JP5916994B2 - Pressure vessel sensor for dielectric property measurement - Google Patents

Pressure vessel sensor for dielectric property measurement Download PDF

Info

Publication number
JP5916994B2
JP5916994B2 JP2010270637A JP2010270637A JP5916994B2 JP 5916994 B2 JP5916994 B2 JP 5916994B2 JP 2010270637 A JP2010270637 A JP 2010270637A JP 2010270637 A JP2010270637 A JP 2010270637A JP 5916994 B2 JP5916994 B2 JP 5916994B2
Authority
JP
Japan
Prior art keywords
pressure vessel
electrode
cylindrical
pressure
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010270637A
Other languages
Japanese (ja)
Other versions
JP2012118020A (en
Inventor
星野 宗広
宗広 星野
上野 裕
裕 上野
雅裕 田中
雅裕 田中
卓也 末次
卓也 末次
後藤 元信
元信 後藤
Original Assignee
マルボシ酢株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルボシ酢株式会社 filed Critical マルボシ酢株式会社
Priority to JP2010270637A priority Critical patent/JP5916994B2/en
Publication of JP2012118020A publication Critical patent/JP2012118020A/en
Application granted granted Critical
Publication of JP5916994B2 publication Critical patent/JP5916994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、食品等の各種流体の誘電特性を測定する耐圧容器センサーに関する。詳細には、食品等の幅広い各種流体の誘電特性を小スペースで簡便に測定するための汎用性の高い小型耐圧容器センサーに関する。   The present invention relates to a pressure vessel sensor for measuring dielectric properties of various fluids such as food. Specifically, the present invention relates to a highly versatile small pressure vessel sensor for easily measuring dielectric characteristics of various fluids such as foods in a small space.

物質は固有の誘電特性を持つことから、電場に置くことにより誘電分極を示し、電気容量、誘電率、誘電損失、誘電緩和などを知ることができる。これらの特性は、原子団や分子の運動状態を直接反映する。従って、誘電特性を測定することは、測定試料における構成成分の分子状態やその変化を検出する有効的な手段となる。   Since substances have inherent dielectric properties, they can exhibit dielectric polarization when placed in an electric field, and can know capacitance, dielectric constant, dielectric loss, dielectric relaxation, and the like. These characteristics directly reflect the state of motion of atomic groups and molecules. Therefore, measuring the dielectric characteristics is an effective means for detecting the molecular state of the constituent component in the measurement sample and its change.

誘電特性の測定は、非破壊条件下で直接的に測定できる有効な手段であることから、食品、医療、化学等の分野で広く応用が試みられている。応用例としては、食品においては、含水率や食用油の劣化状態(例えば特許文献1など)、巨視的観点からのソース等調味料の品質管理、また発酵現場においては菌体数のモニタリング等が挙げられる。医療分野では、非観血的に皮膚より血中のグルコースレベルを測定する方法が考案されている(特許文献2)。また、混合燃料中のアルコール含有率などの測定にも応用されている。   Since the measurement of dielectric properties is an effective means that can be directly measured under nondestructive conditions, it has been widely applied in the fields of food, medicine, chemistry, and the like. Application examples include the moisture content and the state of deterioration of edible oil (for example, Patent Document 1), the quality control of seasonings such as sauces from a macroscopic viewpoint, and the monitoring of the number of cells at the fermentation site. Can be mentioned. In the medical field, a method for non-invasively measuring blood glucose level from the skin has been devised (Patent Document 2). It is also applied to the measurement of alcohol content in mixed fuel.

