JP5574362B2 - Alkaline secondary battery - Google Patents

Alkaline secondary battery Download PDF

Info

Publication number
JP5574362B2
JP5574362B2 JP2010012934A JP2010012934A JP5574362B2 JP 5574362 B2 JP5574362 B2 JP 5574362B2 JP 2010012934 A JP2010012934 A JP 2010012934A JP 2010012934 A JP2010012934 A JP 2010012934A JP 5574362 B2 JP5574362 B2 JP 5574362B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
separator
cadmium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010012934A
Other languages
Japanese (ja)
Other versions
JP2011150963A (en
Inventor
敦哉 古市
哲也 菊池
正樹 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010012934A priority Critical patent/JP5574362B2/en
Publication of JP2011150963A publication Critical patent/JP2011150963A/en
Application granted granted Critical
Publication of JP5574362B2 publication Critical patent/JP5574362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はニッケル−カドミウム蓄電池などのアルカリ二次電池に係わり、特に、電極基板にカドミウム活物質が塗布された非焼結式カドミウム負極を備えたアルカリ二次電池に関する。   The present invention relates to an alkaline secondary battery such as a nickel-cadmium storage battery, and more particularly to an alkaline secondary battery including a non-sintered cadmium negative electrode having a cadmium active material applied to an electrode substrate.

近年、大電流を必要とする電動工具等の駆動用電源として、ニッケル−カドミウム蓄電池に代表されるアルカリ二次電池が広く用いられるようになった。ここで、ニッケル−カドミウム蓄電池においては、水酸化ニッケルを正極活物質とするニッケル正極と、水酸化カドミウムや金属カドミウムを負極活物質とするカドミウム負極と、これらのニッケル正極とカドミウム負極とを隔離するセパレータと、水酸化カリウム水溶液などからなるアルカリ電解液とにより構成されている。   In recent years, alkaline secondary batteries represented by nickel-cadmium storage batteries have been widely used as power sources for driving electric tools and the like that require a large current. Here, in a nickel-cadmium storage battery, a nickel positive electrode using nickel hydroxide as a positive electrode active material, a cadmium negative electrode using cadmium hydroxide or metal cadmium as a negative electrode active material, and the nickel positive electrode and the cadmium negative electrode are isolated. It is comprised by the separator and the alkaline electrolyte which consists of potassium hydroxide aqueous solution.

上述したカドミウム負極においては、焼結式カドミウム負極と非焼結式カドミウム負極のどちらか一方が用いられている。ここで、焼結式カドミウム負極は、パンチングメタルからなる金属芯体上にニッケル粉末を主原料とするスラリーを塗布し、不活性雰囲気下で焼結して作製されたニッケル焼結基板に、硝酸カドミウムを含浸して作製されるものである。一方、非焼結式カドミウム負極は、パンチングメタルからなる金属基板上に直接酸化カドミウムと金属カドミウムから成る活物質ぺ−ストを塗布して作製されるものである。   In the cadmium negative electrode described above, either a sintered cadmium negative electrode or a non-sintered cadmium negative electrode is used. Here, the sintered cadmium negative electrode is formed by applying a slurry containing nickel powder as a main raw material on a metal core made of punching metal, and sintering it in an inert atmosphere. It is made by impregnating cadmium. On the other hand, the non-sintered cadmium negative electrode is produced by directly applying an active material paste made of cadmium oxide and metal cadmium on a metal substrate made of punching metal.

ところで、近年、ニッケル価格の高騰化の影響により、焼結式カドミウム負極のコスト増加が懸念されるようになった。このため、ニッケル使用量を低減化するためにニッケル焼結基板を用いることなく、電動工具の用途にも用いることができかつ焼結式カドミウム負極に比較して低コストで作製することが可能である非焼結式カドミウム負極の開発が急務になった。そこで、非焼結式カドミウム負極の容量密度を高めるために、活物質の充填密度を3.4g/cm3とすることが、例えば、特許文献1(特開2007−273416号公報)にて提案されるようになった。 By the way, in recent years, there has been a concern about an increase in the cost of the sintered cadmium negative electrode due to the rise in the price of nickel. For this reason, it can be used for power tool applications without using a nickel sintered substrate to reduce the amount of nickel used, and can be manufactured at a lower cost than a sintered cadmium negative electrode. The development of a non-sintered cadmium negative electrode became urgent. Therefore, in order to increase the capacity density of the non-sintered cadmium negative electrode, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2007-273416) proposes that the packing density of the active material be 3.4 g / cm 3. It came to be.

