JP5575520B2 - Power control device for hybrid vehicle - Google Patents
Power control device for hybrid vehicle Download PDFInfo
- Publication number
- JP5575520B2 JP5575520B2 JP2010081303A JP2010081303A JP5575520B2 JP 5575520 B2 JP5575520 B2 JP 5575520B2 JP 2010081303 A JP2010081303 A JP 2010081303A JP 2010081303 A JP2010081303 A JP 2010081303A JP 5575520 B2 JP5575520 B2 JP 5575520B2
- Authority
- JP
- Japan
- Prior art keywords
- driving force
- internal combustion
- combustion engine
- resonance
- resonance region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/087—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
- F16H3/093—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
- F16H2003/0931—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts each countershaft having an output gear meshing with a single common gear on the output shaft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Hybrid Electric Vehicles (AREA)
- Structure Of Transmissions (AREA)
Description
本発明は、内燃機関と電動機と自動変速機とを備えるハイブリッド車両の動力制御装置に関する。 The present invention relates to a power control apparatus for a hybrid vehicle including an internal combustion engine, an electric motor, and an automatic transmission.
従来、変速比順位で奇数番目の変速段を確立する各ギヤ列の駆動ギヤを軸支する第1駆動ギヤ軸と、変速比順位で偶数番目の変速段を確立する各ギヤ列の駆動ギヤを軸支する第2駆動ギヤ軸と、内燃機関の駆動力を第1駆動ギヤ軸に伝達させる伝達状態と、この伝達を断つ開放状態とに切換自在な第1クラッチと、前記内燃機関の駆動力を前記第2駆動ギヤ軸に伝達させる伝達状態と、この伝達を断つ開放状態とに切換自在な第2クラッチと、前記第1駆動ギヤ軸に駆動力を伝達自在な電動機とを備える自動変速機が知られている(例えば、特許文献1参照)。 Conventionally, a first drive gear shaft that pivotally supports a drive gear of each gear train that establishes an odd-numbered gear stage in a gear ratio order, and a drive gear of each gear train that establishes an even-numbered gear stage in a gear ratio order. A second driving gear shaft that supports the shaft, a first clutch that can be switched between a transmission state in which the driving force of the internal combustion engine is transmitted to the first driving gear shaft, and an open state in which the transmission is interrupted; and the driving force of the internal combustion engine An automatic transmission comprising: a second clutch that can be switched between a transmission state in which the transmission is transmitted to the second drive gear shaft; and an open state in which the transmission is cut off; and an electric motor that can transmit the driving force to the first drive gear shaft. Is known (see, for example, Patent Document 1).
自動変速機は、内燃機関から伝達される駆動力が所定範囲内のときに、自動変速機の構成部品の共振周波数と合致して内燃機関から伝達される振動が増幅され、共振が発生することがある。 In the automatic transmission, when the driving force transmitted from the internal combustion engine is within a predetermined range, the vibration transmitted from the internal combustion engine is amplified to match the resonance frequency of the components of the automatic transmission, and resonance occurs. There is.
本発明は、共振の発生を抑制することができるハイブリッド車両の動力制御装置を提供することを目的とする。 An object of the present invention is to provide a power control apparatus for a hybrid vehicle that can suppress the occurrence of resonance.
[1]本発明は、内燃機関と電動機とを駆動源とする車両に用いられ、前記内燃機関及び前記電動機からの機械的動力を、前記電動機と連結された第1入力軸で受け、複数の変速段のうちいずれか1つを係合状態にして、前記第1入力軸と駆動輪とを連結させることが可能な第1変速機構と、前記内燃機関からの機械的動力を第2入力軸で受け、複数の変速段のうちいずれか1つを係合状態にして、前記第2入力軸と前記駆動輪とを連結させることが可能な第2変速機構と、前記第1変速機構と前記第2変速機構に設けられた変速ギヤと共に噛合する従動ギヤと前記駆動輪に連結される出力ギヤとを有する出力軸と、前記内燃機関と前記第1入力軸とを連結させることが可能な第1断接手段と、前記内燃機関と前記第2入力軸とを連結させることが可能な第2断接手段と、を備え、前記第1変速機構には、前記内燃機関からの動力と前記電動機からの動力を合成可能であり、第1〜第3要素が互いに差動回転できるように構成された動力合成機構が連結されており、前記第2入力軸は、該動力合成機構を介さずに動力を前記駆動輪に伝達可能であり、前記第1断接手段と前記第2断接手段をすべらせながら接続して前記駆動輪に伝達されるトルクを調整しながら走行可能であり、前記内燃機関の駆動力に対する共振領域が予め記憶された記憶手段を備え、車両停車状態において、前記内燃機関と前記電動機の両方の駆動力を用いて発進するHEV発進を実行するに際し、目標駆動力を設定し、該目標駆動力を得るために前記内燃機関には前記記憶手段に記憶された共振領域の範囲外の駆動力を要求し、前記電動機には、該目標駆動力に対して不足する駆動力を要求する共振抑制処理を実行する共振抑制処理部を備えることを特徴とする。 [1] The present invention is used in a vehicle having an internal combustion engine and an electric motor as driving sources, receives mechanical power from the internal combustion engine and the electric motor by a first input shaft connected to the electric motor, A first speed change mechanism capable of connecting any one of the shift speeds to connect the first input shaft and the drive wheel; and mechanical power from the internal combustion engine for the second input shaft. The second transmission mechanism capable of connecting any one of the plurality of shift stages to the second input shaft and the drive wheel, the first transmission mechanism, and the An output shaft having a driven gear meshing with a speed change gear provided in the second speed change mechanism and an output gear connected to the drive wheel, and the internal combustion engine and the first input shaft can be connected. 1 connection / disconnection means, the internal combustion engine and the second input shaft are connected Second connecting / disconnecting means capable of combining the power from the internal combustion engine and the power from the electric motor in the first transmission mechanism, and the first to third elements are differentially connected to each other. A power combining mechanism configured to be able to rotate is coupled, and the second input shaft can transmit power to the driving wheel without going through the power combining mechanism, and the first connecting / disconnecting means and the first connecting / disconnecting means The vehicle is capable of traveling while adjusting the torque transmitted to the driving wheel by slidingly connecting the second connecting / disconnecting means, and has a storage means in which a resonance region for the driving force of the internal combustion engine is stored in advance. in the state, when performing a HEV start to start using the both driving forces of the electric motor and the internal combustion engine, sets a target driving force to said storage means to the internal combustion engine in order to obtain the target driving force Outside the range of the memorized resonance region Requesting driving force, the electric motor, characterized in that it comprises a resonance suppression processing unit for executing the resonance suppression processing for requesting the driving force is insufficient relative to the target driving force.
本発明によれば、内燃機関に要求する駆動力を共振領域の範囲外に設定するため、内燃機関の駆動力は、共振領域に入る前の駆動力に設定されるか、又は共振領域を超える駆動力に設定される。従って、共振領域に入る前の駆動力に設定された場合には、共振は発生せず、又、共振領域を超える駆動力に設定された場合には、共振領域内での駆動力が長時間維持されることなく、速やかに共振領域を通過させることができ、共振の発生を抑制することができる。 According to the present invention, since the driving force required for the internal combustion engine is set outside the resonance region, the driving force of the internal combustion engine is set to the driving force before entering the resonance region or exceeds the resonance region. Set to driving force. Therefore, when the driving force before entering the resonance region is set, resonance does not occur. When the driving force exceeds the resonance region, the driving force within the resonance region is long. Without being maintained, the resonance region can be passed quickly, and the occurrence of resonance can be suppressed.
[2]本発明において、第1断接手段及び第2断接手段は乾式摩擦クラッチであり、共振領域は第1断接手段又は第2断接手段の締結状態における共振周波数に基づいて設定されることが好ましい。湿式摩擦クラッチは摩擦面に潤滑油が供給されるのに対し、乾式摩擦クラッチは摩擦面に潤滑油が供給されないため、乾式摩擦クラッチは湿式摩擦クラッチと比較して共振し易い。このため、第1断接手段又は第2断接手段の締結状態における共振周波数に基づいて共振領域を設定すれば、適切に乾式摩擦クラッチからなる第1断接手段又は第2断接手段で発生する共振を抑制させることができる。 [2] In the present invention, the first connecting / disconnecting means and the second connecting / disconnecting means are dry friction clutches, and the resonance region is set based on the resonance frequency in the engaged state of the first connecting / disconnecting means or the second connecting / disconnecting means. It is preferable. The wet friction clutch is supplied with lubricating oil on the friction surface, whereas the dry friction clutch is not supplied with lubricating oil on the friction surface. Therefore, the dry friction clutch is more likely to resonate than the wet friction clutch. Therefore, by setting the resonance region based on the resonance frequency of the engagement state of the first engaging and disengaging means or the second disengaging means suitably occurs in the first engaging and disengaging means or the second disengaging means consisting of a dry friction clutch Resonance can be suppressed.
[3]本発明において、記憶手段には、共振領域として、第1断接手段又は第2断接手段の締結圧の変化に応じて変化する複数の共振領域が記憶され、共振抑制処理部は、HEV発進時において、複数の共振領域のうちの内燃機関の駆動力の大きい側に位置する共振領域である大側共振領域を選択し、この大側共振領域に対応する締結圧を第1断接手段又は第2断接手段の締結圧とすると共に、内燃機関の駆動力を、大側共振領域に入る前の所定の閾値まで上昇させた後、複数の共振領域のうちの大側共振領域よりも内燃機関の駆動力の小さい側にずれて位置する共振領域である小側共振領域を選択し、この小側共振領域に対応する締結圧を第1断接手段又は第2断接手段の締結圧とすると共に、内燃機関の駆動力を、小側共振領域を超える値に設定することが好ましい。 [3] In the present invention, the storage means stores a plurality of resonance areas that change in response to changes in the fastening pressure of the first connection / disconnection means or the second connection / disconnection means as the resonance area. When starting HEV, a large resonance region, which is a resonance region located on the side where the driving force of the internal combustion engine is large, is selected from among a plurality of resonance regions, and the fastening pressure corresponding to the large resonance region is first cut off. The fastening pressure of the connecting means or the second connecting / closing means is set, and the driving force of the internal combustion engine is increased to a predetermined threshold before entering the large-side resonance area, and then the large-side resonance area of the plurality of resonance areas A small resonance region, which is a resonance region that is shifted to a side where the driving force of the internal combustion engine is smaller, is selected, and a fastening pressure corresponding to the small resonance region is selected by the first connection means or the second connection means . In addition to the fastening pressure, the driving force of the internal combustion engine exceeds the small resonance region It is preferable to set in.