天然物からの食品素材や機能性物質などの抽出においては、目的とする溶質に対する適切な溶媒を選択する必要があるが、従来、溶解挙動の指標として溶解度パラメータを用いた抽出プロセスが検討されてきている。溶解度パラメータは個々の蒸発潜熱により定義され、経験的に溶質−溶媒間の溶解度パラメータ値が近いほど相溶性が高まる事が分かっており、溶けやすさを判断する目安として用いられているが、極性が高い水素結合性の物質間ではあてはめることが困難である。   In the extraction of food materials and functional substances from natural products, it is necessary to select an appropriate solvent for the target solute. Conventionally, extraction processes using solubility parameters as an indicator of dissolution behavior have been studied. ing. The solubility parameter is defined by the latent heat of vaporization, and it is empirically known that the closer the solubility parameter value between the solute and the solvent is, the higher the compatibility is, and it is used as a guideline for judging the solubility. However, it is difficult to fit between materials having high hydrogen bonding properties.

一方、個々の物質は電場内において、単一相に限らず混合相においての全体的な誘電特性を実測する事が可能である。誘電特性の変化を測定するに当たり、電極表面積(S)と電極間距離(d)が一定である電場領域に誘電体(測定試料)を挿入した場合、誘電率(ε)と電気容量(C)との関係はC=ε(S/d)で表わされる。従って、電気容量(C)はインピーダンスアナライザーやLCRメーターを用いることで容易に計測する事が可能であるため、測定試料の誘電率の変化を電気容量の変化として測定できる。そして、溶解度パラメータと同様に溶質−溶媒間の誘電率差が小さいほど混合性が高いことが報告されていることから、電気容量の測定によって適切な溶媒選択が可能となる。   On the other hand, it is possible to actually measure the overall dielectric characteristics of each substance in an electric field, not only in a single phase but also in a mixed phase. When measuring the change in dielectric properties, when a dielectric (measurement sample) is inserted in an electric field region where the electrode surface area (S) and the distance between electrodes (d) are constant, the dielectric constant (ε) and the electric capacity (C) Is represented by C = ε (S / d). Therefore, since the electric capacity (C) can be easily measured by using an impedance analyzer or an LCR meter, a change in dielectric constant of the measurement sample can be measured as a change in electric capacity. Further, since it is reported that the smaller the dielectric constant difference between the solute and the solvent is, the higher the mixing property is, like the solubility parameter, it is possible to select an appropriate solvent by measuring the electric capacity.

このように、食品等の各種流体の誘電特性を測定することは、これらの物理的変化や性質を非破壊で直接観測できるという大きな利点を有しており非常に有効であるが、電極設置等の点から測定装置が大型化してしまう、測定対象流体の性質により構造を変える必要がでてくる等の傾向が見られる。このため、幅広い流体の誘電特性を簡便に測定するための汎用性の高い測定機器の開発が求められていた。   In this way, measuring the dielectric properties of various fluids such as foods has the great advantage of being able to directly observe these physical changes and properties in a non-destructive manner. From this point of view, there is a tendency that the measuring apparatus is enlarged and the structure needs to be changed depending on the properties of the fluid to be measured. For this reason, there has been a demand for the development of a highly versatile measuring instrument for simply measuring the dielectric properties of a wide range of fluids.

特表2005−515436号公報JP 2005-515436 A 特開2010−188135号公報JP 2010-188135 A

本発明は、食品等の各種流体(気体、液体、高温高圧下における超臨界流体等の様々な流体、及び、流体に溶解した試料等)に幅広く適用する、小スペースで誘電特性を簡便に測定するための汎用性の高い測定機器を提供することを目的とする。   The present invention is widely applied to various fluids such as food (gas, liquid, various fluids such as supercritical fluid under high temperature and high pressure, and samples dissolved in fluid), and easily measures dielectric properties in a small space. An object of the present invention is to provide a highly versatile measuring instrument for the purpose.

上記目的を達成するため、本発明者らは鋭意研究の結果、以下の構成を有する誘電特性測定用小型耐圧容器センサーを開発するに至った。   In order to achieve the above object, as a result of intensive studies, the present inventors have developed a small pressure vessel sensor for measuring dielectric characteristics having the following configuration.