特開2007−273416号公報JP 2007-273416 A

しかしながら、特許文献1にて提案されるように、非焼結式カドミウム負極の容量密度を高めても、焼結式カドミウム負極に比較して、プ口用の電動工具の用途などで求められる高率放電特性に弱く、特に、低温の温度環境下では、この差がより顕著に現れるという問題があった。この場合、低温の温度環境下で高率放電特性が得られるようにするためには、非焼結式カドミウム負極により多くのアルカリ電解液を保持させておく必要がある。ここで、密閉状態(電解液量の制限条件下)では、負極の活物質の充填密度を低くして非焼結式カドミウム負極でのアルカリ電解液の保液量を増加させるようにすれば、低温での放電反応が向上することとなる。   However, as proposed in Patent Document 1, even if the capacity density of the non-sintered cadmium negative electrode is increased, it is required to be used in applications such as power tools for plugs as compared with the sintered cadmium negative electrode. There is a problem that this difference appears more conspicuously in a low temperature environment, particularly in the rate discharge characteristics. In this case, in order to obtain a high rate discharge characteristic under a low temperature environment, it is necessary to hold a large amount of alkaline electrolyte in the non-sintered cadmium negative electrode. Here, in a sealed state (under the condition of limiting the amount of electrolyte), if the negative electrode active material filling density is lowered to increase the amount of alkaline electrolyte retained in the non-sintered cadmium negative electrode, The discharge reaction at a low temperature will be improved.

ところが、非焼結式カドミウム負極の活物質の充填密度を低くしても、組み合せるセパレータの保液率が電池の充放電反応中で一定でない場合には、非焼結式カドミウム負極での電解液の保液量が変化(充放電反応を繰り返すに伴って減少する)し、期待するような低温での高率放電特性を得ることができないという問題を生じた。
そこで、本発明は上記問題点を解消するためになされたものであって、適正な活物質の充填密度の非焼結式カドミウム負極と適正な引張強度を有するセパレータを用いるようにして、低温での高率放電特性に優れたアルカリ二次電池を提供することを目的とするものである。
However, even if the packing density of the active material of the non-sintered cadmium negative electrode is lowered, if the liquid retention rate of the separator to be combined is not constant during the charge / discharge reaction of the battery, electrolysis at the non-sintered cadmium negative electrode The liquid retention amount changed (decreased as the charge / discharge reaction was repeated), resulting in a problem that high-rate discharge characteristics at a low temperature as expected could not be obtained.
Therefore, the present invention has been made to solve the above-described problems, and uses a non-sintered cadmium negative electrode having an appropriate active material filling density and a separator having an appropriate tensile strength at a low temperature. It is an object of the present invention to provide an alkaline secondary battery having excellent high rate discharge characteristics.

上記目的を達成するため、本発明のアルカリ二次電池は、電極基板にカドミウム活物質が塗布された非焼結式カドミウム負極と、正極と、これらの非焼結式カドミウム負極と正極とを隔離するセパレータと、アルカリ電解液とを外装缶内に備えるとともに、セパレータは35N/mm2以上の引張強度を有しており、かつ非焼結式カドミウム負極は活物質の充填密度が3.05g/ml以下であることを特徴とする。 In order to achieve the above object, the alkaline secondary battery of the present invention separates a non-sintered cadmium negative electrode having a cadmium active material applied to an electrode substrate, a positive electrode, and the non-sintered cadmium negative electrode and the positive electrode. And an alkaline electrolyte in the outer can, the separator has a tensile strength of 35 N / mm 2 or more, and the non-sintered cadmium negative electrode has an active material filling density of 3.05 g / It is characterized by being less than ml.