クラッチの共振周波数はクラッチの締結圧に応じて変化することが実験により分かった。この現象を利用して、本発明の動力制御装置において、HEV発進時に、第1断接手段又は第2断接手段の締結圧を大側共振領域に対応する締結圧として、内燃機関の駆動力を大側共振領域に入る前の所定の閾値まで上昇させた後、第1断接手段又は第2断接手段の締結圧を小側共振領域に対応する締結圧として、内燃機関の駆動力を小側共振領域を超える値に設定すれば、実質的な共振領域の幅が狭くなり、内燃機関の駆動力は共振領域をより速やかに超えることができ、共振の発生をより抑制することができる。 Experiments have shown that the resonance frequency of the clutch varies with the clutch engagement pressure. By utilizing this phenomenon, in the power control apparatus of the present invention, when HEV starts , the driving force of the internal combustion engine is determined by using the fastening pressure of the first connecting / disconnecting means or the second connecting / disconnecting means as the fastening pressure corresponding to the large resonance region. Is increased to a predetermined threshold before entering the large-side resonance region, and then the driving force of the internal combustion engine is set with the fastening pressure of the first connecting / disconnecting means or the second connecting / disconnecting device as the fastening pressure corresponding to the small-side resonance region. If the value exceeds the small resonance region, the width of the substantial resonance region is narrowed, and the driving force of the internal combustion engine can exceed the resonance region more quickly, and the occurrence of resonance can be further suppressed. .
[4]本発明において、車両の走行速度が所定速度以上である場合であって、共振抑制処理部が内燃機関の駆動力を共振領域の範囲外とすべく共振領域よりも低く設定したときには、共振領域抑制処理部は、内燃機関の駆動力を抑えた分だけ目標駆動力を減少させる慣性走行処理を実行することが好ましい。車両の走行速度が所定速度以上となった場合には、車両がある程度慣性力で走行できる状態となる。このため、目標駆動力を低く設定しても運転者等は違和感を感じ難く、共振を防止して、電動機の消費電力も抑えることができる。 [4] In the present invention, when the traveling speed of the vehicle is equal to or higher than a predetermined speed, and when the resonance suppression processing unit sets the driving force of the internal combustion engine to be lower than the resonance area, The resonance region suppression processing unit preferably executes an inertia traveling process for reducing the target driving force by an amount corresponding to the suppression of the driving force of the internal combustion engine. When the traveling speed of the vehicle becomes equal to or higher than a predetermined speed, the vehicle can travel with some inertial force. For this reason, even if the target driving force is set low, the driver or the like does not feel uncomfortable, and resonance can be prevented and the power consumption of the motor can be suppressed.
[5]本発明において、第1断接手段又は第2断接手段のみを締結する単独締結状態と、第1断接手段又は第2断接手段に加えて第2断接手段又は第1断接手段も締結する両締結状態とに切換自在であり、記憶手段には、共振領域として、単独締結状態に対応する第1共振領域と、両締結状態に対応する第2共振領域との2つの共振領域が記憶され、共振抑制処理部は、HEV発進時において、第1断接手段及び第2断接手段を締結状態として両締結状態とすると共に、第2共振領域に入る前の所定の閾値まで内燃機関の駆動力を上昇させた後、第2断接手段又は第1断接手段を開放状態として単独締結状態とし、内燃機関の駆動力を第1共振領域を超える値に設定することが好ましい。 [5] In the present invention, a single engagement state for fastening only the first engaging and disengaging means or the second disengaging means, second disengaging means or the first cross in addition to the first engaging and disengaging means or the second disengaging means The storage means can be switched between both fastening states, and the storage means has two resonance regions, a first resonance region corresponding to a single fastening state and a second resonance region corresponding to both fastening states. The resonance region is stored, and the resonance suppression processing unit sets the first connection / disconnection means and the second connection / disconnection means to the both engagement states when the HEV starts, and sets a predetermined threshold before entering the second resonance region. The driving force of the internal combustion engine is increased until the second connecting / disconnecting means or the first connecting / disconnecting means is in an open state, and the driving force of the internal combustion engine is set to a value exceeding the first resonance region. preferable.
第1断接手段又は第2断接手段のみを締結状態とする単独締結状態と比べて、第1ク断接手段又は第2断接手段に加えて第2断接手段又は第1断接手段も締結状態とする両締結状態では、第2断接手段又は第1断接手段が締結される分だけ、内燃機関の駆動力が伝達される断接手段の部分における実質的な質量が増加し、この断接手段の部分における共振周波数が内燃機関の駆動力の大きい側にずれることが実験により分かった。 Compared with single fastening state that only the engaged state the first engaging and disengaging means or the second disengaging means, second disengaging means or the first engaging and disengaging means in addition to the first click disengaging means or the second disengaging means In both fastening states, which are also fastened, the substantial mass of the connecting / disconnecting means to which the driving force of the internal combustion engine is transmitted increases by the amount of the second connecting / disconnecting means or the first connecting / disconnecting means being fastened. It has been experimentally found that the resonance frequency in the connecting / disconnecting means shifts to the side where the driving force of the internal combustion engine is large.
この現象を利用して、本発明の動力制御装置において、HEV発進時に第1断接手段及び第2断接手段を締結させる両締結状態とし、内燃機関の駆動力を第2共振領域に入る前の所定の閾値まで上昇させた後、第2断接手段又は第1断接手段を開放して単独連結状態として、共振領域を、第2共振領域よりも内燃機関の駆動力の小さい側に位置する第1共振領域に移行させ、内燃機関の駆動力を第1共振領域よりも大きい駆動力となるように設定すれば、実質的な共振領域の幅が狭くなり、内燃機関の駆動力は共振領域をより速やかに超えることができ、共振の発生をより抑制することができる。 By utilizing this phenomenon, in the power control apparatus of the present invention, both the first connecting / disconnecting means and the second connecting / disconnecting means are engaged when HEV starts, and the driving force of the internal combustion engine is entered before entering the second resonance region. After the first threshold value is raised to the predetermined threshold value, the second connecting / disconnecting means or the first connecting / disconnecting means is opened to establish a single connection state, and the resonance region is positioned on the side where the driving force of the internal combustion engine is smaller than the second resonance region. If the driving force of the internal combustion engine is set to be larger than that of the first resonance region, the width of the substantial resonance region becomes narrower, and the driving force of the internal combustion engine becomes resonant. The region can be exceeded more quickly, and the occurrence of resonance can be further suppressed.
[6]本発明において、自動変速機は、その内部を潤滑する潤滑油の温度を検出する油温度検出手段を備え、この油温度検出手段で検出された潤滑油の温度に基づいて、共振領域を補正することが好ましい。クラッチはその周辺部材の温度やクラッチの締結頻度に伴って発熱し、この発熱状態の変化に応じてクラッチの締結圧も変化する。クラッチの締結圧が変化するとクラッチの共振周波数も変化する。このため、潤滑油の温度を油温度検出手段で検出し、潤滑油の温度に基づいて、クラッチの発熱状態を推定し、共振領域を補正すれば、共振が発生する共振領域を適切に設定することができる。
[7]本発明のハイブリッド車両の動力制御装置は、電動機を中空に構成し、動力合成機構を、中空の電動機の内方に配置することが好ましい。かかる構成によれば、自動変速機の軸長の更なる短縮化を図ることができる。
[6] In the present invention, the automatic transmission includes oil temperature detecting means for detecting the temperature of the lubricating oil that lubricates the inside thereof, and based on the temperature of the lubricating oil detected by the oil temperature detecting means, the resonance region Is preferably corrected. The clutch generates heat in accordance with the temperature of its peripheral members and the clutch engagement frequency, and the clutch engagement pressure also changes in accordance with the change in the heat generation state. When the clutch engagement pressure changes, the clutch resonance frequency also changes. Therefore, if the temperature of the lubricating oil is detected by the oil temperature detecting means, the heat generation state of the clutch is estimated based on the temperature of the lubricating oil, and the resonance region is corrected, the resonance region in which resonance occurs is appropriately set. be able to.
[7] In the power control apparatus for a hybrid vehicle of the present invention, it is preferable that the electric motor is configured to be hollow, and the power combining mechanism is disposed inside the hollow electric motor. According to such a configuration, the axial length of the automatic transmission can be further shortened.
図1及び図2を参照して、本発明の第1実施形態のハイブリッド車両の動力制御装置を説明する。第1実施形態のハイブリッド車両は、図1に示す自動変速機1を備える。自動変速機1は、エンジンからなる内燃機関ENGの駆動力(出力トルク)が伝達される入力軸2と、図外のディファレンシャルギヤを介して駆動輪としての左右の前輪に動力を出力する出力ギヤからなる出力部材3と、変速比の異なる複数のギヤ列G2〜G5とを備える。
With reference to FIG.1 and FIG.2, the power control apparatus of the hybrid vehicle of 1st Embodiment of this invention is demonstrated. The hybrid vehicle of the first embodiment includes an
又、自動変速機1は、変速比順位で奇数番目の各変速段を確立するギヤ列G3,G5の駆動ギヤG3a,G5a(変速ギヤ)を回転自在に軸支する第1駆動ギヤ軸4(第1入力軸)と、変速比順位で偶数番目の変速段を確立するギヤ列G2,G4の駆動ギヤG2a,G4a(変速ギヤ)を回転自在に軸支する第2駆動ギヤ軸5(第2入力軸)と、後進段を確立する際に用いられリバース駆動ギヤGRaとリバース従動ギヤGRbとからなる後進段用ギヤ列GRのリバース従動ギヤGRbを回転自在に軸支するリバース軸6を備える。第1駆動ギヤ軸4は入力軸2と同一軸線上に配置されており、第2駆動ギヤ軸5は第1駆動ギヤ軸4と平行に配置されている。
Further, the
又、自動変速機1は、第1駆動ギヤ軸4に回転自在に軸支されたアイドル駆動ギヤGiaと、アイドル駆動ギヤGiaに噛合する第1アイドル従動ギヤGibと、第1アイドル従動ギヤGibに噛合すると共に、第2駆動ギヤ軸5に固定された第2アイドル従動ギヤGicと、第1アイドル従動ギヤGibに噛合すると共に、リバース軸6に固定された第3アイドル従動ギヤGidとで構成されるアイドルギヤ列Giを備える。
The
自動変速機1は、乾式摩擦クラッチからなる第1クラッチC1(第1断接手段)及び第2クラッチC2(第2断接手段)を備える。第1クラッチC1は、入力軸2に伝達された内燃機関ENGの駆動力を第1駆動ギヤ軸4に伝達させる伝達状態と、この伝達を断つ開放状態とに切換自在に構成されている。第2クラッチC2は、入力軸2に伝達された内燃機関ENGの駆動力を第2駆動ギヤ軸5に伝達させる伝達状態と、この伝達を断つ開放状態とに切換自在に構成されている。
The
又、自動変速機1には、入力軸2と同軸上に位置させて、プラネタリギヤ機構PG(動力合成機構)が配置されている。プラネタリギヤ機構PGは、サンギヤSaと、リングギヤRaと、サンギヤSa及びリングギヤRaに噛合するピニオンPaを自転及び公転自在に軸支するキャリアCaとからなるシングルピニオン型で構成される。
The
プラネタリギヤ機構PGのサンギヤSa、キャリアCa、リングギヤRaからなる3つの要素を、共線図(各要素の相対的な回転速度を直線で表すことができる図)におけるギヤ比に対応する間隔での並び順にサンギヤSa側から夫々第1要素、第2要素、第3要素とすると、第1要素はサンギヤSa、第2要素はキャリアCa、第3要素はリングギヤRaとなる。 The three elements of the planetary gear mechanism PG including the sun gear Sa, the carrier Ca, and the ring gear Ra are arranged at intervals corresponding to the gear ratio in the collinear chart (the relative rotation speed of each element can be represented by a straight line). If the first element, the second element, and the third element are sequentially arranged from the sun gear Sa side, the first element is the sun gear Sa, the second element is the carrier Ca, and the third element is the ring gear Ra.
そして、プラネタリギヤ機構PGのギヤ比(リングギヤRaの歯数/サンギヤSaの歯数)をgとして、第1要素たるサンギヤSaと第2要素たるキャリアCaの間の間隔と、第2要素たるキャリアCaと第3要素たるリングギヤRaの間の間隔との比が、g:1となる。 The gear ratio of the planetary gear mechanism PG (the number of teeth of the ring gear Ra / the number of teeth of the sun gear Sa) is defined as g, the distance between the sun gear Sa as the first element and the carrier Ca as the second element, and the carrier Ca as the second element. And the distance between the ring gear Ra as the third element is g: 1.
第1要素たるサンギヤSaは、第1駆動ギヤ軸4に固定されている。第2要素たるキャリアCaは、3速ギヤ列G3の3速駆動ギヤG3aに連結されている。第3要素たるリングギヤRaは、ロック機構B1により変速機ケース7に解除自在に固定される。
The first element sun gear Sa is fixed to the first drive gear shaft 4. The carrier Ca as the second element is coupled to the third speed drive gear G3a of the third speed gear train G3. The ring gear Ra as the third element is fixed to the
ロック機構B1は、シンクロメッシュ機構で構成され、リングギヤRa(第3要素)を変速機ケース7に固定する固定状態と、この固定を解除する開放状態とに切換自在に構成されている。尚、ロック機構B1は、シンクロメッシュ機構に限らず、2ウェイクラッチ、湿式多板ブレーキ、ハブブレーキ、バンドブレーキ等の他のもので構成してもよい。
The lock mechanism B1 is composed of a synchromesh mechanism, and is configured to be switchable between a fixed state in which the ring gear Ra (third element) is fixed to the
ここで、2ウェイクラッチは、リングギヤRa(第3要素)の正転(前進方向の回転)を許容し逆転(後進方向の回転)を阻止する逆転阻止状態、又は正転を阻止し逆転を許容する正転阻止状態の何れかの状態に切換自在に構成されるものであり、ロック機構B1として2ウェイクラッチを用いる場合には、リングギヤRaが逆転する状態においては逆転阻止状態とすることにより、又、リングギヤRaが正転する状態においては正転阻止状態とすることにより、リングギヤRaが変速機ケース7に固定されることとなる。
Here, the two-way clutch allows a reverse rotation (rotation in the forward direction) of the ring gear Ra (third element) and prevents reverse rotation (rotation in the reverse direction), or prevents forward rotation and reverse rotation. When the two-way clutch is used as the lock mechanism B1, when the ring gear Ra is reversely rotated, the reverse rotation is prevented. Further, when the ring gear Ra is normally rotated, the ring gear Ra is fixed to the
プラネタリギヤ機構PGの径方向外方には、中空の電動機MG(モータ・ジェネレータ)が配置されている。換言すれば、プラネタリギヤ機構PGは、中空の電動機MGの内方に配置されている。電動機MGは、ステータMGaとロータMGbとを備える。ロータMGbは、第1駆動ギヤ軸4に連結されている。 A hollow electric motor MG (motor / generator) is disposed outside the planetary gear mechanism PG in the radial direction. In other words, the planetary gear mechanism PG is disposed inside the hollow electric motor MG. The electric motor MG includes a stator MGa and a rotor MGb. The rotor MGb is connected to the first drive gear shaft 4.
又、電動機MGは、動力制御装置ECU(Electronic Control Unit)の指示信号に基づき、パワードライブユニットPDU(Power Drive Unit)を介して制御され、動力制御装置ECUは、パワードライブユニットPDUを、二次電池BATTの電力を消費して電動機MGを駆動させる駆動状態と、ロータMGbの回転力を抑制させて発電し、発電した電力をパワードライブユニットPDUを介して二次電池BATTに充電する回生状態とに適宜切り換える。 The electric motor MG is controlled via a power drive unit PDU (Power Drive Unit) based on an instruction signal from a power control unit ECU (Electronic Control Unit), and the power control unit ECU transfers the power drive unit PDU to the secondary battery BATT. Is appropriately switched between a driving state in which the electric power MG is consumed to drive the electric motor MG and a regenerative state in which the rotational power of the rotor MGb is suppressed to generate power and the generated power is charged to the secondary battery BATT via the power drive unit PDU. .
第1駆動ギヤ軸4には、リバース軸6に回転自在に軸支される後進段用ギヤ列GRのリバース従動ギヤGRbと噛合するリバース駆動ギヤGRaが固定されている。出力部材3を軸支する出力軸3aには、2速駆動ギヤG2a及び3速駆動ギヤG3aに噛合する第1従動ギヤGo1が固定されている。又、出力軸3aには、4速駆動ギヤG4a及び5速駆動ギヤG5aに噛合する第2従動ギヤGo2が固定されている。
The first drive gear shaft 4 is fixed with a reverse drive gear GRa that meshes with the reverse driven gear GRb of the reverse gear train GR that is rotatably supported by the reverse shaft 6. A first driven gear Go1 that meshes with the second speed drive gear G2a and the third speed drive gear G3a is fixed to the
このように、2速ギヤ列G2と3速ギヤ列G3の従動ギヤ、及び4速ギヤ列G4と5速ギヤ列G5の従動ギヤとを夫々1つのギヤGo1,Go2で構成することにより、自動変速機の軸長を短くすることができ、FF(前輪駆動)方式の車両への搭載性を向上させることができる。 In this way, by configuring the driven gears of the second gear train G2 and the third gear train G3 and the driven gears of the fourth gear train G4 and the fifth gear train G5 by one gear Go1, Go2, respectively, The shaft length of the transmission can be shortened, and the FF (front wheel drive) system can be mounted on a vehicle.
第1駆動ギヤ軸4には、シンクロメッシュ機構で構成され、3速駆動ギヤG3aと第1駆動ギヤ軸4とを連結した3速側連結状態、5速駆動ギヤG5aと第1駆動ギヤ軸4とを連結した5速側連結状態、3速駆動ギヤG3a及び5速駆動ギヤG5aと第1駆動ギヤ軸4との連結を断つニュートラル状態の何れかの状態に切換自在な第1噛合機構SM1が設けられている。 The first drive gear shaft 4 is constituted by a synchromesh mechanism, and is connected in a third speed side in which the third speed drive gear G3a and the first drive gear shaft 4 are connected. The fifth speed drive gear G5a and the first drive gear shaft 4 are connected. A first meshing mechanism SM1 that can be switched to any one of a neutral state that disconnects the third drive gear G3a and the fifth drive gear G5a from the first drive gear shaft 4; Is provided.
第2駆動ギヤ軸5には、シンクロメッシュ機構で構成され、2速駆動ギヤG2aと第2駆動ギヤ軸5とを連結した2速側連結状態、4速駆動ギヤG5aと第2駆動ギヤ軸5とを連結した4速側連結状態、2速駆動ギヤG2a及び4速駆動ギヤG5aと第2駆動ギヤ軸5との連結を断つニュートラル状態の何れかの状態に切換自在な第2噛合機構SM2が設けられている。
The second
リバース軸6には、シンクロメッシュ機構で構成され、リバース駆動ギヤGRaとリバース軸6とを連結した連結状態と、この連結を断つニュートラル状態の何れかの状態に切換自在な第3噛合機構SM3が設けられている。 The reverse shaft 6 includes a third meshing mechanism SM3 which is configured by a synchromesh mechanism and can be switched between a connected state in which the reverse drive gear GRa and the reverse shaft 6 are connected and a neutral state in which the connection is broken. Is provided.
次に、上記の如く構成される自動変速機1の作動について説明する。尚、本実施形態の自動変速機1では、車両が駐車状態であるときには、第1クラッチC1を係合させることにより、電動機MGを駆動させて内燃機関ENGを始動させることができる。
Next, the operation of the
先ず、内燃機関ENGの駆動力を用いて1速段を確立する場合には、ロック機構B1を固定状態としてプラネタリギヤ機構PGのリングギヤRaを変速機ケース7に固定し、第1クラッチC1を締結させて伝達状態とする。
First, when the first speed is established using the driving force of the internal combustion engine ENG, the lock mechanism B1 is fixed, the ring gear Ra of the planetary gear mechanism PG is fixed to the
内燃機関ENGの駆動力は、入力軸2、第1クラッチC1、第1駆動ギヤ軸4を介して、プラネタリギヤ機構PGのサンギヤSaに入力され、入力軸2に入力された内燃機関ENGの回転速度がプラネタリギヤ機構PGのギヤ比(リングギヤRaの歯数/サンギヤSaの歯数)をgとして1/(g+1)に減速されて、キャリアCaを介し3速駆動ギヤG3aに伝達される。 The driving force of the internal combustion engine ENG is input to the sun gear Sa of the planetary gear mechanism PG via the input shaft 2, the first clutch C1, and the first driving gear shaft 4, and the rotational speed of the internal combustion engine ENG input to the input shaft 2 Is reduced to 1 / (g + 1), where g is the gear ratio of the planetary gear mechanism PG (number of teeth of the ring gear Ra / number of teeth of the sun gear Sa), and is transmitted to the third speed drive gear G3a via the carrier Ca.
3速駆動ギヤG3aに伝達された駆動力は、3速駆動ギヤG3a及び第1従動ギヤGo1で構成される3速ギヤ列G3のギヤ比(3速駆動ギヤG3aの歯数/第1従動ギヤGo1の歯数)をiとして、1/i(g+1)に変速されて第1従動ギヤGo1及び出力軸3aを介し出力部材3から出力され、1速段が確立される。
The driving force transmitted to the third-speed drive gear G3a is the gear ratio of the third-speed gear train G3 composed of the third-speed drive gear G3a and the first driven gear Go1 (number of teeth of the third-speed drive gear G3a / first driven gear). The number of teeth of Go1) is i, and the gear is shifted to 1 / i (g + 1) and output from the output member 3 via the first driven gear Go1 and the
このように、第1実施形態の自動変速機1では、プラネタリギヤ機構PG及び3速ギヤ列で1速段を確立できるため、1速段専用の噛合機構が必要なく、又、プラネタリギヤ機構PGは中空の電動機MG内に配置されるため、自動変速機の軸長の更なる短縮化を図ることができる。
As described above, in the
尚、1速段において、車両が減速状態にあり、且つ二次電池BATTの充電率SOC(State Of Charge)が所定値未満であるときには、動力制御装置ECUは、電動機MGでブレーキをかけることにより発電を行う減速回生運転を行う。又、二次電池BATTの充電率SOCが所定値以上であるときには、電動機MGを駆動させて、内燃機関ENGの駆動力を補助するHEV(Hybrid Electric Vehicle)走行、又は電動機MGの駆動力(機械的駆動力)のみで走行するEV(Electric Vehicle)走行を行うことができる。 When the vehicle is in a decelerating state at the first speed and the charging rate SOC (State Of Charge) of the secondary battery BATT is less than a predetermined value, the power control unit ECU applies a brake with the electric motor MG. Perform decelerating regenerative operation to generate electricity. When the charging rate SOC of the secondary battery BATT is equal to or greater than a predetermined value, the electric motor MG is driven to drive HEV (Hybrid Electric Vehicle) that assists the driving force of the internal combustion engine ENG, or the driving force of the electric motor MG (machine) EV (Electric Vehicle) traveling that travels only with a dynamic driving force) .
又、EV走行中であって車両速度が一定速度以上の場合には、第1クラッチC1を徐々に締結させることにより、内燃機関ENGを始動させることができる。又、1速段で走行中に2速段にアップシフトされることを動力制御装置ECUが車両速度やアクセルペダルの開度等の車両情報から予測した場合には、第2噛合機構SM2を2速駆動ギヤG2aと第2駆動ギヤ軸5とを連結させる2速側連結状態又はこの状態に近付けるプリシフト状態とする。
Further, when the vehicle is traveling in EV and the vehicle speed is equal to or higher than a certain speed, the internal combustion engine ENG can be started by gradually engaging the first clutch C1. Further, when the power control device ECU predicts from the vehicle information such as the vehicle speed and the opening degree of the accelerator pedal that the upshift to the second gear is performed during traveling at the first gear, the second meshing mechanism SM2 is set to 2 The second-speed-side connected state in which the high-speed driving gear G2a and the second
内燃機関ENGの駆動力を用いて2速段を確立する場合には、第2噛合機構SM2を2速駆動ギヤG2aと第2駆動ギヤ軸5とを連結させた2速側連結状態とし、第1クラッチC1を開放状態とすると共に、第2クラッチC2を締結して伝達状態とする。これにより、内燃機関ENGの駆動力が、第2クラッチC2、アイドルギヤ列Gi、第2駆動ギヤ軸5、2速ギヤ列G2及び出力軸3aを介して、出力部材3から出力される。
In the case where the second speed is established using the driving force of the internal combustion engine ENG, the second meshing mechanism SM2 is brought into a second speed side connected state in which the second speed driving gear G2a and the second
尚、2速段において、動力制御装置ECUがアップシフトを予測している場合には、第1噛合機構SM1を3速駆動ギヤG3aと第1駆動ギヤ軸4とを連結した3速側連結状態又はこの状態に近付けるプリシフト状態とする。 When the power control unit ECU predicts an upshift at the second speed, the first meshing mechanism SM1 is connected to the third speed side, in which the third speed drive gear G3a and the first drive gear shaft 4 are connected. Alternatively, a pre-shift state that approaches this state is set.
逆に、動力制御装置ECUがダウンシフトを予測している場合には、第1噛合機構SM1を、第3駆動ギヤG3a及び第5駆動ギヤG5aと第1駆動ギヤ軸4との連結を断つニュートラル状態とする。 On the contrary, when the power control unit ECU predicts a downshift, the first meshing mechanism SM1 is set to the neutral position that disconnects the third drive gear G3a and the fifth drive gear G5a from the first drive gear shaft 4. State.
これにより、アップシフト又はダウンシフトを、第1クラッチC1を伝達状態とし、第2クラッチC2を開放状態とするだけで行うことができ、変速段の切り換えを駆動力が途切れることなくスムーズに行うことができる。 As a result, the upshift or the downshift can be performed simply by setting the first clutch C1 in the transmission state and the second clutch C2 in the disengaged state, and smoothly switching the shift speed without interrupting the driving force. Can do.
又、2速段においても、車両が減速状態にあり、且つ二次電池BATTの充電率SOCが所定値未満であるときには、動力制御装置ECUは、減速回生運転を行う。2速段において減速回生運転を行う場合には、第1噛合機構SM1が3速側連結状態であるか、ニュートラル状態であるかで異なる。 Even in the second speed stage, when the vehicle is in a decelerating state and the charging rate SOC of the secondary battery BATT is less than a predetermined value, the power control device ECU performs a deceleration regenerative operation. When performing the deceleration regenerative operation in the second speed stage, it differs depending on whether the first meshing mechanism SM1 is in the third speed side connected state or in the neutral state.
第1噛合機構SM1が3速側連結状態である場合には、第2駆動ギヤG2aで回転される第1従動ギヤGo1によって回転する第3駆動ギヤG3aが第1駆動ギヤ軸4を介して電動機MGのロータMGbを回転させるため、このロータMGbの回転を抑制しブレーキをかけることにより発電して回生を行う。 When the first meshing mechanism SM1 is in the third speed side connected state, the third drive gear G3a rotated by the first driven gear Go1 rotated by the second drive gear G2a is connected to the electric motor via the first drive gear shaft 4. In order to rotate the rotor MGb of the MG, the rotation of the rotor MGb is suppressed and a brake is applied to generate power and perform regeneration.
第1噛合機構SM1がニュートラル状態である場合には、ロック機構B1を固定状態とすることによりリングギヤRaの回転速度を「0」とし、第1従動ギヤGo1に噛合する3速駆動ギヤG3aと共に回転するキャリアCaの回転速度を、サンギヤSaに連結させた電動機MGにより発電させることによりブレーキをかけて、回生を行う。 When the first meshing mechanism SM1 is in the neutral state, the rotation speed of the ring gear Ra is set to “0” by setting the lock mechanism B1 in a fixed state, and the gear is rotated together with the third speed drive gear G3a meshing with the first driven gear Go1. Regeneration is performed by applying a brake by generating electric power by the electric motor MG connected to the sun gear Sa at the rotation speed of the carrier Ca.
又、2速段においてHEV走行する場合には、第1噛合機構SM1を3速駆動ギヤG3aと第1駆動ギヤ軸4とを連結させた3速側連結状態として、プラネタリギヤ機構PGを各要素が相対回転不能なロック状態とし、電動機MGの駆動力を3速ギヤ列G3を介して出力部材3に伝達することにより行うことができる。 Further, when HEV traveling is performed at the second speed, the first meshing mechanism SM1 is in the third speed side connection state in which the third speed drive gear G3a and the first drive gear shaft 4 are connected, and the planetary gear mechanism PG has each element. It can be performed by setting the locked state incapable of relative rotation and transmitting the driving force of the electric motor MG to the output member 3 via the third-speed gear train G3.
内燃機関ENGの駆動力を用いて3速段を確立する場合には、第1噛合機構SM1を3速駆動ギヤG3aと第1駆動ギヤ軸4とを連結させた3速側連結状態として、第2クラッチC2を開放状態とすると共に、第1クラッチC1を締結させて伝達状態とする。これにより、内燃機関ENGの駆動力は、入力軸2、第1クラッチC1、第1駆動ギヤ軸4、第1噛合機構SM1、3速ギヤ列G3を介して、出力部材3に伝達され、1/iの回転速度で出力される。 When the third speed is established using the driving force of the internal combustion engine ENG, the first meshing mechanism SM1 is set to the third speed-side connected state in which the third speed drive gear G3a and the first drive gear shaft 4 are connected. The second clutch C2 is brought into an open state, and the first clutch C1 is fastened into a transmission state. Thus, the driving force of the internal combustion engine ENG is transmitted to the output member 3 via the input shaft 2, the first clutch C1, the first driving gear shaft 4, the first meshing mechanism SM1, and the third gear train G3. Is output at a rotation speed of / i.
3速段においては、第1噛合機構SM1が3速駆動ギヤG3aと第1駆動ギヤ軸4とを連結させた3速側連結状態となっているため、プラネタリギヤ機構PGのサンギヤSaとキャリアCaとが同一回転となる。 At the third speed, the first meshing mechanism SM1 is in the third speed side connected state in which the third speed driving gear G3a and the first driving gear shaft 4 are connected, so the sun gear Sa of the planetary gear mechanism PG, the carrier Ca, Are the same rotation.
従って、プラネタリギヤ機構PGの各要素が相対回転不能なロック状態となり、電動機MGでサンギヤSaにブレーキをかければ減速回生となり、電動機MGでサンギヤSaに駆動力を伝達させれば、HEV走行を行うことができる。又、第1クラッチC1を開放して、電動機MGの駆動力のみで走行するEV走行も可能である。 Therefore, each element of the planetary gear mechanism PG enters a locked state in which relative rotation is impossible, and if the sun gear Sa is braked by the electric motor MG, deceleration regeneration is performed. Can do. Further, EV traveling is also possible in which the first clutch C1 is opened and the vehicle travels only with the driving force of the electric motor MG.
3速段において、動力制御装置ECUは、車両速度やアクセルペダルの開度等の車両情報に基づきダウンシフトが予測される場合には、第2噛合機構SM2を2速駆動ギヤG2aと第2駆動ギヤ軸5とを連結する2速側連結状態、又はこの状態に近づけるプリシフト状態とし、アップシフトが予測される場合には、第2噛合機構SM2を4速駆動ギヤG4aと第2駆動ギヤ軸5とを連結する4速側連結状態、又はこの状態に近づけるプリシフト状態とする。これにより、第2クラッチC2を締結させて伝達状態とし、第1クラッチC1を開放させて開放状態とするだけで、変速段の切換えを行うことができ、駆動力が途切れることなく変速をスムーズに行うことができる。
In the third speed, the power control unit ECU moves the second meshing mechanism SM2 to the second speed drive gear G2a and the second drive when a downshift is predicted based on vehicle information such as the vehicle speed and the accelerator pedal opening. When an upshift is predicted when the second-speed side connected state in which the
内燃機関ENGの駆動力を用いて4速段を確立する場合には、第2噛合機構SM2を4速駆動ギヤG4aと第2駆動ギヤ軸5とを連結させた4速側連結状態とし、第1クラッチC1を開放状態とすると共に、第2クラッチC2を締結させて伝達状態とする。
In the case of establishing the fourth speed stage using the driving force of the internal combustion engine ENG, the second meshing mechanism SM2 is brought into a fourth speed side connected state in which the fourth speed driving gear G4a and the second
4速段で走行中は、動力制御装置ECUが車両情報からダウンシフトを予測している場合には、第1噛合機構SM1を3速駆動ギヤG3aと第1駆動ギヤ軸4とを連結した3速側連結状態、又はこの状態に近づけるプリシフト状態とする。 When the power control unit ECU predicts a downshift from the vehicle information while traveling at the fourth speed, the first meshing mechanism SM1 is connected to the third speed drive gear G3a and the first drive gear shaft 4 3. A fast-side connected state or a pre-shift state approaching this state is set.
