JP5574610B2 - Fault tolerant design and safety assurance device for personal vehicles - Google Patents

Fault tolerant design and safety assurance device for personal vehicles Download PDF

Info

Publication number
JP5574610B2
JP5574610B2 JP2009071887A JP2009071887A JP5574610B2 JP 5574610 B2 JP5574610 B2 JP 5574610B2 JP 2009071887 A JP2009071887 A JP 2009071887A JP 2009071887 A JP2009071887 A JP 2009071887A JP 5574610 B2 JP5574610 B2 JP 5574610B2
Authority
JP
Japan
Prior art keywords
vehicle
processor
output
fault
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009071887A
Other languages
Japanese (ja)
Other versions
JP2009187561A (en
Inventor
カーメン、ディーン・エル
ダストース、スーザン・ディー
ダガン、ロバート
グワイ、ジー・マイケル
Original Assignee
デカ・プロダクツ・リミテッド・パートナーシップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デカ・プロダクツ・リミテッド・パートナーシップ filed Critical デカ・プロダクツ・リミテッド・パートナーシップ
Publication of JP2009187561A publication Critical patent/JP2009187561A/en
Application granted granted Critical
Publication of JP5574610B2 publication Critical patent/JP5574610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/06Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps
    • A61G5/061Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps for climbing stairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S180/00Motor vehicles
    • Y10S180/907Motorized wheelchairs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Mechanical Control Devices (AREA)
  • Collating Specific Patterns (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

発明の技術分野
本発明は、動力を備えた車両のためのシステム設計に関し、より詳しくは、システム設計の余剰特性に関する。
発明の背景技術
TECHNICAL FIELD OF THE INVENTION The present invention relates to system design for powered vehicles, and more particularly to surplus characteristics of system design.
BACKGROUND OF THE INVENTION

身体障害者によって用いられるような個人的乗物は、一例として、自走式の、ユーザー誘導可能なものであってもよく、さらに、たった2つの車輪が同時に接地しているときのように、1以上の前後又は左右の平面内で安定化を必要としてもよい。より詳しくは、そのような車両は、図1において一般に数字10によって示される。ユーザー12又は他のペイロードを移送するための車両10は、各車輪及び/又は各クラスターが対等にあるいは独立して電動である1以上の車輪16又は車輪16の一群(クラスター)14を含む。そのような車両は、米国特許第5,701,965号及び米国特許公開番号第08/384,705号に開示され、それらは、参照によりここに組み込まれる。この種の車両は、先行技術に開示されるものに追加するシステム設計特徴を使用するときに、より効果的にそして安全に作動され得る。 A personal vehicle, such as used by a disabled person, may be, for example, a self-propelled, user-inducible one, and even when only two wheels are grounded at the same time, 1 Stabilization may be required in the above-described front and rear or left and right planes. More particularly, such a vehicle is indicated generally by the numeral 10 in FIG. A vehicle 10 for transporting a user 12 or other payload includes one or more wheels 16 or a group of wheels 16 (cluster) 14 in which each wheel and / or each cluster is powered equally or independently. Such vehicles are disclosed in US Pat. No. 5,701,965 and US Patent Publication No. 08 / 384,705, which are hereby incorporated by reference. This type of vehicle can be operated more effectively and safely when using system design features in addition to those disclosed in the prior art.

本発明の好ましい実施の形態によれば、故障検出が可能な陸上移動のための車両が提供される。その車両は、荷重をサポートするための支持構造物と、移動可能性をその支持構造物に提供するための接地モジュールと、その接地要素の制御可能な運動を可能にするモーター駆動装置形状とを持つ。それに加えて、その車両は、複数の制御要素を持ち、各制御要素は、出力と、第1と他の制御要素のいずれの故障かを識別するために第1の制御要素の出力ともう一つの制御要素との出力を比較する比較器を持つ。制御要素は、少なくとも一つの位置及び方向を感知するセンサーと、複数の余剰制御チャネルとを含んでもよく、各制御チャネルは、独立してモーター駆動装置を制御することができ、複数のプロセッサは、システムバスによって各余剰制御チャネルに接続される。各プロセッサは出力を持ち、そして、各プロセッサは、ユーザーからの入力コマンド、センサーからの信号、及び各他のプロセッサの出力を受信することができる。 According to a preferred embodiment of the present invention, a vehicle for land movement capable of detecting a failure is provided. The vehicle includes a support structure for supporting a load, a ground module for providing mobility to the support structure, and a motor drive configuration that allows for controllable movement of the ground element. Have. In addition, the vehicle has a plurality of control elements, each control element having an output and another output of the first control element to identify which one of the first and other control elements is faulty. It has a comparator that compares the output with two control elements. The control element may include a sensor that senses at least one position and direction and a plurality of redundant control channels, each control channel being capable of independently controlling the motor drive, and the plurality of processors are: Each redundant control channel is connected by a system bus. Each processor has an output, and each processor can receive input commands from a user, signals from sensors, and the output of each other processor.

本発明の代わりの実施の形態によれば、制御要素は、車両の位置又は方向を感知するための複数のセンサー及び複数の制御チャネルの間から選択されてもよく、各制御チャネルは、モーター駆動を独立して制御することができる。制御要素は、また、システムバスによって制御チャネルに接続される複数のプロセッサを含んでもよく、システムバスは、複数のプロセッサ、並びに、少なくとも一つのユーザー入力セット、バッテリー容量表示部、温度表示部、シート高制御部、及び故障保護制御部を含んでもよい。いずれかの制御要素の出力は、モーター駆動の機械的応答速度を超える速度で供給され得る。各プロセッサは、ユーザーからの入力コマンド、センサーからの信号、及び各他のプロセッサの出力を受信可能であってもよく、比較器は、いずれのプロセッサの故障かを識別するためのプロセッサの出力を比較してもよく、また、システムバスから故障プロセッサを切り離すための切断回路を含んでもよく、そして、すべての他のプロセッサを用いる車両の連続操作を可能にするような方法で故障が識別されたいずれかのプロセッサの出力を抑制してもよい。 According to an alternative embodiment of the invention, the control element may be selected between a plurality of sensors and a plurality of control channels for sensing the position or direction of the vehicle, each control channel being a motor driven Can be controlled independently. The control element may also include a plurality of processors connected to the control channel by a system bus, the system bus including a plurality of processors and at least one user input set, a battery capacity display, a temperature display, a seat A high control unit and a failure protection control unit may be included. The output of either control element can be supplied at a speed that exceeds the mechanical response speed of the motor drive. Each processor may be capable of receiving input commands from the user, signals from sensors, and outputs of each other processor, and the comparator receives processor outputs to identify which processor is faulty. The comparison may also include a disconnect circuit for disconnecting the failed processor from the system bus, and the fault has been identified in such a way as to allow continuous operation of the vehicle using all other processors. The output of any processor may be suppressed.

本発明のさらなる実施の形態によれば、荷重をサポートするための支持構造物と、その支持構造物に移動能力を提供する接地要素と、ローカル軸に関して車軸について移動可能な接地要素と、ローカル軸が素地構造物に関して移動されるように、車軸について接地要素の制御可能な移動を可能にし、車軸の移動を可能にするためのモーター駆動とを持つ車両が提供される。センサーは、車両の少なくとも一つの位置及び方向を感知するために提供される。複数の制御チャネルのように、各制御チャネルは、モーター駆動を独立して制御可能である。車両は、システムバスによって制御チャネルに接続される複数のプロセッサと、いずれのプロセッサの故障かを識別するためのプロセッサの出力を相互比較する比較器とを持つ。各プロセッサは出力を持ち、各プロセッサは、ユーザーからの入力コマンドと、センサーからの信号と、他のプロセッサのそれぞれの出力とを受信することができる。車両は、複数の余剰巻線を持つモーター駆動を持ってもよい。 According to a further embodiment of the invention, a support structure for supporting a load, a grounding element for providing movement capability to the support structure, a grounding element movable with respect to the axle relative to the local axis, and a local shaft A vehicle is provided having a motorized drive to allow controllable movement of the grounding element relative to the axle and to allow movement of the axle so that is moved relative to the substrate structure. A sensor is provided for sensing at least one position and direction of the vehicle. Like multiple control channels, each control channel can control the motor drive independently. The vehicle has a plurality of processors connected to the control channel by a system bus and a comparator for comparing the outputs of the processors for identifying which processor is faulty. Each processor has an output, and each processor can receive input commands from a user, signals from sensors, and respective outputs of other processors. The vehicle may have a motor drive with multiple extra windings.

本発明のもう一つの実施の形態によれば、フェイルセーフのジョイスティック(手動式操作装置)を提供する。そのジョイスティックは、ユーザーによって解放されるときジョイスティックを中心位置に戻すセンタリング機構と、中心位置でジョイスティックを検出するためのセンサーとを持つ。 According to another embodiment of the present invention, a fail-safe joystick (manual operation device) is provided. The joystick has a centering mechanism for returning the joystick to the center position when released by the user, and a sensor for detecting the joystick at the center position.

好ましい実施の形態の詳細な記述Detailed Description of the Preferred Embodiment

本発明は、添付図面を利用して以下の記述を参照することによって、より容易に理解されるだろう。 The invention will be more readily understood by reference to the following description, taken in conjunction with the accompanying drawings, in which:

図1において、車両10の基礎部分は、ユーザー12をサポートするための支持体18と、支持体18を移送するための接地モジュール20と、車輪16及び/又はクラスター14を駆動するための1以上のアクチュエーター機構(図示せず)と、ユーザー及び車両の位置と配置、さらには車両の位置と配置の変化の、測定される時間割合による望ましいパラメータ入力に従ってアクチュエーター機構を制御するための1以上の制御部と、変化の測定される時間割合と車両10の構成とを含むように構成されてもよく、これらに限定されるものでもない。車両の位置及び/又は配置は、連続的又は周期的にその出力が1以上の制御部によって使用される1セットのセンサー(図示せず)によって監視される。一例として、変位と傾きの情報を提供するセンサーは、特定の制御法則に従って、及び、米国特許第5,701,965号と米国特許出願番号第08/384,705号に開示されるように、制御部が車両の車輪又はクラスターに加えられるトルクを計算することを可能にする。 In FIG. 1, the base portion of the vehicle 10 includes a support 18 for supporting a user 12, a ground module 20 for transporting the support 18, and one or more for driving wheels 16 and / or clusters 14. Actuator mechanism (not shown) and one or more controls for controlling the actuator mechanism in accordance with the desired parameter input according to the measured time ratio of the position and arrangement of the user and the vehicle, as well as the changes in the position and arrangement of the vehicle May be configured to include the portion, the time ratio at which the change is measured, and the configuration of the vehicle 10, but is not limited thereto. The position and / or placement of the vehicle is monitored by a set of sensors (not shown) whose output is used by one or more controllers, either continuously or periodically. By way of example, sensors that provide displacement and tilt information may be subject to specific control laws and as disclosed in US Pat. No. 5,701,965 and US patent application Ser. No. 08 / 384,705, Allows the controller to calculate the torque applied to the vehicle wheel or cluster.

説明として、「接地モジュール20」の表現に関して、又は車両10が動きまわる表面に関連して用いられるよう用語「地面(ground)」は、車両10によって移動されるあらゆる表面で囲われた建物の内部又は外部であってもよい。用語「個人輸送機(personal transporter)」は、ここでは用語「車両(vehicle)」と交換可能に用いられる。それに加えて、用語「車輪(wheels)」は、地上で車両10を推進させることができる弓形要素又は他の接地部材を同等に含んでもよい。車両の「位置(position)」は、地面に関して固定された基準点を意味するのに対して、「配置(configuration)」は、互いに関して車両の構成要素の配置を意味する。それは、制限せずに、特定の速度、加速度、ジョイスティック感度等のような、ソフトウェアでなされる設定と同様に、シート高、軸傾斜等のような特性を含む。特に、本発明の好ましい実施の形態によれば、車輪16は、車軸22の周りを回転する。その車軸22は、クラスター回転の軸を構成するクラスター車軸24の周りを回転する。支持体18は、その結果、クラスター14に関して上昇され、あるいは下降され得る。車両10に存在する他の内部自由度は、同様に、ここで及び添付される特許請求の範囲で用いられるように、用語「配置」の範囲内に含まれる。同様に、重力に関して車両10の角度で表される方向又は傾きもまた、用語「配置」の範囲内に含まれる。 By way of illustration, the term “ground” as used in reference to the expression “grounding module 20” or in connection with the surface on which the vehicle 10 moves is the interior of a building surrounded by any surface moved by the vehicle 10. Or it may be outside. The term “personal transporter” is used herein interchangeably with the term “vehicle”. In addition, the term “wheels” may equally include arcuate elements or other grounding members that can propel the vehicle 10 on the ground. “Position” of the vehicle means a fixed reference point with respect to the ground, whereas “configuration” means the arrangement of the components of the vehicle with respect to each other. It includes properties such as seat height, axis tilt, etc., as well as settings made in software, such as, without limitation, specific speed, acceleration, joystick sensitivity, etc. In particular, according to a preferred embodiment of the present invention, the wheel 16 rotates about the axle 22. The axle 22 rotates around the cluster axle 24 that constitutes the axis of cluster rotation. The support 18 can then be raised or lowered with respect to the cluster 14. Other internal degrees of freedom present in the vehicle 10 are also included within the term “arrangement” as used herein and in the appended claims. Similarly, directions or inclinations represented by the angle of the vehicle 10 with respect to gravity are also included within the scope of the term “arrangement”.

ユーザー入力は、ジョイスティック又は他のインターフェースにより、あるいはユーザーの傾きにより、若しくは、外物に力を加えることにより、車両によって移送されるユーザーによって提供されてもよい。それに加えて、ユーザー入力は、車両によって運ばれないアシスタントにより提供されてもよい。彼は、車両を傾けさせようとするために、補助ハンドルに、力を適用することによって車両の移動及び/又は配置を支配してもよい。その代わりに、ユーザー入力は、車両から分離される制御モジュールによってアシスタントにより提供されてもよい。ここでは、制御モジュールは、ジョイスティック、スイッチ、またはキーパッド入力、あるいは他のいずれの方法をも含む。「センサー」は、車両の物理的位置又は配置のあらゆる特徴を監視するためのいかなる装置をも指し、例えば、傾きを測定するための傾斜計、ジャイロスコープ、又は車輪又はクラスター等のいずれかの角度で示される方向やその変化率を含む。 User input may be provided by a user who is transported by the vehicle by means of a joystick or other interface, or by tilting the user, or by applying force to an external object. In addition, user input may be provided by an assistant that is not carried by the vehicle. He may dominate the movement and / or placement of the vehicle by applying force to the auxiliary handle to attempt to tilt the vehicle. Alternatively, user input may be provided by an assistant by a control module that is separate from the vehicle. Here, the control module includes a joystick, switch, or keypad input, or any other method. “Sensor” refers to any device for monitoring any feature of a vehicle's physical position or placement, for example, an inclinometer, gyroscope, or any angle such as a wheel or cluster to measure tilt. The direction indicated by and its rate of change are included.

あるタイプの故障の後に車両を安全に操作することは、上記にリストされる基本的車両部品の1以上の故障余裕を必要とし得る。この記述及び添付の特許請求の範囲で用いられるように、「余剰(redundancy)」は、車両の故障余裕に寄与するある成分の重複を意味する。「余剰」は、また、データのオーバーサンプリングを意味する。従って、例えば、データは、システムの機械的応答速度よりも実質的に高い速度でセンサーによって提供され得る。この場合、もし、データがシステムバス又は他の場所で変造されるならば、応答が提供されなければならない前に新しいデータが提供されるので、それは、システム応答をもたらさない。本発明の好ましい実施の形態では、基本的車両部品は、一例として、これから記述される図2のブロック図に示されるもののように、システムアーキテクチャーにおいて電子的に相互に連結される。 Safe operation of a vehicle after a certain type of failure may require one or more failure margins of the basic vehicle parts listed above. As used in this description and the appended claims, “redundancy” means the duplication of certain components that contribute to the vehicle's fault margin. “Surplus” also means data oversampling. Thus, for example, data can be provided by the sensor at a rate substantially higher than the mechanical response rate of the system. In this case, if the data is altered on the system bus or elsewhere, it does not result in a system response because new data is provided before the response must be provided. In the preferred embodiment of the present invention, the basic vehicle parts are electronically interconnected in the system architecture, as shown by way of example in the block diagram of FIG. 2 to be described.

それぞれの電源30とともに、センサーエレクトロニクス34と制御プロセッサ24、26、及び28との組み合わせは、パワーベース32として一まとめにして言及される。パワーベース32は、多数のパワーベースプロセッサ36を含み、そのそれぞれは、センサーエレクトロニクス34、中央演算処理装置(CPU)24、26、及び28、並びに、電源30を含む。各CPU28は、関連付けられた電源30とセンサーエレクトロニクスボード34を持つ。 With each power supply 30, the combination of sensor electronics 34 and control processors 24, 26, and 28 is collectively referred to as a power base 32. The power base 32 includes a number of power base processors 36, each of which includes sensor electronics 34, central processing units (CPUs) 24, 26 and 28, and a power supply 30. Each CPU 28 has an associated power supply 30 and sensor electronics board 34.

パワーベース32は、車両の周辺のあるいは特別な機能を制御するための他の制御部と同様に、ユーザー入力を受信するためのインターフェース38に電子的に接続される。パワーベース32に接続される他の制御部及び周辺装置は、クラッシュ保護制御部42とクラッシュ保護モニター44、及びバッテリー充電器とモニター(図示せず)と同様に、シート高制御部40を含むが、これらに限られるものではない。クラッシュ保護制御部42は、1997年11月4日に出願された継続中の米国仮出願第60/064,175号に記述されるように、1以上のエアバックの配置、あるいは、その代わりに、1997年10月14日に出願された継続中の米国仮出願第60/061,974号に記述されるように、接地モジュール20からの支持体18の分離(図1に示される)のような機能を提供してもよい。ユーザーインターフェース38と、周辺制御部40及び42と、パワーベース32の各パワーベースプロセッサ24、26、及び28のそれぞれとの間の連絡は、システムシリアルバス45を介する。それは、好ましい実施の形態では、250kボー(Baud)の容量を持ち、時分割多元接続方式(TDMA)プロトコルを使用する非同期チャネルである。 The power base 32 is electronically connected to an interface 38 for receiving user input, as well as other controls around the vehicle or for controlling special functions. Other control units and peripheral devices connected to the power base 32 include a seat height control unit 40, as well as a crash protection control unit 42 and a crash protection monitor 44, and a battery charger and monitor (not shown). However, it is not limited to these. The crash protection controller 42 may include one or more airbag arrangements, or alternatively, as described in pending US Provisional Application No. 60 / 064,175, filed Nov. 4, 1997. As described in U.S. Provisional Application No. 60 / 061,974 filed Oct. 14, 1997, such as the separation of support 18 from ground module 20 (shown in FIG. 1). Various functions may be provided. Communication between the user interface 38, the peripheral controllers 40 and 42, and each of the power base processors 24, 26, and 28 of the power base 32 is via a system serial bus 45. In the preferred embodiment, it is an asynchronous channel with a capacity of 250 kBaud and using a time division multiple access (TDMA) protocol.

車輪16とクラスター14(図1に示される)のためのアクチュエーターは、左車輪モーター51のような、典型的にモーターであり、好ましい実施の形態では、そのアクチュエーターはサーボモーターである。左車輪のためのアクチュエーター51は、余剰左車輪アンプ46及び48のいずれかによって駆動されてもよい。同様に、右車輪アンプ50が右車輪のためのアクチュエーターを駆動し、クラスターアンプ52がクラスターのアクチュエーターを駆動する。本発明の好ましい実施の形態では、負荷分散パワーチャネルは、それによって左車輪アンプ46と48の両方が左車輪モーター51の全性能のために必要とされるものを供給される。しかしながら、各左車輪アンプは、車両が安全に静止するために来ることを可能にするために、短い時間制限された性能を提供することができる。パワーチャネルは、また、ここ及び添付の特許請求の範囲では、「制御チャネル」として言及されてもよい。追加の余剰は、各モーターの巻線の半分が車両の操作に十分なトルクを供給するために、各モーター51に供給されてもよい。各余剰フルセットのアンプ46、50、及び52は、パワーアンプ制御部54及び56の一つによって制御される。特に、強電流直列素子がバッテリーとモーターとの間に要求されないように、車輪アンプ46と48を介してサーボモーターに全電流を供給することは有利である。余剰パワーベースプロセッサ24、26、及び28とパワーアンプ制御部54との間の連絡は、フルの余剰を提供するように、パワーベースシリアルバス58を介し、余剰パワープロセッサ24、26、及び28とパワーアンプ制御部56との間の連絡は、第2のパワーベースシリアルバス60を介する。 The actuator for the wheel 16 and cluster 14 (shown in FIG. 1) is typically a motor, such as the left wheel motor 51, and in the preferred embodiment, the actuator is a servo motor. The actuator 51 for the left wheel may be driven by either of the surplus left wheel amplifiers 46 and 48. Similarly, the right wheel amplifier 50 drives the actuator for the right wheel, and the cluster amplifier 52 drives the cluster actuator. In the preferred embodiment of the invention, the load sharing power channel is provided by which both the left wheel amplifiers 46 and 48 are required for the full performance of the left wheel motor 51. However, each left wheel amplifier can provide a short time limited performance to allow the vehicle to come to safely stand still. A power channel may also be referred to as a “control channel” herein and in the appended claims. Additional surplus may be supplied to each motor 51 so that half of each motor's windings provide sufficient torque for vehicle operation. Each redundant full set of amplifiers 46, 50, and 52 is controlled by one of power amplifier controllers 54 and 56. In particular, it is advantageous to supply the full current to the servomotor via the wheel amplifiers 46 and 48 so that a strong current series element is not required between the battery and the motor. Communication between the surplus power base processors 24, 26, and 28 and the power amplifier controller 54 is via the power base serial bus 58 to provide the surplus power processors 24, 26, and 28 to provide full surplus. Communication with the power amplifier control unit 56 is via the second power base serial bus 60.

図2に参照して上記システム記述に照らして評価され得るように、車両と結び付けられる制御アーキテクチャーは、システムの種々の構成要素に付与する異なる不静定次数のために、高度に余剰であってもよい。 As can be evaluated in light of the system description above with reference to FIG. 2, the control architecture associated with the vehicle is highly redundant due to the different static indeterminate orders imparted to the various components of the system. May be.

いくつかの問題は、上述される余剰を考慮して扱われなければならない。一つの問題は、余剰構成要素が同時に存在し、賦活であるときに生じる制御と決定の割当てである。 Some issues must be dealt with taking into account the surplus described above. One problem is the allocation of control and decisions that occur when surplus components exist simultaneously and are active.

シリアルバスの制御 上述される好ましいTDMAプロトコルによれば、シリアルバス45上の各装置は、予め定義されるデータセットを移し、広めるために、割り当てられたタイムスロットを持つ。シリアルバス45上の全装置は、ソフトウエアで設定可能な制御レジスタに基づいて、データの特定の送り主に応答し、あるいは従うためにプログラムされる。シリアルバス45は、シリアルバスマスター、例えば、例示のために、プロセッサ24としてここに示される「マスターパワーベースプロセッサ(Master Power Base Processor)」に対応するパワーベースプロセッサ24、26、及び28として言及される特定の一つのプロセッサによって制御される。シリアルバスマスターは、マスター同期パケットとバスエラーデータコレクションを制御する。マスターパワーベースプロセッサインターフェース障害の場合、以下に記述されるように決定される「二次パワーベースマスター」が、システムシリアルバスマスターシップの役を果す。 Serial Bus Control According to the preferred TDMA protocol described above, each device on the serial bus 45 has an assigned time slot for transferring and spreading predefined data sets. All devices on the serial bus 45 are programmed to respond to or follow a particular sender of data based on software-configurable control registers. Serial bus 45 is referred to as a serial bus master, eg, power base processors 24, 26, and 28 corresponding to a “Master Power Base Processor” shown herein as processor 24 for illustrative purposes. Controlled by one specific processor. The serial bus master controls the master synchronization packet and bus error data collection. In the case of a master power base processor interface failure, the “secondary power base master” determined as described below serves as the system serial bus mastership.

故障操作の重大な構成要素 構成要素の操作が、車両の占有者を危険にさらさないで、車両をセーフモードにするために最も重要である場合、故障許容の三重余剰が、本発明の好ましい実施の形態に従って、故障操作機能性を作るために、用いられる。故障操作の重大な構成要素の一例は、3つのいずれかが供給され、図2のパワーベースプロセッサ24、26、及び28として示されるパワーベースプロセッサである。パワーベースプロセッサ24、26、及び28のそれぞれは、また、信頼性の高い出力が、車両のバランス、バッテリー状態等を含む車両の重大な機能性を補償するために必要とされる重要なセンサーの特定のセットに結び付けられる。それにより、あらゆるプロセッサ又はセンサーの1点の故障が検出可能となる。それに加えて、本発明の一実施の形態によれば、あらゆるプロセッサ又は検出器の操作における故障の検出は、現在制御しているパワーベースプロセッサに、そして、そこからユーザーインターフェース38へ伝達され、それによって、視覚的、あるいは視覚的でない指示器によりユーザーに伝達される。視覚的でない表示器は、2つの例を挙げれば、可聴警報又は触覚手段によって知覚できるものを含むが、これらに限られない。潜在的危険をユーザーに警告するための視覚的でない指示のもう一つの手段は、周期的か非周期的のいずれかの、車輪駆動アンプにおける断続的な駆動信号の重ね合わせであり、それによって、乗客によって感知される車両のむらのある動きが作り出される。 Critical components of fault operation If the operation of components is most important for putting the vehicle in safe mode without endangering the vehicle occupant, a fault-tolerant triple surplus is the preferred implementation of the present invention. According to the form, it is used to create fault handling functionality. An example of a critical component of failure operation is a power-based processor, supplied as any of the three and shown as power-based processors 24, 26, and 28 in FIG. Each of the power-based processors 24, 26, and 28 is also an important sensor for which a reliable output is required to compensate for critical vehicle functionality including vehicle balance, battery condition, etc. Tied to a specific set. Thereby, a single point of failure of any processor or sensor can be detected. In addition, according to one embodiment of the present invention, detection of faults in the operation of any processor or detector is communicated to and from the currently controlling power-based processor to the user interface 38, where Is communicated to the user by visual or non-visual indicators. Non-visual indicators include, but are not limited to, those that can be perceived by audible alerts or tactile means, to name two examples. Another means of non-visual indication to alert the user to potential hazards is the superposition of intermittent drive signals in the wheel drive amplifier, either periodic or aperiodic, thereby An uneven movement of the vehicle that is perceived by the passenger is created.