ここで、セパレータでの保液率の維持に関連する物性として、セパレータの引張強度が挙げられる。これは、引張強度が高いセパレータは、充放電時の正極膨化による体積変化の影響を受け難いため、その厚みを維持できるようになるからである。このため、引張強度が高いセパレータは、アルカリ電解液を安定に保持できると考えられる。この場合、引張強度が35N/mm2以上であるセパレータを用いると、低温での高率放電特性を得ることが可能であることが明らかになった。なお、セパレータの引張強度が60N/mm2を越えるように大きくなると、セパレータの厚みが厚くなることによる生産性低下(巻取体の外径寸法の過大に起因する外装缶への挿入不良の発生など)を招くようになるため、その上限値は60N/mm2とするのが望ましい。 Here, the tensile strength of a separator is mentioned as a physical property relevant to the maintenance of the liquid retention rate in a separator. This is because a separator having a high tensile strength is less susceptible to volume changes due to the expansion of the positive electrode during charge and discharge, and thus can maintain its thickness. For this reason, it is thought that the separator with high tensile strength can hold | maintain alkaline electrolyte stably. In this case, it was revealed that a high rate discharge characteristic at a low temperature can be obtained by using a separator having a tensile strength of 35 N / mm 2 or more. In addition, when the tensile strength of the separator is increased to exceed 60 N / mm 2 , the productivity decreases due to the increase in the thickness of the separator (occurrence of poor insertion into the outer can due to the excessive outer diameter of the winding body) The upper limit is preferably 60 N / mm 2 .

一方、アルカリ電解液の注液量を制限して密閉状態としたアルカリ二次電池においては、負極活物質の充填密度を低くすると、非焼結式カドミウム負極でのアルカリ電解液の保液量が増加して低温での放電反応が良好となる。そして、その負極活物質の充填密度を検討した結果、引張強度が35N/mm2以上であるセパレータを用いた場合には、活物質の充填密度が3.05g/ml以下であると、低温での高率放電特性を得ることが可能であることが明らかになった。なお、活物質の充填密度が2.20g/ml未満のように低充填密度になると、活物質の脱落が生じるようになる。このため、その下限値は2.20g/mlとするのが望ましい。 On the other hand, in alkaline secondary batteries that are sealed by limiting the amount of injected alkaline electrolyte, reducing the filling density of the negative electrode active material reduces the amount of alkaline electrolyte retained in the non-sintered cadmium negative electrode. The discharge reaction at low temperature is improved. As a result of examining the packing density of the negative electrode active material, when a separator having a tensile strength of 35 N / mm 2 or more is used, the packing density of the active material is 3.05 g / ml or less at a low temperature. It has become clear that high rate discharge characteristics can be obtained. Note that when the packing density of the active material is low such that it is less than 2.20 g / ml, the active material comes off. For this reason, the lower limit is desirably 2.20 g / ml.

本発明においては、適正な引張強度を有するセパレータと、適正な活物質の充填密度の非焼結式カドミウム負極とを用いるようにしているので、低温での高率放電特性に優れたアルカリ二次電池を提供することが可能となる。   In the present invention, since a separator having an appropriate tensile strength and a non-sintered cadmium negative electrode having an appropriate active material filling density are used, an alkaline secondary having excellent high-rate discharge characteristics at low temperatures. A battery can be provided.

本発明のアルカリ二次電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline secondary battery of this invention typically. 負極活物質の充填密度(g/ml)と−10℃での高率放電容量(mAh)との関係を示すグラフである。It is a graph which shows the relationship between the packing density (g / ml) of a negative electrode active material, and the high rate discharge capacity (mAh) in -10 degreeC.

ついで、本発明のアルカリ二次電池の一実施の形態を図1、図2に基づいて以下に詳細に説明するが、本発明は以下の実施の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Next, an embodiment of the alkaline secondary battery of the present invention will be described in detail below based on FIG. 1 and FIG. 2, but the present invention is not limited to the following embodiment at all, and the gist thereof It is possible to carry out by appropriately changing within the range not changing.

1.カドミウム負極
カドミウム負極11は、パンチングメタルからなる極板芯体11aの両面に酸化カドミウムを主体とする活物質と導電剤と結着剤とからなる負極活物質ペーストを塗布、乾燥、圧延した後、アルカリ水溶液中に浸漬させ、酸化カドミウムを水酸化カドミウムに反応させる水和処理を行い、更に乾燥、圧延して所定の充填密度になるようにして作製した。ついで、所定の寸法になるように切断することにより作製されている。なお、作製後のカドミウム負極11の下端部には極板芯体11aが露出していて、後に、この露出した極板芯体11aに負極集電体11bが溶接されることとなる。
1. Cadmium Negative Electrode Cadmium negative electrode 11 is formed by applying, drying and rolling a negative electrode active material paste composed of an active material mainly composed of cadmium oxide, a conductive agent and a binder on both surfaces of an electrode plate core 11a composed of a punching metal. It was immersed in an alkaline aqueous solution, subjected to a hydration treatment in which cadmium oxide was reacted with cadmium hydroxide, further dried and rolled to produce a predetermined packing density. Next, it is manufactured by cutting to a predetermined size. In addition, the electrode plate core 11a is exposed at the lower end portion of the cadmium negative electrode 11 after fabrication, and the electrode collector 11b is welded to the electrode plate core 11a that is exposed later.

