炭素等の溶媒全般、また、これらの混合溶媒ならびにこれらの超臨界流体を含む。溶質成分に関しては、テルペノイドや脂肪酸等の炭化水素化合物、ポリフェノール類、炭水化物等の有極性成分が主な対象となる。また、これらの溶媒、溶質で構成される食品自体も測定対象となり、特に様々な粘度の流体について測定可能であることが特徴である。   The fluid to be measured includes all solvents such as water, methanol, ethanol, acetone, n-hexane, phenol, chloroform, dichloromethane, acetonitrile, carbon dioxide, mixed solvents thereof, and supercritical fluids thereof. With respect to the solute component, polar components such as hydrocarbon compounds such as terpenoids and fatty acids, polyphenols, and carbohydrates are mainly targeted. In addition, the food itself composed of these solvents and solutes is also an object to be measured, and is characterized by being able to measure fluids having various viscosities.

以下、本発明の実施例について述べるが、本発明はこれらのみに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

小スペースで誘電特性を簡便に測定するための誘電特性測定用耐圧容器センサーの構成の一例の断面図を図1に示した。図1においては、金属性の円筒型耐圧容器(2)と上下耐圧容器蓋(1)が耐圧容器電極を構成し、容器中央部に耐圧容器電極の対となる円柱状若しくは円筒状電極(3)が平行に絶縁体(4)を介して設置され、対となる円柱状若しくは円筒状電極(3)は導線(5)を介して耐圧容器外部に絶縁状態で導かれている。なお、耐圧容器表面は絶縁塗装(6)を施している。   FIG. 1 shows a cross-sectional view of an example of the configuration of a dielectric container measuring pressure vessel sensor for simply measuring dielectric characteristics in a small space. In FIG. 1, a metallic cylindrical pressure vessel (2) and upper and lower pressure vessel lids (1) constitute a pressure vessel electrode, and a columnar or cylindrical electrode (3 ) Are installed in parallel via an insulator (4), and a pair of columnar or cylindrical electrodes (3) are led to the outside of the pressure vessel via a lead (5) in an insulated state. The surface of the pressure vessel is provided with an insulating coating (6).

次に、本発明である上記誘電特性測定用耐圧容器センサーの対電極を固定する絶縁体の構成の一例を図2に示した。この例では、細孔(流体通路と示されている)が5つ、試料ポケットが4つ設けられている。そして、横部には、円筒型耐圧容器と上下耐圧容器蓋に密着してこれらをシールし固定する形状である耐圧容器シールも設けられている。   Next, FIG. 2 shows an example of the configuration of an insulator for fixing the counter electrode of the dielectric container for measuring dielectric characteristics according to the present invention. In this example, five pores (shown as fluid passages) and four sample pockets are provided. The horizontal portion is also provided with a pressure-resistant container seal having a shape in which the cylindrical pressure-resistant container and the upper and lower pressure-resistant container lids are in close contact with each other to seal and fix them.

本発明を要約すれば、以下の通りである。   The present invention is summarized as follows.

本発明は、食品等の各種流体に幅広く適用する、小スペースで誘電特性を簡便に測定するための汎用性の高い測定機器を提供すること、及びその好適な構成等を提供することを目的とする。   It is an object of the present invention to provide a versatile measuring instrument that can be widely applied to various fluids such as foods and simply measure dielectric properties in a small space, and to provide a suitable configuration thereof. To do.

そして、細孔が設けられ、且つ、誘電特性測定用耐圧容器センサーの円筒型耐圧容器と上下耐圧容器蓋に密着してこれらをシールする形状を有しており、これにより誘電特性測定用耐圧容器センサーの容器中央部の円柱状若しくは円筒状電極を上下方向から固定する絶縁体を誘電特性測定用耐圧容器センサーに用いることで、その対電極を絶縁しながら、一定の距離を保って電極を固定することができる。   And it is provided with a pore and has a shape that tightly seals and seals the cylindrical pressure vessel and the upper and lower pressure vessel lids of the dielectric property measurement pressure vessel sensor. An insulator that fixes the columnar or cylindrical electrode in the center of the sensor's container from above and below is used in a pressure-resistant container sensor for measuring dielectric properties, so that the electrode is fixed at a constant distance while insulating the counter electrode. can do.

Claims (2)

金属製の円筒型耐圧容器電極と上下耐圧容器蓋を有し、容器中央部に該円筒型耐圧容器電極の対となる円柱状若しくは円筒状電極が平行に設置され、該円柱状若しくは円筒状電極は導線を介して容器外部に絶縁状態で導かれてなる誘電特性測定用耐圧容器センサーにおいて、電極間の絶縁に用いるための絶縁体であって、細孔及び試料ポケットが設けられ、且つ、円筒型耐圧容器電極と上下耐圧容器蓋に密着してこれらをシールする形状を有しており、これにより容器中央部の円柱状若しくは円筒状電極を上下方向から固定すること、を特徴とする絶縁体。 It has a metal cylindrical pressure vessel electrode and an upper and lower pressure vessel lid, and a columnar or cylindrical electrode which is a pair of the cylindrical pressure vessel electrode is installed in parallel at the center of the vessel , and the columnar or cylindrical electrode Is a dielectric container for measuring dielectric properties, which is led to the outside of the container in an insulated state via a conducting wire, and is an insulator for use in insulation between electrodes, provided with a pore and a sample pocket , and a cylinder Insulator characterized in that it has a shape that tightly seals and seals the mold pressure vessel electrode and the upper and lower pressure vessel lids, thereby fixing the cylindrical or cylindrical electrode at the center of the vessel from above and below . 細孔及び試料ポケットがいずれも複数設けられていること、を特徴とする請求項1に記載の絶縁体。     2. The insulator according to claim 1, wherein a plurality of pores and sample pockets are provided.
JP2010270681A 2010-12-03 2010-12-03 Insulator used for pressure vessel sensor for dielectric property measurement Expired - Fee Related JP5575623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270681A JP5575623B2 (en) 2010-12-03 2010-12-03 Insulator used for pressure vessel sensor for dielectric property measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270681A JP5575623B2 (en) 2010-12-03 2010-12-03 Insulator used for pressure vessel sensor for dielectric property measurement