すなわち、本発明は次のとおりである。なお、下記の(1)〜(5)は、図1の各符号に対応している。
(I)電極となる金属性の円筒型耐圧容器(2)と上下耐圧容器蓋(1)を有し、容器中央部に耐圧容器電極の対となる円柱状若しくは円筒状電極(3)が平行に絶縁体(4)を介して設置され、該円柱状若しくは円筒状電極(3)は導線(5)を介して耐圧容器外部に絶縁状態で導かれてなること、を特徴とする誘電特性測定用耐圧容器センサー。
(II)電極が耐腐食性、耐熱性を有するステンレス製であること、を特徴とする(I)に記載の誘電特性測定用耐圧容器センサー。
(III)容器体積が20〜30mLであること、を特徴とする(I)又は(II)に記載の誘電特性測定用耐圧容器センサー。
That is, the present invention is as follows. The following (1) to (5) correspond to the respective symbols in FIG.
(I) It has a metallic cylindrical pressure vessel (2) to be an electrode and an upper and lower pressure vessel lid (1), and a columnar or cylindrical electrode (3) to be a pair of pressure vessel electrodes is parallel to the center of the vessel. Dielectric property measurement, characterized in that the columnar or cylindrical electrode (3) is insulatively guided to the outside of the pressure vessel through a conductor (5). Pressure vessel sensor for use.
(II) The pressure-resistant container sensor for measuring dielectric properties according to (I), wherein the electrode is made of stainless steel having corrosion resistance and heat resistance.
(III) The pressure-resistant container sensor for measuring dielectric properties according to (I) or (II), wherein the container volume is 20 to 30 mL.

本発明によれば、気体、液体、高温高圧下における超臨界流体等の様々な流体、及び、流体に溶解した試料等の幅広い相状態の流体の誘電特性を小スペースで簡易に測定する事ができる。そして、本発明の容器センサーは小型であるため高い耐圧性が確保され、流通式も可能であるため、プラント等での品質管理用小型センサー、成分分離操作のモニタリングなど、インラインで連続的に用いることのできる汎用性の高い小型誘電特性測定用耐圧容器センサーとして使用可能である。   According to the present invention, it is possible to easily measure dielectric properties of various fluids such as gases, liquids, supercritical fluids under high temperature and pressure, and fluids in a wide range of phases such as samples dissolved in the fluids in a small space. it can. And since the container sensor of the present invention is small, high pressure resistance is ensured and can be distributed, so it is continuously used in-line, such as a small sensor for quality control in a plant, monitoring of component separation operation, etc. It can be used as a highly versatile compact dielectric container for measuring dielectric characteristics.

本発明の誘電特性測定用耐圧容器センサーの一例の断面図を示す。Sectional drawing of an example of the pressure-resistant container sensor for dielectric property measurement of this invention is shown. 本発明の誘電特性測定用耐圧容器センサーを用いて流体の誘電特性を測定する場合の、流体通路及び引き出し導線の保圧構造例を示す。An example of the pressure holding structure of the fluid passage and the lead-out conductor when the dielectric property of the fluid is measured using the pressure-resistant container sensor for dielectric property measurement of the present invention is shown.

本発明の耐圧容器は、円筒型および上下のナットとなる蓋によって構成される。材質(素材)はステンレス等の金属製のものを用いることで、この容器自体が電極としての役割を果たすことが本発明の特徴のひとつである。これにより、従来から用いられている平板電極やシリンダー型の電極を圧力容器内に設置する必要が無く、容器の小型化及び設計の簡便性を実現している。特にSUS316等の耐腐食性、耐熱性の高いものを素材として用いることで、超臨界流体等の過酷な反応場にも適用できる。これと対となる容器内部の円柱状若しくは円筒状電極は、円筒型耐圧容器と平行に絶縁体を介して設置される。この柱状若しくは円筒状電極の素材については、耐圧容器電極と同一素材を用いることが好ましい。   The pressure vessel of the present invention includes a cylindrical shape and lids that are upper and lower nuts. One of the features of the present invention is that the container itself serves as an electrode by using a metal (material) made of metal such as stainless steel. As a result, it is not necessary to install a plate electrode or a cylinder-type electrode that has been conventionally used in the pressure vessel, and the size of the vessel and the simplicity of the design are realized. In particular, by using a material having high corrosion resistance and high heat resistance such as SUS316 as a material, it can be applied to a severe reaction field such as a supercritical fluid. The columnar or cylindrical electrode inside the container that forms a pair with this is installed in parallel with the cylindrical pressure-resistant container via an insulator. About the material of this columnar or cylindrical electrode, it is preferable to use the same material as the pressure vessel electrode.