ここで、負極活物質の充填密度が2.85g/mlになるように塗布・圧延・乾燥されたものを負極x1とした。また、同様に、充填密度が3.05g/mlになるように塗布・圧延・乾燥されたものを負極x2とし、充填密度が3.20g/mlになるように塗布・圧延・乾燥されたものを負極x3とした。なお、本実施例のカドミウム負極では水和処理を行っているが、水和処理を行わないカドミウム負極を用いることもできる。その場合、負極活物質の充填密度は、アルカリ二次電池作製後に充放電を行った後の充填密度のことをいう。   Here, the negative electrode x1 was applied, rolled and dried so that the packing density of the negative electrode active material was 2.85 g / ml. Similarly, the negative electrode x2 is applied, rolled and dried so that the packing density is 3.05 g / ml, and is applied, rolled and dried so that the packing density is 3.20 g / ml. Was negative electrode x3. In addition, although the cadmium negative electrode of a present Example has performed the hydration process, the cadmium negative electrode which does not perform a hydration process can also be used. In that case, the packing density of the negative electrode active material refers to the packing density after charging / discharging after the preparation of the alkaline secondary battery.

2.ニッケル正極
ニッケル正極12は、極板芯体12aに水酸化ニッケルを主体とする正極活物質が所定の充填密度になるように塗布され、乾燥後、所定の厚みになるまで圧延された後、所定の寸法になるように切断することにより作製されている。なお、作製後のニッケル正極板12の上端部には極板芯体12aが露出していて、後に、この露出した極板芯体12aに正極集電体12bが溶接されることとなる。
2. Nickel positive electrode The nickel positive electrode 12 is applied to the electrode plate core 12a so that a positive electrode active material mainly composed of nickel hydroxide has a predetermined packing density, dried, rolled to a predetermined thickness, It is produced by cutting so as to have a dimension of In addition, the electrode plate core body 12a is exposed at the upper end portion of the nickel positive electrode plate 12 after fabrication, and the cathode current collector 12b is welded to the exposed electrode plate core body 12a later.

3.セパレータ
ナイロン製不織布を所定の寸法になるように切断してセパレータ13を作製した。この場合、セパレータ13の引張強度が41N/mm2になるように作製されたものをセパレータy1とした。また、同様に、引張強度が35N/mm2になるように作製されたものをセパレータy2とし、引張強度が24N/mm2になるように作製されたものをセパレータy3とした。なお、セパレータ13の引張強度は以下のようにして測定されたものである。即ち、50・200mmの試料片(セパレータ)をつかみ間隔100mm、引張速度300mm/minで試験片が切断したときの引張強度(N/mm2)を測定した。
3. Separator A nylon 13 non-woven fabric was cut to a predetermined size to produce a separator 13. In this case, the separator y1 was prepared so that the separator 13 had a tensile strength of 41 N / mm 2 . Similarly, the tensile strength and the separator y2 to those made to be 35N / mm 2, those tensile strength is produced so as to 24N / mm 2 and a separator y3. The tensile strength of the separator 13 is measured as follows. That is, the tensile strength (N / mm 2 ) when a 50 × 200 mm sample piece (separator) was gripped and the test piece was cut at a spacing of 100 mm and a tensile speed of 300 mm / min was measured.

4.渦巻状電極群
これらのカドミウム負極11とニッケル正極12との間に、ナイロン製不織布からなるセパレータ13を介在させて重ね合わせ、渦巻状に巻回することにより渦巻状電極群となされている。この場合、カドミウム負極11の露出した極板芯体11aがセパレータ13の下端部より突出し、ニッケル正極12の露出した極板芯体12aがセパレータ13の上端部より突出するように積層して配置した後、渦巻状に巻回するようになされている。なお、渦巻状電極群の中心部には、巻芯軸が除去されて形成された空間部を備えている。
4). Spiral electrode group A separator 13 made of a nonwoven fabric made of nylon is interposed between the cadmium negative electrode 11 and the nickel positive electrode 12, and a spiral electrode group is formed by winding in a spiral shape. In this case, the electrode plate core body 11a where the cadmium negative electrode 11 is exposed protrudes from the lower end portion of the separator 13, and the electrode plate core body 12a where the nickel positive electrode 12 is exposed protrudes from the upper end portion of the separator 13. After that, it is designed to be spirally wound. Note that a central portion of the spiral electrode group is provided with a space formed by removing the core shaft.

5.密閉型ニッケル−カドミウム蓄電池
ついで、上述のようにして作製されたカドミウム負極11(x1,x2,x3)およびニッケル正極12と、セパレータ13(y1,y2,y3)とを用いて渦巻状電極群をそれぞれ作製した。この場合、セパレータ13(y1,y2,y3のいずれか)を介してカドミウム負極11(x1,x2,x3のいずれか)とニッケル正極12とが対向するように渦巻状に巻回した。ついで、渦巻状電極群の下部に延出する極板芯体11aに負極集電体11bを抵抗溶接するとともに、渦巻状電極群の上部に延出する極板芯体12aに正極集電体12bを抵抗溶接して渦巻状電極体をそれぞれ作製した。
5. Sealed Nickel-Cadmium Storage Battery Next, a spiral electrode group is formed using the cadmium negative electrode 11 (x1, x2, x3) and the nickel positive electrode 12 manufactured as described above, and the separator 13 (y1, y2, y3). Each was produced. In this case, the cadmium negative electrode 11 (any one of x1, x2, and x3) and the nickel positive electrode 12 were wound in a spiral shape via the separator 13 (any one of y1, y2, and y3). Next, the negative electrode current collector 11b is resistance-welded to the electrode plate core 11a extending to the lower part of the spiral electrode group, and the positive electrode current collector 12b to the electrode plate core 12a extending to the upper part of the spiral electrode group. A spiral electrode body was produced by resistance welding.

ついで、鉄にニッケルメッキを施した有底円筒形の金属製外装缶15内に渦巻状電極体を挿入した後、負極集電体11bと金属外装缶15の底部をスポット溶接した。一方、正極キャップ17bと蓋体17aとからなる封口体17を用意し、正極集電体12bに設けられたリード部12cを蓋体底部17cに接触させて、蓋体底部17cとリード部12cとを溶接した。   Next, after inserting the spiral electrode body into the bottomed cylindrical metal outer can 15 in which iron was plated with nickel, the negative electrode current collector 11b and the bottom of the metal outer can 15 were spot welded. On the other hand, a sealing body 17 composed of a positive electrode cap 17b and a lid body 17a is prepared, and the lead portion 12c provided on the positive electrode current collector 12b is brought into contact with the lid body bottom portion 17c so that the lid body bottom portion 17c and the lead portion 12c Welded.

この後、渦巻状電極体の上端面に防振リング14を挿入し、外装缶15の上部外周面に溝入れ加工を施して、防振リング14の上端部に環状溝部15aを形成した。この後、金属製外装缶15内に電解液(濃度が30質量%の水酸化カリウム(KOH)水溶液)を注液し、封口体17を封口ガスケット16を介して外装缶15の環状溝部15aに載置するとともに、外装缶15の先端部を封口体側にカシメて封口して、公称容量が1200mAhのニッケル−カドミウム蓄電池10(A1,A2,A3,B1,B2,B3,C1,C2,C3)をそれぞれ作製した。   Thereafter, the vibration isolating ring 14 was inserted into the upper end surface of the spiral electrode body, and the upper outer peripheral surface of the outer can 15 was grooved to form an annular groove 15 a at the upper end portion of the vibration isolating ring 14. Thereafter, an electrolytic solution (potassium hydroxide (KOH) aqueous solution having a concentration of 30 mass%) is injected into the metal outer can 15, and the sealing body 17 is inserted into the annular groove 15 a of the outer can 15 via the sealing gasket 16. The nickel-cadmium storage battery 10 having a nominal capacity of 1200 mAh (A1, A2, A3, B1, B2, B3, C1, C2, C3) is mounted and the front end of the outer can 15 is caulked and sealed to the sealing body side. Were prepared.

ここで、引張強度が41N/mm2のセパレータ13を用いるとともに、負極x1(活物質充填密度が2.85g/mlのもの)を用いて作製したものを電池A1とし、負極x2(活物質充填密度が3.05g/mlのもの)を用いて作製したものを電池A2とし、負極x3(活物質充填密度が3.20g/mlのもの)を用いて作製したものを電池A3とした。 Here, the separator 13 having a tensile strength of 41 N / mm 2 was used, and the battery A1 was prepared using the negative electrode x1 (active material filling density was 2.85 g / ml), and the negative electrode x2 (active material filling). A battery A2 having a density of 3.05 g / ml) and a battery A3 having a negative electrode x3 (having an active material filling density of 3.20 g / ml) were used.

また、引張強度が35N/mm2のセパレータ13を用いるとともに、負極x1(活物質充填密度が2.85g/mlのもの)を用いて作製したものを電池B1とし、負極x2(活物質充填密度が3.05g/mlのもの)を用いて作製したものを電池B2とし、負極x3(活物質充填密度が3.20g/mlのもの)を用いて作製したものを電池B3とした。 A separator 13 having a tensile strength of 35 N / mm 2 and a negative electrode x1 (active material filling density of 2.85 g / ml) was used as battery B1, and negative electrode x2 (active material filling density). Manufactured with a negative electrode x3 (with an active material filling density of 3.20 g / ml) was referred to as a battery B3.

さらに、引張強度が24N/mm2のセパレータ13を用いるとともに、負極x1(活物質充填密度が2.85g/mlのもの)を用いて作製したものを電池C1とし、負極x2(活物質充填密度が3.05g/mlのもの)を用いて作製したものを電池C2とし、負極x3(活物質充填密度が3.20g/mlのもの)を用いて作製したものを電池C3とした。 Further, a separator 13 having a tensile strength of 24 N / mm 2 and a negative electrode x1 (active material filling density of 2.85 g / ml) was used as battery C1, and negative electrode x2 (active material filling density). Produced with the use of a negative electrode x3 (with an active material filling density of 3.20 g / ml) was designated as a battery C3.

5.電池特性試験
ついで、以上のようにして作製された各ニッケル−カドミウム蓄電池A1〜A3,B1〜B3,C1〜C3を用いて、これらの各電池を常温(約25℃)下で、1.2Aの充電電流で充電し、ピーク電圧を越えた後に電池電圧が10mV低下した時点で充電を停止(−ΔV方式)した。ついで、−10℃の温度環境下で、3時間休止した後、10Aの放電電流で電池電圧が0.8Vになるまで放電させて、放電時間から−10℃での10A放電時の放電容量(−10℃での高率放電容量)を求めると、下記の表1に示すような結果が得られた。また、表1の結果に基づいて負極活物質の充填密度(g/ml)を横軸とし、−10℃での高率放電容量(mAh)を縦軸にしてグラフに表すと、図2に示すような結果が得られた。

Figure 0005574362
5. Battery characteristics test Next, using each of the nickel-cadmium storage batteries A1 to A3, B1 to B3, and C1 to C3 produced as described above, each of these batteries was subjected to 1.2 A at room temperature (about 25 ° C.). When the battery voltage dropped by 10 mV after exceeding the peak voltage, charging was stopped (-ΔV method). Next, after resting for 3 hours in a temperature environment of −10 ° C., the battery was discharged with a discharge current of 10 A until the battery voltage became 0.8 V, and the discharge capacity at the time of 10 A discharge at −10 ° C. from the discharge time ( When the high rate discharge capacity at −10 ° C. was determined, the results shown in Table 1 below were obtained. Further, when the negative electrode active material packing density (g / ml) is plotted on the horizontal axis and the high-rate discharge capacity (mAh) at −10 ° C. is plotted on the vertical axis based on the results of Table 1, FIG. The results shown were obtained.
Figure 0005574362

上記表1および図2の結果から明らかなように、引張強度が24N/mm2のセパレータy3を用いた電池C1,C2,C3においては、負極活物質の充填密度が低下しても−10℃での高率放電容量が増加しない傾向にあることが分かる。これは、24N/mm2と引張強度が弱いセパレータを用いると、充放電時の正極膨化による体積変化の影響を受けて、その厚みを維持できなくなって、アルカリ電解液を安定に保液できなくなったためと考えられる。この結果、負極活物質の充填密度を低下させたにも係わらず、−10℃での高率放電容量が増加しなかったと考えられる。 As is apparent from the results of Table 1 and FIG. 2, in the batteries C1, C2, and C3 using the separator y3 having a tensile strength of 24 N / mm 2 , even if the negative electrode active material packing density is decreased, the temperature is −10 ° C. It can be seen that the high-rate discharge capacity does not increase. This is because when a separator with a weak tensile strength of 24 N / mm 2 is used, the thickness cannot be maintained due to the influence of the volume change due to the positive electrode expansion during charging and discharging, and the alkaline electrolyte cannot be stably retained. It is thought that it was because of. As a result, it is considered that the high-rate discharge capacity at −10 ° C. did not increase despite the decrease in the packing density of the negative electrode active material.