Publications (2)

Publication Number Publication Date
JP2012118023A JP2012118023A (en) 2012-06-21
JP5575623B2 true JP5575623B2 (en) 2014-08-20

Family

ID=46501006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270681A Expired - Fee Related JP5575623B2 (en) 2010-12-03 2010-12-03 Insulator used for pressure vessel sensor for dielectric property measurement

Country Status (1)

Country Link
JP (1) JP5575623B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658207A (en) * 1985-03-28 1987-04-14 Rockwell International Corporation Device for measuring the water content of ink samples
JPH0814551B2 (en) * 1987-03-31 1996-02-14 株式会社東芝 Conductivity measurement cell
JPS6473244A (en) * 1987-09-16 1989-03-17 Toshiba Corp Dielectric constant measuring cell
JPH0646367U (en) * 1992-11-27 1994-06-24 日本電子機器株式会社 Gasoline characterization device
JPH0656765U (en) * 1993-01-08 1994-08-05 日本電子機器株式会社 Capacitance sensor
JP3763012B2 (en) * 1998-12-22 2006-04-05 株式会社ケムコ Micro sample injector
GB9915686D0 (en) * 1999-07-06 1999-09-01 Zeneca Ltd Device
ATE317545T1 (en) * 1999-10-01 2006-02-15 Sophion Bioscience As ARRANGEMENT AND METHOD FOR DETERMINING AND/OR MONITORING ELECTROPHYSIOLOGICAL PROPERTIES OF ION CHANNELS
JP2003294677A (en) * 2002-03-29 2003-10-15 Fujitsu Ltd Biopolymer detecting device

Also Published As

Publication number Publication date
JP2012118023A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
Kim et al. Physical and electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate
Angkawisittpan et al. Determination of sugar content in sugar solutions using interdigital capacitor sensor
Ćwiklińska et al. Thermodynamic and physicochemical properties of binary mixtures of nitromethane with {2-methoxyethanol+ 2-butoxyethanol} systems at T=(293.15, 298.15, 303.15, 308.15, and 313.15) K
CN100362341C (en) Compound array sensor of ERT/ECT bimodel state imaging system
Sadeghi et al. Toward an understanding of the salting-out effects in aqueous ionic liquid solutions: vapor− liquid equilibria, liquid− liquid equilibria, volumetric, compressibility, and conductivity behavior
JP5916994B2 (en) Pressure vessel sensor for dielectric property measurement
Cahill et al. Contactless sensing of the conductivity of aqueous droplets in segmented flow
JP5907586B2 (en) Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions
CN108680491A (en) Method for testing using dynamic electrochemical device
JP2007303982A (en) Sensor device
Heinrich et al. Dielectric investigation of the glass relaxation in poly (vinyl acetate) and poly (vinyl chloride) under high hydrostatic pressure
RU2016141592A (en) MEASURING SYSTEM FOR DETERMINING THE PHASE SECTION LEVEL IN A MULTIPHASE CURRENT COMPOSITION
Tu et al. Effect of cation n-Alkyl side-chain length, temperature, and pressure on the glass-transition dynamics and Crystallization tendency of the [C n C1Pyrr]+[Tf2N]− Ionic Liquid family
JP5575623B2 (en) Insulator used for pressure vessel sensor for dielectric property measurement
JP2017532033A (en) Reactance and capacitance detection platform for detecting microorganisms
Schaschke et al. Viscosity measurement of vegetable oil at high pressure
Rahul et al. Studies of physical properties on molecular interactions in binary liquid mixtures of 3-chloroaniline with isomeric butanols at different temperatures
WO2015091976A1 (en) A conductivity sensor, and a pump comprising such sensor
Zhou et al. Densities, excess molar volume, isothermal compressibility, and isobaric expansivity of (dimethyl carbonate+ n-hexane) systems at temperatures (293.15 to 313.15) K and pressures from 0.1 MPa up to 40 MPa
JPS61502836A (en) Sensor for detecting liquid properties, how to use this sensor, and liquid property measuring device using this sensor
Bhattacharya et al. Equivalent circuit models and analysis of electrochemical impedance spectra of caffeine solutions and beverages
Tomida et al. Measurements of thermal conductivity of 1‐butyl‐3‐methylimidazolium tetrafluoroborate at high pressure
RU2629898C1 (en) Device for determining thermal conductivity factor of fibrous food products of animal origin
EP1834185A2 (en) A method and apparatus for monitoring and determining the moisture content of a substance in a container
Goldfarb et al. Electrochemistry in supercritical trifluoromethane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees