JP5572222B2 - Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material - Google Patents

Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material Download PDF

Info

Publication number
JP5572222B2
JP5572222B2 JP2012541932A JP2012541932A JP5572222B2 JP 5572222 B2 JP5572222 B2 JP 5572222B2 JP 2012541932 A JP2012541932 A JP 2012541932A JP 2012541932 A JP2012541932 A JP 2012541932A JP 5572222 B2 JP5572222 B2 JP 5572222B2
Authority
JP
Japan
Prior art keywords
solvent
solution
lithium ion
liquid phase
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012541932A
Other languages
Japanese (ja)
Other versions
JP2013512345A (en
Inventor
ミュン シン、シュン
グ カン、ジン
ホ ジュ、スン
クウォン チャン、ハン
スー ソーン、ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Geoscience and Mineral Resources KIGAM
Original Assignee
Korea Institute of Geoscience and Mineral Resources KIGAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Geoscience and Mineral Resources KIGAM filed Critical Korea Institute of Geoscience and Mineral Resources KIGAM
Publication of JP2013512345A publication Critical patent/JP2013512345A/en
Application granted granted Critical
Publication of JP5572222B2 publication Critical patent/JP5572222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は、廃電池物質からのコバルト及びマンガンの回収方法、及びこれを用いたCo-Mn-Br液相触媒の製造方法に関し、より詳しくは、廃リチウムイオン電池粉末及び三元系正極活物質の製造過程で発生するスクラップに対して、硫酸還元浸出、中和滴定、固液分離、溶媒抽出、及び水洗工程を順次に行い、コバルト及びマンガンを回収することを特徴とするコバルト及びマンガンの回収方法、及び該方法で得られたコバルト及びマンガンを含む抽出物を用いてCo-Mn-Br液相触媒を製造する方法に関する。   The present invention relates to a method for recovering cobalt and manganese from waste battery materials, and a method for producing a Co-Mn-Br liquid phase catalyst using the same, and more particularly, to waste lithium ion battery powder and ternary positive electrode active material. Cobalt and manganese recovery, characterized in that cobalt and manganese are recovered by sequentially performing sulfate reduction leaching, neutralization titration, solid-liquid separation, solvent extraction, and water washing on scrap generated in the manufacturing process of The present invention relates to a method and a method for producing a Co—Mn—Br liquid phase catalyst using an extract containing cobalt and manganese obtained by the method.

リチウム電池のうち、最近になって、その使用量が急増しているリチウム二次電池は、正極(cathode)、陰極(anode)、有機電解質(organic electrolyte)及び有機分離膜(organic separator)で構成されている。また、正極活物質(active materials)としては、可逆性に優れ、低自己放電率、高容量、及び高エネルギー密度を有し、合成が容易なリチウムコバルト酸化物が商用化されている。   Among lithium batteries, a lithium secondary battery whose usage has been increasing rapidly is composed of a positive electrode (cathode), a negative electrode (anode), an organic electrolyte (organic electrolyte), and an organic separator (organic separator). Has been. As a positive electrode active material, lithium cobalt oxide that is excellent in reversibility, has a low self-discharge rate, a high capacity, and a high energy density, and is easily synthesized, has been commercialized.

特に、リチウムイオン電池は、軽量性であるため、小型携帯装備の動力源として多く用いられ、最近、携帯端末利用の爆発的な増加により、その需要もこれに比例して増加している。また、リチウムイオン電池の需要が増加するほど、廃リチウムイオン電池の発生量も急増している趨勢である。   In particular, lithium ion batteries are light in weight, and are therefore often used as a power source for small portable equipment. Recently, the demand for mobile terminals has increased in proportion to the explosive increase in the use of mobile terminals. In addition, as the demand for lithium ion batteries increases, the amount of waste lithium ion batteries generated is also increasing rapidly.

このような廃リチウムイオン電池は、性状が簡単で、正極活物質として比較的高価のリチウムとコバルト等の有価金属が多量含有されており、経済的な価値のある廃資源として認識され、リサイクルが要求される。しかし、正極活物質としてリチウムコバルト酸化物を採用したリチウムイオン電池の場合は、コバルトやリチウムのような有価金属がリサイクルされなければならず、リチウムイオン電池の効率的なリサイクルのためには、有価金属の効率的な回収だけでなく、廃リチウム電池のリサイクル工程中で発生する有害廃棄物も適切に処理しなければならない。   Such waste lithium ion batteries have simple properties and contain a large amount of relatively expensive lithium and valuable metals such as cobalt as the positive electrode active material, and are recognized as economically valuable waste resources and can be recycled. Required. However, in the case of a lithium ion battery that employs lithium cobalt oxide as the positive electrode active material, valuable metals such as cobalt and lithium must be recycled. In addition to efficient metal recovery, hazardous waste generated during the recycling process of waste lithium batteries must be properly treated.

特に、廃リチウムイオン電池を機械的に処理する方法のうち、金属リチウムは、水分と激烈に反応して酸化するので、極めて危ないことがあり、廃リチウムイオン電池からコバルトを効率的に回収するためには、安定的な機械的処理及び有害成分を最小化することが重要である。   In particular, among the methods of mechanically treating waste lithium ion batteries, metallic lithium reacts violently with moisture and oxidizes, which can be extremely dangerous, so that cobalt can be efficiently recovered from waste lithium ion batteries It is important to minimize stable mechanical processing and harmful components.

現在、リチウムイオン電池の正極活物質の商用化トレンドは、LiCoOから三元系正極活物質に移っており、特に、リチウムイオン電池の用途が大型化、多様化することにより(ハイブリッド自動車、電気自動車、ロボット、エネルギー貯蔵用等)、三元系正極活物質を用いたリチウムイオン電池の需要が幾何級数的に増加するものと予測され、これに相応するリサイクル技術の開発が要求されている。
CMB液相触媒は、Co-Mn-Brからなる触媒であり、石油化学製品の一つであるパラキシレンを酸化反応させてTPA(テレフタル酸)を製造する工程の触媒として用いられている。また、TPAは、私たちの生活に密接な関わりを持ったポリエステル纎維、PET(ポリエチレンテレフタレート)ボトル、フィルム、塗料、タイヤコードの原料となり、韓国は、TPAの主要生産国であり、2006年、韓国内のTPA生産量は、550万トンであって、世界のTPA生産能力(2,600万トン)の21%を占めており、CMB触媒市場も極めて巨大である。したがって、上記した工程で廃棄されるCoとMnを含む廃棄物からCoとMnを回収し、CMB触媒を製造することにより、経済的にCMB触媒を製造することができる。
Currently, the trend of commercialization of positive electrode active materials for lithium ion batteries has shifted from LiCoO 2 to ternary positive electrode active materials, especially as the use of lithium ion batteries has increased in size and diversified (hybrid vehicles, electric The demand for lithium ion batteries using ternary positive electrode active materials, such as automobiles, robots, and energy storage, is expected to increase geometrically, and the development of recycling technology corresponding to this demand is required.
The CMB liquid phase catalyst is a catalyst made of Co—Mn—Br, and is used as a catalyst in a process of producing TPA (terephthalic acid) by oxidizing paraxylene which is one of petrochemical products. TPA is a raw material for polyester fibers, PET (polyethylene terephthalate) bottles, films, paints, and tire cords that are closely related to our daily lives. Korea is a major producer of TPA in 2006. The amount of TPA produced in Korea is 5.5 million tons, accounting for 21% of the world's TPA production capacity (26 million tons), and the CMB catalyst market is extremely large. Therefore, the CMB catalyst can be economically manufactured by recovering Co and Mn from the waste containing Co and Mn discarded in the above-described process and manufacturing the CMB catalyst.