逆に、動力制御装置ECUが車両情報からアップシフトを予測している場合には、第1噛合機構SM1を5速駆動ギヤG5aと第1駆動ギヤ軸4とを連結した5速側連結状態、又は、この状態に近づけるプリシフト状態とする。これにより、第1クラッチC1を締結させて伝達状態とし、第2クラッチC2を開放させて開放状態とするだけで、ダウンシフト又はアップシフトを行うことができ、駆動力が途切れることなく変速をスムーズに行うことができる。 Conversely, when the power control unit ECU predicts an upshift from the vehicle information, the first meshing mechanism SM1 is connected to the fifth speed drive gear G5a and the first drive gear shaft 4, and is connected to the fifth speed side. Alternatively, a pre-shift state is brought close to this state. As a result, it is possible to perform downshift or upshift by simply engaging the first clutch C1 and setting it to the transmission state, and releasing the second clutch C2 so that the shift is smooth without interruption of the driving force. Can be done.
4速段で走行中に減速回生又はHEV走行を行う場合には、動力伝達装置ECUがダウンシフトを予測しているときには、第1噛合機構SM1を3速駆動ギヤG3aと第1駆動ギヤ軸4とを連結した3速側連結状態とし、電動機MGでブレーキをかければ減速回生、駆動力を伝達すればHEV走行を行うことができる。 When performing deceleration regeneration or HEV traveling during traveling at the fourth speed stage, when the power transmission device ECU predicts a downshift, the first meshing mechanism SM1 is moved to the third speed driving gear G3a and the first driving gear shaft 4 If the brake is applied by the electric motor MG, the decelerating regeneration can be performed, and the HEV running can be performed if the driving force is transmitted.
動力制御装置ECUがアップシフトを予測しているときには、第1噛合機構SM1を5速駆動ギヤG5aと第1駆動ギヤ軸4とを連結した5速側連結状態とし、電動機MGによりブレーキをかければ減速回生、電動機MGから駆動力を伝達させればHEV走行を行うことができる。 When the power control unit ECU predicts an upshift, the first meshing mechanism SM1 is in the fifth speed side connected state in which the fifth speed drive gear G5a and the first drive gear shaft 4 are connected, and the motor MG applies the brake. If the driving force is transmitted from the deceleration regeneration and the electric motor MG, HEV traveling can be performed.
内燃機関ENGの駆動力を用いて5速段を確立する場合には、第1噛合機構SM1を5速駆動ギヤG5aと第1駆動ギヤ軸4とを連結した5速側連結状態とし、第2クラッチC2を開放状態とすると共に、第1クラッチC1を締結させて伝達状態とする。5速段においては、第1クラッチC1が伝達状態とされることにより内燃機関ENGと電動機MGとが直結された状態となるため、電動機MGから駆動力を出力すればHEV走行を行うことができ、電動機MGでブレーキをかけ発電すれば減速回生を行うことができる。 When the fifth speed is established using the driving force of the internal combustion engine ENG, the first meshing mechanism SM1 is brought into a fifth speed connected state in which the fifth speed driving gear G5a and the first driving gear shaft 4 are connected, The clutch C2 is released and the first clutch C1 is engaged to establish a transmission state. At the fifth speed, since the internal combustion engine ENG and the electric motor MG are directly connected when the first clutch C1 is in the transmission state, HEV traveling can be performed if the driving force is output from the electric motor MG. If the electric motor MG brakes and generates electric power, deceleration regeneration can be performed.
尚、5速段でEV走行を行う場合には、第1クラッチC1を開放状態とすればよい。又、5速段でのEV走行中に、第1クラッチC1を徐々に締結させることにより、内燃機関ENGの始動を行うこともできる。 In addition, what is necessary is just to make the 1st clutch C1 into an open state, when performing EV driving | running | working at the 5th gear stage. Also, the internal combustion engine ENG can be started by gradually engaging the first clutch C1 during EV traveling at the fifth speed.
動力制御装置ECUは、5速段で走行中に車両情報から4速段へのダウンシフトが予測される場合には、第2噛合機構SM2を4速駆動ギヤG4aと第2駆動ギヤ軸5とを連結させた4速側連結状態、又はこの状態に近付けるプリシフト状態とする。これにより、4速段へのダウンシフトを駆動力が途切れることなくスムーズに行うことができる。
The power control unit ECU sets the second meshing mechanism SM2 to the fourth speed drive gear G4a and the second
内燃機関ENGの駆動力を用いて後進段を確立する場合には、ロック機構B1を固定状態とし、第3噛合機構SM3をリバース駆動ギヤGRaとリバース軸6とを連結した連結状態として、第2クラッチC2を締結させて伝達状態とする。これにより、入力軸2の回転速度が、[アイドル駆動ギヤGiaの歯数/第3アイドル従動ギヤGidの歯数]×[リバース駆動ギヤGRaの歯数/リバース従動ギヤGRbの歯数]×[1/i(g+1)]の回転速度のマイナス回転(後進方向の回転)に変速されて、出力部材3から出力され、後進段が確立される。 When the reverse speed is established using the driving force of the internal combustion engine ENG, the lock mechanism B1 is set in a fixed state, the third meshing mechanism SM3 is set in a connected state in which the reverse drive gear GRa and the reverse shaft 6 are connected, The clutch C2 is engaged and the transmission state is established. Thereby, the rotational speed of the input shaft 2 is [number of teeth of the idle drive gear Gia / number of teeth of the third idle driven gear Gid] × [number of teeth of the reverse drive gear GRa / number of teeth of the reverse driven gear GRb] × [ 1 / i (g + 1)] is shifted to a negative rotation (rotation in the reverse direction) and output from the output member 3 to establish the reverse gear.
又、後進段において、逆転しているロータMGbに、正転側の駆動力を発生させてブレーキをかければ減速回生、逆転側の駆動力を発生させればHEV走行を行うことができる。又、両クラッチC1,C2を開放状態とし、ロック機構B1を固定状態として、電動機MGを逆転させることにより、EV走行による後進段を確立することもできる。 Further, at the reverse speed, the forward rotation side driving force is generated in the reversely rotating rotor MGb and the brake is applied, so that the deceleration regeneration can be performed, and the reverse rotation side driving force can be generated and HEV running can be performed. Further, the reverse gear by EV traveling can be established by setting both the clutches C1 and C2 in the released state, the lock mechanism B1 in the fixed state, and rotating the electric motor MG in the reverse direction.
次に、第1実施形態の動力制御装置ECUの車両発進時の作動を説明する。動力制御装置ECUは、内燃機関ENGと電動機MGの駆動力を用いて車両を発進させるHEV(Hybrid Electric Vehicle)発進を実行する場合には、アクセルペダルの開度等の車両情報に基づき、目標駆動力を設定する。そして、内燃機関ENGと電動機MGとの駆動力(出力トルク)の和が目標駆動力に達するように、内燃機関ENGと電動機MGの駆動力(出力トルク)を夫々設定する。 Next, the operation of the power control device ECU according to the first embodiment when starting the vehicle will be described. When the HEV (Hybrid Electric Vehicle) starting that starts the vehicle using the driving force of the internal combustion engine ENG and the electric motor MG is executed, the power control device ECU performs target driving based on vehicle information such as the opening degree of the accelerator pedal. Set the force. Then, the driving forces (output torque) of the internal combustion engine ENG and the electric motor MG are respectively set so that the sum of the driving forces (output torque) of the internal combustion engine ENG and the electric motor MG reaches the target driving force.
動力制御装置ECUは、フラッシュロム又はEEPROMから成る記憶手段FRを内蔵し、第1クラッチC1が最大締結圧で締結された状態における、第1クラッチC1で共振が発生する内燃機関ENGの駆動力(出力トルク)の共振領域Xが予め記憶されている。この共振領域Xは予め実験により求められたものである。 The power control unit ECU has a storage means FR composed of a flash ROM or an EEPROM, and the driving force of the internal combustion engine ENG that causes resonance in the first clutch C1 when the first clutch C1 is engaged at the maximum engagement pressure ( A resonance region X of (output torque) is stored in advance. This resonance region X is obtained in advance by experiments.
第1クラッチC1のクラッチドラムC1a(クラッチの径方向外方に配置された部材で内燃機関ENG側に連結された部材)は、所定の外力が加わったときに振動し易い領域として固有振動数(共振周波数)を有しており、内燃機関ENGの駆動力が所定領域内のときに、このクラッチドラムC1aで共振が発生することが実験により分かっている。 The clutch drum C1a of the first clutch C1 (a member arranged on the radially outer side of the clutch and connected to the internal combustion engine ENG side) has a natural frequency (as a region that easily vibrates when a predetermined external force is applied). It is known from experiments that resonance occurs in the clutch drum C1a when the driving force of the internal combustion engine ENG is within a predetermined range.
又、動力制御装置ECUは、共振抑制処理部8を備える。共振抑制処理部8は、車両停車状態からHEV発進するに際し、目標駆動力に対して内燃機関ENGに要求する駆動力を記憶手段FRに記憶された共振領域Xの範囲外に設定し、電動機MGに対して、目標駆動力に対し不足する駆動力を要求する共振抑制処理を実行する。
The power control device ECU includes a resonance
この共振抑制処理を、図2を参照して、車両が停止している状態から、アクセルペダルが徐々に踏み込まれ目標駆動力が一定量で増加している車両の発進状態を例に説明する。動力制御装置ECUの共振抑制処理部8は、二次電池BATTの充電率SOC等の車両情報を考慮し、内燃機関ENGの駆動力が共振領域Xに入る前の所定の閾値Tq1に達したところで、内燃機関ENGの駆動力を閾値Tq1に保ちつつ、目標駆動力に対して不足する駆動力を電動機MGで補うべく電動機MGの駆動力を増加させて、目標駆動力が得られるように制御する。
This resonance suppression process will be described with reference to FIG. 2 by taking as an example a start state of a vehicle in which the accelerator pedal is gradually depressed and the target driving force is increased by a certain amount from the state where the vehicle is stopped. The resonance
そして、目標駆動力が所定の目標値TqAに達したとき、内燃機関ENGの駆動力を一気に上昇させ素早く共振領域Xを抜けるように制御すると共に、内燃機関ENGの駆動力を増加させた分だけ電動機MGの駆動力を減らして、内燃機関ENGと電動機MGの駆動力の合計が目標駆動力となるように制御する。 Then, when the target driving force reaches a predetermined target value TqA, the driving force of the internal combustion engine ENG is controlled at a stretch to quickly exit the resonance region X, and the driving force of the internal combustion engine ENG is increased. Control is performed so that the total driving force of the internal combustion engine ENG and the electric motor MG becomes the target driving force by reducing the driving force of the electric motor MG.
これにより、目標駆動力の増加に伴い徐々に内燃機関ENGの駆動力を上げる場合と比較して、内燃機関ENGの駆動力が素早く共振領域Xを抜けることができ、共振の発生を抑制させることができる。 As a result, the driving force of the internal combustion engine ENG can quickly pass through the resonance region X and suppress the occurrence of resonance as compared with the case where the driving force of the internal combustion engine ENG is gradually increased as the target driving force increases. Can do.
又、共振抑制処理部8は、車両の走行速度が所定速度以上となった場合には、内燃機関ENGの駆動力が閾値Tq1に達したところで、内燃機関ENGの駆動力を閾値Tq1に保ちつつ、内燃機関ENGの駆動力を抑えた分だけ、目標駆動力から減少させた値を慣性走行用の目標駆動力となるように電動機MGの駆動力を制御する慣性走行処理を実行する。
The resonance
車両の走行速度が所定速度以上となった場合には、目標駆動力に達しなくとも、車両のイナーシャ(慣性力)である程度走行することができ、運転者等の体感的にも殆ど影響がでない。このため、単純に内燃機関ENGの駆動力のみを押える慣性走行処理を実行する。 When the vehicle traveling speed exceeds a predetermined speed, the vehicle can travel to some extent with the inertia (inertial force) of the vehicle even if the target driving force is not reached, and there is almost no influence on the driver's experience. . For this reason, an inertial running process for simply pressing only the driving force of the internal combustion engine ENG is executed.
尚、この慣性走行処理では、本来の目標駆動力が所定の目標値TqAに達したときには、内燃機関ENGの駆動力を一気に上昇させて素早く共振領域Xを通り抜けるように制御し、電動機MGの駆動力は一旦減少させた後、徐々に元に戻すように制御する。これにより、内燃機関ENGの駆動力と電動機MGの駆動力の和が徐々に本来の目標駆動力に近づいていくこととなり、運転者等に急激な加速するような感じを与えることを防止している。 In this inertial running process, when the original target driving force reaches a predetermined target value TqA, the driving force of the internal combustion engine ENG is increased at a stretch so as to quickly pass through the resonance region X to drive the motor MG. After the force is once reduced, it is controlled so as to gradually return to the original value. As a result, the sum of the driving force of the internal combustion engine ENG and the driving force of the electric motor MG gradually approaches the original target driving force, thereby preventing the driver and the like from feeling a sudden acceleration. Yes.
又、共振抑制処理部8で共振抑制処理を実行させる場合には、第1クラッチC1のみならず第2クラッチC2も締結させて伝達状態としてもよい。第2クラッチC2も締結させると、内燃機関ENGの駆動力は第2駆動ギヤ軸5にも伝達される状態となり、第1クラッチC1のクラッチドラムC1aの質量が実質的に増加した状態となって、クラッチドラムC1aでの共振周波数に変化が生じる。
Further, when the resonance
これを図3を参照しつつ、第2実施形態の動力制御装置ECUとして説明する。第2実施形態の動力制御装置ECUは、共振抑制処理部8による共振抑制処理が異なる点を除き、第1実施形態と同一に構成される。
This will be described as a power control device ECU of the second embodiment with reference to FIG. The power control device ECU of the second embodiment is configured in the same way as the first embodiment, except that the resonance suppression processing by the resonance
ここで、第1クラッチC1に加えて第2クラッチC2も締結して伝達状態とした両締結状態の場合には、第1クラッチC1の実質的な質量が増加する。これにより、第1クラッチC1のみを伝達状態とした単独締結状態の場合の共振領域を第1共振領域Xとすると、両クラッチC1,C2を伝達状態とした場合の第2共振領域Yは、第1共振領域Xよりも図3における上方(内燃機関ENGの駆動力の大きい側)にずれることが実験により分かっている。 Here, in the case of both engagement states in which the second clutch C2 is also engaged in the transmission state in addition to the first clutch C1, the substantial mass of the first clutch C1 increases. As a result, when the resonance region in the single engagement state where only the first clutch C1 is in the transmission state is the first resonance region X, the second resonance region Y in the case where both the clutches C1 and C2 are in the transmission state is It has been experimentally found that the first resonance region X shifts upward in FIG. 3 (the side where the driving force of the internal combustion engine ENG is large).
そこで、第2実施形態では、第1共振領域Xと第2共振領域Yとが予め実験により求め、これらを記憶手段FRに記憶させている。そして、第2実施形態の共振抑制処理部8は、車両がHEV発進する際において、動力制御装置ECUが1速段から2速段へのシフトアップを予測していない場合には、第1クラッチC1及び第2クラッチC2を伝達状態として両締結状態とし、共振領域として、第2共振領域Yを選択する。
Therefore, in the second embodiment, the first resonance region X and the second resonance region Y are obtained in advance by experiments and stored in the storage means FR. And when the vehicle starts HEV, the resonance
そして、共振抑制処理部8は、内燃機関ENGの駆動力が第2共振領域Yに入る前の所定の閾値Tq2に達したところで、内燃機関ENGを閾値Tq2に保ちつつ、目標駆動力に対して不足する駆動力を電動機MGで補うべく電動機MGの駆動力を増加させて、目標駆動力が得られるように制御する。
Then, when the driving force of the internal combustion engine ENG reaches a predetermined threshold value Tq2 before entering the second resonance region Y, the resonance
そして、目標駆動力が所定の目標値TqAに達したときに、共振抑制処理部8は、第2クラッチC2を開放状態として単独連結状態とし、共振領域として第1共振領域Xを選択すると共に、内燃機関ENGの駆動力を、第1共振領域X内に位置するTqAから一気に上昇させ迅速に第1共振領域Xを通過するように制御し、内燃機関ENGの駆動力を増加させた分だけ電動機MGの駆動力を減少させて、内燃機関ENGと電動機MGの駆動力の和が目標駆動力となるように制御する。
When the target driving force reaches a predetermined target value TqA, the resonance
このように第2実施形態の共振抑制処理部8の共振抑制処理を行うことにより、第1実施形態の共振抑制処理と比較して、内燃機関ENGの駆動力は、共振領域をより早く通過することができ、共振の発生をより抑制することができる。
Thus, by performing the resonance suppression process of the resonance
又、クラッチの共振周波数はクラッチの締結圧に応じて変化することも実験により分かった。この現象を利用して、第1クラッチC1の締結圧を変更させることにより、第2実施形態で説明した単独連結状態と両締結状態とを切り換える共振抑制処理と類似した処理を行うことで、共振の発生を抑制することが可能である。これを図3を流用して第3実施形態として以下に詳説する。 It has also been experimentally found that the resonance frequency of the clutch changes according to the clutch engagement pressure. By utilizing this phenomenon, by changing the engagement pressure of the first clutch C1, a process similar to the resonance suppression process for switching between the single connection state and the both engagement state described in the second embodiment is performed, so that the resonance Can be suppressed. This will be described in detail as a third embodiment with reference to FIG.
まず、実験等で締結圧と共振周波数の関係を予め求める。例えば、所定の高締結圧のときに、内燃機関ENGの駆動力の大きい側に位置する大側共振領域Yとなり、高締結圧よりも低い締結圧である所定の低締結圧のときに、大側共振領域Yよりも内燃機関ENGの駆動力の小さい側に位置する小側共振領域Xとなることが分かっているとする。そして、求められた、高締結圧と大側共振領域Y、低締結圧と小側共振領域Xを関連付けて記憶手段FRに予め記憶させる。 First, the relationship between the fastening pressure and the resonance frequency is obtained in advance through experiments or the like. For example, when a predetermined high fastening pressure is reached, the large resonance region Y is located on the side where the driving force of the internal combustion engine ENG is large, and when the predetermined low fastening pressure is lower than the high fastening pressure, It is assumed that the small resonance region X is located on the side where the driving force of the internal combustion engine ENG is smaller than the side resonance region Y. Then, the high fastening pressure and the large-side resonance region Y, and the low fastening pressure and the small-side resonance region X, which are obtained, are stored in advance in the storage means FR.
そして、第3実施形態の共振抑制処理部8では、車両がHEV発進する際において、第1クラッチC1を伝達状態としてその締結圧を高締結圧に制御すると共に、共振領域として、大側共振領域Yを選択する。
In the resonance
そして、共振抑制処理部8は、内燃機関ENGの駆動力が大側共振領域Yに入る前の所定の閾値Tq2に達したところで、内燃機関ENGを閾値Tq2に保ちつつ、目標駆動力に対して不足する駆動力を電動機MGで補うべく電動機MGの駆動力を増加させて、目標駆動力が得られるように制御する。
Then, when the driving force of the internal combustion engine ENG reaches a predetermined threshold value Tq2 before entering the large-side resonance region Y, the resonance
そして、目標駆動力が所定の目標値TqAに達したときに、共振抑制処理部8は、第1クラッチC1の締結圧を低締結圧に変更して、共振領域として小側共振領域Xを選択すると共に、内燃機関ENGの駆動力を、第1共振領域X内に位置するTqAから一気に上昇させ迅速に小側共振領域Xを通過するように制御し、内燃機関ENGの駆動力を増加させた分だけ電動機MGの駆動力を減少させて、内燃機関ENGと電動機MGの駆動力の和が目標駆動力となるように制御する。
When the target driving force reaches a predetermined target value TqA, the resonance
これによれば、第2実施形態の共振抑制処理部8の共振抑制処理と同様に、内燃機関ENGの駆動力は、共振領域をより早く通過することができ、共振の発生をより抑制することができる。
According to this, similarly to the resonance suppression processing of the resonance
ところで、第1から第3の実施形態の両クラッチC1,C2は、油圧でピストンが作動することにより締結される油圧作動型クラッチで構成される。ピストンを作動させる油圧を制御する油圧回路9には、油の温度を検出する油温度検出手段9aが設けられている。油圧回路9から自動変速機1に供給される油は、自動変速機1の内部を潤滑する潤滑油としても用いられる。従って、実施形態の油温度検出手段9aが、本発明の油温度検出手段に相当する。
By the way, both clutches C1 and C2 of the first to third embodiments are constituted by hydraulically operated clutches that are fastened by operating the pistons by hydraulic pressure. The
ここで、油の温度が変化すると油の粘度が変化し、クラッチC1,C2の締結圧に変化が生じる。クラッチC1,C2の締結圧が変化するとクラッチC1,C2の共振周波数も変化する。 Here, when the temperature of the oil changes, the viscosity of the oil changes, and the engagement pressure of the clutches C1 and C2 changes. When the engagement pressure of the clutches C1 and C2 changes, the resonance frequency of the clutches C1 and C2 also changes.
