JP5907586B2 - Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions - Google Patents

Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions Download PDF

Info

Publication number
JP5907586B2
JP5907586B2 JP2010270725A JP2010270725A JP5907586B2 JP 5907586 B2 JP5907586 B2 JP 5907586B2 JP 2010270725 A JP2010270725 A JP 2010270725A JP 2010270725 A JP2010270725 A JP 2010270725A JP 5907586 B2 JP5907586 B2 JP 5907586B2
Authority
JP
Japan
Prior art keywords
pressure
electrode
pressure vessel
cylindrical
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010270725A
Other languages
Japanese (ja)
Other versions
JP2012118030A (en
Inventor
星野 宗広
宗広 星野
上野 裕
裕 上野
雅裕 田中
雅裕 田中
卓也 末次
卓也 末次
新 高水
新 高水
後藤 元信
元信 後藤
Original Assignee
マルボシ酢株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルボシ酢株式会社 filed Critical マルボシ酢株式会社
Priority to JP2010270725A priority Critical patent/JP5907586B2/en
Publication of JP2012118030A publication Critical patent/JP2012118030A/en
Application granted granted Critical
Publication of JP5907586B2 publication Critical patent/JP5907586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、食品等の各種流体の誘電特性を測定する小型耐圧容器センサー及びその誘電特性測定条件の変更方法に関する。   The present invention relates to a small pressure vessel sensor for measuring dielectric characteristics of various fluids such as food and a method for changing the dielectric characteristics measurement conditions.

物質は固有の誘電特性を持つことから、電場に置くことにより誘電分極を示し、電気容量、誘電率、誘電損失、誘電緩和などを知ることができる。これらの特性は、原子団や分子の運動状態を直接反映する。従って、誘電特性を測定することは、測定試料における構成成分の分子状態やその変化を検出する有効的な手段となる。   Since substances have inherent dielectric properties, they can exhibit dielectric polarization when placed in an electric field, and can know capacitance, dielectric constant, dielectric loss, dielectric relaxation, and the like. These characteristics directly reflect the state of motion of atomic groups and molecules. Therefore, measuring the dielectric characteristics is an effective means for detecting the molecular state of the constituent component in the measurement sample and its change.

誘電特性の測定は、非破壊条件下で直接的に測定できる有効な手段であることから、食品、医療、化学等の分野で広く応用が試みられている。応用例としては、食品においては、含水率や食用油の劣化状態(例えば特許文献1など)、巨視的観点からのソース等調味料の品質管理、また発酵現場においては菌体数のモニタリング等が挙げられる。医療分野では、非観血的に皮膚より血中のグルコースレベルを測定する方法が考案されている(特許文献2)。また、混合燃料中のアルコール含有率などの測定にも応用されている。   Since the measurement of dielectric properties is an effective means that can be directly measured under nondestructive conditions, it has been widely applied in the fields of food, medicine, chemistry, and the like. Application examples include the moisture content and the state of deterioration of edible oil (for example, Patent Document 1), the quality control of seasonings such as sauces from a macroscopic viewpoint, and the monitoring of the number of cells at the fermentation site. Can be mentioned. In the medical field, a method for non-invasively measuring blood glucose level from the skin has been devised (Patent Document 2). It is also applied to the measurement of alcohol content in mixed fuel.

天然物からの食品素材や機能性物質などの抽出においては、目的とする溶質に対する適切な溶媒を選択する必要があるが、従来、溶解挙動の指標として溶解度パラメータを用いた抽出プロセスが検討されてきている。溶解度パラメータは個々の蒸発潜熱により定義され、経験的に溶質−溶媒間の溶解度パラメータ値が近いほど相溶性が高まる事が分かっており、溶けやすさを判断する目安として用いられているが、極性が高い水素結合性の物質間ではあてはめることが困難である。   In the extraction of food materials and functional substances from natural products, it is necessary to select an appropriate solvent for the target solute. Conventionally, extraction processes using solubility parameters as an indicator of dissolution behavior have been studied. ing. The solubility parameter is defined by the latent heat of vaporization, and it is empirically known that the closer the solubility parameter value between the solute and the solvent is, the higher the compatibility is, and it is used as a guideline for judging the solubility. However, it is difficult to fit between materials having high hydrogen bonding properties.

一方、個々の物質は電場内において、単一相に限らず混合相においての全体的な誘電特性を実測する事が可能である。誘電特性の変化を測定するに当たり、電極表面積(S)と電極間距離(d)が一定である電場領域に誘電体(測定試料)を挿入した場合、誘電率(ε)と電気容量(C)との関係はC=ε(S/d)で表わされる。従って、電気容量(C)はインピーダンスアナライザーやLCRメーターを用いることで容易に計測する事が可能であるため、測定試料の誘電率の変化を電気容量の変化として測定できる。そして、溶解度パラメータと同様に溶質−溶媒間の誘電率差が小さいほど混合性が高いことが報告されていることから、電気容量の測定によって適切な溶媒選択が可能となる。   On the other hand, it is possible to actually measure the overall dielectric characteristics of each substance in an electric field, not only in a single phase but also in a mixed phase. When measuring the change in dielectric properties, when a dielectric (measurement sample) is inserted in an electric field region where the electrode surface area (S) and the distance between electrodes (d) are constant, the dielectric constant (ε) and the electric capacity (C) Is represented by C = ε (S / d). Therefore, since the electric capacity (C) can be easily measured by using an impedance analyzer or an LCR meter, a change in dielectric constant of the measurement sample can be measured as a change in electric capacity. Further, since it is reported that the smaller the dielectric constant difference between the solute and the solvent is, the higher the mixing property is, like the solubility parameter, it is possible to select an appropriate solvent by measuring the electric capacity.

このように、食品等の各種流体の誘電特性を測定することは、これらの物理的変化や性質を非破壊で直接観測できるという大きな利点を有しており非常に有効であるが、電極設置等の点から測定装置が大型化してしまう、測定対象流体の性質により構造を変える必要がでてくる等の傾向が見られる。このため、幅広い流体の誘電特性を簡便に測定するための汎用性の高い測定機器の開発が求められていた。   In this way, measuring the dielectric properties of various fluids such as foods has the great advantage of being able to directly observe these physical changes and properties in a non-destructive manner. From this point of view, there is a tendency that the measuring apparatus is enlarged and the structure needs to be changed depending on the properties of the fluid to be measured. For this reason, there has been a demand for the development of a highly versatile measuring instrument for simply measuring the dielectric properties of a wide range of fluids.

特表2005−515436号公報JP 2005-515436 A 特開2010−188135号公報JP 2010-188135 A

本発明は、食品等の各種流体(気体、液体、高温高圧下における超臨界流体等の様々な流体、及び、流体に溶解した試料等)に幅広く適用する、小スペースで誘電特性を簡便に測定するための汎用性の高い測定機器を提供すること、及びその好適な構成等を提供することを目的とする。   The present invention is widely applied to various fluids such as food (gas, liquid, various fluids such as supercritical fluid under high temperature and high pressure, and samples dissolved in fluid), and easily measures dielectric properties in a small space. It is an object of the present invention to provide a highly versatile measuring instrument and a suitable configuration thereof.

上記目的を達成するため、本発明者らは鋭意研究の結果、以下の構成を有する誘電特性測定用小型耐圧容器センサーを開発するに至った。なお、下記の(1)〜(5)は、図1の各符号に対応している。   In order to achieve the above object, as a result of intensive studies, the present inventors have developed a small pressure vessel sensor for measuring dielectric characteristics having the following configuration. The following (1) to (5) correspond to the respective symbols in FIG.

電極となる金属性の円筒型耐圧容器(2)と上下耐圧容器蓋(1)を有し、容器中央部に耐圧容器電極の対となる円柱状若しくは円筒状電極(3)が平行に絶縁体(4)を介して設置され、該円柱状若しくは円筒状電極(3)は導線(5)を介して耐圧容器外部に絶縁状態で導かれてなること、を特徴とする誘電特性測定用耐圧容器センサー。   A cylindrical cylindrical pressure vessel (2) serving as an electrode and an upper and lower pressure vessel lid (1), and a columnar or cylindrical electrode (3) serving as a pair of pressure vessel electrodes is disposed in parallel at the center of the vessel. A pressure-resistant container for measuring dielectric characteristics, characterized in that the columnar or cylindrical electrode (3) is installed via (4) and is led to the outside of the pressure-resistant container via a conducting wire (5). sensor.

そして、本発明者らはさらに、上記誘電特性測定用耐圧容器センサーの新規構成、及び、誘電特性測定条件を簡便に(容易に)変更するための下記本発明を開発した。   Further, the present inventors have further developed the following present invention for simply (easily) changing the dielectric structure measuring pressure vessel sensor and a new configuration of the dielectric characteristics measuring pressure vessel sensor.

(I)上記誘電特性測定用耐圧容器センサーにおいて、容器中央部の円柱状若しくは円筒状電極(3)と耐圧容器電極(1)、(2)が同一の素材であって、且つ、両電極に密着された絶縁体(4)により両電極間の間隔が固定されてなること、を特徴とする誘電特性測定用耐圧容器センサー。
(II)(I)に記載の誘電特性測定用耐圧容器センサーにおいて、容器中央部の円柱状若しくは円筒状電極(3)の形状のみを変更すること、を特徴とする該センサーの誘電特性測定条件の簡便な変更方法。
(III)容器中央部の円柱状若しくは円筒状電極の胴部分の径のみを変更すること、を特徴とする(II)に記載の方法。
(I) In the pressure-resistant container sensor for measuring dielectric characteristics, the cylindrical or cylindrical electrode (3) and the pressure-resistant container electrodes (1), (2) in the center of the container are made of the same material, and both electrodes A dielectric container container for measuring dielectric characteristics, characterized in that an interval between both electrodes is fixed by an insulative insulator (4).
(II) The dielectric property measurement condition of the sensor according to (I), wherein only the shape of the columnar or cylindrical electrode (3) at the center of the container is changed. Simple change method.
(III) The method according to (II), wherein only the diameter of the cylindrical portion of the columnar or cylindrical electrode at the center of the container is changed.

本発明によれば、気体、液体、超臨界流体等の幅広い相状態の流体の誘電特性を小スペースで簡易に測定する事ができる誘電特性測定用耐圧容器センサーにおいて、対電極を同一の素材とすることで、容器中央部の円柱状若しくは円筒状電極の径等の形状を変えるだけで電場の体積、電極間距離、電極表面積など(つまり誘電特性の測定条件)を容易に変える事ができる。   According to the present invention, in a pressure-resistant container sensor for measuring dielectric properties, which can easily measure dielectric properties of fluids in a wide range of phases such as gases, liquids, and supercritical fluids in a small space, the counter electrode is made of the same material. By doing so, it is possible to easily change the volume of the electric field, the distance between the electrodes, the electrode surface area, etc. (that is, the conditions for measuring the dielectric properties) simply by changing the shape such as the diameter of the columnar or cylindrical electrode at the center of the container.

誘電特性測定用耐圧容器センサーの一例の断面図を示す。Sectional drawing of an example of the pressure-resistant container sensor for dielectric property measurement is shown. 本発明の構成例を示す。左側は図1より胴径を大きくした円柱状電極、右側はその円柱状電極の耐圧容器への適用例を示した。The structural example of this invention is shown. The left side shows a cylindrical electrode whose diameter is larger than that of FIG. 1, and the right side shows an example of application of the cylindrical electrode to a pressure vessel.

誘電特性測定用耐圧容器センサーの耐圧容器は、円筒型および上下のナットとなる蓋によって構成される。材質(素材)はステンレス等の金属製のものを用いることで、この容器自体が電極としての役割を果たすことが特徴のひとつである。これにより、従来から用いられている平板電極やシリンダー型の電極を圧力容器内に設置する必要が無く、容器の小型化及び設計の簡便性を実現している。特にSUS316等の耐腐食性、耐熱性の高いものを素材として用いることで、超臨界流体等の過酷な反応場にも適用できる。これと対となる容器内部の円柱状若しくは円筒状電極は、円筒型耐圧容器と平行に絶縁体を介して設置される。   The pressure-resistant container of the pressure-resistant container sensor for measuring dielectric characteristics is composed of a cylindrical shape and lids that are upper and lower nuts. One of the characteristics is that the container itself plays a role as an electrode by using a metal material such as stainless steel. As a result, it is not necessary to install a plate electrode or a cylinder-type electrode that has been conventionally used in the pressure vessel, and the size of the vessel and the simplicity of the design are realized. In particular, by using a material having high corrosion resistance and high heat resistance such as SUS316 as a material, it can be applied to a severe reaction field such as a supercritical fluid. The columnar or cylindrical electrode inside the container that forms a pair with this is installed in parallel with the cylindrical pressure-resistant container via an insulator.

そして、上記誘電特性測定用耐圧容器センサーでは対電極間において対象流体の誘電特性を測定するものであるが、本発明は、当該円柱状若しくは円筒状電極が耐圧容器電極と同一素材であり且つ両電極に密着された絶縁体により両電極間の間隔が固定されているため、円柱状若しくは円筒状電極の形状、特に胴部分の径を変えることで、容易に電場の体積、電極間距離、電極表面積などを容易に変える事が可能となり、つまり誘電特性測定条件の変更が容易となる。   The dielectric property measuring pressure vessel sensor measures the dielectric properties of the target fluid between the counter electrodes. In the present invention, the columnar or cylindrical electrode is made of the same material as the pressure vessel electrode and both. Since the distance between the two electrodes is fixed by an insulator in close contact with the electrodes, the volume of the electric field, the distance between the electrodes, and the electrodes can be easily changed by changing the shape of the columnar or cylindrical electrode, particularly the diameter of the body portion. The surface area and the like can be easily changed, that is, the dielectric property measurement conditions can be easily changed.

なお、容器体積は20〜30mL程度とし、円筒の肉厚は6mm程度とする。これにより、小型であり且つ高い耐圧性を保持する事ができる。耐圧容器の外表面は、外部からの電気的な干渉から保護するため、ポリテトラフルオロエチレン(PTFE)等、耐熱性、耐薬品性に優れた絶縁素材による塗装を施すことが好ましい。そして、円柱状若しくは円筒状電極は、テフロン(登録商標)樹脂等の絶縁体で被覆されたPt等の導線を介することで、耐圧容器外部に導く。   The container volume is about 20 to 30 mL, and the thickness of the cylinder is about 6 mm. Thereby, it is small and can hold | maintain high pressure | voltage resistance. The outer surface of the pressure vessel is preferably coated with an insulating material having excellent heat resistance and chemical resistance, such as polytetrafluoroethylene (PTFE), in order to protect it from external electrical interference. The columnar or cylindrical electrode is guided to the outside of the pressure vessel through a lead wire such as Pt covered with an insulator such as Teflon (registered trademark) resin.

このような誘電特性測定容器は、ヒーターまたはオーブン等で適切な温度条件下に置いて、流体および測定試料をポンプ等で流入させ、背圧弁またはレギュレーターにより適切な圧力条件下を達成する事で目的の誘電特性を測定する。誘電特性の測定は、例えば10Hz〜100MHzの低周波から高周波範囲における誘電体の誘電特性をLCRメーターまたはインピーダンスアナライザーを接続することで行う。   The purpose of such a dielectric property measurement container is to place a fluid and measurement sample in a pump or the like under a suitable temperature condition with a heater or oven, etc., and achieve a suitable pressure condition with a back pressure valve or regulator. Measure the dielectric properties. For example, the dielectric characteristics are measured by connecting an LCR meter or an impedance analyzer to the dielectric characteristics of the dielectric in the low frequency to high frequency range of 10 Hz to 100 MHz.

測定対象となる流体は、水、メタノール、エタノール、アセトン、n−ヘキサン、フェノール、クロロホルム、ジクロロメタン、アセトニトリル、二酸化炭素等の溶媒全般、また、これらの混合溶媒ならびにこれらの超臨界流体を含む。溶質成分に関しては、テルペノイドや脂肪酸等の炭化水素化合物、ポリフェノール類、炭水化物等の有極性成分が主な対象となる。また、これらの溶媒、溶質で構成される食品自体も測定対象となり、特に様々な粘度の流体について測定可能であることが特徴である。   The fluid to be measured includes all solvents such as water, methanol, ethanol, acetone, n-hexane, phenol, chloroform, dichloromethane, acetonitrile, carbon dioxide, mixed solvents thereof, and supercritical fluids thereof. With respect to the solute component, polar components such as hydrocarbon compounds such as terpenoids and fatty acids, polyphenols, and carbohydrates are mainly targeted. In addition, the food itself composed of these solvents and solutes is also an object to be measured, and is characterized by being able to measure fluids having various viscosities.

以下、本発明の実施例について述べるが、本発明はこれらのみに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

小スペースで誘電特性を簡便に測定するための誘電特性測定用耐圧容器センサーの構成の一例の断面図を図1に示した。図1においては、金属性の円筒型耐圧容器(2)と上下耐圧容器蓋(1)が耐圧容器電極を構成し、容器中央部に耐圧容器電極の対となる円柱状若しくは円筒状電極(3)が平行に絶縁体(4)を介して設置され、対となる円柱状若しくは円筒状電極(3)は導線(5)を介して耐圧容器外部に絶縁状態で導かれている。なお、耐圧容器表面は絶縁塗装(6)を施している。   FIG. 1 shows a cross-sectional view of an example of the configuration of a dielectric container measuring pressure vessel sensor for simply measuring dielectric characteristics in a small space. In FIG. 1, a metallic cylindrical pressure vessel (2) and upper and lower pressure vessel lids (1) constitute a pressure vessel electrode, and a columnar or cylindrical electrode (3 ) Are installed in parallel via an insulator (4), and a pair of columnar or cylindrical electrodes (3) are led to the outside of the pressure vessel via a lead (5) in an insulated state. The surface of the pressure vessel is provided with an insulating coating (6).

次に、本発明の一例として、図1より胴径を大きくした円柱状電極を用いた場合を図4に示した。この例では、容器中央部の円柱状電極(右側)と耐圧容器電極が同一の素材であり且つ両電極に密着された絶縁体により両電極間の間隔が固定されているため、円柱の胴部分の径を変えるだけで、容易に電場の体積、電極間距離および電極表面積が図1の条件より変更できている。   Next, as an example of the present invention, FIG. 4 shows a case in which a cylindrical electrode having a body diameter larger than that in FIG. 1 is used. In this example, the cylindrical electrode (right side) and the pressure vessel electrode at the center of the container are made of the same material, and the interval between the two electrodes is fixed by an insulator that is in close contact with both electrodes. The volume of the electric field, the distance between the electrodes, and the electrode surface area can be easily changed from the conditions shown in FIG.

本発明を要約すれば、以下の通りである。   The present invention is summarized as follows.

本発明は、食品等の各種流体に幅広く適用する、小スペースで誘電特性を簡便に測定するための汎用性の高い測定機器を提供すること、及びその好適な構成等を提供することを目的とする。   It is an object of the present invention to provide a versatile measuring instrument that can be widely applied to various fluids such as foods and simply measure dielectric properties in a small space, and to provide a suitable configuration thereof. To do.

そして、電極となる金属性の円筒型耐圧容器と上下耐圧容器蓋を有し、容器中央部に耐圧容器電極の対となる円柱状若しくは円筒状電極がこれと平行に絶縁体を介して設置され、該円柱状若しくは円筒状電極は導線を介して耐圧容器外部に絶縁状態で導かれてなる誘電特性測定用耐圧容器センサーにおいて、容器中央部の円柱状若しくは円筒状電極と耐圧容器電極が同一の素材であって、且つ、両電極に密着された絶縁体により両電極間の間隔が固定されるものが提供される。そして、容器中央部の円柱状若しくは円筒状電極の形状のみを変更するだけで、容易に誘電特性測定条件を変更できる。   And it has a metallic cylindrical pressure vessel and an upper and lower pressure vessel lid to be an electrode, and a columnar or cylindrical electrode to be a pair of pressure vessel electrodes is installed in parallel with this via an insulator in the center of the vessel In the pressure-resistant container sensor for measuring dielectric properties, the columnar or cylindrical electrode is led to the outside of the pressure-resistant container through a conducting wire, and the pressure-resistant container electrode is the same as the columnar or cylindrical electrode in the center of the container. A material is provided that has an interval between the electrodes fixed by an insulator that is in close contact with the electrodes. The dielectric property measurement conditions can be easily changed by changing only the shape of the columnar or cylindrical electrode at the center of the container.

Claims (1)

円筒型耐圧容器電極と上下耐圧容器蓋を有し、容器中央部に該円筒型耐圧容器電極の対となる円柱状若しくは円筒状電極が平行に絶縁体を介して設置され、該円柱状若しくは円筒状電極は導線を介して容器外部に絶縁状態で導かれてなる、耐圧容器センサーの容器体積が20〜30mL、円筒型耐圧容器電極の肉厚が6mmの誘電特性測定用耐圧容器センサーにおいて、容器中央部の円柱状若しくは円筒状電極と円筒型耐圧容器電極がステンレス製であって、且つ、両電極に密着された絶縁体により両電極間の間隔が固定されてなること、を特徴とする食品の誘電特性測定用小型耐圧容器センサー。 A cylindrical pressure vessel electrode and an upper and lower pressure vessel lid are provided, and a columnar or cylindrical electrode that is a pair of the cylindrical pressure vessel electrode is installed in parallel through an insulator at the center of the vessel. In the pressure-resistant container sensor for measuring dielectric properties, the container volume of the pressure-resistant container sensor is 20 to 30 mL and the wall thickness of the cylindrical pressure-resistant container electrode is 6 mm. food columnar or cylindrical electrodes and the cylindrical pressure vessel electrode of the central part which is made of stainless steel, and, characterized by spacing that is fixed, between the two electrodes by adhesion is an insulator to the electrodes small pressure vessel sensors for dielectric property measurement.
JP2010270725A 2010-12-03 2010-12-03 Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions Active JP5907586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270725A JP5907586B2 (en) 2010-12-03 2010-12-03 Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270725A JP5907586B2 (en) 2010-12-03 2010-12-03 Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions

Publications (2)

Publication Number Publication Date
JP2012118030A JP2012118030A (en) 2012-06-21
JP5907586B2 true JP5907586B2 (en) 2016-04-26

Family

ID=46501013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270725A Active JP5907586B2 (en) 2010-12-03 2010-12-03 Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions

Country Status (1)

Country Link
JP (1) JP5907586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780167A (en) * 2019-11-12 2020-02-11 西南交通大学 Insulating property detection device for barrel type composite insulating material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116735666B (en) * 2023-05-24 2024-01-12 成都理工大学 Supercritical geothermal fluid conductivity measurement system and measurement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658207A (en) * 1985-03-28 1987-04-14 Rockwell International Corporation Device for measuring the water content of ink samples
JP2632459B2 (en) * 1991-10-09 1997-07-23 株式会社ユニシアジェックス Alcohol-mixed fuel property determination device
JPH0646367U (en) * 1992-11-27 1994-06-24 日本電子機器株式会社 Gasoline characterization device
JP3717444B2 (en) * 2001-11-05 2005-11-16 株式会社カワタ Moisture measuring device
JP2009025185A (en) * 2007-07-20 2009-02-05 Miura Co Ltd Electric conductivity measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780167A (en) * 2019-11-12 2020-02-11 西南交通大学 Insulating property detection device for barrel type composite insulating material
CN110780167B (en) * 2019-11-12 2021-08-17 西南交通大学 Insulating property detection device for barrel type composite insulating material

Also Published As

Publication number Publication date
JP2012118030A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
Kim et al. Physical and electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate
Angkawisittpan et al. Determination of sugar content in sugar solutions using interdigital capacitor sensor
CN100362341C (en) Compound array sensor of ERT/ECT bimodel state imaging system
JP5916994B2 (en) Pressure vessel sensor for dielectric property measurement
CN100409004C (en) System for measuring phase fraction and phase interface in multiphase pipe flow by using monofilament capacitance probe
Cahill et al. Contactless sensing of the conductivity of aqueous droplets in segmented flow
Ćwiklińska et al. Thermodynamic and physicochemical properties of binary mixtures of nitromethane with {2-methoxyethanol+ 2-butoxyethanol} systems at T=(293.15, 298.15, 303.15, 308.15, and 313.15) K
JP2007303982A (en) Sensor device
JP5907586B2 (en) Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions
US20180180504A1 (en) Pressure-measuring sensor
RU2612855C1 (en) Circuit for determination of distribution in phases in multiphase medium comprising at least one highly conducting phase
EP2986954A1 (en) System and method to measure volume fraction in multiphase fluids
CN108680491A (en) Method for testing using dynamic electrochemical device
RU2016141592A (en) MEASURING SYSTEM FOR DETERMINING THE PHASE SECTION LEVEL IN A MULTIPHASE CURRENT COMPOSITION
Heinrich et al. Dielectric investigation of the glass relaxation in poly (vinyl acetate) and poly (vinyl chloride) under high hydrostatic pressure
JP2017532033A (en) Reactance and capacitance detection platform for detecting microorganisms
Rukavina Hand-held unit for liquid-type recognition, based on interdigital capacitor
JP5575623B2 (en) Insulator used for pressure vessel sensor for dielectric property measurement
JPS61502836A (en) Sensor for detecting liquid properties, how to use this sensor, and liquid property measuring device using this sensor
Bhattacharya et al. Equivalent circuit models and analysis of electrochemical impedance spectra of caffeine solutions and beverages
EP1834185A2 (en) A method and apparatus for monitoring and determining the moisture content of a substance in a container
RU2629898C1 (en) Device for determining thermal conductivity factor of fibrous food products of animal origin
Tomida et al. Measurements of thermal conductivity of 1‐butyl‐3‐methylimidazolium tetrafluoroborate at high pressure
JP2002277427A (en) Dielectric physical property measuring instrument
RU2490651C2 (en) Cell for measurement of fluid electric conductivity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150730

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160318

R150 Certificate of patent or registration of utility model

Ref document number: 5907586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250