ここに、本発明者等は、廃リチウムイオン電池及び三元系正極活物質の製造過程で発生するスクラップからの効率的なコバルト及びマンガンの回収方法を開発するために、鋭意努力した結果、前記試料を対象として、硫酸還元浸出、不純物除去(中和滴定及び固液分離)、溶媒抽出及び水洗工程を順次に行う場合、不純物が除去された高純度のコバルト及びマンガンを回収し、また、これを用いてCMB液相触媒を製造することができることを確認し、本発明を完成するに至った。   Here, as a result of diligent efforts to develop an efficient method for recovering cobalt and manganese from scrap generated in the process of producing a waste lithium ion battery and a ternary positive electrode active material, When the sample is subjected to sulfuric acid reduction leaching, impurity removal (neutralization titration and solid-liquid separation), solvent extraction and water washing step by step, high-purity cobalt and manganese from which impurities have been removed are recovered, As a result, it was confirmed that a CMB liquid phase catalyst could be produced using the above-mentioned, and the present invention was completed.

本発明は、上記問題点に鑑みなされたものであり、その目的は、廃リチウムイオン電池及び三元系正極活物質の製造過程で発生するスクラップからのコバルト及びマンガンの回収方法を提供し、該方法で得られたコバルト及びマンガンを含む抽出液を用いたCo-Mn-Br液相触媒の製造方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a method for recovering cobalt and manganese from scrap generated in the process of producing a waste lithium ion battery and a ternary positive electrode active material, An object of the present invention is to provide a method for producing a Co—Mn—Br liquid phase catalyst using an extract containing cobalt and manganese obtained by the method.

上記目的を達成するために、本発明は、(a)廃電池物質に対して硫酸と還元剤を用いて浸出させるステップと、(b)前記ステップ(a)で得られた浸出溶液を中和滴定して不純物を除去するステップと、(c)前記ステップ(b)で得られた浸出溶液を、溶液と残渣に固液分離するステップと、(d)前記ステップ(c)で固液分離された溶液に溶媒を加えて抽出するステップと、(e)前記ステップ(d)で得られた抽出液を水洗するステップと、を含むコバルト及びマンガンの回収方法を提供する。   To achieve the above object, the present invention comprises (a) a step of leaching waste battery material using sulfuric acid and a reducing agent, and (b) neutralizing the leaching solution obtained in step (a). Titrating to remove impurities, (c) separating the leaching solution obtained in step (b) into a solution and a residue, and (d) separating the solution from the liquid in step (c). And a step of extracting the solution by adding a solvent, and (e) washing the extract obtained in step (d) with water.

本発明は、さらに、(f)前記コバルト及びマンガンの回収方法で得られた抽出液にHBr溶液を加え、逆抽出してCo-Mn-Br脱去溶液を得るステップと、(g)前記Co-Mn-Br脱去溶液にコバルト塩及びマンガン塩を加えて適正濃度を合わせるステップと、を含む廃電池物質から回収したコバルト及びマンガンを用いたCo-Mn-Br液相触媒を製造する方法を提供する。   The present invention further includes (f) adding an HBr solution to the extract obtained by the cobalt and manganese recovery method and back-extracting to obtain a Co-Mn-Br removal solution; and (g) the Co And adding a cobalt salt and a manganese salt to a Mn-Br removal solution to adjust the proper concentration, and a method for producing a Co-Mn-Br liquid phase catalyst using cobalt and manganese recovered from waste battery materials provide.

Co-Mn-Br系液相触媒の製造のための工程図である。It is a flowchart for manufacture of a Co-Mn-Br type liquid phase catalyst. 0.7M Cyanex 272の40%石鹸化溶媒を用いた主要元素の回収シミュレーションテスト模式図である。It is a recovery simulation test schematic diagram of the main element using 40% soaping solvent of 0.7M Cyanex 272. 0.85M Cyanex 272の45%石鹸化溶媒を用いた主要元素の回収シミュレーションテスト模式図である。It is a recovery simulation test schematic diagram of main elements using a 45% soaping solvent of 0.85M Cyanex 272.

本発明は、一観点において、(a)廃電池物質に対して硫酸と還元剤を用いて浸出させるステップと、(b)前記ステップ(a)で得られた浸出溶液を中和滴定して不純物を除去するステップと、(c)前記ステップ(b)で得られた浸出溶液を、溶液と残渣に固液分離するステップと、(d)前記ステップ(c)で固液分離された溶液に溶媒を加えて抽出するステップと、(e)前記ステップ(d)で得られた抽出液を水洗するステップと、を含むコバルト及びマンガンの回収方法に関する。   In one aspect, the present invention provides (a) a step of leaching waste battery material using sulfuric acid and a reducing agent, and (b) neutralizing titrating the leaching solution obtained in step (a) to produce impurities. (C) a step of solid-liquid separation of the leaching solution obtained in the step (b) into a solution and a residue, and (d) a solvent in the solution solid-liquid separated in the step (c). And (e) a step of washing the extract obtained in step (d) with water, and a method for recovering cobalt and manganese.

本発明において、前記廃電池物質は、廃リチウムイオン電池及び三元系正極活物質の製造過程で発生するスクラップであってもよい。   In the present invention, the waste battery material may be scrap generated in the manufacturing process of the waste lithium ion battery and the ternary positive electrode active material.

本発明において、上記廃リチウムイオン電池は、粉末状態であってもよく、本発明の方法では、8メッシュ以下の粉末を用いることが好ましい。   In the present invention, the waste lithium ion battery may be in a powder state, and in the method of the present invention, it is preferable to use a powder of 8 mesh or less.

前記廃リチウムイオン電池粉末は、本発明者の先行特許である韓国登録特許第860972号の物理的な処理方法で得ることができる。   The waste lithium ion battery powder can be obtained by a physical processing method described in Korean Patent No. 860972, which is a prior patent of the present inventor.

本発明において、前記廃電池物質は、リチウムイオン電池正極物質を製造する過程で発生する正極物質不合格品または正極活物質粉末スクラップであってもよく、単純破粉砕及び熱処理を通じて粉末状に単体分離して三元系正極活物質粉末で回収したものであってもよい。   In the present invention, the waste battery material may be a cathode material rejected product or a cathode active material powder scrap generated in the process of manufacturing a lithium ion battery cathode material, and is simply separated into a powder form through simple crushing and heat treatment. Then, it may be recovered with a ternary positive electrode active material powder.

前記廃電池物質には、コバルト、リチウム等の有価金属以外にも、多量の不純物が含有されている。したがって、前記ステップ(a)において、廃電池物質を硫酸及び還元剤を用いて浸出させた後、得られた溶液から不純物を除去するために中和滴定を行う。
前記還元剤は、H、HS、SO、FeSO、石炭(Coal)または黄鉄鉱(Pyrite)を用いてもよく、好ましくは、Hを用いてもよい。
The waste battery material contains a large amount of impurities in addition to valuable metals such as cobalt and lithium. Therefore, in the step (a), the waste battery material is leached using sulfuric acid and a reducing agent, and then neutralization titration is performed to remove impurities from the obtained solution.
As the reducing agent, H 2 , H 2 S, SO 2 , FeSO 4 , coal (Coal), or pyrite (Pyrite) may be used, and preferably H 2 O 2 may be used.

本発明において、前記ステップ(b)の中和滴定は、CaO、Ca(OH)及びCaCOからなる群より選ばれるカルシウム化合物と、NaOHまたはNHOHであるアルカリ溶液と、これらの混合物とからなる群より選ばれる物質によりpH5.5〜6.5に調整されてもよく、好ましくは、CaCOを用いてもよい。 In the present invention, the neutralization titration in the step (b) includes a calcium compound selected from the group consisting of CaO, Ca (OH) 2 and CaCO 3 , an alkaline solution which is NaOH or NH 4 OH, and a mixture thereof. The pH may be adjusted to 5.5 to 6.5 with a substance selected from the group consisting of, preferably CaCO 3 may be used.