一方、引張強度が41N/mm2のセパレータy1を用いた電池A1,A2,A3においては、負極活物質の充填密度が低下するに伴って−10℃での高率放電容量が増加する傾向にあることが分かる。また、引張強度が35N/mm2のセパレータy2を用いた電池B1,B2,B3においても、負極活物質の充填密度が低下するに伴って−10℃での高率放電容量が増加する傾向にあることが分かる。これは、引張強度が高いセパレータを用いると、充放電時の正極膨化による体積変化の影響を受け難くなるため、その厚みを維持できるようになり、セパレータがアルカリ電解液を安定に保持できるようになることで、負極活物質の充填密度の低下に伴い、非焼結式カドミウム負極のアルカリ電解液の保液量が増加して低温での放電反応がより良好になるためと考えられる。 On the other hand, in the batteries A1, A2, and A3 using the separator y1 having a tensile strength of 41 N / mm 2 , the high rate discharge capacity at −10 ° C. tends to increase as the packing density of the negative electrode active material decreases. I understand that there is. Also in the batteries B1, B2, and B3 using the separator y2 having a tensile strength of 35 N / mm 2 , the high rate discharge capacity at −10 ° C. tends to increase as the packing density of the negative electrode active material decreases. I understand that there is. This is because when a separator with high tensile strength is used, it becomes difficult to be affected by the volume change due to the expansion of the positive electrode during charging and discharging, so that the thickness can be maintained and the separator can stably hold the alkaline electrolyte. Thus, it is considered that as the filling density of the negative electrode active material decreases, the amount of the alkaline electrolyte solution of the non-sintered cadmium negative electrode increases, and the discharge reaction at a low temperature becomes better.

この場合、引張強度が35N/mm2以上であるセパレータを用いた場合には、負極活物質の充填密度が3.05g/ml以下であると、低温での高率放電特性を得ることが可能である。なお、セパレータの引張強度が60N/mm2を越えるように大きくなると、セパレータの厚みが厚くなることによる生産性低下(巻取体の外径寸法の過大に起因する外装缶への挿入不良の発生など)を招くようになるため、その上限値は60N/mm2とするのが望ましい。また、活物質の充填密度が2.20g/ml未満のように低充填密度になると、活物質の脱落が生じるようになるので、その下限値は2.20g/mlとするのが望ましい。 In this case, when a separator having a tensile strength of 35 N / mm 2 or more is used, a high rate discharge characteristic at a low temperature can be obtained when the packing density of the negative electrode active material is 3.05 g / ml or less. It is. In addition, when the tensile strength of the separator is increased to exceed 60 N / mm 2 , the productivity decreases due to the increase in the thickness of the separator (occurrence of poor insertion into the outer can due to the excessive outer diameter of the winding body) The upper limit is preferably 60 N / mm 2 . Further, when the packing density of the active material is low, such as less than 2.20 g / ml, the active material comes off, so the lower limit is preferably 2.20 g / ml.

以上の結果から、低温での高率放電特性を向上させるためには、引張強度35N/mm2以上のセパレータを用いるとともに、負極活物質の充填密度を3.05g/ml以下にする必要があるということができる。望ましくは、セパレータの引張強度は35N/mm2以上、60N/mm2以下であり、カドミウム負極は活物質の充填密度が2.20g/ml以上、3.05g/ml以下であるのが好ましいということができる。 From the above results, in order to improve the high rate discharge characteristics at low temperature, it is necessary to use a separator having a tensile strength of 35 N / mm 2 or more and to set the packing density of the negative electrode active material to 3.05 g / ml or less. It can be said. Desirably, the tensile strength of the separator is 35N / mm 2 or more and 60N / mm 2 or less, cadmium negative electrode packing density of the active material 2.20 g / ml or more, that preferably not more than 3.05 g / ml be able to.

なお、上述した実施の形態においては、本発明をニッケル−カドミウム蓄電池に適用する例について説明したが、本発明はニッケル−カドミウム蓄電池以外にも、カドミウムを負極活物質とする他のアルカリ蓄電池に適用しても同様の効果が得られることは明らかである。   In the above-described embodiment, the example in which the present invention is applied to a nickel-cadmium storage battery has been described. However, the present invention is applicable to other alkaline storage batteries using cadmium as a negative electrode active material in addition to the nickel-cadmium storage battery. However, it is clear that the same effect can be obtained.