容器体積は20〜30mL程度とし、円筒の肉厚は6mm程度とする。これにより、小型であり且つ高い耐圧性を保持する事ができる。耐圧容器の外表面は、外部からの電気的な干渉から保護するため、ポリテトラフルオロエチレン(PTFE)等、耐熱性、耐薬品性に優れた絶縁素材による塗装を施すことが好ましい。   The container volume is about 20 to 30 mL, and the thickness of the cylinder is about 6 mm. Thereby, it is small and can hold | maintain high pressure | voltage resistance. The outer surface of the pressure vessel is preferably coated with an insulating material having excellent heat resistance and chemical resistance, such as polytetrafluoroethylene (PTFE), in order to protect it from external electrical interference.

円柱状若しくは円筒状電極は、テフロン(登録商標)樹脂等の絶縁体で被覆されたPt等の導線を介することで、耐圧容器外部に導く。導線は、例えば、内径の1/16inchのPEEK樹脂等の絶縁かつ耐圧チューブ内を通すことのできる径のものを用い、外を覆うPEEK樹脂等のチューブはステンレス製フェラルを用いて1/16inchメスナットにて、1/16inchユニオンティーに締め込む。このような構成により、外部に連絡する導線部分の圧力の漏えいを防止する事ができる。   The columnar or cylindrical electrode is led to the outside of the pressure vessel through a lead wire such as Pt covered with an insulator such as Teflon (registered trademark) resin. For example, the conductor is a 1/16 inch PEEK resin with a diameter that can be passed through an insulating and pressure-resistant tube, and the PEEK resin tube that covers the outside uses a stainless steel ferrule and is 1/16 inch female nut. And tighten to 1/16 inch union tee. With such a configuration, it is possible to prevent leakage of pressure in the conductive wire portion that communicates with the outside.

そして、ユニオンティーの流体出口は内径1/16inchのPEEK樹脂チューブをステンレス製フェラルを用いて1/16inchメスナットで締め込む事により、絶縁状態下での流体の通路を確保できる。また、耐圧容器電極の流体出口部分は、同一素材、例えばSUS316製のフェラルおよびオスナットでPEEK樹脂チューブを締め込むことで、ユニオンティーまでの絶縁を施し、かつオスナット部分が耐圧容器電極を外部に導く役割を果たすことができる。   The fluid outlet of the union tee can secure a fluid passage in an insulated state by fastening a PEEK resin tube having an inner diameter of 1/16 inch with a 1/16 inch female nut using a stainless steel ferrule. In addition, the fluid outlet portion of the pressure vessel electrode is insulated to the union tee by tightening the PEEK resin tube with the same material, for example, SUS316 ferrule and male nut, and the male nut portion leads the pressure vessel electrode to the outside. Can play a role.

このような誘電特性測定容器は、ヒーターまたはオーブン等で適切な温度条件下に置いて、流体および測定試料をポンプ等で流入させ、背圧弁またはレギュレーターにより適切な圧力条件下を達成する事で目的の誘電特性を測定する。誘電特性の測定は、例えば10Hz〜100MHzの低周波から高周波範囲における誘電体の誘電特性をLCRメーターまたはインピーダンスアナライザーを接続することで行う。   The purpose of such a dielectric property measurement container is to place a fluid and measurement sample in a pump or the like under a suitable temperature condition with a heater or oven, etc., and achieve a suitable pressure condition with a back pressure valve or regulator. Measure the dielectric properties. For example, the dielectric characteristics are measured by connecting an LCR meter or an impedance analyzer to the dielectric characteristics of the dielectric in the low frequency to high frequency range of 10 Hz to 100 MHz.

測定対象となる流体は、水、メタノール、エタノール、アセトン、n−ヘキサン、フェノール、クロロホルム、ジクロロメタン、アセトニトリル、二酸化炭素等の溶媒全般、また、これらの混合溶媒ならびにこれらの超臨界流体を含む。溶質成分に関しては、テルペノイドや脂肪酸等の炭化水素化合物、ポリフェノール類、炭水化物等の有極性成分が主な対象となる。また、これらの溶媒、溶質で構成される食品自体も測定対象となり、特に様々な粘度の流体について測定可能であることが特徴である。   The fluid to be measured includes all solvents such as water, methanol, ethanol, acetone, n-hexane, phenol, chloroform, dichloromethane, acetonitrile, carbon dioxide, mixed solvents thereof, and supercritical fluids thereof. With respect to the solute component, polar components such as hydrocarbon compounds such as terpenoids and fatty acids, polyphenols, and carbohydrates are mainly targeted. In addition, the food itself composed of these solvents and solutes is also an object to be measured, and is characterized by being able to measure fluids having various viscosities.

以下、本発明の実施例について述べるが、本発明はこれらのみに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

本発明の構成の一例である誘電特性測定用耐圧容器センサーの断面図を図1に、流体通路及び引き出し導線の保圧構造例を図2に示した。図1においては、金属性の円筒型耐圧容器(2)と上下耐圧容器蓋(1)が耐圧容器電極を構成し、容器中央部に耐圧容器電極の対となる円柱状若しくは円筒状電極(3)が平行に絶縁体(4)を介して設置され、対となる円柱状若しくは円筒状電極(3)は導線(5)を介して耐圧容器外部に絶縁状態で導かれている。なお、耐圧容器表面は絶縁塗装(6)を施している。   A cross-sectional view of a pressure-resistant container sensor for measuring dielectric characteristics, which is an example of the configuration of the present invention, is shown in FIG. 1, and an example of a pressure holding structure for fluid passages and lead wires is shown in FIG. In FIG. 1, a metallic cylindrical pressure vessel (2) and upper and lower pressure vessel lids (1) constitute a pressure vessel electrode, and a columnar or cylindrical electrode (3 ) Are installed in parallel via an insulator (4), and a pair of columnar or cylindrical electrodes (3) are led to the outside of the pressure vessel via a lead (5) in an insulated state. The surface of the pressure vessel is provided with an insulating coating (6).

図2においては、引き出し導線として、絶縁体で被覆された導線(8)が耐圧容器外部に導かれ、この導線は、内径1/16inchのPEEK樹脂の絶縁かつ耐圧チューブ内(9)、(12)を通され、外を覆うPEEK樹脂チューブはSUS316製フェラル(14)を用いて1/16inchメスナット(10)にて、1/16inchユニオンティー(11)に締め込まれている。そして、ユニオンティーの流体出口は、内径1/16inchのPEEK樹脂チューブをステンレス製フェラルを用いて1/16inchメスナットで締め込まれ、また、耐圧容器電極の流体出口部分は、SUS316製のフェラルおよびオスナット(13)でPEEK樹脂チューブを締め込むことで、ユニオンティーまでの絶縁を施している。   In FIG. 2, a lead wire (8) covered with an insulator is led to the outside of the pressure vessel as a lead wire, and this lead wire is insulated with PEEK resin having an inner diameter of 1/16 inch and inside the pressure tube (9), (12 The PEEK resin tube covering the outside is fastened to the 1/16 inch union tee (11) with a 1/16 inch female nut (10) using a ferrule (14) made of SUS316. The fluid outlet of the union tee is tightened with a 1/16 inch female nut with a PEEK resin tube having an inner diameter of 1/16 inch using a stainless steel ferrule, and the fluid outlet portion of the pressure vessel electrode is made of ferrule and male nut made of SUS316. The insulation to the union tee is given by tightening the PEEK resin tube in (13).

本発明を要約すれば、以下の通りである。   The present invention is summarized as follows.

本発明は、食品等の各種流体(気体、液体、高温高圧下における超臨界流体等の様々な流体、及び、流体に溶解した試料等)に幅広く適用可能な、小スペースで誘電特性を簡便に測定するための汎用性の高い測定機器を提供することを目的とする。   The present invention can be widely applied to various fluids such as food (gas, liquid, various fluids such as supercritical fluid under high temperature and high pressure, and samples dissolved in the fluid, etc.). An object is to provide a highly versatile measuring instrument for measurement.

そして、金属性の円筒型耐圧容器電極と上下耐圧容器蓋を有し、容器中央部に円筒型耐圧容器電極の対となる円柱状若しくは円筒状電極がこれと平行に絶縁体を介して設置され、該円柱状若しくは円筒状電極は導線を介して耐圧容器外部に絶縁状態で導かれてなる誘電特性測定用耐圧容器センサーを用いることで、幅広い流体の誘電特性を簡便に小スペースで測定できる。   And it has a metallic cylindrical pressure vessel electrode and upper and lower pressure vessel lids, and a columnar or cylindrical electrode which is a pair of cylindrical pressure vessel electrodes is installed in parallel with this through an insulator in the center of the vessel The columnar or cylindrical electrode can measure dielectric properties of a wide range of fluids easily and in a small space by using a dielectric property measuring pressure vessel sensor that is led out of the pressure vessel through a lead wire in an insulated state.

Claims (1)

耐腐食性、耐熱性を有するステンレス製の円筒型耐圧容器電極と上下耐圧容器蓋を有し、容器中央部に該円筒型耐圧容器電極の対となる円柱状若しくは円筒状電極が平行に絶縁体を介して設置され、該円柱状若しくは円筒状電極は耐腐食性、耐熱性を有するステンレス製で導線を介して容器外部に絶縁状態で導かれてなり、耐圧容器センサーの容器体積が20〜30mL、円筒型耐圧容器電極の肉厚が6mmであること特徴とするインラインで連続的に用いる食品の誘電特性測定用小型耐圧容器センサー。 Corrosion-resistant and heat-resistant stainless steel cylindrical pressure-resistant container electrode and upper and lower pressure-resistant container lids, and a cylindrical or cylindrical electrode paired with the cylindrical pressure-resistant container electrode is parallel to the insulator at the center of the container The columnar or cylindrical electrode is made of stainless steel having corrosion resistance and heat resistance, and is led to the outside of the container in an insulated state through a conducting wire. The container volume of the pressure vessel sensor is 20 to 30 mL. A small pressure vessel sensor for measuring dielectric properties of food continuously used in-line, characterized in that the thickness of the cylindrical pressure vessel electrode is 6 mm.
JP2010270637A 2010-12-03 2010-12-03 Pressure vessel sensor for dielectric property measurement Active JP5916994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270637A JP5916994B2 (en) 2010-12-03 2010-12-03 Pressure vessel sensor for dielectric property measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270637A JP5916994B2 (en) 2010-12-03 2010-12-03 Pressure vessel sensor for dielectric property measurement

Publications (2)

Publication Number Publication Date
JP2012118020A JP2012118020A (en) 2012-06-21
JP5916994B2 true JP5916994B2 (en) 2016-05-11

Family

ID=46501003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270637A Active JP5916994B2 (en) 2010-12-03 2010-12-03 Pressure vessel sensor for dielectric property measurement

Country Status (1)

Country Link
JP (1) JP5916994B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820136B (en) * 2015-04-17 2017-01-11 江苏大学 Device and method for rapidly measuring dielectric constant of crop leaf
US11702565B2 (en) 2017-08-02 2023-07-18 Asahi Kasei Kabushiki Kaisha Polyimide varnish and method for producing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US595831A (en) * 1897-12-21 George w
GB2149117A (en) * 1983-11-04 1985-06-05 Anderson Strathclyde Plc Detection of water in oil
US4559493A (en) * 1984-06-01 1985-12-17 Rockwell International Corporation Meter for measuring the concentration of water in a water-ink mixture
US4658207A (en) * 1985-03-28 1987-04-14 Rockwell International Corporation Device for measuring the water content of ink samples
JPH0814551B2 (en) * 1987-03-31 1996-02-14 株式会社東芝 Conductivity measurement cell
JPH01276055A (en) * 1988-04-28 1989-11-06 Nippon Atom Ind Group Co Ltd Cell for measuring impedance of electrode in high temperature and high pressure water
US5361035A (en) * 1992-02-11 1994-11-01 Ford Motor Company Resonant cavity flexible fuel sensor and system
JPH0646367U (en) * 1992-11-27 1994-06-24 日本電子機器株式会社 Gasoline characterization device
JPH1123427A (en) * 1997-06-30 1999-01-29 Dkk Corp Sample liquid sampler, sampling liquid measuring unit and method for measuring residual chlorine
US6734686B2 (en) * 2002-04-08 2004-05-11 Nanmat Technology Co. Ltd. Method for detecting quantity variation of high purity liquid chemicals and devices to carry out the method
JP4113949B2 (en) * 2003-08-11 2008-07-09 独立行政法人産業技術総合研究所 Electrical conductivity measuring cell and measuring method thereof

Also Published As

Publication number Publication date
JP2012118020A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
CN105806774B (en) High-temperature high-pressure dynamic electrochemical test experimental device and test method
CN1793879A (en) Compound array sensor of ERT/ECT bimodel state imaging system
JP5916994B2 (en) Pressure vessel sensor for dielectric property measurement
Cahill et al. Contactless sensing of the conductivity of aqueous droplets in segmented flow
RU2612855C1 (en) Circuit for determination of distribution in phases in multiphase medium comprising at least one highly conducting phase
JP5907586B2 (en) Pressure-resistant container sensor for measuring dielectric characteristics and method for changing measurement conditions
AU2018204538B2 (en) Rapid sample preparation for analytical analysis using dispersive energized extraction
Koch et al. The breakdown voltage of insulation oil under the influences of humidity, acidity, particles and pressure
CN102426150B (en) Autoclave system used for high-temperature high-pressure steam oxidation corrosion test
JP5575623B2 (en) Insulator used for pressure vessel sensor for dielectric property measurement
Schaschke et al. Viscosity measurement of vegetable oil at high pressure
Tomida et al. Measurements of thermal conductivity of 1‐butyl‐3‐methylimidazolium tetrafluoroborate at high pressure
WO2006063115A2 (en) A method and apparatus for monitoring and determining the moisture content of a substance in a container
CN101818358A (en) Supercritical CO2 high-temperature high-pressure synthetic high molecular conducting film device
JP5877197B2 (en) Device for performing sample preparation
CN102103126A (en) On-line continuous detection sample injector for mass spectrometer and application thereof
US6690180B2 (en) Process and apparatus for determining ratio of fluid components such as methanol and water for reforming feed
Lin et al. A novel experimental device for electrochemical measurements in supercritical fluids up to 700° C/1000 bar and its application in the corrosion study of superalloy Inconel 740H
CN205844242U (en) A kind of conductivity sensing electrodes
Tomida et al. Thermal conductivities of imidazolium-based ionic liquid+ CO 2 mixtures
RU2490651C2 (en) Cell for measurement of fluid electric conductivity
Pekdemir et al. Demulsification of highly stable water-in-oil emulsions
CN111505047A (en) Device for measuring heat conductivity of high-temperature high-pressure multi-element gas mixture
Glasgow et al. Cryoscopic determination of purity of highly reactive substances
RU4384U1 (en) DIELCOMETRIC SENSOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5916994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250