中和滴定により浸出溶液から除去される不純物は、Fe、Cu、Al及びこれらの混合物からなる群より選ばれることを特徴とするが、Co、Mn等のようにリサイクル可能な有価金属以外の不純物であれば、これに限られるものではない。   Impurities removed from the leaching solution by neutralization titration are selected from the group consisting of Fe, Cu, Al and mixtures thereof, but impurities other than recyclable valuable metals such as Co, Mn, etc. If so, it is not limited to this.

本発明において、前記ステップ(c)の固液分離は、フィルタープレスまたはろ紙を用いて溶液と残余物に分離することができ、上記固液分離手段は、当業者によって容易に選択され得る。   In the present invention, the solid-liquid separation in the step (c) can be separated into a solution and a residue using a filter press or filter paper, and the solid-liquid separation means can be easily selected by those skilled in the art.

本発明において、前記ステップ(d)で用いられる溶媒は、ジ-2-エチルヘキシルリン酸系、2-エチルヘキシルホスホン酸系、モノ-2-エチルヘキシルエステル系、ジ-2,4,4-トリメチルペンチルホスホン酸系、ジ-2-エチルヘキシルホスフィン酸系、ジ-2,4,4-トリメチルペンチルジチオホスフィン酸系、及びジ-2,4,4-トリメチルペンチルモノチオホスフィン酸系からなる群より選ばれることを特徴とし、好ましくは、ジ-2-エチルヘキシルリン酸系溶媒を用いてもよい。   In the present invention, the solvent used in the step (d) is di-2-ethylhexyl phosphate, 2-ethylhexylphosphonic acid, mono-2-ethylhexyl ester, di-2,4,4-trimethylpentylphosphone. Selected from the group consisting of acid, di-2-ethylhexylphosphinic acid, di-2,4,4-trimethylpentyldithiophosphinic acid, and di-2,4,4-trimethylpentylmonothiophosphinic acid Preferably, a di-2-ethylhexyl phosphate solvent may be used.

前記溶媒は、アルカリ溶液により石鹸化したことが好ましく、この際、30〜60%石鹸化した溶媒を用いてもよく、好ましくは、40〜50%石鹸化した溶媒を用いることにより、コバルト及びマンガンの回収率を高め、不純物の発生は最小化することができる。また、前記溶媒抽出の際に用いられる溶媒を石鹸化すると、溶媒抽出の際にpH変化を防止し、溶媒抽出の効率を高めることができる。   The solvent is preferably soaped with an alkaline solution. In this case, a 30 to 60% soaped solvent may be used, and preferably a 40 to 50% soaped solvent is used to obtain cobalt and manganese. The recovery of impurities can be increased and the generation of impurities can be minimized. In addition, when the solvent used in the solvent extraction is soaped, it is possible to prevent pH change during the solvent extraction and increase the efficiency of the solvent extraction.

例えば、溶媒抽出の際にビス(2,4,4-トリメチルペンチル)ホスフィン酸(Cyanex 272,Cytec Inc., USA)を溶媒として用い、コバルト及びマンガンの抽出反応式(1)は、以下の通りである。ここで、XはCoまたはMnであり、RはC1634PO である。

Figure 0005572222
この際、前記Cyanex 272は、分子量290、粘度142cp(25℃)、比重0.92gm/cc(24℃)及び純度85%であり、分子式はC1634POHであり、化学式Iのような構造を有する。
Figure 0005572222
反応式(1)の反応が進行するにつれて、ステップ(c)の固液分離された溶液のpHが減少するが、pHの減少を抑制するために、溶媒抽出の際に用いる溶媒を、NaOH、NHOH等のようなアルカリ溶液を用いて石鹸化した後(反応式(2))、溶媒抽出において用いた(反応式(3))。
Figure 0005572222
Figure 0005572222
反応式(2)は、溶媒の石鹸化過程を示した反応式であり、溶媒のHイオンをNaまたはNH イオンで置換し、したがって、反応式(3)のように、溶媒によりコバルトまたはマンガンイオンが抽出されるとき、反応式(2)において置換されたNaまたはNH イオンが溶液上に排出されるので、溶液のpH変化を防止することができる。 For example, bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, Cytec Inc., USA) is used as a solvent during solvent extraction, and cobalt and manganese extraction reaction formula (1) is as follows: It is. Here, X is Co or Mn, and R is C 16 H 34 PO 2 .
Figure 0005572222
At this time, the Cyanex 272 has a molecular weight of 290, a viscosity of 142 cp (25 ° C.), a specific gravity of 0.92 gm / cc (24 ° C.) and a purity of 85%, a molecular formula of C 16 H 34 PO 2 H, It has such a structure.
Figure 0005572222
As the reaction of reaction formula (1) proceeds, the pH of the solid-liquid separated solution in step (c) decreases. In order to suppress the decrease in pH, the solvent used for solvent extraction is NaOH, After soaping using an alkaline solution such as NH 4 OH (reaction formula (2)), it was used in solvent extraction (reaction formula (3)).
Figure 0005572222
Figure 0005572222
Reaction formula (2) is a reaction formula showing the process of soaping the solvent, and the H + ion of the solvent is replaced with Na + or NH 4 + ion. Therefore, the reaction formula (3) depends on the solvent. When cobalt or manganese ions are extracted, Na + or NH 4 + ions substituted in the reaction formula (2) are discharged onto the solution, so that pH change of the solution can be prevented.

本発明のステップ(e)の水洗ステップは、溶媒抽出された抽出液に対してO/A(Organic/Aqueous)の割合が10:1乃至1:10の条件で、50℃乃至70℃の蒸溜水を用いて1分以内で洗浄し、好ましくは、2:1のO/A(Organic/Aqueous)条件で、60℃の蒸溜水を用いて洗浄することができる。   The washing step of step (e) of the present invention is a distillation at a temperature of 50 ° C. to 70 ° C. under the condition that the ratio of O / A (Organic / Aqueous) is 10: 1 to 1:10 with respect to the solvent-extracted extract. It can be washed with water within 1 minute, preferably with distilled water at 60 ° C. under 2: 1 O / A (Organic / Aqueous) conditions.

本発明は、他の観点において、(f)前記コバルト及びマンガンの回収方法で得られた抽出液にHBr溶液を加え、逆抽出してCo-Mn-Br脱去溶液を得るステップと、(g)前記Co-Mn-Br脱去溶液にコバルト塩及びマンガン塩を加えて適正濃度を合わせるステップと、を含む廃電池物質から回収したコバルト及びマンガンを用いたCo-Mn-Br液相触媒の製造方法に関する。   In another aspect, the present invention provides (f) adding an HBr solution to the extract obtained by the cobalt and manganese recovery method and back-extracting to obtain a Co-Mn-Br removal solution; And a step of adding a cobalt salt and a manganese salt to the Co—Mn—Br removal solution to adjust the proper concentration, and producing a Co—Mn—Br liquid phase catalyst using cobalt and manganese recovered from waste battery materials Regarding the method.

本発明において、前記「抽出液」は、「Cyanex 272により抽出された抽出溶媒」または「抽出溶媒」と混用されてもよく、前記Co-Mn-Br液相触媒の製造方法に用いられる前記抽出溶媒は、コバルトとマンガンの回収方法のステップ(d)またはステップ(e)において得られた抽出液を開始溶媒として用いてもよい。   In the present invention, the “extract” may be mixed with “extract solvent extracted by Cyanex 272” or “extract solvent” and used in the method for producing the Co—Mn—Br liquid phase catalyst. As the solvent, the extract obtained in step (d) or step (e) of the cobalt and manganese recovery method may be used as the starting solvent.

本発明において、前記廃電池物質は、廃リチウムイオン電池及び三元系正極活物質の製造過程で発生するスクラップであってもよい。   In the present invention, the waste battery material may be scrap generated in the manufacturing process of the waste lithium ion battery and the ternary positive electrode active material.

本発明において、前記廃リチウムイオン電池は、粉末状態であってもよく、本発明の方法では、8メッシュ以下の粉末を用いることが好ましい。   In the present invention, the waste lithium ion battery may be in a powder state, and in the method of the present invention, it is preferable to use a powder of 8 mesh or less.

本発明の逆抽出(脱去)ステップで得られたCo-Mn-Br脱去溶液は、Co-Mn-Br液相触媒として用いるのには、各構成分の含量が適正量に及ばないこともあり得るので、HBr溶液で脱去溶液を得た後、コバルト塩とマンガン塩の適当な濃度を前記脱去溶液に追加混合し、Co-Mn-Br液相触媒の成分比が適正含量をなすようにすることができる。   The Co—Mn—Br removal solution obtained in the back extraction (desorption) step of the present invention does not have an appropriate amount for each component to be used as a Co—Mn—Br liquid phase catalyst. Therefore, after obtaining a removal solution with an HBr solution, an appropriate concentration of a cobalt salt and a manganese salt is additionally mixed with the removal solution, and the component ratio of the Co-Mn-Br liquid phase catalyst has an appropriate content. Can be made.

前記ステップ(g)において、コバルト塩とマンガン塩は、CoBr(臭化コバルト)、MnBr(臭化マンガン)、及びMn(OAc)(酢酸マンガン)であってもよく、Co-Mn-Br液相触媒を製造するために脱去溶液に加えられる量は、CMB液相触媒成分であるCo、Mn及びBrが、それぞれ0.51M、1.09M、1.91Mとなるように、最初に得られたCo-Mn-Br脱去溶液中のコバルト、マンガン及び臭素の含量により決定され得る。 In the step (g), the cobalt salt and the manganese salt may be CoBr 2 (cobalt bromide), MnBr 2 (manganese bromide), and Mn (OAc) 2 (manganese acetate), and Co—Mn— The amount added to the stripping solution to produce the Br liquid phase catalyst is such that the CMB liquid phase catalyst components Co, Mn and Br are 0.51M, 1.09M and 1.91M respectively. Can be determined by the contents of cobalt, manganese and bromine in the Co-Mn-Br removal solution obtained.

以下、実施例を通じて本発明をさらに詳しく説明する。これらの実施例は、単に本発明をより具体的に説明するためのものであって、本発明の要旨により、本発明の範囲がこれらの実施例によって制限されないことは、本発明の属する技術分野における通常の知識を有する者にとって明白であろう。   Hereinafter, the present invention will be described in more detail through examples. These examples are merely for explaining the present invention more specifically, and it is a technical field to which the present invention belongs that the scope of the present invention is not limited by these examples due to the gist of the present invention. It will be obvious to those with ordinary knowledge in

実施例1:溶媒抽出フィード溶液の製造
廃リチウムイオン電池粉末及び三元系正極活物質の製造過程で発生するスクラップに対して、浸出液として2MのHSO溶液と還元剤である5〜6vol%Hの混合溶液を浸出液として用いて、反応温度60℃、攪拌速度200〜250rpm、固液比1:10、及び反応時間1hrとして、8メッシュの廃リチウムイオン電池粉末及び三元系正極活物質の製造過程で発生するスクラップを硫酸還元浸出した。
Example 1: For the solvent extraction feed solution scrap generated in the manufacturing process of manufacturing waste lithium ion batteries powder and ternary positive electrode active material, a reducing agent H 2 SO 4 solution of 2M as a leachate 5~6vol Using a mixed solution of% H 2 O 2 as a leachate, a reaction temperature of 60 ° C., a stirring speed of 200 to 250 rpm, a solid-liquid ratio of 1:10, and a reaction time of 1 hr, 8 mesh waste lithium ion battery powder and ternary system Scrap generated during the production process of the positive electrode active material was leached with sulfuric acid reduction.

この際、前記廃リチウムイオン電池粉末は、韓国登録特許第860972号に開示された物理的処理により得られ、前記三元系正極活物質の製造過程で発生するスクラップは、単純破粉砕及び熱処理を通じて粉末状に単体分離して粉末状態で使用した。   At this time, the waste lithium ion battery powder is obtained by physical treatment disclosed in Korean Patent No. 860972, and scrap generated in the manufacturing process of the ternary positive electrode active material is subjected to simple fracture and heat treatment. The powder was separated into simple powders and used in a powder state.

前記硫酸浸出液を溶媒抽出フィード溶液として製造するために、浸出液500mLに対して50%CaCO溶液150mL及び4M NaOH溶液25mLを加え、常温で400rpmで撹拌しながら中和滴定した後、pHを5.5〜6とした後、フィルタープレスで固液分離し、不純物が含まれた残余物を除去し、溶媒抽出フィード溶液を製造し、最終的に浸出液のpH調節により得られた溶媒抽出フィード溶液の成分分析をした結果、不純物であるCu、Fe、Alが完全に除去されたことを確認することができた(表1)。

Figure 0005572222
In order to produce the sulfuric acid leaching solution as a solvent extraction feed solution, 150 mL of 50% CaCO 3 solution and 25 mL of 4M NaOH solution are added to 500 mL of the leaching solution, neutralized with stirring at 400 rpm at room temperature, and then the pH is set to 5. After 5 to 6, solid-liquid separation with a filter press is performed to remove the residue containing impurities, a solvent extraction feed solution is produced, and finally the solvent extraction feed solution obtained by adjusting the pH of the leachate As a result of component analysis, it was confirmed that Cu, Fe, and Al as impurities were completely removed (Table 1).
Figure 0005572222

実施例2:廃リチウムイオン電池からCoとMnの溶媒抽出
実施例1の廃リチウムイオン電池粉末の浸出液から得られた溶媒抽出フィード溶液に対して、Cyanex 272溶媒を用いて、石鹸化度及び洗浄回数を含む最適のCoとMnの選択的抽出条件を選別するために、以下の実験を行った。
2-1.0.7M Cyanex272の40%及び50%石鹸化した溶媒を用いたCo及びMnの抽出
実施例1で得られた廃リチウムイオン電池由来溶媒抽出フィード溶液に対して、NaOHを用いて、40%及び50%で石鹸化した0.7M ビス(2,4,4-トリメチルペンチル)ホスフィン酸(Cyanex 272,Cytec Inc., USA)を有機相(organic phase)に対して、O/A(Organic/Aqueous)=2:1(40ml:20ml)の含量で混合し、5分間25℃で撹拌しながら1回抽出を行った。

Figure 0005572222
Example 2: Solvent extraction of Co and Mn from waste lithium ion battery The soap extraction degree and washing were performed on the solvent extraction feed solution obtained from the leachate of waste lithium ion battery powder of Example 1 using Cyanex 272 solvent. In order to select the optimum Co and Mn selective extraction conditions including the number of times, the following experiment was conducted.
2-1. Extraction of Co and Mn with 40% and 50% soaped solvent of 0.7M Cyanex 272 To the solvent extraction feed solution derived from the waste lithium ion battery obtained in Example 1, NaOH was used. 0.7M bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, Cytec Inc., USA) soaped at 40% and 50% with respect to the organic phase, O / A (Organic / Aqueous) = 2: 1 (40 ml: 20 ml) was mixed and extracted once with stirring at 25 ° C. for 5 minutes.
Figure 0005572222

その結果、表2の初期溶媒抽出フィード溶液の成分に対して、相違した石鹸化度により、表3に示すように、ラフィネート(Raffinate)でCo、Ni、Li、Mn、Cu成分が抽出され、結果として0.7M Cyanex 272の石鹸化度によるCoとMnの抽出率は、40%石鹸化条件では、それぞれ68.7%、93.2%であり、50%石鹸化条件では、80.7%、94.5%であるものと示された(表4)。以外に不純物であるCuとAlの場合、極めて高い抽出率を示したが、溶液中の含量が1〜2ppm程度であるので、大きな意味はない。

Figure 0005572222
Figure 0005572222
上記した過程で抽出された溶媒に対して、さらに洗浄過程を経ることにより、抽出率がどのくらい向上するかを観察した。前記抽出された溶媒の洗浄条件は、O/A=2:1(40ml:20ml)の条件で、60℃の蒸溜水を用いて1分間撹拌し、これを3回繰り返して実施した。 As a result, Co, Ni, Li, Mn, and Cu components are extracted with raffinate as shown in Table 3 due to different degrees of soaping with respect to the components of the initial solvent extraction feed solution of Table 2, As a result, the extraction ratios of Co and Mn with a soaping degree of 0.7M Cyanex 272 are 68.7% and 93.2% respectively at 40% soaping conditions, and 80.7% at 50% soaping conditions. %, 94.5% (Table 4). In addition, Cu and Al, which are impurities, showed an extremely high extraction rate, but the content in the solution is about 1 to 2 ppm, so there is no significant meaning.
Figure 0005572222
Figure 0005572222
It was observed how much the extraction rate was improved by further washing the solvent extracted in the above process. The extracted solvent was washed under the condition of O / A = 2: 1 (40 ml: 20 ml), stirred for 1 minute using distilled water at 60 ° C., and this was repeated three times.

その結果、40%及び50%石鹸化した溶媒を用いた抽出溶媒の全てに対して、3回洗浄を通じて残余のNi、Liが完全に除去されることを確認した(表5及び表6)。

Figure 0005572222
Figure 0005572222
As a result, it was confirmed that the remaining Ni and Li were completely removed through washing three times for all of the extraction solvents using 40% and 50% soaped solvents (Tables 5 and 6).
Figure 0005572222
Figure 0005572222

2-2.HBr溶液を用いた脱去溶液の製造
実施例2-1において石鹸化した0.7M Cyanex272により抽出された抽出溶媒に対して、2M HBr溶液をO/A=4:1の混合比を有するようにした後、5分間撹拌しながら1回脱去した。その結果、40%石鹸化条件で得られた抽出溶媒からのCoとMnの脱去効率は、それぞれ79.3%及び85.3%であり、50%石鹸化条件で得られた抽出溶媒のCoとMnの脱去効率は、85.2%及び79.4%であるものと確認された(表7及び表8)。

Figure 0005572222
Figure 0005572222
2-2. Preparation of removal solution using HBr solution To the extraction solvent extracted with 0.7M Cyanex 272 soaped in Example 2-1, the 2M HBr solution has a mixing ratio of O / A = 4: 1. And then removed once with stirring for 5 minutes. As a result, the removal efficiency of Co and Mn from the extraction solvent obtained under the 40% soap condition was 79.3% and 85.3%, respectively. The removal efficiency of Co and Mn was confirmed to be 85.2% and 79.4% (Tables 7 and 8).
Figure 0005572222
Figure 0005572222

実施例3:廃三元系正極活物質浸出液からのCoとMnの溶媒抽出
実施例1の廃三元系正極活物質浸出液から得られた溶媒抽出フィード溶液に対して、Cyanex 272溶媒を用いて、石鹸化度及び洗浄回数を含む最適のCoとMn選択的抽出条件を選別するために、以下の実験を行った。
Example 3: Solvent extraction of Co and Mn from waste ternary positive electrode active material leachate Using Cyanex 272 solvent for the solvent extraction feed solution obtained from the waste ternary positive electrode active material leachate of Example 1 In order to select the optimum Co and Mn selective extraction conditions including the degree of soaping and the number of washings, the following experiment was conducted.

3-1.0.85M Cyanex272の40%、45%及び50%石鹸化した溶媒を用いたCo及びMnの抽出
実施例1で得られた廃三元系正極活物質浸出液由来溶媒抽出フィード溶液に対して、NaOHを用いて40%、45%及び50%で石鹸化した0.85M ビス(2,4,4-トリメチルペンチル)ホスフィン酸(Cyanex 272,Cytec Inc., USA)を有機相(organic phase)に対してO/A(Organic/Aqueous)=2:1(40ml:20ml)の割合で混合し、5分間25℃で撹拌しながら1回抽出を行った。

Figure 0005572222
Extraction of Co and Mn using 40%, 45% and 50% soaped solvent of 3-1.0.85M Cyanex272 Into the solvent extraction feed solution derived from the waste ternary positive electrode active material leachate obtained in Example 1 In contrast, 0.85M bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, Cytec Inc., USA) soaped at 40%, 45% and 50% with NaOH was added to the organic phase. Phase / phase was mixed at a ratio of O / A (Organic / Aqueous) = 2: 1 (40 ml: 20 ml), and extracted once with stirring at 25 ° C. for 5 minutes.
Figure 0005572222

その結果、表9の初期溶媒抽出フィード溶液の成分に対して、相違した石鹸化度により、表10に示すように、RaffinateとしてCo、Ni、Li、Mn、Cu成分が抽出され、結果として0.85M Cyanex 272の石鹸化度によるCoとMnの抽出率は、40%石鹸化条件では、56.7%、78.8%、45%石鹸化条件では、62.1%、84.6%、及び50%石鹸化条件では、77.4%、94.6%であるものと示され、CoとMnの抽出率は、石鹸化度が増加するにつれて、抽出率も一緒に増加するものと確認された。しかし、不純物であるLiの場合は、40%石鹸化条件で4%、45%石鹸化条件では3.5%、また、50%石鹸化条件で11.7%が一緒に抽出されるものと示された(表11)。

Figure 0005572222
Figure 0005572222
As a result, as shown in Table 10, Co, Ni, Li, Mn, and Cu components were extracted as Raffinate with different degrees of soaping with respect to the components of the initial solvent extraction feed solution of Table 9, resulting in 0 The extraction ratio of Co and Mn according to the soaping degree of .85M Cyanex 272 is 56.7%, 78.8% under the 40% soaping condition, 62.1%, 84.6% under the 45% soaping condition. And 50% soaping conditions indicate 77.4% and 94.6%, and the extraction rate of Co and Mn increases with increasing soaping degree. confirmed. However, in the case of Li as an impurity, 4% is extracted under 40% soaping conditions, 3.5% is extracted under 45% soaping conditions, and 11.7% is extracted together under 50% soaping conditions. (Table 11).
Figure 0005572222
Figure 0005572222

上記した過程で抽出された溶媒に対して、さらに洗浄過程を経ることにより、抽出率がどのくらい向上するかを観察した。前記抽出された溶媒の洗浄条件は、O/A=2:1(40ml:20ml)の条件で、60℃の蒸溜水を用いて1分間撹拌し、これを3回繰り返して実施した。   It was observed how much the extraction rate was improved by further washing the solvent extracted in the above process. The extracted solvent was washed under the condition of O / A = 2: 1 (40 ml: 20 ml), stirred for 1 minute using distilled water at 60 ° C., and this was repeated three times.

その結果、40%石鹸化した溶媒を用いた抽出溶媒に対して、3回洗浄を通じて残余のNi、Liが比較的完全に除去されることを確認し、45%及び50%石鹸化した溶媒を用いた抽出溶媒でも、3回洗浄を通じて不純物が除去されることを確認した(表12、表13及び表14)。

Figure 0005572222
Figure 0005572222
Figure 0005572222
As a result, it was confirmed that the remaining Ni and Li were relatively completely removed through washing three times with respect to the extraction solvent using the 40% soaped solvent, and the 45% and 50% soaped solvents were removed. It was confirmed that the impurities were removed through the washing three times (Table 12, Table 13 and Table 14).
Figure 0005572222
Figure 0005572222
Figure 0005572222

3-2.HBr溶液を用いた脱去溶液の製造
実施例3-1で石鹸化した0.85M Cyanex 272により抽出された抽出溶媒に対して、2M HBr溶液をO/A=4:1の混合比を有するようにした後、5分間撹拌しながら1回脱去した。その結果、40%石鹸化条件でCoとMnの脱去効率は、それぞれ97%及び84.4%であるものと示され、45%石鹸化条件では、86.9%及び100.7%、また、50%石鹸化条件での脱去反応では、1段脱去では、完全な脱去が行われず、2段脱去を進行して脱去液を得、2段脱去のCoとMnの脱去効率は、100%及び92.2%であるものと確認された(表15及び表16)。

Figure 0005572222
Figure 0005572222
3-2. Preparation of removal solution using HBr solution 2M HBr solution has a mixing ratio of O / A = 4: 1 with respect to the extraction solvent extracted by 0.85M Cyanex 272 soaped in Example 3-1. Then, it was removed once with stirring for 5 minutes. As a result, the removal efficiency of Co and Mn was shown to be 97% and 84.4% at 40% soaping condition, respectively, and 86.9% and 100.7% at 45% soaping condition, In addition, in the removal reaction under 50% soaping conditions, complete removal is not performed in the first stage removal, and the second stage removal proceeds to obtain a removal liquid. Co and Mn in the second stage removal are obtained. The removal efficiency was confirmed to be 100% and 92.2% (Tables 15 and 16).
Figure 0005572222
Figure 0005572222

実施例3.脱去溶液からのCMB液相触媒の製造
実施例2-2及び3-2で製造された脱去溶液(Co-Mn-Br脱去溶液)からCMB液相触媒を製造するために、CMB液相触媒の成分(CMB spec.)及び製造された脱去溶液の成分を、イオンクロマトグラフィー及びICPを用いて測定した(表17)。

Figure 0005572222
Example 3 Preparation of CMB liquid phase catalyst from removal solution In order to prepare a CMB liquid phase catalyst from the removal solution prepared in Examples 2-2 and 3-2 (Co-Mn-Br removal solution), CMB liquid was prepared. The components of the phase catalyst (CMB spec.) And the components of the prepared removal solution were measured using ion chromatography and ICP (Table 17).
Figure 0005572222

その結果、CMB液相触媒を構成するのには、脱去溶液に含有されたそれぞれの成分が足りないので、CMB液相触媒の中間産物である脱去溶液からCMB液相触媒を製造するために、臭化コバルト、臭化マンガン、及び酢酸マンガンを加えて製造した。CMB液相触媒を製造するのに必要な添加量は、抽出条件により異なり、成分分析によりCo-Mn-Brの濃度をCMB spec.と同一であるように、表18の濃度で加えてCMB液相触媒を製造した。

Figure 0005572222
As a result, each component contained in the removal solution is insufficient to constitute the CMB liquid phase catalyst, so that the CMB liquid phase catalyst is produced from the removal solution that is an intermediate product of the CMB liquid phase catalyst. In addition, cobalt bromide, manganese bromide, and manganese acetate were added. The amount of addition necessary to produce the CMB liquid phase catalyst varies depending on the extraction conditions. Were added at the concentrations in Table 18 to produce a CMB liquid phase catalyst.
Figure 0005572222

実験例1:溶媒の石鹸化度によるCo及びMnの抽出効率シミュレーションテスト
1-1.廃リチウムイオン電池からのCo及びMn抽出効率シミュレーション
実施例1の廃リチウムイオン電池粉末の浸出液から得られた溶媒抽出フィード溶液に対して、0.7M Cyanex 272(Cytec Inc., USA)溶媒の石鹸化度によるCoとMn抽出効率シミュレーションテストを行った。全ての溶媒抽出及び脱去過程は、O/A=2:1(40ml:20ml)、25℃で、撹拌時間5分の条件で行った。
Experimental example 1: Co and Mn extraction efficiency simulation test according to the degree of soaping of the solvent 1-1. Co and Mn extraction efficiency simulation from waste lithium ion battery 0.7M Cyanex 272 (Cytec Inc., USA) solvent soap for solvent extraction feed solution obtained from leachate of waste lithium ion battery powder of Example 1 Co and Mn extraction efficiency simulation tests were performed according to the degree of conversion. All solvent extraction and removal processes were carried out at O / A = 2: 1 (40 ml: 20 ml) at 25 ° C. with a stirring time of 5 minutes.

0.7M cyanex 272の40%石鹸化した溶媒を用いて、2step count-current extraction simulation抽出した結果、Coの抽出率は99.6%、Mnは93.3%が抽出されたものと確認された。また、1段抽出の場合、Coは6.9%、Mnは79.9%であり、LiとNiの場合は、全て(−)抽出率を示すことから、全く抽出されていないことが確認された。最終的にraffinateとして抜け出すCoとMnの量は、それぞれ89.3mg/L、0.542mg/Lであるものと示された(表19及び表20、図2)。

Figure 0005572222
Figure 0005572222
As a result of 2 step count-current extraction simulation extraction using a 40M soaped solvent of 0.7M cyanex 272, it was confirmed that the extraction rate of Co was 99.6% and Mn was 93.3%. It was. In the case of one-stage extraction, Co is 6.9%, Mn is 79.9%, and in the case of Li and Ni, all indicate a (-) extraction rate, so it is confirmed that no extraction is performed. It was done. The amounts of Co and Mn that finally escaped as raffinate were 89.3 mg / L and 0.542 mg / L, respectively (Table 19 and Table 20, FIG. 2).
Figure 0005572222
Figure 0005572222

1-2.廃三元系正極活物質浸出液からのCo及びMn抽出効率シミュレーション
実施例1の廃三元系正極活物質浸出液から得られた溶媒抽出フィード溶液に対して、0.85M Cyanex 272(Cytec Inc., USA)溶媒の石鹸化度によるCoとMn抽出効率シミュレーションテストを行った。全ての溶媒抽出及び脱去過程は、O/A=2:1(40:20ml)、25℃で、撹拌時間5分の条件で行った。
1-2. Simulation of Co and Mn extraction efficiency from waste ternary positive electrode active material leachate For the solvent extraction feed solution obtained from the waste ternary positive electrode active material leachate of Example 1, 0.85M Cyanex 272 (Cytec Inc., USA) Co and Mn extraction efficiency simulation tests were conducted according to the degree of soaping of the solvent. All solvent extraction and removal processes were performed at O / A = 2: 1 (40:20 ml) at 25 ° C. with a stirring time of 5 minutes.

0.85M cyanex 272の45%石鹸化した溶媒を用いて2step count-current extraction simulation抽出した結果、Coの抽出率は99.8%であり、Mnは100%抽出された。1段抽出の場合、Coは-14.1%、Mnは55.2%であり、不純物であるNiの場合は、(−)抽出率を示すことから、全く抽出されていないことが確認されたが、Liの場合、0.3%抽出されることが確認された。最終的にRaffinateとして抜け出すCoとMnの量は、それぞれ17.48mg/L、1.179mg/Lであり、抽出されるLiの総量は、18mg/Lであるものと確認された(表21及び表22、図3)。

Figure 0005572222
Figure 0005572222
As a result of 2 step count-current extraction simulation extraction using a 45% soaped solvent of 0.85M cyanex 272, the extraction rate of Co was 99.8% and Mn was extracted 100%. In the case of one-stage extraction, Co is −14.1% and Mn is 55.2%. In the case of Ni as an impurity, (−) extraction rate is shown, so it is confirmed that no extraction has been performed. However, in the case of Li, it was confirmed that 0.3% was extracted. The amounts of Co and Mn that finally escaped as Raffinate were 17.48 mg / L and 1.179 mg / L, respectively, and the total amount of Li extracted was confirmed to be 18 mg / L (Table 21 and Table 22, FIG. 3).
Figure 0005572222
Figure 0005572222

結論として、廃リチウムイオン電池浸出液のpH調節液の場合は、0.7M cyanex 272の40%石鹸化した条件でCoとMnの選択的な抽出が可能であり、抽出率も、Coは99.6%、Mnは93.3%と極めて高いことが確認された。また、廃三元系正極活物質浸出液の0.85M cyanex 272の45%石鹸化した条件でCoとMnを抽出しなければならず、この際、抽出率はそれぞれ99.8%、100%であった。   In conclusion, in the case of a pH adjustment solution of waste lithium ion battery leachate, selective extraction of Co and Mn is possible under the condition of 40% soaping of 0.7M cyanex 272, and the extraction rate is 99. It was confirmed that 6% and Mn were extremely high at 93.3%. In addition, Co and Mn must be extracted under the condition of 45% soaping of 0.85M cyanex 272 of waste ternary positive electrode active material leachate, and the extraction rates are 99.8% and 100%, respectively. there were.

以上、本発明の内容の特定部分について詳述したが、当業界の通常の知識を有する者にとって、このような具体的技術は、単に好ましい実施態様であるだけで、これにより本発明の範囲が制限されるものでないことは明らかであろう。したがって、本発明の実質的な範囲は、添付された請求項とそれらの等価物により定められると言える。   The specific part of the content of the present invention has been described in detail above. However, for those having ordinary skill in the art, such a specific technique is merely a preferred embodiment, and the scope of the present invention is thereby limited. It will be clear that it is not limited. Accordingly, the substantial scope of the present invention may be defined by the appended claims and their equivalents.

本発明によると、廃リチウムイオン電池及び三元系正極活物質の製造過程において発生するスクラップからコバルト及びマンガンを回収するが、不純物の除去率及び回収率を高めることにより、高純度のコバルト及びマンガンを回収することができ、上記回収液はCMB液相触媒製造の原料として用いるのに有用である。   According to the present invention, cobalt and manganese are recovered from scrap generated in the manufacturing process of a waste lithium ion battery and a ternary positive electrode active material. By increasing the removal rate and recovery rate of impurities, high purity cobalt and manganese are recovered. The recovered liquid is useful for use as a raw material for producing a CMB liquid phase catalyst.

Claims (7)

廃電池物質に対して硫酸と還元剤を用いて浸出させるステップ(a)と、
前記ステップ(a)で得られた浸出溶液を中和滴定して不純物を除去するステップ(b)と、
前記ステップ(b)で得られた浸出溶液を、溶液と残渣に固液分離するステップ(c)と、
前記ステップ(c)で固液分離された溶液に溶媒を加えて抽出するステップ(d)と、
前記ステップ(d)で得られた抽出液を水洗するステップ(e)と、
を含み、
前記ステップ(d)における溶媒抽出の際に用いられる溶媒は、アルカリ溶液により40〜50%けん化された溶媒であって、ジ-2-エチルヘキシルリン酸を含む溶媒、2-エチルヘキシルホスホン酸を含む溶媒、モノ-2-エチルヘキシルエステルを含む溶媒、ジ-2,4,4-トリメチルペンチルホスフィン酸を含む溶媒、ジ-2-エチルヘキシルホスフィン酸を含む溶媒、ジ-2,4,4-トリメチルペンチルジチオホスフィン酸を含む溶媒、ジ-2,4,4-トリメチルペンチルモノチオホスフィン酸を含む溶媒、及びこれらの混合物からなる群より選ばれることを特徴とする廃電池物質からのコバルト及びマンガンの回収方法。
Leaching the waste battery material with sulfuric acid and a reducing agent;
Neutralizing titrating the leaching solution obtained in step (a) to remove impurities;
(C) separating the leaching solution obtained in step (b) into a solution and a residue;
(D) extracting by adding a solvent to the solution solid-liquid separated in the step (c);
Washing the extract obtained in step (d) with water (e);
Including
The solvent used in the solvent extraction in the step (d) is a 40-50% saponified solvent with an alkali solution, a solvent containing di-2-ethylhexyl phosphoric acid, a solvent containing 2-ethylhexyl phosphonic acid the solvent containing the mono-2-ethylhexyl ester, a solvent containing a di-2,4,4-trimethyl pentyl phosphinic acid, solvent containing di-2-ethylhexyl phosphinic acid, di-2,4,4-trimethyl pentyl dithiophosphinic the solvent containing the acid, a solvent containing a di-2,4,4-trimethylpentyl monothioglycolate phosphinic acid, and cobalt and method for recovering manganese from waste battery material, characterized in that it is selected from the group consisting of mixtures.
前記廃電池物質は、廃リチウムイオン電池粉末または三元系正極活物質の製造過程において発生するスクラップであることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the waste battery material is scrap generated in the manufacturing process of the waste lithium ion battery powder or the ternary positive electrode active material. 前記ステップ(b)における中和滴定は、CaO、Ca(OH)及びCaCOからなる群より選ばれるカルシウム化合物と、NaOHまたはNHOHであるアルカリ溶液と、これらの混合物とからなる群より選ばれる物質によりpH5.5〜6.5に調整されることを特徴とする請求項1に記載の方法。 The neutralization titration in the step (b) is performed from a group consisting of a calcium compound selected from the group consisting of CaO, Ca (OH) 2 and CaCO 3 , an alkali solution which is NaOH or NH 4 OH, and a mixture thereof. The method according to claim 1, wherein the pH is adjusted to 5.5 to 6.5 depending on a substance selected. 前記ステップ(b)における不純物は、Fe、Cu、Al及びこれらの混合物からなる群より選ばれることを特徴とする請求項1に記載の方法。   The method of claim 1, wherein the impurities in step (b) are selected from the group consisting of Fe, Cu, Al, and mixtures thereof. (f)請求項1から得た抽出液にHBr溶液を加え、逆抽出してCo-Mn-Br脱去溶液を得るステップと、
(g)前記Co-Mn-Br脱去溶液にコバルト塩及びマンガン塩を加えて適正濃度を合わせるステップと、
を含むことを特徴とする廃電池物質から回収したコバルト及びマンガンを用いたCo-Mn-Br液相触媒の製造方法。
(F) adding an HBr solution to the extract obtained from claim 1 and back-extracting to obtain a Co-Mn-Br removal solution;
(G) adding a cobalt salt and a manganese salt to the Co—Mn—Br removal solution to adjust an appropriate concentration;
A method for producing a Co—Mn—Br liquid phase catalyst using cobalt and manganese recovered from a waste battery material.
前記廃電池物質は、廃リチウムイオン電池粉末または三元系正極活物質の製造過程において発生するスクラップであることを特徴とする請求項5に記載のCo-Mn-Br液相触媒の製造方法。   6. The method for producing a Co—Mn—Br liquid phase catalyst according to claim 5, wherein the waste battery material is scrap generated in the production process of waste lithium ion battery powder or ternary positive electrode active material. ステップ(f)における請求項1から得た抽出液は、請求項1に記載のステップ(d)またはステップ(e)で得られたものであることを特徴とする請求項5に記載のCo-Mn-Br液相触媒の製造方法。   The extract obtained from claim 1 in step (f) is obtained in step (d) or step (e) according to claim 1, and is Co-. A method for producing a Mn—Br liquid phase catalyst.
JP2012541932A 2009-11-30 2010-11-04 Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material Active JP5572222B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20090116570A KR101089519B1 (en) 2009-11-30 2009-11-30 Method for Producing CMB Catalyst recycled with Lithium Ion Battery and Ternary Cathode Materials
KR10-2009-0116570 2009-11-30
PCT/KR2010/007750 WO2011065682A2 (en) 2009-11-30 2010-11-04 Method for producing cmb catalyst recycled with lithium ion battery and ternary cathode materials

Publications (2)

Publication Number Publication Date
JP2013512345A JP2013512345A (en) 2013-04-11
JP5572222B2 true JP5572222B2 (en) 2014-08-13

Family

ID=44067045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012541932A Active JP5572222B2 (en) 2009-11-30 2010-11-04 Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material

Country Status (4)

Country Link
JP (1) JP5572222B2 (en)
KR (1) KR101089519B1 (en)
CN (1) CN102665912A (en)
WO (1) WO2011065682A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189798B1 (en) * 2011-08-17 2012-10-10 한국지질자원연구원 Method for producing cobalt-manganese-acetic acid(cma) catalyst from spent cobalt-manganese-bromine (cmb) catalyst
JP5406260B2 (en) * 2011-09-29 2014-02-05 Jx日鉱日石金属株式会社 Method for separating aluminum and manganese
JP5847741B2 (en) * 2013-02-18 2016-01-27 Jx日鉱日石金属株式会社 Waste cathode material and method for recovering metal from waste battery
JP5847742B2 (en) * 2013-02-18 2016-01-27 Jx日鉱日石金属株式会社 Waste cathode material and method for recovering metal from waste battery
JP5706457B2 (en) * 2013-02-27 2015-04-22 Jx日鉱日石金属株式会社 Method for separating and recovering metal from mixed metal solution
JP6290633B2 (en) * 2014-01-22 2018-03-07 Jx金属株式会社 Lithium ion battery waste treatment method and metal recovery method using the same
JP6363578B2 (en) * 2014-09-30 2018-07-25 Jx金属株式会社 Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
EP3202928B1 (en) * 2014-09-30 2023-11-01 JX Nippon Mining & Metals Corporation Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
KR101528507B1 (en) * 2015-01-13 2015-06-12 한국지질자원연구원 Co-recovery method of cobalt and manganese from litium cells
KR102189661B1 (en) * 2016-03-16 2020-12-11 제이엑스금속주식회사 Lithium ion battery scrap treatment method
WO2017159743A1 (en) 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap
CN108011144B (en) * 2017-10-31 2019-09-13 合肥国轩高科动力能源有限公司 A kind of recovery processing technique of ternary cathode material of lithium ion battery
CN111466051B (en) * 2017-12-19 2024-05-03 巴斯夫欧洲公司 Battery recycling by treating leach liquor with metallic nickel
KR102206952B1 (en) * 2019-04-22 2021-01-25 코스모에코켐(주) Manufacturing Method of Mixed Metal Compounds for Preparing Precursors from Waste Cathode Active Material Powders
KR102154599B1 (en) * 2019-04-30 2020-09-10 코스모에코켐(주) Method for Separation and Recovery of Valuable Metals from Cathode Active Material
JP7365846B2 (en) * 2019-10-16 2023-10-20 Jx金属株式会社 Method for producing high purity cobalt sulfate solution and method for producing cobalt sulfate
CN113802002B (en) * 2021-08-17 2022-11-15 广东邦普循环科技有限公司 Method for recovering valuable metals in lithium battery by wet process
CN113846219B (en) * 2021-09-06 2022-11-15 广东邦普循环科技有限公司 Method for extracting lithium from waste lithium batteries

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448038A (en) * 1990-06-15 1992-02-18 Daihachi Chem Ind Co Ltd Method for separating indium and method for separating indium and gallium
DE4445496A1 (en) * 1994-12-20 1996-06-27 Varta Batterie Process for the recovery of metals from used nickel-metal hydride accumulators
US5759229A (en) * 1996-07-29 1998-06-02 Feitler; David Method for recovering cobalt/manganese/bromine values from residue containing used catalyst
JPH10287864A (en) * 1997-04-14 1998-10-27 Nippon Chem Ind Co Ltd Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery
JP4078838B2 (en) 2002-01-08 2008-04-23 住友金属鉱山株式会社 Method for recovering valuable metals from used nickel metal hydride secondary batteries
TWI231063B (en) * 2003-11-14 2005-04-11 Ind Tech Res Inst Process of recovering valuable metals from waste secondary batteries
JP4388091B2 (en) * 2007-03-22 2009-12-24 日鉱金属株式会社 Noble metal recovery method from Co, Ni, Mn containing battery
JP4865745B2 (en) * 2008-02-13 2012-02-01 Jx日鉱日石金属株式会社 Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
CN101586192B (en) * 2009-06-23 2011-03-16 四川师范大学 Leaching method for anode and cathode mixed materials of waste LiCoxNiyMnzO2 battery

Also Published As

Publication number Publication date
WO2011065682A3 (en) 2011-10-06
JP2013512345A (en) 2013-04-11
KR20110060089A (en) 2011-06-08
CN102665912A (en) 2012-09-12
WO2011065682A2 (en) 2011-06-03
KR101089519B1 (en) 2011-12-05

Similar Documents

Publication Publication Date Title
JP5572222B2 (en) Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material
Yang et al. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries
CN109449523B (en) Comprehensive recovery method for waste lithium ion battery
de Oliveira Demarco et al. Recovery of metals from spent lithium-ion batteries using organic acids
US20130312254A1 (en) Method for manufacturing a valuable-metal sulfuric-acid solution from a waste battery, and method for manufacturing a positive electrode active material
EP2627791A2 (en) Method for recovering valuable metals from lithium secondary battery wastes
KR20150094412A (en) Method for recovering valuable metals from cathodic active material of used lithium battery
KR20110117024A (en) Method for reusing valuable metal of used battery
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
KR20170061206A (en) Collection method of precursor material using disposed lithum-ion battery
US20210395859A1 (en) Processes for extracting metals from lithium-ion batteries
KR101178768B1 (en) Method of recovery of lithium from cathodic active material of lithium battery
KR101997983B1 (en) A Preparing Method Of Nickel-Cobalt-Manganese Complex Sulphate Solution Having Low Concentration Of Calcium Ion By Recycling A Wasted Lithium Secondary Battery Cathode Material
CN114317977B (en) Method for recovering metal from waste lithium cobalt oxide battery
KR101066166B1 (en) Method for Recovering Cobalt from Waste Lithium Ion Battery
Mahmoudi et al. Synergistic extraction and separation of cobalt and lithium using D2EHPA and CYANEX 272
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
WO2021174348A1 (en) A method for processing lithium iron phosphate batteries
CN103221557B (en) Method for producing nickel-ontaining acidic solution
KR101109031B1 (en) Method for Producing CMB Catalyst recycled with Lithium Ion Battery and Ternary Cathode Materials
KR20130048811A (en) Method for making cathode active material from used battery
KR101351523B1 (en) Method of recovering cadmiun from mixed spent batteries
KR101568216B1 (en) Method of manufacturing electrode active material and cathod active material manufactured by the method
KR20220057136A (en) Method for recovering mixed solution for prepararing precursor from ternary cathode active material of spent lithium ion batteries
JP2017008385A (en) Recovery method of raw material for manufacturing nca from waste nickel hydrogen battery and recovery device thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131001

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140627

R150 Certificate of patent or registration of utility model

Ref document number: 5572222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250