10・アルカリ二次電池、11・カドミウム負極、11a・極板芯体、11b・負極集電体、12・ニッケル正極、12a・極板芯体、12b・正極集電体、12c・リード部、13・セパレータ、14・防振リング、15・金属製外装缶、15a・環状溝部、16・封口ガスケット、17・封口体、17a・蓋体、17b・正極キャップ、17c・蓋体底部 10, alkaline secondary battery, 11 cadmium negative electrode, 11a electrode plate core, 11b negative electrode current collector, 12 nickel positive electrode, 12a electrode plate core, 12b positive electrode current collector, 12c lead part, 13 · Separator, 14 · Anti-vibration ring, 15 · Metal outer can, 15a · Annular groove, 16 · Sealing gasket, 17 · Sealing body, 17a · Lid, 17b · Positive electrode cap, 17c · Bottom of lid

Claims (1)

電極基板にカドミウム活物質が塗布されたカドミウム負極と、正極と、これらのカドミウム負極と正極とを隔離するセパレータと、アルカリ電解液とを外装缶内に備えたアルカリ二次電池であって、
前記セパレータは35N/mm2以上、60N/mm 2 以下の引張強度を有しており、
前記カドミウム負極は活物質の充填密度が2.20g/ml以上、3.05g/ml以下であることを特徴とするアルカリ二次電池。
An alkaline secondary battery comprising a cadmium negative electrode coated with a cadmium active material on an electrode substrate, a positive electrode, a separator separating these cadmium negative electrode and positive electrode, and an alkaline electrolyte in an outer can,
The separator 35N / mm 2 or more, has a 60N / mm 2 or less of the tensile strength,
The cadmium negative electrode has an active material filling density of 2.20 g / ml or more and 3.05 g / ml or less.
JP2010012934A 2010-01-25 2010-01-25 Alkaline secondary battery Active JP5574362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012934A JP5574362B2 (en) 2010-01-25 2010-01-25 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012934A JP5574362B2 (en) 2010-01-25 2010-01-25 Alkaline secondary battery

Publications (2)

Publication Number Publication Date
JP2011150963A JP2011150963A (en) 2011-08-04
JP5574362B2 true JP5574362B2 (en) 2014-08-20

Family

ID=44537770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012934A Active JP5574362B2 (en) 2010-01-25 2010-01-25 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP5574362B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140566A (en) * 1987-11-26 1989-06-01 Furukawa Battery Co Ltd:The Sealed type alkaline battery
JP3142693B2 (en) * 1993-09-07 2001-03-07 帝人株式会社 Battery separator and manufacturing method thereof
JP2003338313A (en) * 2002-05-22 2003-11-28 Sanyo Electric Co Ltd Alkaline storage battery
JP2004303484A (en) * 2003-03-28 2004-10-28 Sanyo Electric Co Ltd Sealed battery
JP2006269384A (en) * 2005-03-25 2006-10-05 Mitsubishi Paper Mills Ltd Separator for alkaline battery

Also Published As

Publication number Publication date
JP2011150963A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5196938B2 (en) Alkaline storage battery system
JP5207750B2 (en) Alkaline storage battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5849768B2 (en) Alkaline storage battery and alkaline storage battery system
JP5574362B2 (en) Alkaline secondary battery
JP2006012839A (en) Alkaline battery having improved lifetime
JP5655808B2 (en) Cylindrical alkaline storage battery
JP5213312B2 (en) Alkaline storage battery
JP2015122276A (en) Cylindrical battery
JP2004281289A (en) Alkaline storage battery
JP4752401B2 (en) Manufacturing method of cylindrical alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2011129463A (en) Cadmium anode for alkaline secondary battery
JP5790383B2 (en) Alkaline storage battery
JP5998549B2 (en) Alkaline storage battery
JP2010073537A (en) Alkaline secondary battery
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP2009238447A (en) Cylindrical alkaline storage battery
JP2011171220A (en) Alkaline storage battery
JP2011210397A (en) Alkaline storage battery
JP2012178296A (en) Alkaline storage battery
JP6232722B2 (en) Nickel-cadmium storage battery
JP2013206745A (en) Cylindrical storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R150 Certificate of patent or registration of utility model

Ref document number: 5574362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350