三重の余剰センサー又はプロセッサの場合、故障は、余剰センサーの残りの一対によって供給されるデータと各センサーによって供給されるデータとを比較することによって検出され、それによって、故障操作機能性を作り出してもよい。ここで、車両は、もし、一つに欠陥があると(記述された比較、あるいは別な方法で)決定されるならば、車両の占有者が危険にさらされることなく、車両がセーフモードに移行するまで、残りのセンサーによって供給される情報に基づいて作動し続けてもよい。そのような場合、残りのセンサー又はプロセッサは、車両の機能性の減少レベルで作動が続くために、規定された制限内で一致するように要求されてもよい。そして、作動は、残りのセンサー又はプロセッサ間の不調和の場合にすぐに終了させてもよい。比較器は、電子工学分野の当業者に周知のように、電子スイッチ回路あるいは少なくとも一つのパワーベースプロセッサ上で実行するソフトウェアを用いて、あらゆる誤ったプロセッサ又はセンサーのシリアルバス45、58、及び60への接続を無能にするために提供される。例えば、作動の一モードでは、パワーアンプ制御部(PAC)は、パワーベースプロセッサ(PBP)A及びPBPのBからの結果を格納する。もし、2つの結果が同じであるならば、PACは、両方が正しいので、PBPのAからの結果を用いる。もし、PBPのAとPBPのB2つの結果が異なるならば、PACは、何をすべきかを指示されるまで1サイクル待つ。PBPのCは、第2のサイクルでそれ自身をシャットダウンするために故障プロセッサに信号を送り、第3のサイクルにおいて、PACは、作動しているPBPからだけ聞き、その命令に従う。 In the case of triple surplus sensors or processors, faults are detected by comparing the data supplied by the remaining pair of surplus sensors with the data supplied by each sensor, thereby creating fault handling functionality. Also good. Here, if the vehicle is determined to be defective (in the described comparison or otherwise), the vehicle enters safe mode without risking the vehicle occupants. Until then, it may continue to operate based on information provided by the remaining sensors. In such cases, the remaining sensors or processors may be required to match within defined limits in order to continue to operate at a reduced level of vehicle functionality. The operation may then be terminated immediately in the event of a mismatch between the remaining sensors or processors. The comparator may be any erroneous processor or sensor serial bus 45, 58, and 60 using electronic switch circuitry or software running on at least one power-based processor, as is well known to those skilled in the electronics arts. Provided to disable connection to. For example, in one mode of operation, the power amplifier controller (PAC) stores the results from the power base processor (PBP) A and PBP B. If the two results are the same, the PAC uses the result from PBP A because both are correct. If the two results of PBP A and PBP B are different, the PAC waits for one cycle until instructed what to do. The PBP's C signals the failing processor to shut itself down in the second cycle, and in the third cycle, the PAC hears only from the working PBP and follows its instructions.

安全を保証する重大な構成要素 構成要素の故障が車両の操作が安全に終了するために要求される時間中許容される場合、2重に余剰な構成要素が使用される。この範疇に分類されるセンサーの場合、センサーの一つの故障は、それぞれのセンサーの出力を比較することによって検出される。不一致が検出される場合、車両の操作は、安全に終了させられ、それによって、安全を保証する機能性が提供される。安全を保証する機能性は、典型的に、接地モジュール内の力ハンドル(車両の外部制御のために用いられる)、ブレーキ、及びシート設備と同様に、各モーター51、車輪アンプ46、48、及び50、クラスターアンプ52、並びに、パワーアンプ制御部54及び56のために提供される。 Critical components to ensure safety If a component failure is tolerated during the time required for the vehicle to finish safely, double redundant components are used. For sensors that fall into this category, a single sensor failure is detected by comparing the output of each sensor. If a discrepancy is detected, the operation of the vehicle is terminated safely, thereby providing functionality that ensures safety. Functionality to ensure safety is typically the motor 51, wheel amplifiers 46, 48, and the like, as well as force handles (used for external control of the vehicle), brakes, and seat equipment in the ground module. 50, cluster amplifier 52, and power amplifier controllers 54 and 56.

故障は、非余剰なセンサーの場合、センサー故障モードに特有なセンサー出力の特徴に基づいて、あるいは予期される性能に比較して、検出される。非余剰センサーは、例えば、シート高符号器を含んでもよい。 Faults are detected in the case of non-redundant sensors based on sensor output characteristics specific to sensor failure modes or compared to expected performance. The non-surplus sensor may include, for example, a sheet height encoder.

安全を保証するジョイスティック 図3において、安全を保証するジョイスティック機構が示され、一般に自動的に中心に戻るジョイスティック62を持つ数字60によって示される。標準の電位差計ジョイスティックが、ジョイスティックに取り付けられる装置にドリフト又は「ハードオーバー」状態をおこさせる故障を生じ得るのに対して、ジョイスティック機構60は、ジョイスティック62が中心位置にあるときを検出する独立した手段を提供する。例えば、ホール効果センサーであってもよいセンサー64は、センサー64との位置合わせにおいて、ジョイスティック柱66が中心位置であるときを感知する。電位差計68及び70は、2つの直交軸に関してジョイスティック62の位置を感知する。電位差計68及び70のいずれかに故障が起こる場合、もし、ジョイスティック60が解放されているならば、それが自動的に中心に戻るジョイスティックであるので、ジョイスティック60は、中心に戻り、センサー64とかみ合い、それによって、故障の電位差計システムから独立しているシステムに信号を供給する。 Joystick to Ensure Safety In FIG. 3, a joystick mechanism to ensure safety is shown, generally indicated by the numeral 60 with a joystick 62 that automatically returns to the center. Whereas a standard potentiometer joystick can cause a failure that causes the device attached to the joystick to drift or cause a “hard over” condition, the joystick mechanism 60 is independent of detecting when the joystick 62 is in the center position. Provide a means. For example, the sensor 64, which may be a Hall effect sensor, senses when the joystick column 66 is at the center position in alignment with the sensor 64. Potentiometers 68 and 70 sense the position of joystick 62 with respect to two orthogonal axes. If one of the potentiometers 68 and 70 fails, if the joystick 60 is released, it will automatically return to the center, so the joystick 60 will return to the center and the sensor 64 Engage, thereby providing a signal to a system that is independent of the fault potentiometer system.

付随する操作制限 上述のような構成要素の故障の検出に加えて、本発明の代わりの実施の形態において、車両の占有者の安全を提供するために、追加の制御部特性が与えられてもよい。米国特許第5,701,965号及び米国特許出願番号第08/384,705号に記述されるような車両制御の種々のモードでは、トルクは、ユーザー入力又は車両バランスのような内部制御目標によって決定される特定の制御目標を達成するために、クラスター又は車輪の適切なセットに適用される。車両の車輪が地面との接触を一時的に失う場合、浮揚している車輪の回転は、地面に関して車両位置の確かな一定量ではなく、車輪へのトルクの適用を制御することにおける車輪の回転効果は、これらの状況下における車輪の加速を効果的に制限して、制限されなければならない。 Accompanying operational limitations In addition to detecting component failures as described above, in alternative embodiments of the present invention, additional controller characteristics may be provided to provide vehicle occupant safety. Good. In various modes of vehicle control, such as described in US Pat. No. 5,701,965 and US patent application Ser. No. 08 / 384,705, torque is controlled by an internal control target such as user input or vehicle balance. Applied to an appropriate set of clusters or wheels to achieve the specific control goal to be determined. When a vehicle wheel temporarily loses contact with the ground, the rotation of the levitating wheel is not a certain amount of vehicle position relative to the ground, but the rotation of the wheel in controlling the application of torque to the wheel. The effect must be limited, effectively limiting the acceleration of the wheel under these circumstances.

スピードを制限するための追加の基部は、十分な予備トルクが常に車両の安定性を維持するために利用可能なように、残存するバッテリー容量又は空き高への言及を含む。さらに、もし、モーターがパワー再生のために用いられるならば、斜面を下るときにバッテリーの過充電を防ぐために車両のスピードが制限されてもよい。同様に、分路調整器の散逸要求は、下っている車両の最大スピードを減速することによって減少し得る。それに加えて、車両速度は、横安定性制約に従ってシート高を基礎として制限されてもよい。スピード制限に加えて、車両の操作のモードは、上述のように得られる故障データを基礎にして制限されてもよい。 An additional base for limiting speed includes a reference to remaining battery capacity or headroom so that sufficient reserve torque is always available to maintain vehicle stability. Furthermore, if the motor is used for power regeneration, the vehicle speed may be limited to prevent overcharging of the battery when going down the slope. Similarly, shunt regulator dissipation requirements can be reduced by reducing the maximum speed of the descending vehicle. In addition, vehicle speed may be limited on the basis of seat height according to lateral stability constraints. In addition to speed limitation, the mode of operation of the vehicle may be limited based on the failure data obtained as described above.

本発明の記述される実施の形態は、単に例示的であると意図され、非常に多くの変形及び改良は、当業者にとって明白である。すべての変形及び改良は、添付される特許請求の範囲に定義されるように、本発明の範囲内であるように意図される。 The described embodiments of the present invention are intended to be exemplary only, and numerous variations and modifications will be apparent to those skilled in the art. All variations and modifications are intended to be within the scope of the present invention as defined in the appended claims.

図1は、本発明の一実施の形態が有利に使用され得るタイプの先行技術の個人的乗物の側面図である。FIG. 1 is a side view of a prior art personal vehicle of the type in which an embodiment of the present invention may be advantageously used. 図2は、本発明の好ましい実施の形態における個人的乗物を制御するための制御構造のブロック図である。FIG. 2 is a block diagram of a control structure for controlling a personal vehicle in a preferred embodiment of the present invention. 図3は、本発明の一実施の形態におけるフェイルセーフジョイスティックの斜視図である。FIG. 3 is a perspective view of a fail-safe joystick according to one embodiment of the present invention.

Claims (7)

車両の移動を制御するための方法であって、
a.複数の制御チャネルを車両に供給するステップであって、各制御チャネルは、前記車両を進ませるモーター駆動を独立して制御することができる、供給ステップと、
b. 複数のセンサーを車両に供給するステップであって、各センサーは前記車両の位置及び方向の少なくとも一つに基づくデータを供給する、供給するステップと、
c. 複数のプロセッサを車両に供給するステップであって、各プロセッサは、システムバスによって前記制御チャネルのそれぞれに、センサーにより供給されるデータの少なくともその一部分に基づく出力を供給する、供給ステップと、
d. 前記プロセッサの出力を比較するステップと、
e.プロセッサの出力の故障を識別するステップと、
f. 識別された故障を有する出力を供給するプロセッサ以外のプロセッサの出力を基礎にして、前記車両を制御するステップと、を有することを特徴とする方法。
A method for controlling movement of a vehicle, comprising:
a. Supplying a plurality of control channels to the vehicle , wherein each control channel can independently control a motor drive that advances the vehicle; and
b. supplying a plurality of sensors to the vehicle, each sensor supplying data based on at least one of the position and direction of the vehicle;
c. supplying a plurality of processors to the vehicle , each processor supplying an output based on at least a portion of the data supplied by the sensor to each of the control channels via a system bus;
d. comparing the output of the processor;
e. identifying a fault in the output of the processor ;
f. controlling the vehicle on the basis of the output of a processor other than the processor that provides the output having the identified fault.
前記システムバスから識別された故障を有する出力を供給するプロセッサを取り除くための切断回路を供給することをさらに含む請求項1記載の方法。 The method of claim 1, further comprising providing a disconnect circuit for removing a processor that provides an output having an identified fault from the system bus. さらに、前記システムバスを通して、前記複数のプロセッサがユーザー入力、バッテリー容量表示器、温度指示器、シート高制御部及び故障保護制御部のセットの少なくとも一つと接続されることを含む請求項1記載の方法。 2. The system of claim 1, further comprising: connecting the plurality of processors through the system bus to at least one of a set of user input, battery capacity indicator, temperature indicator, seat height controller, and fault protection controller. Method. 前記複数のセンサーの少なくとも一つのセンサーの前記出力は、前記モーター駆動の機械的応答速度を超える速度で供給されることをさらに含む請求項1記載の方法。 The method of claim 1, further comprising providing the output of at least one sensor of the plurality of sensors at a speed that exceeds a mechanical response speed of the motor drive. プロセッサの出力中の故障の識別はユーザーインターフェイスに伝達される請求項1記載の方法。The method of claim 1, wherein an identification of a fault in the output of the processor is communicated to a user interface. プロセッサの出力中の故障の識別が視覚的及び視覚的でない指示器の手段の少なくとも一つにより車両のユーザーに伝達される請求項1記載の方法。The method of claim 1, wherein the identification of the fault in the output of the processor is communicated to the vehicle user by at least one of visual and non-visual indicator means. 前記視覚的でない指示器は可聴警報、触覚警報、及び車輪駆動アンプにおける断続的な駆動信号の重ね合わせの組み合わせの内の少なくとも一つである請求項6記載の方法。The method of claim 6, wherein the non-visual indicator is at least one of a combination of an audible alarm, a tactile alarm, and an intermittent superposition of drive signals in a wheel drive amplifier.
JP2009071887A 1998-10-21 2009-03-24 Fault tolerant design and safety assurance device for personal vehicles Expired - Lifetime JP5574610B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10506998P 1998-10-21 1998-10-21
US60/105,069 1998-10-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000577062A Division JP4684418B2 (en) 1998-10-21 1999-09-27 Fault tolerant design for personal vehicles

Publications (2)

Publication Number Publication Date
JP2009187561A JP2009187561A (en) 2009-08-20
JP5574610B2 true JP5574610B2 (en) 2014-08-20

Family

ID=22303881

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000577062A Expired - Lifetime JP4684418B2 (en) 1998-10-21 1999-09-27 Fault tolerant design for personal vehicles
JP2009071887A Expired - Lifetime JP5574610B2 (en) 1998-10-21 2009-03-24 Fault tolerant design and safety assurance device for personal vehicles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000577062A Expired - Lifetime JP4684418B2 (en) 1998-10-21 1999-09-27 Fault tolerant design for personal vehicles

Country Status (10)

Country Link
US (1) US6223104B1 (en)
EP (1) EP1123235B1 (en)
JP (2) JP4684418B2 (en)
AU (1) AU758135B2 (en)
CA (1) CA2346442C (en)
DE (1) DE69922239T2 (en)
HK (1) HK1039922B (en)
NO (1) NO322294B1 (en)
TW (1) TW572840B (en)
WO (1) WO2000023315A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515048A (en) * 2013-03-12 2016-05-26 ヴァムコ・インターナショナル・インコーポレイテッド Press machine
KR101811606B1 (en) 2016-08-16 2018-01-25 한국오므론전장 주식회사 Malfunction warning system of integrated memory system and method thereof

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779621B2 (en) * 1993-02-24 2004-08-24 Deka Products Limited Partnership Riderless stabilization of a balancing transporter
US7546889B2 (en) * 1993-02-24 2009-06-16 Deka Products Limited Partnership Guided control of a transporter
US7090040B2 (en) * 1993-02-24 2006-08-15 Deka Products Limited Partnership Motion control of a transporter
US6915878B2 (en) * 1994-05-27 2005-07-12 Deka Products Limited Partnership Self-balancing ladder and camera dolly
US6868931B2 (en) * 1994-05-27 2005-03-22 Deka Products Limited Partnership Speed limiting for a balancing transporter accounting for variations in system capability
US6827163B2 (en) * 1994-05-27 2004-12-07 Deka Products Limited Partnership Non-linear control of a balancing vehicle
US6874591B2 (en) 1994-05-27 2005-04-05 Deka Products Limited Partnership Speed limiting for a balancing transporter
US6561294B1 (en) 1995-02-03 2003-05-13 Deka Products Limited Partnership Balancing vehicle with passive pivotable support
US6799649B2 (en) * 1999-03-15 2004-10-05 Deka Products Limited Partnership Control of a balancing personal vehicle
US6789640B1 (en) 2000-10-13 2004-09-14 Deka Products Limited Partnership Yaw control for a personal transporter
US6302230B1 (en) * 1999-06-04 2001-10-16 Deka Products Limited Partnership Personal mobility vehicles and methods
US7275607B2 (en) 1999-06-04 2007-10-02 Deka Products Limited Partnership Control of a personal transporter based on user position
US7006902B2 (en) * 1999-07-30 2006-02-28 Oshkosh Truck Corporation Control system and method for an equipment service vehicle
US6922615B2 (en) * 1999-07-30 2005-07-26 Oshkosh Truck Corporation Turret envelope control system and method for a fire fighting vehicle
US7184866B2 (en) 1999-07-30 2007-02-27 Oshkosh Truck Corporation Equipment service vehicle with remote monitoring
US7729831B2 (en) 1999-07-30 2010-06-01 Oshkosh Corporation Concrete placement vehicle control system and method
US6993421B2 (en) * 1999-07-30 2006-01-31 Oshkosh Truck Corporation Equipment service vehicle with network-assisted vehicle service and repair
US7107129B2 (en) 2002-02-28 2006-09-12 Oshkosh Truck Corporation Turret positioning system and method for a fire fighting vehicle
US20040133319A1 (en) * 1999-07-30 2004-07-08 Oshkosh Truck Corporation User interface and method for vehicle control system
US6909944B2 (en) * 1999-07-30 2005-06-21 Oshkosh Truck Corporation Vehicle control system and method
US20030158635A1 (en) * 1999-07-30 2003-08-21 Oshkosh Truck Corporation Firefighting vehicle with network-assisted scene management
US7162332B2 (en) 1999-07-30 2007-01-09 Oshkosh Truck Corporation Turret deployment system and method for a fire fighting vehicle
US7127331B2 (en) 1999-07-30 2006-10-24 Oshkosh Truck Corporation Turret operator interface system and method for a fire fighting vehicle
US6553290B1 (en) * 2000-02-09 2003-04-22 Oshkosh Truck Corporation Equipment service vehicle having on-board diagnostic system
US6885920B2 (en) * 1999-07-30 2005-04-26 Oshkosh Truck Corporation Control system and method for electric vehicle
US7072745B2 (en) 1999-07-30 2006-07-04 Oshkosh Truck Corporation Refuse vehicle control system and method
US7184862B2 (en) * 1999-07-30 2007-02-27 Oshkosh Truck Corporation Turret targeting system and method for a fire fighting vehicle
US6882917B2 (en) * 1999-07-30 2005-04-19 Oshkosh Truck Corporation Steering control system and method
US7024296B2 (en) * 1999-07-30 2006-04-04 Oshkosh Truck Corporation Control system and method for an equipment service vehicle
US7407175B2 (en) * 2000-03-01 2008-08-05 Deka Products Limited Partnership Multiple-passenger transporter
KR100395419B1 (en) * 2000-10-02 2003-08-21 주식회사 에스에이치티 Method and system for deciding price of product on the basis of valid date of product
US6866107B2 (en) * 2000-10-13 2005-03-15 Deka Products Limited Partnership Method and device for battery load sharing
US6538411B1 (en) * 2000-10-13 2003-03-25 Deka Products Limited Partnership Deceleration control of a personal transporter
US6687585B1 (en) 2000-11-09 2004-02-03 The Ohio State University Fault detection and isolation system and method
US6766230B1 (en) 2000-11-09 2004-07-20 The Ohio State University Model-based fault detection and isolation system and method
DE10061659A1 (en) * 2000-12-11 2002-06-20 Magnet Motor Gmbh Electric drive system, in particular vehicles
JP3476770B2 (en) * 2000-12-18 2003-12-10 科学技術振興事業団 Electric vehicle control device
US7379797B2 (en) * 2001-01-31 2008-05-27 Oshkosh Truck Corporation System and method for braking in an electric vehicle
US7277782B2 (en) 2001-01-31 2007-10-02 Oshkosh Truck Corporation Control system and method for electric vehicle
AR032712A1 (en) * 2001-02-21 2003-11-19 Solvay Pharm Bv A MESILATE OF PHENYLPIPERAZINE DERIVATIVES AND PHARMACEUTICAL COMPOSITIONS CONTAINING IT
WO2002074596A1 (en) * 2001-03-15 2002-09-26 Robert Bosch Gmbh Method for actuating a component of a distributed security system
DE10157377B4 (en) * 2001-11-22 2005-10-06 Daimlerchrysler Ag Vehicle data bus system with sensor module
US20050113996A1 (en) * 2001-12-21 2005-05-26 Oshkosh Truck Corporation Ambulance control system and method
US7302320B2 (en) 2001-12-21 2007-11-27 Oshkosh Truck Corporation Failure mode operation for an electric vehicle
US7792618B2 (en) 2001-12-21 2010-09-07 Oshkosh Corporation Control system and method for a concrete vehicle
US7254468B2 (en) * 2001-12-21 2007-08-07 Oshkosh Truck Corporation Multi-network control system for a vehicle
FR2838532B1 (en) * 2002-04-10 2004-07-30 Airbus France SYSTEM AND METHOD FOR CONTROLLING MULTIPLE ACTUATORS
US20050126832A1 (en) * 2002-06-14 2005-06-16 Deka Products Limited Partnership Non-linear control of a balancing vehicle
US7900725B2 (en) * 2002-06-11 2011-03-08 Segway Inc. Vehicle control by pitch modulation
US7690452B2 (en) * 2002-06-11 2010-04-06 Deka Products Limited Partnership Vehicle control by pitch modulation
WO2004007264A1 (en) * 2002-07-12 2004-01-22 Deka Products Limited Partnership Control of a transporter based on attitude
CA2492393A1 (en) * 2002-07-12 2004-01-22 Deka Products Limited Partnership Motion control for a transporter
US7412307B2 (en) * 2002-08-02 2008-08-12 Oshkosh Truck Corporation Refuse vehicle control system and method
US7245995B2 (en) * 2003-02-19 2007-07-17 Robert Bosch Gmbh Fault-tolerant vehicle stability control
US7182166B2 (en) * 2004-03-23 2007-02-27 Deka Products Limited Partnership Footrest tuck mechanism
US7757579B2 (en) * 2004-08-30 2010-07-20 Sauer-Danfoss Inc. Joystick device with redundant sensor processing
DE102005046373B4 (en) * 2005-09-28 2007-12-13 Siemens Ag Communication system for a technical device, in particular for a motor vehicle
DE202005020462U1 (en) * 2005-12-08 2007-04-19 Liebherr-Werk Ehingen Gmbh crane
US7744331B2 (en) * 2006-01-26 2010-06-29 Xerox Corporation Transport vehicle and method
JP4291822B2 (en) * 2006-02-03 2009-07-08 トヨタ自動車株式会社 Inverted wheel type traveling body
US20130184917A1 (en) * 2006-03-06 2013-07-18 Sterraclimb Llc Stair-climbing wheeled vehicle
US20100032911A1 (en) * 2006-03-06 2010-02-11 Sterraclimb Llc Stair-Climbing Wheeled Vehicle
US20130274973A1 (en) * 2006-03-06 2013-10-17 Steven Kamara Stair climbing wheeled vehicle, and system and method of making and using same
US20130231814A1 (en) * 2006-03-06 2013-09-05 Sterraclimb Llc Stair-climbing surveillance vehicle
US8947531B2 (en) 2006-06-19 2015-02-03 Oshkosh Corporation Vehicle diagnostics based on information communicated between vehicles
US8139109B2 (en) 2006-06-19 2012-03-20 Oshkosh Corporation Vision system for an autonomous vehicle
US7979179B2 (en) * 2006-08-11 2011-07-12 Segway Inc. Apparatus and method for pitch state estimation for a vehicle
JP4957889B2 (en) * 2006-08-29 2012-06-20 株式会社エクォス・リサーチ Traveling vehicle
GB2447672B (en) 2007-03-21 2011-12-14 Ford Global Tech Llc Vehicle manoeuvring aids
JP4924179B2 (en) * 2007-04-25 2012-04-25 トヨタ自動車株式会社 Inverted wheel type moving body and control method thereof
US20090055033A1 (en) * 2007-08-23 2009-02-26 Segway Inc. Apparatus and methods for fault detection at vehicle startup
JP4605204B2 (en) * 2007-10-24 2011-01-05 トヨタ自動車株式会社 Inverted pendulum type moving body and control method thereof
JP4569623B2 (en) * 2007-12-20 2010-10-27 株式会社デンソー Vehicle inspection apparatus and vehicle control system using the same
DE102008004835B4 (en) * 2008-01-17 2010-04-01 Meyra Wilhelm Meyer Gmbh & Co. Kg Electric wheelchair drive
US8170780B2 (en) 2008-11-06 2012-05-01 Segway, Inc. Apparatus and method for control of a vehicle
JP5848266B2 (en) * 2010-02-26 2016-01-27 セグウェイ・インコーポレイテッド Apparatus and method for controlling a vehicle
AU2011237357B2 (en) 2010-04-09 2016-05-19 Deka Products Limited Partnership System and apparatus for robotic device and methods of using thereof
TW201230590A (en) * 2010-04-26 2012-07-16 Proterra Inc Systems and methods for automatic connection and charging of an electric vehicle at a charging station
US10120391B2 (en) * 2010-05-06 2018-11-06 Dong Li Self-balancing enclosed motorcycle
US9683848B2 (en) 2011-04-19 2017-06-20 Ford Global Technologies, Llc System for determining hitch angle
US20140172232A1 (en) * 2011-04-19 2014-06-19 Ford Global Technologies, Llc Sensor system and method for monitoring trailer hitch angle
US10196088B2 (en) 2011-04-19 2019-02-05 Ford Global Technologies, Llc Target monitoring system and method
US9434414B2 (en) 2011-04-19 2016-09-06 Ford Global Technologies, Llc System and method for determining a hitch angle offset
US9513103B2 (en) 2011-04-19 2016-12-06 Ford Global Technologies, Llc Hitch angle sensor assembly
DE102011075545A1 (en) * 2011-05-10 2012-11-15 Robert Bosch Gmbh Method and device for checking a sensor signal and for controlling an occupant protection means of a vehicle
US9373044B2 (en) 2011-07-25 2016-06-21 Ford Global Technologies, Llc Trailer lane departure warning system
US20130186698A1 (en) * 2011-11-02 2013-07-25 Joseph Sarokhan Stair climbing wheeled vehicle, and system and method of making and using same
JP5644821B2 (en) 2012-08-29 2014-12-24 トヨタ自動車株式会社 Inverted motorcycle and control method thereof
CN104703871B (en) * 2012-10-16 2016-12-21 丰田自动车株式会社 inverted type moving body and control method thereof
CN205269008U (en) 2013-05-06 2016-06-01 未来动力公司 Electronic vehicle of electronic vehicle , electric skate board and self -balancing
US9845191B2 (en) 2013-08-02 2017-12-19 Oshkosh Corporation Ejector track for refuse vehicle
US9517668B2 (en) 2014-07-28 2016-12-13 Ford Global Technologies, Llc Hitch angle warning system and method
US9963004B2 (en) 2014-07-28 2018-05-08 Ford Global Technologies, Llc Trailer sway warning system and method
USD746928S1 (en) 2014-10-20 2016-01-05 Future Motion, Inc. Skateboard
CN207401118U (en) 2014-11-05 2018-05-25 未来动力公司 Electric vehicle
US9533683B2 (en) 2014-12-05 2017-01-03 Ford Global Technologies, Llc Sensor failure mitigation system and mode management
US9607242B2 (en) 2015-01-16 2017-03-28 Ford Global Technologies, Llc Target monitoring system with lens cleaning device
US9522699B2 (en) 2015-02-05 2016-12-20 Ford Global Technologies, Llc Trailer backup assist system with adaptive steering angle limits
US9616923B2 (en) 2015-03-03 2017-04-11 Ford Global Technologies, Llc Topographical integration for trailer backup assist system
US9804022B2 (en) 2015-03-24 2017-10-31 Ford Global Technologies, Llc System and method for hitch angle detection
US10252724B2 (en) 2015-09-24 2019-04-09 P&N Phc, Llc Portable two-wheeled self-balancing personal transport vehicle
US10611407B2 (en) 2015-10-19 2020-04-07 Ford Global Technologies, Llc Speed control for motor vehicles
US10384607B2 (en) 2015-10-19 2019-08-20 Ford Global Technologies, Llc Trailer backup assist system with hitch angle offset estimation
US9836060B2 (en) 2015-10-28 2017-12-05 Ford Global Technologies, Llc Trailer backup assist system with target management
US10017115B2 (en) 2015-11-11 2018-07-10 Ford Global Technologies, Llc Trailer monitoring system and method
US9796228B2 (en) 2015-12-17 2017-10-24 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system
US10011228B2 (en) 2015-12-17 2018-07-03 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system using multiple imaging devices
US9934572B2 (en) 2015-12-17 2018-04-03 Ford Global Technologies, Llc Drawbar scan solution for locating trailer hitch point
US10155478B2 (en) 2015-12-17 2018-12-18 Ford Global Technologies, Llc Centerline method for trailer hitch angle detection
US9827818B2 (en) 2015-12-17 2017-11-28 Ford Global Technologies, Llc Multi-stage solution for trailer hitch angle initialization
US9798953B2 (en) 2015-12-17 2017-10-24 Ford Global Technologies, Llc Template matching solution for locating trailer hitch point
US9610975B1 (en) 2015-12-17 2017-04-04 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system
US10005492B2 (en) 2016-02-18 2018-06-26 Ford Global Technologies, Llc Trailer length and hitch angle bias estimation
US10802495B2 (en) 2016-04-14 2020-10-13 Deka Products Limited Partnership User control device for a transporter
EP4194971A1 (en) * 2016-02-23 2023-06-14 DEKA Products Limited Partnership Method for establishing the center of gravity for a mobility device
US11399995B2 (en) 2016-02-23 2022-08-02 Deka Products Limited Partnership Mobility device
US10926756B2 (en) * 2016-02-23 2021-02-23 Deka Products Limited Partnership Mobility device
US10908045B2 (en) 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
US10112680B2 (en) 2016-03-07 2018-10-30 Future Motion, Inc. Thermally enhanced hub motor
US9598141B1 (en) 2016-03-07 2017-03-21 Future Motion, Inc. Thermally enhanced hub motor
EP4026529B1 (en) * 2016-05-20 2024-02-07 DEKA Products Limited Partnership Mobility device
CN211273514U (en) 2016-06-02 2020-08-18 未来动力公司 Electric vehicle
US10106193B2 (en) 2016-07-01 2018-10-23 Ford Global Technologies, Llc Enhanced yaw rate trailer angle detection initialization
USD837323S1 (en) 2018-01-03 2019-01-01 Razor Usa Llc Two wheeled board
USD840872S1 (en) 2016-07-20 2019-02-19 Razor Usa Llc Two wheeled board
USD941948S1 (en) 2016-07-20 2022-01-25 Razor Usa Llc Two wheeled board
USD807457S1 (en) 2016-07-20 2018-01-09 Razor Usa Llc Two wheeled board
USD803963S1 (en) 2016-07-20 2017-11-28 Razor Usa Llc Two wheeled board
US10046800B2 (en) 2016-08-10 2018-08-14 Ford Global Technologies, Llc Trailer wheel targetless trailer angle detection
USD830386S1 (en) 2016-09-30 2018-10-09 Deka Products Limited Partnership Computer display with transition screen
USD830384S1 (en) 2016-09-30 2018-10-09 Deka Products Limited Partnership Computer display with home screen
USD829740S1 (en) 2016-09-30 2018-10-02 Deka Products Limited Partnership Computer display with menu screen
USD830385S1 (en) 2016-09-30 2018-10-09 Deka Products Limited Partnership Computer display with selection screen
WO2018071552A1 (en) 2016-10-11 2018-04-19 Future Motion, Inc. Suspension system for one-wheeled vehicle
US10222804B2 (en) 2016-10-21 2019-03-05 Ford Global Technologies, Llc Inertial reference for TBA speed limiting
CN106379458A (en) * 2016-10-24 2017-02-08 美国锐哲有限公司 Self-balance car and control system thereof
US9999827B2 (en) 2016-10-25 2018-06-19 Future Motion, Inc. Self-balancing skateboard with strain-based controls and suspensions
USD821517S1 (en) 2017-01-03 2018-06-26 Future Motion, Inc. Skateboard
USD829612S1 (en) 2017-05-20 2018-10-02 Deka Products Limited Partnership Set of toggles
USD844622S1 (en) 2017-05-20 2019-04-02 Deka Products Limited Partnership Display housing cradle
USD846452S1 (en) 2017-05-20 2019-04-23 Deka Products Limited Partnership Display housing
US10668926B2 (en) * 2017-05-31 2020-06-02 Zoox, Inc. Vehicle operation with interchangeable drive modules
JP6786449B2 (en) * 2017-06-29 2020-11-18 ルネサスエレクトロニクス株式会社 Semiconductor device
US10710585B2 (en) 2017-09-01 2020-07-14 Ford Global Technologies, Llc Trailer backup assist system with predictive hitch angle functionality
WO2019109102A1 (en) 2017-12-01 2019-06-06 Future Motion, Inc. Control system for electric vehicles
US10010784B1 (en) 2017-12-05 2018-07-03 Future Motion, Inc. Suspension systems for one-wheeled vehicles
WO2019113537A1 (en) 2017-12-07 2019-06-13 Future Motion, Inc. Dismount controls for one-wheeled vehicle
CN209553392U (en) 2017-12-22 2019-10-29 美国锐哲有限公司 Electrodynamic balance vehicle
USD850552S1 (en) 2018-02-23 2019-06-04 Future Motion, Inc. Skateboard
USD843532S1 (en) 2018-02-23 2019-03-19 Future Motion, Inc. Skateboard
WO2019237031A1 (en) 2018-06-07 2019-12-12 Deka Products Limited Partnership System and method for distributed utility service execution
US11077795B2 (en) 2018-11-26 2021-08-03 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning
US11479311B2 (en) 2019-01-07 2022-10-25 Future Motion, Inc. Self-balancing systems for electric vehicles
US10456658B1 (en) 2019-02-11 2019-10-29 Future Motion, Inc. Self-stabilizing skateboard
US10829046B2 (en) 2019-03-06 2020-11-10 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning
USD881308S1 (en) 2019-03-11 2020-04-14 Future Motion, Inc. Fender for electric vehicle
USD888175S1 (en) 2019-03-11 2020-06-23 Future Motion, Inc. Electric vehicle front
USD890279S1 (en) 2019-03-11 2020-07-14 Future Motion, Inc. Electric vehicle with fender
USD881307S1 (en) 2019-03-11 2020-04-14 Future Motion, Inc. Fender for electric vehicle
USD897469S1 (en) 2019-03-11 2020-09-29 Future Motion, Inc. Foot pad for electric vehicle
USD890278S1 (en) 2019-03-11 2020-07-14 Future Motion, Inc. Electric vehicle
USD886929S1 (en) 2019-03-11 2020-06-09 Future Motion, Inc. Rear bumper for electric vehicle
USD890280S1 (en) 2019-03-11 2020-07-14 Future Motion, Inc. Rider detection sensor for electric vehicle
USD889577S1 (en) 2019-03-11 2020-07-07 Future Motion, Inc. Rotatable handle for electric vehicle
GB202000939D0 (en) 2020-01-22 2020-03-04 Mclaren Automotive Ltd Motor control unit
US12005340B2 (en) 2020-10-06 2024-06-11 Future Motion, Inc. Suspension systems for an electric skateboard
US11273364B1 (en) 2021-06-30 2022-03-15 Future Motion, Inc. Self-stabilizing skateboard
US11299059B1 (en) 2021-10-20 2022-04-12 Future Motion, Inc. Self-stabilizing skateboard
US11890528B1 (en) 2022-11-17 2024-02-06 Future Motion, Inc. Concave side rails for one-wheeled vehicles

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550267A (en) * 1983-02-18 1985-10-29 Sundstrand Corporation Redundant multiple channel electric motors and generators
US4948998A (en) 1989-01-10 1990-08-14 Honeywell Incorporated Electric motor
JPH0321118U (en) * 1989-07-07 1991-03-01
US5248007A (en) * 1989-11-21 1993-09-28 Quest Technologies, Inc. Electronic control system for stair climbing vehicle
US5044065A (en) 1990-05-24 1991-09-03 Black & Decker Inc. Coil winding armatures with parallel coils
DE4192435C1 (en) * 1990-10-03 2002-08-29 Hitachi Ltd Control for electric vehicle
JP3184210B2 (en) * 1990-10-03 2001-07-09 株式会社日立製作所 Electric car
JP3204968B2 (en) * 1990-10-12 2001-09-04 株式会社日立製作所 Electric vehicle control device
US5274554A (en) 1991-02-01 1993-12-28 The Boeing Company Multiple-voting fault detection system for flight critical actuation control systems
US5253724A (en) 1991-10-25 1993-10-19 Prior Ronald E Power wheelchair with transmission using multiple motors per drive wheel
DE4209915A1 (en) 1992-03-27 1993-09-30 Krueger Industrietechnik Joystick input device for computers - has optical prism at lower end within housing with electrical devices for transmission and reception of signals
DE69326083D1 (en) * 1992-04-28 1999-09-23 Dynamic Controls Ltd CONTROL DEVICE FOR ELECTRICALLY DRIVED VEHICLES
EP0577980B1 (en) * 1992-06-10 1997-09-10 Fuji Electric Co., Ltd. Ac variable speed driving apparatus and electric vehicle using the same
JP2884942B2 (en) * 1992-09-17 1999-04-19 株式会社日立製作所 Electric car control device
JP2861680B2 (en) * 1992-10-13 1999-02-24 株式会社日立製作所 Failure detection method for electric vehicles and fail-safe control method using the same
US5701965A (en) * 1993-02-24 1997-12-30 Deka Products Limited Partnership Human transporter
JPH076049A (en) * 1993-06-15 1995-01-10 Hitachi Ltd Interruption synchronization system for multiple processors
JPH076810U (en) * 1993-06-23 1995-01-31 三輪精機株式会社 Joystick malfunction prevention device
JP2502709Y2 (en) * 1993-06-30 1996-06-26 和研工業株式会社 Multi-directional control switch
DE4322397A1 (en) * 1993-07-01 1995-01-12 Geweu Ges Fuer Waerme Und Umwe Remote control for aids for the disabled and for rehabilitation patients
JP2763854B2 (en) * 1993-10-21 1998-06-11 株式会社日立製作所 Railway facility maintenance work management device
US5513716A (en) 1994-05-09 1996-05-07 Trustees Of The University Of Pennsylvania Adaptive mobility system
US5670856A (en) 1994-11-07 1997-09-23 Alliedsignal Inc. Fault tolerant controller arrangement for electric motor driven apparatus
JPH08166891A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Fault tolerant computer system
US5532476A (en) * 1994-12-21 1996-07-02 Mikan; Peter J. Redundant indicator for detecting neutral position of joystick member
US5615119A (en) 1995-06-07 1997-03-25 Aurora Flight Sciences Corporation Fault tolerant automatic control system utilizing analytic redundancy
JPH0944203A (en) * 1995-07-26 1997-02-14 Hitachi Ltd Redundancy control system
DE19529434B4 (en) * 1995-08-10 2009-09-17 Continental Teves Ag & Co. Ohg Microprocessor system for safety-critical regulations
US5929549A (en) 1998-04-02 1999-07-27 Pacific Scientific Company Fault tolerant electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515048A (en) * 2013-03-12 2016-05-26 ヴァムコ・インターナショナル・インコーポレイテッド Press machine
KR101811606B1 (en) 2016-08-16 2018-01-25 한국오므론전장 주식회사 Malfunction warning system of integrated memory system and method thereof

Also Published As

Publication number Publication date
JP4684418B2 (en) 2011-05-18
WO2000023315A3 (en) 2000-09-08
AU6266999A (en) 2000-05-08
CA2346442A1 (en) 2000-04-27
WO2000023315A2 (en) 2000-04-27
EP1123235B1 (en) 2004-11-24
DE69922239D1 (en) 2004-12-30
HK1039922B (en) 2005-04-01
CA2346442C (en) 2008-03-18
AU758135B2 (en) 2003-03-13
NO20011809L (en) 2001-05-09
NO20011809D0 (en) 2001-04-10
HK1039922A1 (en) 2002-05-17
DE69922239T2 (en) 2005-12-15
NO322294B1 (en) 2006-09-11
TW572840B (en) 2004-01-21
JP2003517340A (en) 2003-05-27
US6223104B1 (en) 2001-04-24
EP1123235A2 (en) 2001-08-16
JP2009187561A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5574610B2 (en) Fault tolerant design and safety assurance device for personal vehicles
US20210354570A1 (en) Mobility device control system
US6815919B2 (en) Accelerated startup for a balancing personal vehicle
EP1324911B1 (en) Control of a personal transporter
US6408240B1 (en) Traction control for a personal transporter
US6796396B2 (en) Personal transporter
US6288505B1 (en) Motor amplifier and control for a personal transporter
US6581714B1 (en) Steering control of a personal transporter
AU2002211908A1 (en) Control of a personal transporter
MXPA01004018A (en) Fault tolerant architecture for a personal vehicle
KR100911065B1 (en) Apparatus and method for providing a user with accelerated access to operation of a balancing personal transporter
NZ541109A (en) Steering control for a personal transporter with yaw control based upon amplification of error detection and control action

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140131

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term