このため、動力制御装置ECUは、油温度検出手段9aで検出された油の温度に基づいて共振領域の補正を行う。この補正は、油の温度に基づく第1クラッチC1の最大締結圧の変化に伴う共振領域の変化を実験により予め求め、これを記憶手段FRに例えば油の温度と共振領域の補正量とを表で示したテーブルデータとして記憶させる。そして、検出された油の温度に基づいてテーブルデータから補正量を求め、共振領域の補正を行うことができる。
For this reason, the power control device ECU corrects the resonance region based on the oil temperature detected by the oil
尚、第1から第3の実施形態において、両クラッチC1,C2を電動アクチュエータで作動するように構成した場合においても、油温度検出手段9aにより、共振領域の補正を行うことが可能である。クラッチC1,C2はその周辺部材の温度やクラッチC1,C2の締結頻度に伴って発熱し、この発熱状態の変化に応じてクラッチC1,C2の締結圧も変化する。クラッチC1,C2の締結圧が変化するとクラッチC1,C2の共振周波数も変化する。このため、潤滑油の温度を油温度検出手段9aで検出し、潤滑油の温度に基づいて、クラッチC1,C2の発熱状態を推定し、共振領域を補正すれば、共振が発生する共振領域を適切に設定することができる。
In the first to third embodiments, even when both the clutches C1 and C2 are configured to be operated by electric actuators, the resonance region can be corrected by the oil
又、第2実施形態においても第1実施形態の慣性走行処理を実行することができる。 Also in the second embodiment, the inertial running process of the first embodiment can be executed.
又、第1から第3の実施形態においては、変速比順位で奇数段を確立するギヤ列G3,G5の駆動ギヤG3a,G5aを軸支する第1駆動ギヤ軸4を入力軸2と同一軸線上に配置し、変速比順位で偶数段を確立するギヤ列G2,G4の駆動ギヤG2a,G4aを軸支する第2駆動ギヤ軸5を第1駆動ギヤ軸4と平行に配置しているが、これに限らず、第2駆動ギヤ軸を入力軸2と同一軸線上に配置し、第1駆動ギヤ軸を第2駆動ギヤ軸と平行に配置してもよい。
In the first to third embodiments, the first drive gear shaft 4 that pivotally supports the drive gears G3a and G5a of the gear trains G3 and G5 that establish odd-numbered gear ratio order is the same shaft as the input shaft 2. The second
この場合、第1クラッチC1と第2クラッチC2とを入れ替えて配置し、第1クラッチC1を伝達状態とすると、内燃機関ENGの駆動力がアイドルギヤ列Giを介して第1駆動ギヤ軸4に伝達されるように構成すればよい。このとき、電動機MGのロータMGbを第2駆動ギヤ軸4に連結させて、電動機MGの駆動力を第2駆動ギヤ軸5に伝達させるように構成してもよく、又、電動機MGをその内側に配置されたプラネタリギヤ機構PGと共に第1駆動ギヤ軸4と同軸上に配置し、ロータMGbを第1駆動ギヤ軸4に連結させてもよい。
In this case, when the first clutch C1 and the second clutch C2 are arranged interchangeably and the first clutch C1 is in the transmission state, the driving force of the internal combustion engine ENG is applied to the first driving gear shaft 4 via the idle gear train Gi. What is necessary is just to comprise so that it may be transmitted. At this time, the rotor MGb of the electric motor MG may be connected to the second driving gear shaft 4 so that the driving force of the electric motor MG is transmitted to the second
又、図4に示す第4実施形態のように自動変速機1を構成したものにおいても、本発明を適用することができる。第4実施形態の自動変速機1は、第1実施形態の自動変速機1と比較して、ロック機構B1、後進段用ギヤ列GR及びアイドルギヤ列Giの構成が異なる以外は同一に構成される。
Also, the present invention can be applied to a configuration in which the
第4実施形態のロック機構B1は2ウェイクラッチで構成されている。又、後進段用ギヤ列GRは1つのリバースギヤで構成され、このリバースギヤは、リバース軸6に回転自在に軸支されると共に、第1従動ギヤGo1と噛合している。第4実施形態の自動変速機1においては、第3アイドル従動ギヤGidは設けられていない。
The lock mechanism B1 of the fourth embodiment is constituted by a two-way clutch. The reverse gear train GR is composed of one reverse gear, and this reverse gear is rotatably supported on the reverse shaft 6 and meshed with the first driven gear Go1. In the
アイドルギヤ列Giの第1アイドル従動ギヤGibはリバース軸6に固定されている。そして、第2クラッチC2を伝達状態とすることにより、内燃機関ENGの駆動力がアイドルギヤ列Giを介して第2駆動ギヤ軸5に伝達される。
The first idle driven gear Gib of the idle gear train Gi is fixed to the reverse shaft 6. Then, the driving force of the internal combustion engine ENG is transmitted to the second
この場合において、内燃機関ENGの駆動力を用いて後進段を確立する場合には、第3噛合機構SM3をリバースギヤGRとリバース軸6とを連結した連結状態として、第2クラッチC2を締結させて伝達状態とする。これにより、入力軸2の回転速度が、[アイドル駆動ギヤGiaの歯数/第1アイドル従動ギヤGibの歯数]×[リバースギヤGRの歯数/第1従動ギヤGo1の歯数]の回転速度のマイナス回転(後進方向の回転)に変速されて、出力部材3から出力され、後進段が確立される。 In this case, when the reverse speed is established using the driving force of the internal combustion engine ENG, the second clutch C2 is engaged with the third meshing mechanism SM3 in a connected state in which the reverse gear GR and the reverse shaft 6 are connected. The transmission state. Thereby, the rotation speed of the input shaft 2 is the rotation of [number of teeth of the idle drive gear Gia / number of teeth of the first idle driven gear Gib] × [number of teeth of the reverse gear GR / number of teeth of the first driven gear Go1]. The speed is changed to a negative rotation (reverse rotation) and output from the output member 3 to establish the reverse gear.
又、上記実施形態においては、5速段まで変速可能な自動変速機1を示したが、これに限らず、例えば、6速段以上まで変速可能な自動変速機にも、本発明を適用することができる。この場合、変速段に対応させてギヤ列の駆動ギヤ及び噛合機構を駆動ギヤ軸4,5に追加し、追加された駆動ギヤに噛合する従動ギヤを出力軸3aに追加すればよい。
In the above embodiment, the
1…自動変速機、2…入力軸、3…出力部材(出力ギヤ)、3a…出力軸、4…第1駆動ギヤ軸(第1入力軸)、5…第2駆動ギヤ軸(第2入力軸)、6…リバース軸、7…変速機ケース、8…共振抑制処理部、9…油圧回路、9a…油温度検出手段、C1…第1クラッチ(第1断接手段)、C2…第2クラッチ(第2断接手段)、B1…ロック機構、SM1…第1噛合機構(第1変速装置)、SM2…第2噛合機構(第2変速装置)、G2…2速ギヤ列、G2a…2速駆動ギヤ(変速ギヤ)、G3…3速ギヤ列、G3a…3速駆動ギヤ(変速ギヤ)、G4…4速ギヤ列、G4a…4速駆動ギヤ(変速ギヤ)、G5…5速ギヤ列、G5a…5速駆動ギヤ(変速ギヤ)、Go1…第1従動ギヤ(2速・3速の従動ギヤ)、Go2…第2従動ギヤ(4速・5速の従動ギヤ)、Gi…アイドルギヤ列、Gia…アイドル駆動ギヤ、Gib…第1アイドル従動ギヤ、Gic…第2アイドル従動ギヤ、Gid…第3アイドル従動ギヤ、GR…後進段用ギヤ列、GRa…第1リバース駆動ギヤ、GRb…第1リバース従動ギヤ、GRc…第2リバース従動ギヤ、GRd…第2リバース駆動ギヤ、GR…後進段用ギヤ列、GRa…リバース駆動ギヤ、GRb…リバース従動ギヤ、ECU…動力制御装置、ENG…内燃機関(エンジン)、MG…電動機(モータ・ジェネレータ)、PG…プラネタリギヤ機構(動力合成機構)、X…第1実施形態の共振領域(第2実施形態の第1共振領域)、Y…第2共振領域、FR…記憶手段(フラッシュロム又はEEPROM)、BATT…二次電池。
DESCRIPTION OF
Claims (7)
前記内燃機関及び前記電動機からの機械的動力を、前記電動機と連結された第1入力軸で受け、複数の変速段のうちいずれか1つを係合状態にして、前記第1入力軸と駆動輪とを連結させることが可能な第1変速機構と、
前記内燃機関からの機械的動力を第2入力軸で受け、複数の変速段のうちいずれか1つを係合状態にして、前記第2入力軸と前記駆動輪とを連結させることが可能な第2変速機構と、
前記第1変速機構と前記第2変速機構に設けられた変速ギヤと共に噛合する従動ギヤと前記駆動輪に連結される出力ギヤとを有する出力軸と、
前記内燃機関と前記第1入力軸とを連結させることが可能な第1断接手段と、
前記内燃機関と前記第2入力軸とを連結させることが可能な第2断接手段と、を備え、
前記第1変速機構には、前記内燃機関からの動力と前記電動機からの動力を合成可能であり、第1〜第3要素が互いに差動回転できるように構成された動力合成機構が連結されており、
前記第2入力軸は、該動力合成機構を介さずに動力を前記駆動輪に伝達可能であり、
前記第1断接手段と前記第2断接手段をすべらせながら接続して前記駆動輪に伝達されるトルクを調整しながら走行可能であり、
前記内燃機関の駆動力に対する共振領域が予め記憶された記憶手段を備え、
車両停車状態において、前記内燃機関と前記電動機の両方の駆動力を用いて発進するHEV発進を実行するに際し、目標駆動力を設定し、該目標駆動力を得るために前記内燃機関には前記記憶手段に記憶された共振領域の範囲外の駆動力を要求し、前記電動機には、該目標駆動力に対して不足する駆動力を要求する共振抑制処理を実行する共振抑制処理部を備えることを特徴とするハイブリッド車両の動力制御装置。 Used in vehicles with an internal combustion engine and an electric motor as drive sources,
Mechanical power from the internal combustion engine and the electric motor is received by a first input shaft connected to the electric motor, and any one of a plurality of shift stages is engaged and driven with the first input shaft. A first speed change mechanism capable of connecting a wheel;
The mechanical power from the internal combustion engine is received by the second input shaft, and any one of a plurality of shift stages can be engaged to connect the second input shaft and the drive wheel. A second speed change mechanism;
An output shaft having a driven gear meshing with a speed change gear provided in the first speed change mechanism and the second speed change mechanism, and an output gear connected to the drive wheel;
First connecting / disconnecting means capable of connecting the internal combustion engine and the first input shaft;
A second connecting / disconnecting means capable of connecting the internal combustion engine and the second input shaft;
The first speed change mechanism is coupled with a power combining mechanism configured to be able to combine the power from the internal combustion engine and the power from the electric motor, and the first to third elements can be differentially rotated with each other. And
The second input shaft can transmit power to the drive wheels without going through the power combining mechanism,
The first connecting / disconnecting means and the second connecting / disconnecting means are connected while sliding to be able to travel while adjusting the torque transmitted to the drive wheel,
A storage means in which a resonance region for the driving force of the internal combustion engine is stored in advance;
In the vehicle stop state, when performing a HEV start to start using the both driving forces of the electric motor and the internal combustion engine, sets a target driving force, the storage in the internal combustion engine in order to obtain the target driving force A driving force outside the range of the resonance region stored in the means is requested, and the electric motor includes a resonance suppression processing unit that executes a resonance suppression process that requires a driving force that is insufficient with respect to the target driving force. A hybrid vehicle power control device.
前記第1断接手段及び第2断接手段は乾式摩擦クラッチであり、
前記共振領域は前記第1断接手段又は前記第2断接手段の締結状態における共振周波数に基づいて設定されることを特徴とするハイブリッド車両の動力制御装置。 The power control apparatus for a hybrid vehicle according to claim 1,
The first connecting / disconnecting means and the second connecting / disconnecting means are dry friction clutches,
The power control apparatus for a hybrid vehicle, wherein the resonance region is set based on a resonance frequency in a fastening state of the first connection / disconnection means or the second connection / disconnection means .
前記記憶手段には、前記共振領域として、前記第1断接手段又は前記第2断接手段の締結圧の変化に応じて変化する複数の共振領域が記憶され、
前記共振抑制処理部は、
前記HEV発進時において、前記複数の共振領域のうちの前記内燃機関の駆動力の大きい側に位置する共振領域である大側共振領域を選択し、該大側共振領域に対応する締結圧を前記第1断接手段又は前記第2断接手段の締結圧とすると共に、前記内燃機関の駆動力を、該大側共振領域に入る前の所定の閾値まで上昇させた後、
前記複数の共振領域のうちの前記大側共振領域よりも前記内燃機関の駆動力の小さい側にずれて位置する共振領域である小側共振領域を選択し、該小側共振領域に対応する締結圧を前記第1断接手段又は前記第2断接手段の締結圧とすると共に、前記内燃機関の駆動力を、該小側共振領域を超える値に設定することを特徴とするハイブリッド車両の動力制御装置。 The power control apparatus for a hybrid vehicle according to claim 2,
The storage means stores a plurality of resonance areas that change according to a change in the fastening pressure of the first connection / disconnection means or the second connection / disconnection means , as the resonance area,
The resonance suppression processing unit
At the time of HEV start, a large-side resonance region that is a resonance region located on a side where the driving force of the internal combustion engine is large among the plurality of resonance regions is selected, and a fastening pressure corresponding to the large-side resonance region is After setting the fastening pressure of the first connecting / disconnecting means or the second connecting / disconnecting means , and increasing the driving force of the internal combustion engine to a predetermined threshold before entering the large resonance region,
A small resonance region that is a resonance region that is shifted from the large resonance region to a side where the driving force of the internal combustion engine is smaller than the large resonance region is selected, and fastening corresponding to the small resonance region The power of the hybrid vehicle is characterized in that the pressure is the fastening pressure of the first connecting / disconnecting means or the second connecting / disconnecting means , and the driving force of the internal combustion engine is set to a value exceeding the small resonance region. Control device.
前記車両の走行速度が所定速度以上である場合であって、前記共振抑制処理部が前記内燃機関の駆動力を前記共振領域の範囲外とすべく前記共振領域よりも低く設定したときには、前記共振抑制処理部は、前記内燃機関の駆動力を抑えた分だけ前記目標駆動力を減少させる慣性走行処理を実行することを特徴とするハイブリッド車両の動力制御装置。 The power control apparatus for a hybrid vehicle according to any one of claims 1 to 3,
When the traveling speed of the vehicle is equal to or higher than a predetermined speed and the resonance suppression processing unit sets the driving force of the internal combustion engine to be lower than the resonance region so as to be out of the resonance region, the resonance The suppression processing unit executes an inertia traveling process for reducing the target driving force by an amount by which the driving force of the internal combustion engine is suppressed.
前記第1断接手段又は前記第2断接手段のみを締結状態とする単独締結状態と、前記第1断接手段又は前記第2断接手段に加えて前記第2断接手段又は前記第1断接手段も締結状態とする両締結状態とに切換自在であり、
前記記憶手段には、前記共振領域として、該単独締結状態に対応する第1共振領域と、該両締結状態に対応する第2共振領域との2つ共振領域が記憶され、
前記共振抑制処理部は、前記HEV発進時において、前記第1断接手段及び前記第2断接手段を締結状態として前記両締結状態にすると共に、前記第2共振領域に入る前の所定値まで内燃機関の駆動力を上昇させた後、前記第2断接手段又は前記第1断接手段を開放状態として前記単独締結状態とし、前記内燃機関の駆動力を前記第1共振領域を超える値に設定することを特徴とするハイブリッド車両の動力制御装置。 The power control apparatus for a hybrid vehicle according to any one of claims 1 to 4,
A single fastening state that only the engaged state the first disengaging means or said second disengaging means, 2 the first addition to the first engaging and disengaging means or said second disengaging means disengaging means or the first The connecting / disconnecting means can be switched between the two fastening states, which are the fastening states,
The storage means stores, as the resonance region, two resonance regions, a first resonance region corresponding to the single fastening state and a second resonance region corresponding to the both fastening states,
The resonance suppression processing unit sets the first connecting / disconnecting means and the second connecting / disconnecting means to the both fastening states at the time of HEV start, and to a predetermined value before entering the second resonance region. After increasing the driving force of the internal combustion engine, the second connecting / disconnecting unit or the first connecting / disconnecting unit is opened to the single engagement state, and the driving force of the internal combustion engine is set to a value exceeding the first resonance region. A power control apparatus for a hybrid vehicle, characterized by comprising:
前記自動変速機は、その内部を潤滑する潤滑油の温度を検出する油温度検出手段を備え、該油温度検出手段で検出された潤滑油の温度に基づいて、前記共振領域を補正することを特徴とするハイブリッド車両の動力制御装置。 The power control apparatus for a hybrid vehicle according to claim 2,
The automatic transmission includes oil temperature detecting means for detecting a temperature of lubricating oil for lubricating the inside thereof, and corrects the resonance region based on the temperature of the lubricating oil detected by the oil temperature detecting means. A hybrid vehicle power control device.
前記電動機は中空に構成され、
前記動力合成機構は、中空の前記電動機の内方に配置されることを特徴とするハイブリッド車両の動力制御装置。 The hybrid vehicle power control apparatus according to any one of claims 1 to 6,
The electric motor is configured to be hollow,
The power control apparatus for a hybrid vehicle, wherein the power combining mechanism is disposed inside the hollow electric motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010081303A JP5575520B2 (en) | 2010-03-31 | 2010-03-31 | Power control device for hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010081303A JP5575520B2 (en) | 2010-03-31 | 2010-03-31 | Power control device for hybrid vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011213179A JP2011213179A (en) | 2011-10-27 |
JP5575520B2 true JP5575520B2 (en) | 2014-08-20 |
Family
ID=44943388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010081303A Expired - Fee Related JP5575520B2 (en) | 2010-03-31 | 2010-03-31 | Power control device for hybrid vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5575520B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013145092A1 (en) * | 2012-03-26 | 2013-10-03 | トヨタ自動車株式会社 | Drive control device for hybrid vehicle |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0715806A (en) * | 1993-06-29 | 1995-01-17 | Aqueous Res:Kk | Hybrid vehicle drive force transmission |
JP2002047953A (en) * | 2000-08-04 | 2002-02-15 | Toyota Motor Corp | Controller for internal combustion engine |
JP3858904B2 (en) * | 2004-03-11 | 2006-12-20 | 日産自動車株式会社 | Engagement method of engine clutch for hybrid transmission |
DE102005048938A1 (en) * | 2005-10-13 | 2007-04-19 | Volkswagen Ag | Dual clutch transmission for a motor vehicle, in particular with a hybrid drive or method for controlling this dual clutch transmission |
JP4274268B2 (en) * | 2007-06-19 | 2009-06-03 | トヨタ自動車株式会社 | Power transmission device |
JP2009036354A (en) * | 2007-08-03 | 2009-02-19 | Hokkaido Railway Co | Control method for hybrid vehicle power transmission system |
JP2009143356A (en) * | 2007-12-13 | 2009-07-02 | Toyota Motor Corp | Vehicle driving device |
JP5206004B2 (en) * | 2008-02-13 | 2013-06-12 | 日産自動車株式会社 | Engine starter for hybrid vehicle |
JP2009215958A (en) * | 2008-03-10 | 2009-09-24 | Nissan Motor Co Ltd | Engine start controller, engine start control method, engine control method, and engine |
JP2009215952A (en) * | 2008-03-10 | 2009-09-24 | Nissan Motor Co Ltd | Engine start controller, engine start control method, engine control method, and engine |
-
2010
- 2010-03-31 JP JP2010081303A patent/JP5575520B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011213179A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5655063B2 (en) | Hybrid vehicle | |
JP5703294B2 (en) | Hybrid vehicle drive device | |
JP6145412B2 (en) | Power transmission device | |
JP5575522B2 (en) | Power control device for hybrid vehicle | |
CA2947240C (en) | Clutch device | |
WO2011135910A1 (en) | Transmission control device and transmission control method | |
JP5804183B2 (en) | Control device for hybrid system | |
JP3823960B2 (en) | Vehicle transmission | |
JP5867589B2 (en) | Vehicle drive device | |
JP2014184817A (en) | Deceleration control device for hybrid vehicle | |
JP5877730B2 (en) | Bearing stop structure | |
JP2012001094A (en) | Transmission of hybrid vehicle | |
JP5923408B2 (en) | Vehicle transmission | |
JP5989303B2 (en) | Hybrid vehicle | |
JP5575520B2 (en) | Power control device for hybrid vehicle | |
JP5634967B2 (en) | Hybrid vehicle and control method thereof | |
JP5465157B2 (en) | Vehicle driving force control device | |
JP5450362B2 (en) | Vehicle driving force control device | |
JP4644995B2 (en) | Parallel shaft gear transmission | |
JP5947059B2 (en) | Control device for hybrid vehicle | |
JP5575521B2 (en) | Power control device for hybrid vehicle | |
JP2013035404A (en) | Hybrid vehicle and method for controlling the same | |
JP6298440B2 (en) | Clutch device | |
JP6081430B2 (en) | Shift control device | |
JP5869377B2 (en) | Transmission lubrication structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140702 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5575520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |