JP5571364B2 - Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method - Google Patents

Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method Download PDF

Info

Publication number
JP5571364B2
JP5571364B2 JP2009270310A JP2009270310A JP5571364B2 JP 5571364 B2 JP5571364 B2 JP 5571364B2 JP 2009270310 A JP2009270310 A JP 2009270310A JP 2009270310 A JP2009270310 A JP 2009270310A JP 5571364 B2 JP5571364 B2 JP 5571364B2
Authority
JP
Japan
Prior art keywords
lead frame
copper
semiconductor
roughening
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009270310A
Other languages
Japanese (ja)
Other versions
JP2011114223A (en
Inventor
文男 井上
智章 山下
幸久 廣山
和彦 坂従
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009270310A priority Critical patent/JP5571364B2/en
Publication of JP2011114223A publication Critical patent/JP2011114223A/en
Application granted granted Critical
Publication of JP5571364B2 publication Critical patent/JP5571364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Description

本発明は、半導体実装用導電基材の表面処理方法、ならびにこの処理方法を用いてなる導電基材および半導体パッケージに関するものであり、特に銅または銅合金よりなるリードフレームの表面処理に関するものである。   The present invention relates to a surface treatment method for a conductive substrate for semiconductor mounting, and a conductive substrate and a semiconductor package using the treatment method, and more particularly to a surface treatment of a lead frame made of copper or a copper alloy. .

近年の情報化社会の発展は目覚しく、民生機器ではパソコン、携帯電話などの小型化、軽量化、高性能化、高機能化が進められ、産業用機器としては無線基地局、光通信装置、サーバ、ルータなどのネットワーク関連機器など、大型、小型を問わず、同じように機能の向上が求められている。また、情報伝達量の増加に伴い、年々扱う信号の高周波化が進む傾向にあり、高速処理および高速伝送技術の開発が進められている。これを支えているのは、半導体チップ(LSI)技術と実装技術である。
半導体チップの動作周波数や集積度は年々増加し、より高速で高機能な処理が可能となってきている。一方、実装技術についても小型化、軽量化、高密度実装化が進展している。現在最も一般的な実装形態としては、半導体チップをパッケージ化してマザーボードと呼ばれる配線基板上に実装する方法である。このように、半導体チップをパッケージ化する実装形態には、以下のようなメリットが挙げられる。
(1)半導体チップを熱や紫外線等の外的環境から保護することが容易である。
(2)半導体チップの取扱いが容易になり、半導体チップの検査(動作チェック等)および良品選別が容易になる。
(3)半導体チップの配線ルール(配線幅や配線間が数十nm〜数百nm)とマザーボードの配線ルール(配線幅や配線間隔が数十μm〜数百μm)には大きなギャップがあり、半導体チップとマザーボードの電気的な接続が容易になる。
The development of the information society in recent years has been remarkable, and consumer devices have been reduced in size, weight, performance, and functionality, such as personal computers and mobile phones. Industrial equipment includes wireless base stations, optical communication devices, and servers. In addition, there is a demand for improvement in functions in the same way regardless of whether it is large or small, such as routers and other network-related devices. In addition, with the increase in the amount of information transmitted, the frequency of signals handled tends to increase year by year, and high-speed processing and high-speed transmission technology are being developed. This is supported by semiconductor chip (LSI) technology and packaging technology.
The operating frequency and degree of integration of semiconductor chips have been increasing year by year, and higher-speed and higher-performance processing has become possible. On the other hand, downsizing, weight reduction, and high-density mounting are also progressing in mounting technology. The most common mounting form at present is a method in which a semiconductor chip is packaged and mounted on a wiring board called a mother board. As described above, the mounting form for packaging a semiconductor chip has the following merits.
(1) It is easy to protect the semiconductor chip from an external environment such as heat and ultraviolet rays.
(2) The handling of the semiconductor chip becomes easy, and the inspection (operation check and the like) of the semiconductor chip and the non-defective product selection become easy.
(3) There is a large gap between the wiring rules for semiconductor chips (wiring width and spacing between several tens of nanometers to several hundreds of nanometers) and the wiring rules for motherboard (wiring width and wiring spacing are several tens of micrometers to several hundreds of micrometers). Electrical connection between the semiconductor chip and the motherboard is facilitated.

以上のメリットから、半導体チップの実装方法として、初期から半導体パッケージによる実装形態が広く用いられ、半導体チップの種類、機能、性能に合わせた多種多様な半導体パッケージが考案、実用化された。現在、半導体パッケージは、DIP(Dual Inline Package)、SOP(Small Outline Package)、LOC(Lead On Chip)、QFP(Quad Flat Package)、QFN(Quad Flat No Lead Package)等に代表されるリードフレームと呼ばれる導電基材を用いたタイプと、PGA(Pin Grid Array)、BGA(Ball Grid Array)、CSP(Chip Size Package)等に代表される無機または有機配線基板を用いたタイプに大別される。図1にはリードフレームタイプとしてQFP、図3には配線基板タイプとしてCSPの断面構造の一例を示す。リードフレームタイプは、価格が安価なことや生産性に優れることから、初期の半導体パッケージから実用化され、1985年以前は半導体パッケージのほとんどがリードフレームタイプであり、現在でもメモリ等の比較的低ピンの半導体パッケージに多用されている。一方配線基板タイプは、半導体チップの高機能化や多ピン化が進むに従って、多ピン化に適したPGAが実用化され、現在ではさらに小型化されたBGAやCSPが多数製造されるようになった。なお、図3のCSP50は、ポリイミドフィルム51、接着剤52、配線53、ダイボンド材54、金ワイヤ55、半導体チップ56、封止材57、はんだボール58より構成される。   In view of the above merits, a semiconductor package mounting method has been widely used from the beginning as a semiconductor chip mounting method, and a wide variety of semiconductor packages in accordance with the type, function, and performance of the semiconductor chip have been devised and put into practical use. Currently, semiconductor packages are represented by lead frames such as DIP (Dual Inline Package), SOP (Small Outline Package), LOC (Lead On Chip), QFP (Quad Flat Package), QFN (Quad Flat No Lead Package), and the like. The type using a conductive base material, and the type using an inorganic or organic wiring board represented by PGA (Pin Grid Array), BGA (Ball Grid Array), CSP (Chip Size Package), and the like. FIG. 1 shows an example of a cross-sectional structure of QFP as a lead frame type, and FIG. 3 shows a cross-sectional structure of a CSP as a wiring board type. Lead frame type has been put into practical use from the early semiconductor package because of its low price and excellent productivity. Before 1985, most of the semiconductor packages were lead frame type, and even today they are relatively low in memory etc. Widely used in semiconductor packages of pins. On the other hand, for the wiring board type, PGA suitable for increasing the number of pins has been put into practical use as the semiconductor chip becomes more functional and has a higher number of pins, and many smaller BGAs and CSPs are now manufactured. It was. 3 includes a polyimide film 51, an adhesive 52, a wiring 53, a die bond material 54, a gold wire 55, a semiconductor chip 56, a sealing material 57, and solder balls 58.

前述のように、価格や生産性に優れることから、現在でもリードフレームタイプの半導体パッケージは多数製造されている。初期のリードフレームの基材には、半導体パッケージの各種信頼性を満足させるために、半導体チップの熱膨張率(約3ppm/℃)に近い材質として42アロイ(鉄とニッケルの合金)が使用されていた。その後、更なる低価格化、高速化、高放熱化の要求が高まり、金属銅や銅合金を基材とした銅リードフレームの実用化が強く望まれるようになった。しかし、銅リードフレームの熱膨張率は十数ppm/℃と半導体チップに比べて非常に大きく、半導体チップとダイパッド間や銅リードフレームと封止材間で剥離やクラックが発生して、半導体パッケージの信頼性を充分に確保することができなかった。その後、ダイボンド材や封止材、銅リードフレーム基材の改良により、半導体パッケージの信頼性を確保することが可能になり、現在では銅リードフレームを使用するのが一般的となってきている。しかし、マザーボードへの実装が鉛フリー化されることによる高温での実装(リフロー温度の上昇)が必要になったことや、半導体チップの発熱量の増大などにより、より高い信頼性が求められ、銅リードフレームと封止材との更なる接着性向上が必要になっている。   As described above, due to its excellent price and productivity, many lead frame type semiconductor packages are still manufactured. In order to satisfy various reliability of the semiconductor package, 42 alloy (iron-nickel alloy) is used for the base material of the initial lead frame as a material close to the thermal expansion coefficient (about 3 ppm / ° C) of the semiconductor chip. It was. Since then, demands for further price reduction, higher speed, and higher heat dissipation have increased, and the practical application of copper lead frames based on metallic copper or copper alloys has been strongly desired. However, the thermal expansion coefficient of the copper lead frame is 10 ppm / ° C, which is very large compared to the semiconductor chip, and peeling or cracking occurs between the semiconductor chip and the die pad, or between the copper lead frame and the sealing material. It was not possible to secure sufficient reliability. Thereafter, by improving the die bond material, the sealing material, and the copper lead frame base material, it becomes possible to ensure the reliability of the semiconductor package. At present, it is common to use a copper lead frame. However, higher reliability is required due to the fact that mounting at a high temperature (increased reflow temperature) is required due to lead-free mounting on the motherboard, and the heat generation amount of the semiconductor chip is increased. There is a need for further improvement in adhesion between the copper lead frame and the sealing material.

銅リードフレームと封止材との接着性を向上させるために、従来、下記に示す銅リードフレームの表面処理方法が行われてきた。
第1の従来技術は、特許文献1に示すような、銅リードフレーム表面を有機アルカリ溶液中で陽極酸化させ、アルカリ金属残渣が1ng/cm以下である黒色酸化膜を形成する方法である。
第2の従来技術は、特許文献2に示すような、銅リードフレーム表面を自己還元力に優れた酸化剤を添加した黒化処理液で処理することにより、銅リードフレーム表面に水酸化物を含む酸化銅の皮膜を形成する方法である。
In order to improve the adhesion between the copper lead frame and the sealing material, conventionally, the following surface treatment method for the copper lead frame has been performed.
The first prior art is a method of forming a black oxide film having an alkali metal residue of 1 ng / cm 2 or less by anodizing the surface of a copper lead frame in an organic alkali solution as shown in Patent Document 1.
As shown in Patent Document 2, the second conventional technique treats the surface of the copper lead frame with a blackening treatment solution to which an oxidizing agent having an excellent self-reducing ability is added. A method for forming a copper oxide film.

特開平9−148509号公報JP-A-9-148509 特開2006−316355号公報JP 2006-316355 A

しかしながら、前記従来技術は以下のような課題がある。
アルカリ金属残渣が1ng/cm以下である黒色酸化膜を形成する方法である第1の従来技術は、陽極酸化によって黒色酸化皮膜を形成するために、銅リードフレームを電源に接続した状態で処理することが必要であり、生産性が悪いという問題点がある。また、銅リードフレーム表面に厚い酸化銅の皮膜を形成するために、電気特性の低下や放熱性の低下という問題もある。
銅リードフレーム表面に水酸化物を含む酸化銅の皮膜を形成する方法である第2の従来技術は、酸化銅の皮膜を形成する処理工程の温度が50〜80℃と高温であり、高温に耐えうる高価な処理装置が必要である。また、酸化銅の皮膜を形成後の表面には、針状結晶が形成されるため、表面にキズやコスレなどの痕が付きやすく、生産性の低下や歩留まりの低下という問題がある。さらに、第1の従来技術と同様に、銅リードフレーム表面に酸化銅の皮膜を形成するために、電気特性の低下や放熱性の低下という問題もある。さらに、酸化銅皮膜を形成する際に酸化剤または酸化強化剤として使用される亜塩素酸ナトリウムや過マンガン酸ナトリウム等は、有害物質のため環境負荷が大きいという問題もある。
However, the prior art has the following problems.
The first prior art, which is a method of forming a black oxide film having an alkali metal residue of 1 ng / cm 2 or less, is processed with a copper lead frame connected to a power source in order to form a black oxide film by anodic oxidation. There is a problem that productivity is poor. In addition, since a thick copper oxide film is formed on the surface of the copper lead frame, there is a problem that the electrical characteristics and heat dissipation are lowered.
The second conventional technique, which is a method of forming a copper oxide film containing hydroxide on the surface of the copper lead frame, has a high temperature of 50 to 80 ° C. in the processing step of forming the copper oxide film. There is a need for expensive processing equipment that can withstand. In addition, since a needle-like crystal is formed on the surface after the copper oxide film is formed, there is a problem that the surface is likely to have marks such as scratches and cosmetics, resulting in a decrease in productivity and a decrease in yield. Further, as in the first prior art, since a copper oxide film is formed on the surface of the copper lead frame, there is a problem that the electrical characteristics and heat dissipation are degraded. Furthermore, sodium chlorite, sodium permanganate, and the like, which are used as an oxidizing agent or an oxidation strengthening agent when forming a copper oxide film, have a problem that the environmental load is large because of harmful substances.

本発明は、前記従来技術の課題を解決するためになされたものであり、以下のように構成される。
(1)半導体実装用導電基材に腐食抑制剤を含有する化学粗化液を接触させて表面に粗化形状を形成する粗化工程を有する半導体実装用導電基材の表面処理方法。
(2)前記化学粗化液は、さらに硫酸及び過酸化水素を含有している、(1)に記載の半導体実装用導電基材の表面処理方法。
(3)前記腐食抑制剤は、1,2,3−ベンゾトリアゾールを含有している、(2)に記載の半導体実装用導電基材の表面処理方法。
(4)前記腐食抑制剤は、さらに5−アミノ−1H−テトラゾールを含有している、(3)に記載の半導体実装用導電基材の表面処理方法。
(5)前記粗化工程は、第1の化学粗化液に接触させる第1粗化工程と、前記第1粗化工程の後に第2の化学粗化液に接触させる第2粗化工程からなる、(1)〜(4)のいずれかに記載の半導体実装用導電基材の表面処理方法。
(6)前記粗化工程の後に、前記粗化工程で表面に形成される有機皮膜を除去する皮膜除去工程を有する、(1)〜(5)のいずれかに記載の半導体実装用導電基材の表面処理方法。
(7)前記除去工程は、アルカリ性溶液に接触させる工程からなる、(6)に記載の半導体実装用導電基材の表面処理方法。
(8)前記アルカリ性溶液は、水酸化ナトリウムまたは水酸化カリウムから選択されるアルカリ金属化合物と、トリエタノールアミンまたはモノエタノールアミンから選択されるエタノールアミンを含有している、(7)に記載の半導体実装用導電基材の表面処理方法。
(9)(1)〜(8)のいずれかに記載の表面処理を行った半導体実装用導電基材。
(10)(9)に記載の半導体実装用導電基材と半導体チップを接着し、その後封止材にて必要な箇所を封止して製造される半導体パッケージ。
The present invention has been made to solve the above-described problems of the prior art, and is configured as follows.
(1) A method for treating a surface of a conductive substrate for semiconductor mounting, comprising a roughening step of bringing a chemical roughening solution containing a corrosion inhibitor into contact with the conductive substrate for semiconductor mounting to form a roughened shape on the surface.
(2) The surface treatment method for a conductive substrate for semiconductor mounting according to (1), wherein the chemical roughening solution further contains sulfuric acid and hydrogen peroxide.
(3) The surface treatment method for a conductive substrate for semiconductor mounting according to (2), wherein the corrosion inhibitor contains 1,2,3-benzotriazole.
(4) The surface treatment method for a conductive substrate for semiconductor mounting according to (3), wherein the corrosion inhibitor further contains 5-amino-1H-tetrazole.
(5) The roughening step includes a first roughening step that is brought into contact with a first chemical roughening solution, and a second roughening step that is brought into contact with a second chemical roughening solution after the first roughening step. The surface treatment method for a conductive substrate for semiconductor mounting according to any one of (1) to (4).
(6) The conductive substrate for semiconductor mounting according to any one of (1) to (5), which has a film removal step for removing an organic film formed on the surface in the roughening step after the roughening step. Surface treatment method.
(7) The surface treatment method for a conductive substrate for semiconductor mounting according to (6), wherein the removing step includes a step of contacting with an alkaline solution.
(8) The semiconductor according to (7), wherein the alkaline solution contains an alkali metal compound selected from sodium hydroxide or potassium hydroxide and ethanolamine selected from triethanolamine or monoethanolamine. A surface treatment method for a conductive substrate for mounting.
(9) A conductive substrate for semiconductor mounting which has been subjected to the surface treatment according to any one of (1) to (8).
(10) A semiconductor package manufactured by bonding the semiconductor mounting conductive substrate according to (9) and a semiconductor chip, and then sealing a necessary portion with a sealing material.

本発明の処理方法により、銅リードフレーム等の表面に効率よく微細な凹凸を形成できるため、アンカー効果によって封止材との接着性を向上させることができる。
また、本発明の処理方法では、銅リードフレーム等の表面に酸化銅の皮膜は形成せず、電気特性および放熱性の低下を抑制することが可能である。
また、本発明の処理方法は低温での処理が可能である。よって、生産性に優れ、製造装置のコスト低減、製造コストの低減や歩留まりも向上できる。
また、本発明の処理方法は、従来技術のような有害物質を使用せずとも効果を得ることができ、環境負荷を低減できる。
また、本発明の半導体装置用導電基材は、封止材などとの接着性が良好であり、該導電基材を用いた半導体パッケージは信頼性、電気特性、放熱性に優れる。
According to the treatment method of the present invention, fine irregularities can be efficiently formed on the surface of a copper lead frame or the like, so that the adhesion to the sealing material can be improved by the anchor effect.
In the processing method of the present invention, a copper oxide film is not formed on the surface of a copper lead frame or the like, and it is possible to suppress a decrease in electrical characteristics and heat dissipation.
Further, the processing method of the present invention can be processed at a low temperature. Therefore, it is excellent in productivity and can reduce the cost of the manufacturing apparatus, the manufacturing cost, and the yield.
In addition, the treatment method of the present invention can achieve an effect without using harmful substances as in the prior art, and can reduce the environmental burden.
In addition, the conductive substrate for a semiconductor device of the present invention has good adhesion to a sealing material and the like, and a semiconductor package using the conductive substrate is excellent in reliability, electrical characteristics, and heat dissipation.

図1は、銅リードフレームを用いたQFPの構造の一例を示す断面概略図である。FIG. 1 is a schematic cross-sectional view showing an example of the structure of a QFP using a copper lead frame. 図2は、銅リードフレームの構造の一例を示す平面概略図である。FIG. 2 is a schematic plan view showing an example of the structure of the copper lead frame. 図3は、配線基板を用いたCSPの構造の一例を示す断面概略図である。FIG. 3 is a schematic cross-sectional view showing an example of the structure of a CSP using a wiring board. 図4は、銅リードフレームおよびこれを用いた半導体パッケージの製造工程の一例を示す断面概略図である。FIG. 4 is a schematic cross-sectional view showing an example of a manufacturing process of a copper lead frame and a semiconductor package using the copper lead frame. 図5は、封止材との接着性を評価するための接着力測定サンプルの斜視図である。FIG. 5 is a perspective view of an adhesive force measurement sample for evaluating adhesiveness with a sealing material. 図6は、ボンドテスタを用いたシェア強度測定方法の一例を示す断面概略図である。FIG. 6 is a schematic cross-sectional view showing an example of a shear strength measurement method using a bond tester.

本発明は、半導体パッケージに用いられる銅系の半導体実装用導電基材の表面を、腐食抑制剤を含有する化学粗化液で処理し、粗化形状を形成することを特徴とする。
以下、図面を用いて本発明の実施形態について、詳細に説明する。ここでは、本発明の適用例として、銅リードフレームの表面処理とこれを用いたQFPを一例として説明するが、半導体用の放熱板の表面処理方法や、その他の半導体パッケージについても同様に適用することができる。
The present invention is characterized in that the surface of a copper-based conductive substrate for semiconductor mounting used in a semiconductor package is treated with a chemical roughening solution containing a corrosion inhibitor to form a roughened shape.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, as an example of application of the present invention, surface treatment of a copper lead frame and QFP using the copper lead frame will be described as an example, but the same applies to a surface treatment method of a semiconductor heat sink and other semiconductor packages. be able to.

(半導体実装用導電基材)
半導体実装用導電基材とは、銅系の半導体実装用導電基材であり、例えば、銅または銅合金からなる金属製の放熱板やリードフレーム等が挙げられる。本願発明の方法を銅または銅合金からなる放熱板やリードフレームに使用した場合、顕著な効果が得られる。銅合金としては、銅を主成分として、クロム、ジルコニウム、亜鉛、鉄、チタン、リン等を含有したものが使用できる。
図1は、リードフレームを用いたQFPの構造の一例を示す断面概略図である。図1において、ダイパット12上にダイボンド材17を介して半導体チップ16が載置され、半導体チップ16は金ワイヤ18を介してインナーリード13のめっき15が形成された箇所と接続されており、これらは封止材19により封止され、インナーリード13から続くアウターリード14が封止材の外に伸び、全体として半導体パッケージ10を構成する。このうち、ダイパット12、インナーリード13及びアウターリード14がリードフレームに該当する。
図2は、銅リードフレーム11の構造の一例を示す平面概略図である。銅リードフレーム11は、半導体チップが接着されるダイパッド12、半導体パッケージの内側の配線であるインナーリード13(封止材で封止される箇所)、半導体パッケージの外側に露出する配線であるアウターリード14(封止材で封止されない箇所)等で構成される。ダイパッド12の半導体チップが接着される面や、インナーリード13の先端部(金ワイヤ18の接続部)には、銀、錫、ニッケルおよび金めっき等が施されることが好ましい。インナーリード13の先端部のめっき部を、めっき15として示す。さらにアウターリード14の外側には、半導体チップの接着(ダイボンド)、封止、外形加工等の際に使用されるガイド穴20等が形成される。銅リードフレーム11は、図2では1パッケージ分の構成を図示したが、これを基本単位として長手方向に複数個形成して短冊状に加工するのが一般的である。銅リードフレーム11の製造方法としては、厚さ100〜300μmのリール状の銅または銅合金条を用意し、まずガイド穴20等の加工を行う。続いてガイド穴20を用いて打ち抜き金型によって所定のパターンに打ち抜いて(スタンピング)、短冊状の銅リードフレーム11に加工される。また、微細なインナーリード13やアウターリード14を加工する場合は、エッチングでパターン形成することもできる。次に、ダイパッド12、及びインナーリード13の金ワイヤ18との接続部分に銀、錫、ニッケルおよび金めっき等を行ってめっき付き銅リードフレームが完成する。
(Conductive substrate for semiconductor mounting)
The conductive substrate for semiconductor mounting is a copper-based conductive substrate for semiconductor mounting, and examples thereof include a metal heat sink or lead frame made of copper or a copper alloy. When the method of the present invention is used for a heat sink or a lead frame made of copper or a copper alloy, a remarkable effect is obtained. As the copper alloy, one containing copper as a main component and containing chromium, zirconium, zinc, iron, titanium, phosphorus or the like can be used.
FIG. 1 is a schematic cross-sectional view showing an example of the structure of a QFP using a lead frame. In FIG. 1, a semiconductor chip 16 is placed on a die pad 12 via a die bond material 17, and the semiconductor chip 16 is connected to a place where the plating 15 of the inner lead 13 is formed via a gold wire 18. Is sealed with a sealing material 19, and outer leads 14 extending from the inner leads 13 extend out of the sealing material to constitute the semiconductor package 10 as a whole. Among these, the die pad 12, the inner lead 13, and the outer lead 14 correspond to the lead frame.
FIG. 2 is a schematic plan view showing an example of the structure of the copper lead frame 11. The copper lead frame 11 includes a die pad 12 to which a semiconductor chip is bonded, an inner lead 13 (a portion sealed with a sealing material) that is a wiring inside the semiconductor package, and an outer lead that is a wiring exposed outside the semiconductor package. 14 (location not sealed with a sealing material) or the like. It is preferable that silver, tin, nickel, gold plating, or the like is applied to the surface of the die pad 12 to which the semiconductor chip is bonded or the tip of the inner lead 13 (connection portion of the gold wire 18). A plating portion at the tip of the inner lead 13 is shown as plating 15. Further, a guide hole 20 or the like used for semiconductor chip bonding (die bonding), sealing, outer shape processing, or the like is formed outside the outer lead 14. Although the structure of one package of the copper lead frame 11 is shown in FIG. 2, a plurality of copper lead frames 11 are generally formed in the longitudinal direction as a basic unit and processed into a strip shape. As a method for manufacturing the copper lead frame 11, reel-shaped copper or copper alloy strips having a thickness of 100 to 300 μm are prepared, and the guide holes 20 and the like are first processed. Subsequently, the guide hole 20 is punched into a predetermined pattern by a punching die (stamping) and processed into a strip-shaped copper lead frame 11. Moreover, when processing the fine inner lead 13 and the outer lead 14, the pattern can be formed by etching. Next, silver, tin, nickel, gold plating, or the like is performed on the die pad 12 and the connection portion of the inner lead 13 with the gold wire 18 to complete a plated copper lead frame.

(化学粗化液)
本発明における化学粗化液は、銅を溶解する溶液及び腐食抑制剤を含有することが好ましい。このような化学粗化液を半導体実装用導電基材に接触させることで、表面に粗化形状を形成できる。粗化形状が形成された表面は有機皮膜で覆われている。
(銅を溶解する溶液)
具体的には、銅を溶解する溶液としては、例えば、過硫酸塩、硫酸及び過酸化水素(硫酸と過酸化水素の混合液)、塩化第二鉄、塩化第二銅、塩化テトラアミン銅が挙げられる。中でも、硫酸及び過酸化水素が、低価格で入手がしやすく、生産性に優れ、環境への負荷も少ないことから特に好ましい。
化学粗化液中の、銅を溶解する溶液の濃度は、粗化処理のスピード及びランニングコストを考慮すると、10〜400g/Lであり、より好ましくは、20〜200g/Lである。
特に、銅を溶解する溶液が硫酸及び過酸化水素の場合は、硫酸の濃度としては、20〜400g/Lであると好ましく、20〜200g/Lであるとより好ましく、50〜100g/Lであると特に好ましい。硫酸の濃度が20g/L以上であると、銅等の金属の溶解度が高いため結果的に液寿命が長くなり、400g/L以下であれば、ランニングコストを少なくすることができる。また、過酸化水素の濃度としては、10〜200g/Lであると好ましく、10〜100g/Lであるとより好ましく、10〜50g/Lであると特に好ましい。過酸化水素の濃度が10g/L以上であると、粗化処理のスピードが大きいため処理時間が短くなり、生産性が高くなる傾向がある。また、200g/L以下だと、過酸化水素の自然分解が少ないので使用量を抑えることができ、ランニングコストを少なくすることができる。
(Chemical roughening solution)
The chemical roughening solution in the present invention preferably contains a solution for dissolving copper and a corrosion inhibitor. By bringing such a chemical roughening solution into contact with the conductive substrate for semiconductor mounting, a roughened shape can be formed on the surface. The surface on which the roughened shape is formed is covered with an organic film.
(Solution that dissolves copper)
Specifically, examples of the solution for dissolving copper include persulfate, sulfuric acid and hydrogen peroxide (mixed solution of sulfuric acid and hydrogen peroxide), ferric chloride, cupric chloride, and tetraamine copper. It is done. Among these, sulfuric acid and hydrogen peroxide are particularly preferable because they are easily available at low prices, are excellent in productivity, and have a low environmental load.
The concentration of the solution for dissolving copper in the chemical roughening solution is 10 to 400 g / L, more preferably 20 to 200 g / L, considering the speed of the roughening treatment and the running cost.
In particular, when the solution for dissolving copper is sulfuric acid and hydrogen peroxide, the sulfuric acid concentration is preferably 20 to 400 g / L, more preferably 20 to 200 g / L, and 50 to 100 g / L. Particularly preferred. If the concentration of sulfuric acid is 20 g / L or more, the solubility of metals such as copper is high, resulting in a longer liquid life. If the concentration is 400 g / L or less, the running cost can be reduced. Moreover, as a density | concentration of hydrogen peroxide, it is preferable in it being 10-200 g / L, it is more preferable in it being 10-100 g / L, and it is especially preferable in it being 10-50 g / L. When the concentration of hydrogen peroxide is 10 g / L or more, since the speed of the roughening treatment is large, the treatment time is shortened and the productivity tends to be high. Moreover, when it is 200 g / L or less, since there is little natural decomposition | disassembly of hydrogen peroxide, the usage-amount can be restrained and a running cost can be reduced.

(腐食抑制剤)
腐食抑制剤としては、半導体実装用導電基材の表面に所望の粗化形状を形成することができれば特に制限はないが、効率よく形成するためにはアゾール化合物を含有することが好ましい。アゾール化合物としては、例えば、5−アミノ−1H−テトラゾール、1,2,3−ベンゾトリアゾール、トリルトリアゾール、1−メチルテトラゾール、2−メチルテトラゾール、5−メチルトリアゾール、1−フェニルテトラゾール、イミダゾール、5−フェニルテトラゾール、チアゾール、ピラゾール、イソオキサゾール、1,2,3−トリアゾール、インダゾール、1,2,4−トリアゾールなどが好適に使用できる。
腐食抑制剤として、少なくとも1,2,3−ベンゾトリアゾール及び5−アミノ−1H−テトラゾールのいずれかを用いることが好ましく、これらを併用することがより好ましい。
腐食抑制剤として1,2,3−ベンゾトリアゾールを使用した場合に顕著な効果が得られ、つまり、効率よく粗化形状を形成できるとともに、封止材との接着性を向上させることができる。また、さらに5−アミノ−1H−テトラゾールを併用することにより、特に銅合金の銅リードフレームを処理した場合、化学粗化液中での沈殿物の発生を抑制でき、液寿命を長くすることができ、経済的面からも好ましい。また、5−アミノ−1H−テトラゾールを使用することで、処理ムラを抑制することもできる。
この腐食抑制剤を含有する化学粗化液で処理することにより、半導体実装用導電基材が例えば銅リードフレームの場合には、銅リードフレーム表面に効率よく封止材との接着性に優れた粗化形状を形成でき、本発明による効果を更に確実に得ることができる。その理由は必ずしも明らかではないが、かかる化学粗化液においては、銅を溶解する溶液が半導体実装用導電基材の表面を酸化および溶解する一方、腐食抑制剤が半導体実装用導電基材表面の腐食を抑制すると考えられる。例えば、1,2,3−ベンゾトリアゾールを含有する化学粗化液で粗化した銅リードフレーム表面上では、X線光電子分光分析(XPS)からCu(Cと推定される銅及び1,2,3−ベンゾトリアゾールの化学結合が認められた。このため、銅リードフレーム表面にはCu(Cに起因する有機皮膜が形成されると考えられる。このように互いに拮抗する成分を同時に半導体実装用導電基材の表面に接触させると、銅を溶解する溶液による表面の酸化および溶解が、部分的に腐食抑制剤によって防止されるものと考えられる。これにより、半導体実装用導電基材の表面に極めて複雑な粗化形状を形成できるものと推測される。
かかる効果を好適に得るためには、化学粗化液中の腐食抑制剤の濃度は、形成される粗化形状の大きさと処理ムラを低減することを考慮すると、0.5〜30g/Lが好ましく、より好ましくは0.5〜20g/Lである。中でも、5−アミノ−1H−テトラゾールまたは1,2,3−ベンゾトリアゾールそれぞれの濃度は、0.5〜20g/Lであると好ましく、0.5〜10g/Lであるとより好ましく、0.5〜7g/Lであると特に好ましい。濃度を0.5g/L以上とすることで、充分な粗化形状が得られやすくなり、20g/L以下とすることで、処理ムラの低減ができる。
(Corrosion inhibitor)
The corrosion inhibitor is not particularly limited as long as a desired roughened shape can be formed on the surface of the conductive substrate for semiconductor mounting, but an azole compound is preferably contained for efficient formation. Examples of the azole compound include 5-amino-1H-tetrazole, 1,2,3-benzotriazole, tolyltriazole, 1-methyltetrazole, 2-methyltetrazole, 5-methyltriazole, 1-phenyltetrazole, imidazole, 5 -Phenyltetrazole, thiazole, pyrazole, isoxazole, 1,2,3-triazole, indazole, 1,2,4-triazole and the like can be preferably used.
As the corrosion inhibitor, it is preferable to use at least one of 1,2,3-benzotriazole and 5-amino-1H-tetrazole, and it is more preferable to use these in combination.
When 1,2,3-benzotriazole is used as a corrosion inhibitor, a remarkable effect can be obtained, that is, a roughened shape can be efficiently formed and adhesion with a sealing material can be improved. Further, when 5-amino-1H-tetrazole is used in combination, particularly when a copper lead frame made of a copper alloy is processed, the generation of precipitates in the chemical roughening solution can be suppressed, and the life of the solution can be extended. This is also preferable from the economical viewpoint. Moreover, processing unevenness can also be suppressed by using 5-amino-1H-tetrazole.
By treating with a chemical roughening solution containing this corrosion inhibitor, for example, when the conductive substrate for semiconductor mounting is a copper lead frame, the surface of the copper lead frame has excellent adhesion to the sealing material efficiently. A roughened shape can be formed, and the effects of the present invention can be obtained more reliably. The reason for this is not necessarily clear, but in such a chemical roughening solution, the solution for dissolving copper oxidizes and dissolves the surface of the conductive substrate for semiconductor mounting, while the corrosion inhibitor acts on the surface of the conductive substrate for semiconductor mounting. It is thought to suppress corrosion. For example, on a copper lead frame surface roughened with a chemical roughening solution containing 1,2,3-benzotriazole, it is estimated as Cu (C 6 H 4 N 3 ) 2 from X-ray photoelectron spectroscopy (XPS). The chemical bond of copper and 1,2,3-benzotriazole was observed. Therefore, the copper lead frame surface is considered organic film due to Cu (C 6 H 4 N 3 ) 2 is formed. When components that antagonize each other at the same time are brought into contact with the surface of the conductive substrate for semiconductor mounting in this way, it is considered that oxidation and dissolution of the surface by the solution dissolving copper is partially prevented by the corrosion inhibitor. Thereby, it is estimated that an extremely complicated rough shape can be formed on the surface of the conductive substrate for semiconductor mounting.
In order to suitably obtain such an effect, the concentration of the corrosion inhibitor in the chemical roughening solution is 0.5 to 30 g / L in consideration of reducing the size of the roughened shape to be formed and processing unevenness. Preferably, it is 0.5-20 g / L. Among these, the concentration of 5-amino-1H-tetrazole or 1,2,3-benzotriazole is preferably 0.5 to 20 g / L, more preferably 0.5 to 10 g / L, and It is especially preferable that it is 5-7 g / L. When the concentration is 0.5 g / L or more, a sufficiently roughened shape can be easily obtained, and when it is 20 g / L or less, processing unevenness can be reduced.

(アルコール溶媒)
上記に加えて化学粗化液には、更にアルコール溶媒を含有していることが好ましい。これにより、沈殿物の発生をさらに抑制し、その結果、沈殿物の再付着による異物不良を低減することができる。更に、接着特性を損なうことなく、化学粗化液の液寿命を4倍程度に延命することができる。アルコール溶媒としては、特に限定されないが、グリコール系の溶媒であると好ましい。グリコール系の溶媒としては、例えば、アルキレングリコール、アルキレングリコールアルキルエーテル、グリコール酸、及び分子量200〜20000のポリエチレングリコールなどが挙げられる。アルキレングリコール化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、メチルプロピレングリコールなどが挙げられる。アルキレングリコールアルキルエーテルとしては、例えば、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジモノエチルエーテル、ジエチレングリコールモノブチルエーテルなどが挙げられる。これらの溶媒は単独で使用してもよく、また、2種以上混合して使用することもできる。
化学粗化液中のアルコール溶媒の濃度は、沈殿物を低減することを考慮すると3〜70mL/Lが好ましく、より好ましくは、3〜50mL/Lである。
(Alcohol solvent)
In addition to the above, the chemical roughening solution preferably further contains an alcohol solvent. Thereby, generation | occurrence | production of a deposit is further suppressed and, as a result, the foreign material defect by the reattachment of a deposit can be reduced. Furthermore, the life of the chemical roughening solution can be extended by about 4 times without impairing the adhesive properties. The alcohol solvent is not particularly limited, but is preferably a glycol solvent. Examples of the glycol-based solvent include alkylene glycol, alkylene glycol alkyl ether, glycolic acid, and polyethylene glycol having a molecular weight of 200 to 20000. Examples of the alkylene glycol compound include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, and methylpropylene glycol. Examples of the alkylene glycol alkyl ether include diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol dimonoethyl ether, and diethylene glycol monobutyl ether. These solvents may be used alone or in combination of two or more.
The concentration of the alcohol solvent in the chemical roughening solution is preferably 3 to 70 mL / L, more preferably 3 to 50 mL / L in consideration of reducing the precipitate.

(化学粗化液による処理)
前述のような化学粗化液を用いて半導体実装用導電基材を処理する方法としては、公知の方法を用いることができる。例えば、スプレー法、ディップ法によって、化学粗化液を半導体実装用導電基材に接触させる方法がある。
また、半導体実装用導電基材が、例えば銅リードフレームの場合は、処理温度及び処理時間については、銅リードフレームの粗化形状がRz0.5〜5μmとなるように適宜決定することが好ましい。Rzは十点平均粗さであり、JIS B0601 1994に準拠して測定できる。Rzを0.5μm以上とすることで、充分な封止材との接着力が得られ、さらに安定した接着力を得るためには0.7μm以上がより好ましい。また、Rzが大きすぎるとエッチング量が大きくなって、微細なパターンではインナーリードやアウターリードの細りが問題になる場合があり、5μm以下とすることでこれらの問題が生じにくくなる。また、2.0μmを越えるとワイヤボンド強度が低下する傾向があり、安定したワイヤボンド強度を得るためには、1.5μm以下が好ましい。したがって、安定した封止材との接着力とワイヤボンド強度を両立させるためには、Rzは0.7〜1.5μmであることが最も好ましい。これらのRzを満たすためには、温度は10〜40℃、時間は30〜600秒で処理することが好ましい。
(Treatment with chemical roughening solution)
As a method for treating the conductive substrate for semiconductor mounting using the chemical roughening solution as described above, a known method can be used. For example, there is a method of bringing a chemical roughening solution into contact with a conductive substrate for semiconductor mounting by a spray method or a dip method.
Moreover, when the conductive substrate for semiconductor mounting is, for example, a copper lead frame, it is preferable that the processing temperature and the processing time are appropriately determined so that the rough shape of the copper lead frame is Rz 0.5 to 5 μm. Rz is a ten-point average roughness and can be measured according to JIS B0601 1994. By setting Rz to 0.5 μm or more, sufficient adhesive force with the sealing material can be obtained, and 0.7 μm or more is more preferable in order to obtain more stable adhesive force. On the other hand, if Rz is too large, the etching amount becomes large, and in a fine pattern, the thinness of the inner lead or the outer lead may become a problem. By setting the thickness to 5 μm or less, these problems are hardly caused. Moreover, when it exceeds 2.0 micrometers, there exists a tendency for wire bond strength to fall, and in order to obtain the stable wire bond strength, 1.5 micrometers or less are preferable. Therefore, Rz is most preferably 0.7 to 1.5 [mu] m in order to achieve both a stable adhesive strength and wire bond strength. In order to satisfy these Rz, it is preferable to perform the treatment at a temperature of 10 to 40 ° C. and a time of 30 to 600 seconds.

(粗化工程)
粗化工程は、1回で行っても、複数回に分けて行ってもよい。複数回に分けて行う場合は、安価に生産性よく処理ムラを抑制し、安定して粗化するため、化学粗化液の濃度を順に高くしていくことが好ましい。
好ましくは、第1の化学粗化液に接触させる第1粗化工程と、第1粗化工程の後に第2の化学粗化液に接触させる第2粗化工程との2回に分けて行う。第1粗化工程で半導体実装用導体基板表面を若干粗化して銅表面の汚染等を除去し、第2粗化工程で所望の粗化形状を得る。これにより均一に処理が行えるため、処理ムラを低減できる。2回処理を行う場合、第1の化学粗化液および第2の化学粗化液は、少なくとも5−アミノ−1H−テトラゾールまたは1,2,3−ベンゾトリアゾールを含有することが好ましく、第1の化学粗化液および第2の化学粗化液が少なくとも5−アミノ−1H−テトラゾールまたは1,2,3−ベンゾトリアゾールを含有し、かつ第1の化学粗化液および前記第2の化学粗化液の少なくとも一方に、1,2,3−ベンゾトリアゾールを含有していることがより好ましく、第1の化学粗化液および前記第2の化学粗化液の両方に、5−アミノ−1H−テトラゾールおよび1,2,3−ベンゾトリアゾールの両方を含有していることが最も好ましい。また、5−アミノ−1H−テトラゾールまたは1,2,3−ベンゾトリアゾールの濃度は、第1の化学粗化液より第2の化学粗化液を高くすることがより好ましい。具体的には、腐食抑制剤の合計濃度は、第1の化学粗化液中において0.5〜10g/Lが好ましく、第2の化学粗化液において1〜20g/Lが好ましい。粗化工程を複数回に分けて行うことにより、より安価に生産性よく、また処理ムラを抑制し安定して半導体実装用導体基板表面に有機皮膜付きの粗化形状を形成することができる。
(Roughening process)
The roughening process may be performed once or divided into a plurality of times. In the case of carrying out a plurality of times, it is preferable to increase the concentration of the chemical roughening solution in order in order to suppress the processing unevenness at low cost and with high productivity and to stably perform roughening.
Preferably, the first roughening step in contact with the first chemical roughening solution and the second roughening step in contact with the second chemical roughening solution after the first roughening step are performed in two steps. . In the first roughening step, the surface of the semiconductor substrate for semiconductor mounting is slightly roughened to remove contamination and the like on the copper surface, and a desired roughened shape is obtained in the second roughening step. As a result, uniform processing can be performed, so that processing unevenness can be reduced. When performing the treatment twice, the first chemical roughening solution and the second chemical roughening solution preferably contain at least 5-amino-1H-tetrazole or 1,2,3-benzotriazole, The chemical roughening liquid and the second chemical roughening liquid contain at least 5-amino-1H-tetrazole or 1,2,3-benzotriazole, and the first chemical roughening liquid and the second chemical roughening liquid More preferably, at least one of the roughening liquid contains 1,2,3-benzotriazole, and both the first chemical roughening liquid and the second chemical roughening liquid include 5-amino-1H. Most preferably it contains both tetrazole and 1,2,3-benzotriazole. The concentration of 5-amino-1H-tetrazole or 1,2,3-benzotriazole is more preferably higher in the second chemical roughening solution than in the first chemical roughening solution. Specifically, the total concentration of the corrosion inhibitor is preferably 0.5 to 10 g / L in the first chemical roughening solution, and preferably 1 to 20 g / L in the second chemical roughening solution. By performing the roughening step in a plurality of times, it is possible to form a roughened shape with an organic film on the surface of the semiconductor substrate for semiconductor mounting stably, with low cost and good productivity, and suppressing processing unevenness.

(皮膜除去工程)
粗化工程の後に有機皮膜を除去する皮膜除去工程をさらに行うことが好ましい。前述の通り、腐食抑制剤を含有する化学粗化液で半導体実装用導電基材を処理すると、粗化形状の表面に有機被膜が形成される。半導体実装用導電基材を長期保存する場合は表面の防錆効果が期待できるために、有機皮膜が付いた状態で保存することが好ましく、実際に使用する直前に有機皮膜を除去することが好ましい。例えば、半導体実装用導電基材が銅リードフレームの場合は、半導体パッケージを組立てる直前に有機皮膜を除去することが好ましい。使用の直前に有機皮膜を除去することにより、汚染の少ない銅または銅合金の表面が得られ、封止材との接着性を向上することができる。
有機皮膜の除去方法は特に問わないが、アルカリ性溶液に接触させる処理方法が好ましく、スプレー法やディップ法で行うことが効率的で好ましい。アルカリ性溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物を溶解した水溶液が好ましく、特に、水酸化ナトリウム、水酸化カリウムから選択されるアルカリ金属化合物が有機皮膜の除去性に優れていることから、より好ましい。
また、アルカリ性溶液は、さらにアミンを含有していることが好ましい。アミンを含有することで均一かつ容易に有機皮膜を除去できる。使用できるアミンは特に問わないが、トリエタノールアミン、モノエタノールアミンから選択されるエタノールアミンが有機皮膜の除去性に優れており、より好ましい。
アルカリ金属化合物の濃度は、5〜100g/Lが好ましく、30〜70g/Lがより好ましい。5g/L以上にすることで、有機皮膜の除去性が充分に得られやすくなり、アルカリ金属化合物が高濃度の場合に半導体実装用導体基板が変色する場合があり、100g/L以下にすることで銅リードフレームは変色しにくくなる。また、アミンの濃度は、5〜100g/Lが好ましく、30〜70g/Lがより好ましい。同様に、5g/L以上とすることで、有機皮膜の除去性が充分に得られやすくなり、100g/L以下とすることでアミンによる半導体実装用導体基板の変色が起こりにくくなる。
処理温度及び処理時間は、有機皮膜が完全に除去可能な条件を適宜決定することができるが、温度は30〜80℃、時間は10〜100秒であることが好ましい。
(Film removal process)
It is preferable to further perform a film removal step of removing the organic film after the roughening step. As described above, when the semiconductor mounting conductive substrate is treated with a chemical roughening solution containing a corrosion inhibitor, an organic film is formed on the roughened surface. When storing a conductive substrate for semiconductor mounting for a long period of time, it can be expected to have a rust-preventing effect on the surface, so it is preferable to store it with an organic film, and it is preferable to remove the organic film immediately before actual use . For example, when the conductive substrate for semiconductor mounting is a copper lead frame, it is preferable to remove the organic film immediately before assembling the semiconductor package. By removing the organic film immediately before use, a copper or copper alloy surface with little contamination can be obtained, and the adhesion to the sealing material can be improved.
A method for removing the organic film is not particularly limited, but a treatment method in which the organic film is brought into contact with an alkaline solution is preferable. As the alkaline solution, for example, an aqueous solution in which an alkali metal compound such as sodium hydroxide, potassium hydroxide or sodium carbonate or an alkaline earth metal compound is dissolved is preferable, and in particular, an alkali metal selected from sodium hydroxide and potassium hydroxide. Since the compound is excellent in the removability of an organic film, it is more preferable.
Moreover, it is preferable that the alkaline solution further contains an amine. By containing an amine, the organic film can be removed uniformly and easily. The amine that can be used is not particularly limited, but ethanolamine selected from triethanolamine and monoethanolamine is more preferable because it is excellent in removability of the organic film.
The concentration of the alkali metal compound is preferably 5 to 100 g / L, and more preferably 30 to 70 g / L. By making it 5 g / L or more, the removal property of the organic film can be sufficiently obtained, and when the alkali metal compound is at a high concentration, the semiconductor substrate for semiconductor mounting may be discolored, and it should be 100 g / L or less. The copper lead frame is less likely to discolor. Moreover, 5-100 g / L is preferable and, as for the density | concentration of an amine, 30-70 g / L is more preferable. Similarly, by setting it as 5 g / L or more, the removability of an organic membrane | film | coat will become fully easy to be obtained, and discoloration of the conductor board for semiconductor mounting by an amine becomes difficult to occur by setting it as 100 g / L or less.
The treatment temperature and the treatment time can be appropriately determined under conditions that allow the organic film to be completely removed, but the temperature is preferably 30 to 80 ° C. and the time is preferably 10 to 100 seconds.

(半導体パッケージ)
次に、本発明を適用した半導体パッケージについて説明する。ここでは、本発明の表面処理を行った銅リードフレームを用いたQFPを一例として説明するが、その他の半導体パッケージについても同様に適用することが可能である。
(Semiconductor package)
Next, a semiconductor package to which the present invention is applied will be described. Here, QFP using a copper lead frame subjected to the surface treatment of the present invention will be described as an example, but the present invention can be similarly applied to other semiconductor packages.

(ダイボンド材)
半導体チップを銅リードフレームに接着するためのダイボンド材としては、半導体用のダイボンドペーストまたはダイボンドフィルムなどが使用できる。半導体パッケージの信頼性を向上させるためには、半導体チップと銅リードフレームの接着力が強い、ダイボンドフィルムを使用することが好ましい。ダイボンドフィルムは、熱可塑性と熱硬化性のものがあるが、低温接着可能な熱硬化性のものが好ましい。半導体チップの接着は、一般的な接着方法で行えば良い。例えば、所定のサイズのダイボンドフィルムを予め銅リードフレームのダイパッドに仮接着し、その後ダイボンダで半導体チップを熱圧着して接着することができる。また、半導体ウエハをダイボンドフィルム付きダイシングテープに貼り付けてダイシングすることで、半導体チップの裏面にダイボンドフィルムを仮接着し、これを銅リードフレームに熱圧着する方法もあり、この方法は効率的で好ましい。熱硬化性のダイボンド材を使用した場合は、半導体チップを搭載後にダイボンド材を加熱硬化するのが一般的であるが、特に熱硬化性のダイボンドフィルムを使用した場合は、封止材の後加熱時に同時に硬化することもできる。
(Die bond material)
As a die bond material for adhering the semiconductor chip to the copper lead frame, a die bond paste for semiconductor or a die bond film can be used. In order to improve the reliability of the semiconductor package, it is preferable to use a die bond film having a strong adhesive force between the semiconductor chip and the copper lead frame. Die bond films include thermoplastic and thermosetting materials, but thermosetting materials that can be bonded at low temperatures are preferred. The semiconductor chip may be bonded by a general bonding method. For example, a die bond film of a predetermined size can be temporarily bonded to a die pad of a copper lead frame in advance, and then the semiconductor chip can be bonded by thermocompression bonding with a die bonder. Also, there is a method in which a semiconductor wafer is attached to a dicing tape with a die bond film and diced to temporarily bond the die bond film to the back surface of the semiconductor chip, and this is thermocompression bonded to a copper lead frame. This method is efficient. preferable. When a thermosetting die bond material is used, it is common to heat cure the die bond material after mounting a semiconductor chip. However, especially when a thermosetting die bond film is used, the encapsulant is post heated. Sometimes it can be cured simultaneously.

(封止材)
封止材としては、半導体を封止できる材料であれば良いが、半導体封止用エポキシ系封止材が好ましい。エポキシ系封止材は、エポキシ樹脂、硬化剤、硬化促進剤、無機充填剤、カップリング剤、難燃剤を含有しているものが好ましい。
エポキシ樹脂は、たとえば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリフェニルメタン骨格を有するエポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、アルキル置換、芳香環置換又は非置換のビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール等のジグリシジルエーテル、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノ−ル類の共縮合樹脂のエポキシ化物、ナフタレン環を有するエポキシ樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるアラルキル型フェノール樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂、硫黄原子含有エポキシ樹脂などが挙げられ、これらの1種を単独で用いても2種以上を組み合わせて用いてもよい。
硬化剤は、たとえば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂、フェノール類及び/又はナフトール類とシクロペンタジエンから共重合により合成される、ジクロペンタジエン型フェノールノボラック樹脂、ナフトールノボラック樹脂等のジクロペンタジエン型フェノール樹脂、テルペン変性フェノール樹脂などが挙げられ、これらの1種を単独で用いても2種以上を組み合わせて併用してもよい。
硬化促進剤は、たとえば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5、6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等のホスフィン化合物及びこれらのホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられ、これらの1種を単独で用いても2種以上を組み合わせて用いてもよい。
無機充填剤は、たとえば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
カップリング剤は、たとえば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を添加することができるが、アミノシランが好ましい。
難燃剤は、たとえば、リン化合物や赤リン、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛等の無機物及び/又はフェノール樹脂等の熱硬化性樹脂等で被覆されたリン化合物、メラミン、メラミン誘導体、メラミン変性フェノール樹脂、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体等の窒素含有化合物、シクロホスファゼン等のリン及び窒素含有化合物、水酸化アルミニウム、水酸化マグネシウムなどが挙げられ、これらの1種を単独で用いても2種以上を組み合わせて用いてもよい。
更に、必要に応じて着色剤、可撓剤、イオン捕捉剤などその他添加剤を加えることが好ましい。
エポキシ系封止材を用いて半導体チップを封止する方法としては、低圧トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。
(Encapsulant)
The sealing material may be any material that can seal a semiconductor, but an epoxy-based sealing material for semiconductor sealing is preferable. The epoxy-based sealing material preferably contains an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, a coupling agent, and a flame retardant.
Examples of the epoxy resin include phenol novolac type epoxy resins, orthocresol novolak type epoxy resins, and epoxy resins having a triphenylmethane skeleton such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and the like. And / or obtained by condensation or cocondensation of naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and the like and a compound having an aldehyde group such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde in the presence of an acidic catalyst. Epoxy of novolak resin, alkyl substituted, aromatic ring substituted or unsubstituted jigs such as bisphenol A, bisphenol F, bisphenol S, biphenol By reaction of epichlorhydrin with polyamines such as glycidyl ester type epoxy resin, diaminodiphenylmethane, isocyanuric acid, etc. obtained by reaction of polybasic acid such as lysidyl ether, stilbene type epoxy resin, hydroquinone type epoxy resin, phthalic acid and dimer acid From the resulting glycidylamine type epoxy resin, epoxidized product of co-condensation resin of dicyclopentadiene and phenols, epoxy resin having naphthalene ring, phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl Synthesized aralkyl-type phenol resins, epoxidized aralkyl-type phenol resins such as naphthol / aralkyl resins, trimethylolpropane-type epoxy resins, terpene-modified epoxy resins Examples thereof include linear aliphatic epoxy resins obtained by oxidizing resins and olefinic bonds with peracids such as peracetic acid, alicyclic epoxy resins, sulfur atom-containing epoxy resins, and the like. Two or more kinds may be used in combination.
Examples of the curing agent include phenols such as resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene, and formaldehyde, benzaldehyde, salicylaldehyde, and the like. Phenol aralkyl synthesized from novolak-type phenol resins, phenols and / or naphthols, and dimethoxyparaxylene or bis (methoxymethyl) biphenyl obtained by condensation or cocondensation with a compound having an aldehyde group Diclopentadiene-type phenols synthesized by copolymerization of resins, aralkyl-type phenol resins such as naphthol / aralkyl resins, phenols and / or naphthols and cyclopentadiene Examples thereof include dichloropentadiene type phenolic resins such as nornovolak resin and naphthol novolak resin, and terpene-modified phenolic resins. These may be used alone or in combination of two or more.
Examples of the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, 5,6-dibutylamino-1, Cycloamidine compounds such as 8-diaza-bicyclo (5,4,0) undecene-7 and these compounds include maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3 -Quinone compounds such as dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone , Diazophenylmethane, phenol resin and other compounds with intramolecular polarization formed by adding a compound having a π bond, benzyldimethylamine, triethanol , Tertiary amines such as dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and derivatives thereof, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and derivatives thereof Phosphine compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine and the like, and maleic anhydride, quinone compound, diazophenylmethane, phenol resin A phosphorus compound having intramolecular polarization formed by adding a compound having a π bond such as tetraphenylphosphonium tetraphenylborate, triphenylphosphinetetraphenylborate, -Tetraphenylboron salts such as ethyl-4-methylimidazole tetraphenylborate and N-methylmorpholine tetraphenylborate and derivatives thereof may be mentioned, and these may be used alone or in combination of two or more. May be.
Inorganic fillers include, for example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite , Spinel, mullite, titania and the like, or beads formed by spheroidizing these, glass fiber, and the like. These may be used alone or in combination of two or more.
Coupling agents include, for example, known coupling agents such as various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, titanium compounds, aluminum chelates, and aluminum / zirconium compounds. Aminosilane is preferred although it can be added.
Flame retardants include, for example, phosphorus compounds, melamines, melamine derivatives, melamines coated with inorganic compounds such as phosphorus compounds, red phosphorus, aluminum hydroxide, magnesium hydroxide, zinc oxide, and / or thermosetting resins such as phenol resins. Examples include modified phenolic resins, compounds having a triazine ring, nitrogen-containing compounds such as cyanuric acid derivatives and isocyanuric acid derivatives, phosphorus and nitrogen-containing compounds such as cyclophosphazene, aluminum hydroxide, magnesium hydroxide, and the like. It may be used alone or in combination of two or more.
Furthermore, it is preferable to add other additives such as a colorant, a flexible agent, and an ion scavenger as necessary.
As a method for sealing a semiconductor chip using an epoxy-based sealing material, a low-pressure transfer molding method is the most common, but an injection molding method, a compression molding method, or the like may be used.

(めっき付き銅リードフレームおよび半導体パッケージの製造方法)
図4の(a)〜(d)に本発明におけるめっき付き銅リードフレーム22の製造方法を、図4の(e)〜(h)に本発明における半導体パッケージ10の製造方法の一実施形態を断面模式図で示す。ただし、製造工程の順番は、本発明の目的を逸脱しない範囲では、特に限定しない。
(Plating copper lead frame and semiconductor package manufacturing method)
4A to 4D show a method for manufacturing a plated copper lead frame 22 according to the present invention, and FIGS. 4E to 4H show an embodiment of a method for manufacturing a semiconductor package 10 according to the present invention. A cross-sectional schematic view shows. However, the order of the manufacturing process is not particularly limited as long as it does not depart from the object of the present invention.

(工程a)
(工程a)は、図4(a)に示すとおり、銅または銅合金条21を準備する工程である。便宜上、短冊状に図示したが、実際はリール状のものを使用することが好ましい。
(Process a)
(Step a) is a step of preparing copper or a copper alloy strip 21 as shown in FIG. For convenience, it is illustrated in a strip shape, but it is actually preferable to use a reel shape.

(工程b)
(工程b)は、図4(b)に示すとおり、銅または銅合金条21をフレーム形状に加工する工程である。まずリール状の銅または銅合金条21の両端に、図2に示すようなガイド穴20等を形成し、続いてガイド穴20を用いて位置決めして、金型によって所定のパターンにスタンピングし、銅リードフレーム11に加工する。また、微細パターンが必要な場合は、エッチングでフレーム形状に加工することもできる。
(Process b)
(Step b) is a step of processing the copper or copper alloy strip 21 into a frame shape as shown in FIG. First, guide holes 20 as shown in FIG. 2 are formed at both ends of the reel-shaped copper or copper alloy strip 21, and then positioned using the guide holes 20, stamped into a predetermined pattern by a mold, The copper lead frame 11 is processed. Further, when a fine pattern is required, it can be processed into a frame shape by etching.

(工程c)
(工程c)は、図4(c)に示すとおり、本発明の表面処理を行う工程である。
(工程c−1)
(工程b)まで作製した銅リードフレーム11に、脱脂および酸洗浄処理を行う。脱脂処理は、酸性脱脂およびアルカリ性脱脂のいずれを用いても良いが、アルカリ性脱脂が好ましい。酸洗浄処理は、硫酸、塩酸、硝酸等が使用できるが、硫酸が好ましい。
(工程c−2)
次に、銅リードフレーム11を前述の化学粗化液に浸漬して、表面に有機皮膜付きの粗化形状を形成する(粗化工程)。粗化工程は、1段階で行っても、複数段階に分けて行っても良い。2段階で行う場合、すなわち、第1の化学粗化液に浸漬して第1粗化工程を行い、続けて第2の化学粗化液に浸漬して第2粗化工程を行う場合は、処理ムラを低減することができる。
(工程c−3)
最後に、前述の通りアルカリ性溶液に浸漬して有機皮膜を除去して、粗化形状付の銅リードフレーム22を得る。
(Process c)
(Step c) is a step of performing the surface treatment of the present invention as shown in FIG.
(Step c-1)
The copper lead frame 11 manufactured up to (step b) is subjected to degreasing and acid cleaning treatment. For the degreasing treatment, either acidic degreasing or alkaline degreasing may be used, but alkaline degreasing is preferred. For the acid cleaning treatment, sulfuric acid, hydrochloric acid, nitric acid or the like can be used, but sulfuric acid is preferred.
(Step c-2)
Next, the copper lead frame 11 is immersed in the aforementioned chemical roughening solution to form a roughened shape with an organic film on the surface (roughening step). The roughening process may be performed in one stage or may be performed in a plurality of stages. When performing in two stages, that is, when the first roughening step is performed by immersing in the first chemical roughening solution, and then the second roughening step is performed by immersing in the second chemical roughening solution, Processing unevenness can be reduced.
(Step c-3)
Finally, as described above, the organic film is removed by immersion in an alkaline solution to obtain a roughened copper lead frame 22.

(工程d)
(工程d)は、図4(d)に示すとおり、めっきを行う工程である。前述のように、ダイパッド12の半導体チップ16が接着される面、及びインナーリード13の先端部である金ワイヤ18の接続部にめっき15を施し、めっき付き銅リードフレームを製造する。めっきの種類としては、銀、錫、ニッケル及び金が使用できる。
(Process d)
(Step d) is a step of performing plating as shown in FIG. As described above, the plating 15 is applied to the surface of the die pad 12 to which the semiconductor chip 16 is bonded and the connecting portion of the gold wire 18 which is the tip of the inner lead 13 to manufacture a copper lead frame with plating. Silver, tin, nickel and gold can be used as the type of plating.

以上の説明では、(工程c)の表面処理後に(工程d)のめっきを行う方法を説明したが、(工程d)のめっきを行った後に(工程c)の表面処理を行うこともできる。これにより、予めめっきされた金ワイヤ18の接続部には、粗化形状が形成されないため、ワイヤボンド性が向上して好ましい。
また、(工程b)をスタンピングで行うときは、(工程b)を(工程c)の後に行うことで、効率よく表面処理を行うことができ、さらに銅リードフレーム11の変形を低減できるため好ましい。
また、(工程b)を(工程d)の後に行うことで、効率よくめっきおよび表面処理を行うことができ、さらに銅リードフレーム11の変形が低減できるため好ましい。
また、(工程b)でパターンのみ加工して、リール状に繋がった状態で(工程c)および(工程d)を行うことで、さらに効率よく表面処理およびめっきを行うことができるため、より好ましい。
In the above description, the method of performing plating in (step d) after the surface treatment in (step c) has been described. However, after performing plating in (step d), the surface treatment in (step c) can also be performed. Thereby, since the roughened shape is not formed in the connection part of the gold wire 18 plated in advance, the wire bondability is preferably improved.
Further, when (step b) is performed by stamping, it is preferable to perform (step b) after (step c), because surface treatment can be efficiently performed and deformation of the copper lead frame 11 can be reduced. .
Further, it is preferable to perform (step b) after (step d) because plating and surface treatment can be performed efficiently and deformation of the copper lead frame 11 can be reduced.
Moreover, since only the pattern is processed in (step b) and the steps (c) and (d) are performed in a reel-like state, surface treatment and plating can be performed more efficiently, which is more preferable. .

(工程e)
(工程e)は、図4(e)に示すとおり、銅リードフレームに半導体チップ16を搭載する工程である。(工程d)まで作製した銅リードフレームに、ダイボンド材17を用いて半導体チップ16を接着させる。熱硬化性のダイボンド材17を使用した場合は、さらに加熱硬化することができる。
(Process e)
(Step e) is a step of mounting the semiconductor chip 16 on the copper lead frame as shown in FIG. The semiconductor chip 16 is bonded to the copper lead frame manufactured up to (step d) using the die bond material 17. When the thermosetting die bond material 17 is used, it can be further heat-cured.

(工程f)
(工程f)は、図4(f)に示すとおり、銅リードフレームと半導体チップ16を電気的に接続する工程である。半導体チップ16の電極と銅リードフレームのインナーリード13のめっき15の形成部分を、ワイヤボンダを用いて金ワイヤ18で電気的に接続する。
(Process f)
(Step f) is a step of electrically connecting the copper lead frame and the semiconductor chip 16 as shown in FIG. The electrode 15 of the semiconductor chip 16 and the portion of the inner lead 13 of the copper lead frame where the plating 15 is formed are electrically connected by a gold wire 18 using a wire bonder.

(工程g)
(工程g)は、図4(g)に示すとおり、半導体チップ16を封止する工程である。半導体チップ16が搭載された銅リードフレームを封止用金型に装填し、トランスファーモールドにて封止材19で封止する。その後、封止材19の後加熱を行う。
(Process g)
(Step g) is a step of sealing the semiconductor chip 16 as shown in FIG. A copper lead frame on which the semiconductor chip 16 is mounted is loaded into a sealing mold and sealed with a sealing material 19 by transfer molding. Thereafter, post-heating of the sealing material 19 is performed.

(工程h)
(工程h)は、図4(h)に示すとおり、銅リードフレームのアウターリード14部分を外形加工する工程である。複数の半導体パッケージが繋がった状態の銅リードフレームから、金型を用いてアウターリード14の切断と外形加工を行い、更に、必要に応じてアウターリード14にめっきを行い、本発明の半導体パッケージ10が製造できる。
(Process h)
(Step h) is a step of externally processing the outer lead 14 portion of the copper lead frame as shown in FIG. 4 (h). From the copper lead frame in a state where a plurality of semiconductor packages are connected, the outer lead 14 is cut and contoured using a mold, and further, the outer lead 14 is plated if necessary, thereby the semiconductor package 10 of the present invention. Can be manufactured.

以下に、本発明を実施例に基づいて図面を用いて詳細に説明するが、本発明はこれに限定されるものではない。     Hereinafter, the present invention will be described in detail based on examples with reference to the drawings, but the present invention is not limited thereto.

(実施例1)
本発明の半導体実装用導電基材の表面処理を適用して作製した半導体パッケージ(QFP)の信頼性を評価するために、以下のようにして銅リードフレームおよび半導体パッケージのサンプルを作製した。
Example 1
In order to evaluate the reliability of the semiconductor package (QFP) produced by applying the surface treatment of the conductive substrate for semiconductor mounting of the present invention, a copper lead frame and a sample of the semiconductor package were produced as follows.

(工程a)
銅合金条21として、幅34.8mm、長さ25m、厚み150μmのリール状MF202材(三菱電機メテックス社製、商品名)を用意した。(図4(a))
(Process a)
As the copper alloy strip 21, a reel-like MF202 material (trade name, manufactured by Mitsubishi Electric Metex Co., Ltd.) having a width of 34.8 mm, a length of 25 m, and a thickness of 150 μm was prepared. (Fig. 4 (a))

(工程b)
リール状の銅合金条21の両端に、図2に示すような、ガイド穴20等を形成し、続いてガイド穴20を用いて位置決めして、金型によってスタンピングし、幅34.8mm、長さ200mm、厚み150μmの銅リードフレーム11を作製した(図4(b))。
(Process b)
A guide hole 20 or the like as shown in FIG. 2 is formed at both ends of the reel-shaped copper alloy strip 21, and then positioned using the guide hole 20, stamped by a mold, and has a width of 34.8 mm. A copper lead frame 11 having a thickness of 200 mm and a thickness of 150 μm was produced (FIG. 4B).

(工程c)
(工程c−1)
(工程b)まで作製した銅リードフレーム11の表面を、200ml/Lに調整した酸性脱脂液Z−200(ワールドメタル社製、商品名)に液温50℃で2分間浸漬した後、液温50℃の水に2分間浸漬することにより湯洗し、さらに水洗した。次いで、3.6Nの硫酸水溶液に浸漬し、水洗した。
(Process c)
(Step c-1)
After immersing the surface of the copper lead frame 11 produced up to (step b) in an acidic degreasing solution Z-200 (trade name, manufactured by World Metal Co.) adjusted to 200 ml / L for 2 minutes at a liquid temperature of 50 ° C., the liquid temperature It was washed with hot water by immersing it in water at 50 ° C. for 2 minutes, and further washed with water. Subsequently, it was immersed in a 3.6 N sulfuric acid aqueous solution and washed with water.

(工程c−2)
次に、銅リードフレーム11を75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、5−アミノ−1H−テトラゾール2g/L、および1,2,3−ベンゾトリアゾール3g/Lからなる化学粗化液に液温30℃で2分間浸漬し(粗化工程)、その後水洗して表面粗さ1.4μmの有機皮膜付き銅リードフレームを作製した。
(Step c-2)
Next, the copper lead frame 11 was mixed with 75% by weight sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, 5-amino-1H-tetrazole 2 g / L, and 1,2,3-benzotriazole 3 g / L. A copper lead frame with an organic film having a surface roughness of 1.4 μm was prepared by immersing in a chemical roughening solution consisting of L at a liquid temperature of 30 ° C. for 2 minutes (roughening step) and then washing with water.

(工程c−3)
皮膜除去工程として、水酸化ナトリウム40g/L、トリエタノールアミン50g/Lからなるアルカリ性溶液に40℃で3分間浸漬し、さらに水洗した後80℃で30分間乾燥させ、銅リードフレーム表面の有機皮膜を除去して粗化形状付き銅リードフレーム22を作製した(図4(c))。
(Step c-3)
As a film removal step, the film is immersed in an alkaline solution composed of sodium hydroxide 40 g / L and triethanolamine 50 g / L at 40 ° C. for 3 minutes, further washed with water and then dried at 80 ° C. for 30 minutes to form an organic film on the surface of the copper lead frame. Then, a copper lead frame 22 with a roughened shape was produced (FIG. 4C).

(工程d)
粗化形状付き銅リードフレーム22の表面にレジストを形成し、インナーリード13の端子部とダイパッド12を露出させて、銀めっき15を露出部分に施した後、レジストを剥離した(図4(d))。
(Process d)
A resist is formed on the surface of the roughened copper lead frame 22, the terminal portions of the inner leads 13 and the die pad 12 are exposed, and silver plating 15 is applied to the exposed portions, and then the resist is peeled off (FIG. 4D). )).

(工程e)
(工程d)まで作製した銅リードフレームのダイパッド12表面に、所定のサイズに切断したダイボンド材17であるDF−402(日立化成工業社製、商品名、ダイボンドフィルム)を120℃、15秒で仮接着した後、ダイボンダを用いて半導体チップ16を150℃、15秒でダイパッド12に接着した。その後、180℃、60分の加熱処理を行い、ダイボンド材17を硬化させた(図4(e))。
(Process e)
DF-402 (trade name, die bond film, manufactured by Hitachi Chemical Co., Ltd.), which is a die bond material 17 cut into a predetermined size, is formed on the surface of the die pad 12 of the copper lead frame manufactured up to (step d) at 120 ° C. for 15 seconds. After temporary bonding, the semiconductor chip 16 was bonded to the die pad 12 at 150 ° C. for 15 seconds using a die bonder. Thereafter, a heat treatment was performed at 180 ° C. for 60 minutes to cure the die bond material 17 (FIG. 4E).

(工程f)
半導体チップ16の電極と、銅リードフレームのインナーリード13の銀めっき15の形成部分とを、ワイヤボンダを用いてφ25μmの金ワイヤ18で電気的に接続した(図4(f))。
(Process f)
The electrode of the semiconductor chip 16 and the portion where the silver plating 15 of the inner lead 13 of the copper lead frame was formed were electrically connected with a gold wire 18 having a diameter of 25 μm using a wire bonder (FIG. 4F).

(工程g)
(工程f)まで作製した銅リードフレームを封止用金型に装填し、トランスファーモールドにて封止材19であるCEL−9240HF10(日立化成工業社製、商品名)を用いて180℃、90秒で封止した。その後、180℃、5時間の加熱処理を行い、封止材19を完全硬化させた(図4(g))。
(Process g)
The copper lead frame produced up to (Step f) is loaded into a sealing mold, and CEL-9240HF10 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is the sealing material 19, is transferred at 180 ° C., 90 ° C. using a transfer mold. Sealed in seconds. Thereafter, heat treatment was performed at 180 ° C. for 5 hours to completely cure the sealing material 19 (FIG. 4G).

(工程h)
複数の半導体パッケージが繋がった状態の銅リードフレームから、アウターリード加工用金型を用いてアウターリード14の切断と外形加工を行い、本発明の半導体パッケージ10を作製した(図4(h))。
(Process h)
From the copper lead frame in a state where a plurality of semiconductor packages are connected, the outer lead 14 is cut and contoured using an outer lead processing die to produce the semiconductor package 10 of the present invention (FIG. 4 (h)). .

(実施例2)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、5−アミノ−1H−テトラゾール2g/L、からなる化学粗化液を用いて液温30℃で2分間浸漬して粗化工程を行い、それ以外は実施例1と同様に行って表面粗さ0.6μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 2)
In (Step c-2), the liquid temperature was adjusted using a chemical roughening solution composed of 75% by mass sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, and 5-amino-1H-tetrazole 2 g / L. A copper lead frame having a surface roughness of 0.6 μm was produced in the same manner as in Example 1 except that the roughening process was performed by dipping for 2 minutes at 30 ° C. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例3)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、1,2,3−ベンゾトリアゾール3g/Lからなる化学粗化液を用いて液温30℃で2分間浸漬して粗化工程を行い、それ以外は実施例1と同様に行って表面粗さ1.4μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 3)
In (Step c-2), the liquid temperature was adjusted using a chemical roughening solution consisting of 75% by weight sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, and 1,2,3-benzotriazole 3 g / L. A copper lead frame having a surface roughness of 1.4 μm was produced in the same manner as in Example 1 except that the roughening step was performed by dipping at 30 ° C. for 2 minutes. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例4)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、5−アミノ−1H−テトラゾール1g/L、1,2,3−ベンゾトリアゾール2g/L、およびプロピレングリコール25mL/Lからなる第1の化学粗化液を用いて液温30℃で1分間浸漬して第1の粗化工程を行い、続いて75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、5−アミノ−1H−テトラゾール2g/L、1,2,3−ベンゾトリアゾール3g/L、およびプロピレングリコール25mL/Lからなる第2の化学粗化液を用いて液温30℃で1分間浸漬して第2の粗化工程を行い、それ以外は実施例1と同様に行って表面粗さ1.4μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 4)
In (Step c-2), 75% by mass sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, 5-amino-1H-tetrazole 1 g / L, 1,2,3-benzotriazole 2 g / L And a first chemical roughening liquid consisting of 25 mL / L of propylene glycol and immersed in the liquid at a temperature of 30 ° C. for 1 minute to perform a first roughening step, followed by a 75% by weight sulfuric acid aqueous solution 80 mL / L, 35 Using a second chemical roughening solution consisting of 60% / L by mass of hydrogen peroxide solution, 2 g / L of 5-amino-1H-tetrazole, 3 g / L of 1,2,3-benzotriazole, and 25 mL / L of propylene glycol Then, a second roughening step was performed by dipping for 1 minute at a liquid temperature of 30 ° C., and a copper lead frame having a surface roughness of 1.4 μm was produced in the same manner as in Example 1 except that. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例5)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、5−アミノ−1H−テトラゾール2g/L、および1,2,3−ベンゾトリアゾール0.5g/Lからなる化学粗化液を用いて液温30℃で2分間浸漬して粗化工程を行い、それ以外は実施例1と同様に行って表面粗さ0.9μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 5)
In (Step c-2), 75% by mass sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, 5-amino-1H-tetrazole 2 g / L, and 1,2,3-benzotriazole 0. A chemical roughening solution composed of 5 g / L was immersed in the solution at a temperature of 30 ° C. for 2 minutes to perform the roughening step. Otherwise, the same procedure as in Example 1 was performed to obtain a copper lead frame with a surface roughness of 0.9 μm. Produced. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例6)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、5−アミノ−1H−テトラゾール2g/L、および1,2,3−ベンゾトリアゾール6g/Lからなる化学粗化液を用いて液温30℃で2分間浸漬して粗化工程を行い、それ以外は実施例1と同様に行って表面粗さ2.1μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 6)
In (Step c-2), 75% by mass sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, 5-amino-1H-tetrazole 2 g / L, and 1,2,3-benzotriazole 6 g / L A chemical roughening solution consisting of L was used to perform a roughening step by dipping for 2 minutes at a liquid temperature of 30 ° C., and a copper lead frame having a surface roughness of 2.1 μm was prepared in the same manner as in Example 1 except that. . Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例7)
(工程c−2)の水洗後に、(工程c−3)を行わずに80℃で30分間乾燥させ、それ以外は実施例1と同様に行って表面粗さ1.4μmの、有機皮膜付き銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 7)
After washing with water in (Step c-2), drying is performed at 80 ° C. for 30 minutes without performing (Step c-3), and otherwise performing in the same manner as in Example 1 with an organic film having a surface roughness of 1.4 μm A copper lead frame was prepared. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例8)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、1,2,3−ベンゾトリアゾール20g/Lからなる化学粗化液を用いて液温30℃で2分間浸漬して粗化工程を行い、それ以外は実施例1と同様に行って表面粗さ2.5μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 8)
In (Step c-2), the liquid temperature was adjusted using a chemical roughening solution consisting of 75% by weight sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, and 1,2,3-benzotriazole 20 g / L. A copper lead frame having a surface roughness of 2.5 μm was produced in the same manner as in Example 1 except that the roughening step was performed by dipping at 30 ° C. for 2 minutes. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例9)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/L、1,2,3−ベンゾトリアゾール25g/Lからなる化学粗化液を用いて液温30℃で2分間浸漬して粗化工程を行い、それ以外は実施例1と同様に行って表面粗さ2.4μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
Example 9
In (Step c-2), the liquid temperature was adjusted using a chemical roughening solution consisting of 75% by weight sulfuric acid aqueous solution 80 mL / L, 35% by mass hydrogen peroxide 60 mL / L, and 1,2,3-benzotriazole 25 g / L. A copper lead frame having a surface roughness of 2.4 μm was produced in the same manner as in Example 1 except that the roughening step was performed by dipping at 30 ° C. for 2 minutes. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例10)
(工程a)および(工程b)を行い、次に(工程d)の銀めっきを行った後に(工程c)の表面粗化処理を行った。それ以外は実施例6と同様に行って表面粗さ2.1μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Example 10)
(Step a) and (Step b) were performed, and then after the silver plating of (Step d) was performed, the surface roughening treatment of (Step c) was performed. Other than that was carried out similarly to Example 6, and produced the copper lead frame of surface roughness 2.1 micrometers. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(比較例1)
(工程c−2)および(工程c−3)を行わずに、(工程c)は(工程c−1)のみを行い、それ以外は実施例1と同様に行って表面粗さ0.2μmの銅リードフレーム作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Comparative Example 1)
(Step c-2) and (Step c-3) are not performed, (Step c) is performed only in (Step c-1), and other steps are performed in the same manner as in Example 1 to obtain a surface roughness of 0.2 μm. A copper lead frame was prepared. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(比較例2)
(工程c−2)において、リン酸三ナトリウム10g/Lおよび水酸化カリウム25g/Lを含むアルカリ性溶液に亜塩素酸ナトリウム15g/L添加した酸化処理液に85℃で3分間浸漬し、水洗した後、80℃で30分間乾燥を行った。その後(工程c−3)は行わず、それ以外は実施例1と同様に行って表面粗さ0.7μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Comparative Example 2)
In (Step c-2), it was immersed in an oxidation treatment solution obtained by adding 15 g / L of sodium chlorite to an alkaline solution containing 10 g / L of trisodium phosphate and 25 g / L of potassium hydroxide at 85 ° C. for 3 minutes and washed with water. Thereafter, drying was performed at 80 ° C. for 30 minutes. Thereafter, (step c-3) was not performed, and the other processes were performed in the same manner as in Example 1 to produce a copper lead frame having a surface roughness of 0.7 μm. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(比較例3)
(工程c−2)において、マイクロエッチング剤であるメックエッチボンドCZ8100(メック社製、商品名)に40℃で1分30秒間浸漬し、水洗した後、常温にて3.6Nの硫酸水溶液に浸漬し、水洗した後、80℃で30分間乾燥を行った。その後(工程c−3)は行わず、それ以外は実施例1と同様に行って表面粗さ2.1μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Comparative Example 3)
In (Step c-2), it was immersed in Mec Etch Bond CZ8100 (trade name, manufactured by Mec Co., Ltd.), which is a microetching agent, at 40 ° C. for 1 minute and 30 seconds, washed with water, and then into a 3.6N sulfuric acid aqueous solution at room temperature. After being immersed and washed with water, drying was performed at 80 ° C. for 30 minutes. Thereafter, (step c-3) was not performed, and the other processes were performed in the same manner as in Example 1 to produce a copper lead frame having a surface roughness of 2.1 μm. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(比較例4)
(工程c−2)において、75質量%硫酸水溶液80mL/L、35質量%過酸化水素水60mL/Lからなる混合液を用いて液温30℃で2分間浸漬し、2分間水洗した後、80℃で30分間乾燥を行った。その後(工程c−3)は行わず、それ以外は実施例1と同様に行って表面粗さ0.4μmの銅リードフレームを作製した。また、実施例1と同様にして半導体パッケージ10を作製した。
(Comparative Example 4)
In (Step c-2), after being immersed for 2 minutes at a liquid temperature of 30 ° C. using a mixed liquid composed of 75% by weight aqueous sulfuric acid 80 mL / L and 35% by weight hydrogen peroxide 60 mL / L, washed with water for 2 minutes, Drying was performed at 80 ° C. for 30 minutes. Thereafter, (step c-3) was not performed, and the other processes were performed in the same manner as in Example 1 to produce a copper lead frame having a surface roughness of 0.4 μm. Further, a semiconductor package 10 was produced in the same manner as in Example 1.

(実施例11)
本発明の表面処理を行った銅リードフレームと封止材19との接着性を評価するために、以下の評価サンプルを作製した。
厚み150μmのリール状の銅合金条21であるMF202材(三菱電機メテックス社製、商品名)から、9mm角の被着体30を切り出し、実施例1の(工程c)に示す表面処理を行った。次に被着体30をトランスファーモールド用金型に装填し、実施例1の(工程g)と同様に封止材を硬化させ、図5に示すような、封止材31の接着面積が10mmの接着力測定サンプルを作製した。
(Example 11)
In order to evaluate the adhesion between the copper lead frame subjected to the surface treatment of the present invention and the sealing material 19, the following evaluation samples were prepared.
A 9 mm square adherend 30 was cut out from MF202 material (trade name, manufactured by Mitsubishi Electric Metex Co., Ltd.), which is a reel-like copper alloy strip 21 having a thickness of 150 μm, and the surface treatment shown in (Step c) of Example 1 was performed. It was. Next, the adherend 30 is loaded into a transfer mold, and the sealing material is cured in the same manner as in (Step g) of Example 1. As shown in FIG. 2 adhesive force measurement samples were prepared.

(実施例12)
被着体30に対して、実施例2の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 12)
A sample for measuring an adhesion force was prepared in the same manner as in Example 11 except that the same surface treatment as that in (Step c) of Example 2 was performed on the adherend 30.

(実施例13)
被着体30に対して、実施例3の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 13)
A sample for measuring an adhesion force was prepared in the same manner as in Example 11 except that the same surface treatment as in (Step c) of Example 3 was performed on the adherend 30.

(実施例14)
被着体30に対して、実施例4の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 14)
A sample for measuring an adhesion force was prepared in the same manner as in Example 11 except that the same surface treatment as that in (Step c) of Example 4 was performed on the adherend 30.

(実施例15)
被着体30に対して、実施例5の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 15)
An adhesive force measurement sample was prepared in the same manner as in Example 11 except that the same surface treatment as that in Example 5 (Step c) was performed on the adherend 30.

(実施例16)
被着体30に対して、実施例6の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 16)
An adhesive force measurement sample was prepared in the same manner as in Example 11 except that the same surface treatment as that in Example 6 (Step c) was performed on the adherend 30.

(実施例17)
被着体30に対して、実施例7の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 17)
A sample for measuring an adhesion force was prepared in the same manner as in Example 11 except that the same surface treatment as that in (Step c) of Example 7 was performed on the adherend 30.

(実施例18)
被着体30に対して、実施例8の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 18)
A sample for measuring an adhesion force was prepared in the same manner as in Example 11 except that the same surface treatment as that in (Step c) of Example 8 was performed on the adherend 30.

(実施例19)
被着体30に対して、実施例9の(工程c)と同じ表面処理を施した以外は、実施例11と同様に接着力測定サンプルを作製した。
(Example 19)
A sample for measuring an adhesion force was prepared in the same manner as in Example 11 except that the same surface treatment as in (Step c) of Example 9 was performed on the adherend 30.

(比較例5)
被着体30に対して、比較例1の(工程c)と同じ表面処理を施した以外は、実施例8と同様に接着力測定サンプルを作製した。
(Comparative Example 5)
A sample for measuring an adhesion force was prepared in the same manner as in Example 8 except that the same surface treatment as in (Step c) of Comparative Example 1 was performed on the adherend 30.

(比較例6)
被着体30に対して、比較例2の(工程c)と同じ表面処理を施した以外は、実施例8と同様に接着力測定サンプルを作製した。
(Comparative Example 6)
A sample for measuring an adhesion force was prepared in the same manner as in Example 8 except that the same surface treatment as that in (Step c) of Comparative Example 2 was performed on the adherend 30.

(比較例7)
被着体30に対して、比較例3の(工程c)と同じ表面処理を施した以外は、実施例8と同様に接着力測定サンプルを作製した。
(Comparative Example 7)
A sample for measuring an adhesion force was prepared in the same manner as in Example 8 except that the same surface treatment as in (Step c) of Comparative Example 3 was performed on the adherend 30.

(比較例8)
被着体30に対して、比較例4の(工程c)と同じ表面処理を施した以外は、実施例8と同様に接着力測定サンプルを作製した。
(Comparative Example 8)
An adhesive force measurement sample was prepared in the same manner as in Example 8 except that the same surface treatment as that in (Step c) of Comparative Example 4 was performed on the adherend 30.

(半導体パッケージの信頼性評価)
実施例1〜10および比較例1〜4で作製した各々22個の半導体パッケージのサンプルに対して、85℃、85%RHの恒温恒湿槽中に168時間放置して吸湿処理を行った後、到達温度260℃、長さ2mのIRリフロー炉に0.5m/分の条件で各サンプルを流して、リフロー試験を行った。その後、各サンプルについて剥離やクラック発生の有無を調べ、いずれかが発生した場合をNGとし、NGとなる半導体パッケージ数を調べて、「フロー試験後のNG数」として表1に示した。
また、各々22個の半導体パッケージのサンプルを、−65℃、30分〜150℃、30分の条件で温度サイクル試験を行い、500サイクル目、1000サイクル目、1500サイクル目、2000サイクル目に、各サンプルについて剥離やクラック発生の有無を調べ、いずれかが発生した場合はそのサンプルをNGとし、NGとなるサンプル数を調べ、「温度サイクル試験後のNG数」として表1に示した。
(Reliability evaluation of semiconductor packages)
After each sample of 22 semiconductor packages prepared in Examples 1 to 10 and Comparative Examples 1 to 4 was left in a constant temperature and humidity chamber at 85 ° C. and 85% RH for 168 hours to perform moisture absorption treatment Each sample was allowed to flow through an IR reflow furnace having an ultimate temperature of 260 ° C. and a length of 2 m under the condition of 0.5 m / min, and a reflow test was performed. Then, the presence or absence of peeling or crack generation was examined for each sample. The case where any one occurred was determined as NG, the number of NG semiconductor packages was determined, and the “number of NG after the flow test” is shown in Table 1.
In addition, each of the 22 semiconductor package samples was subjected to a temperature cycle test under the conditions of −65 ° C., 30 minutes to 150 ° C., 30 minutes, and the 500th cycle, 1000th cycle, 1500th cycle, 2000th cycle, Each sample was examined for the presence or absence of peeling or cracking. If any occurred, the sample was judged as NG, the number of samples that became NG was examined, and the number of NG after the temperature cycle test was shown in Table 1.

(銅リードフレームの外観評価)
実施例1〜10および比較例1〜4で作製した各々20枚の銅リードフレームの外観を目視で検査し、キズおよび処理ムラ発生の有無を調べ、いずれかが発生した場合はその銅リードフレームをNGとし、NGとなる銅リードフレーム数を調べた。結果を表2に示す。また、処理後の各銅リードフレームの十点平均表面粗さを表2に示す。なお、「キズ」とは、粗化形状形成後の製造工程で主に接触やコスレなどの物理的要因で発生した銅リードフレームの全体に対する割合である。「処理ムラ」とは、粗化の程度が均一でない場合にリードフレームの表面の色合いに微妙な変化(色ムラ)が生じた銅リードフレームの全体に対する割合である。
(Appearance evaluation of copper lead frame)
The appearance of each of the 20 copper lead frames produced in Examples 1 to 10 and Comparative Examples 1 to 4 was inspected visually to check for the presence of scratches and processing unevenness, and if any occurred, the copper lead frame NG was determined, and the number of copper lead frames to be NG was examined. The results are shown in Table 2. Table 2 shows the ten-point average surface roughness of each copper lead frame after treatment. The “scratch” is a ratio with respect to the entire copper lead frame that is generated mainly by physical factors such as contact and rust in the manufacturing process after the roughened shape is formed. “Processing unevenness” is the ratio of the entire copper lead frame in which a slight change (color unevenness) occurs in the color of the surface of the lead frame when the degree of roughening is not uniform.

(封止材との接着性評価)
実施例11〜19および比較例5〜8で作製した接着力測定サンプルを、図6に示すボンドテスタ BT2400(Dage社製、商品名)を用いてシェア強度を測定した。シェアツール32は被着体30から高さ100μmに固定し、試料台33を測定スピード50μm/秒で水平移動させて、封止材31と被着体30との接合面が破断されたときの強度を測定し、測定は各々5回測定して平均値を求め、「初期」の「シェア強度」として表3に示す。また、各接着力測定サンプルを220℃、20分間熱処理した後、同様にシェア強度を測定し、「220℃、20分熱処理後」の「シェア強度」として結果を表3に示す。
(Adhesive evaluation with sealing material)
The shear strength of the adhesive force measurement samples prepared in Examples 11 to 19 and Comparative Examples 5 to 8 was measured using a bond tester BT2400 (trade name, manufactured by Dage) shown in FIG. The shear tool 32 is fixed at a height of 100 μm from the adherend 30, and the sample stage 33 is moved horizontally at a measurement speed of 50 μm / second, so that the joint surface between the sealing material 31 and the adherend 30 is broken. The strength was measured, and each measurement was performed five times to obtain an average value, which is shown in Table 3 as “initial strength” “share strength”. Further, after heat-treating each adhesive force measurement sample at 220 ° C. for 20 minutes, the shear strength was measured in the same manner, and the result is shown in Table 3 as “share strength” of “after 220 ° C., 20-minute heat treatment”.

(ワイヤボンドプル強度の評価)
実施例1〜10および比較例1〜4で作製した銅リードフレーム11に、実施例1の(工程e)(工程f)を行い、半導体チップ16の搭載およびワイヤボンドを行ったサンプルを作製し、ボンドテスタ BT2400(Dage社製、商品名)を用いて、ワイヤボンドプル強度を測定した。結果を表4に示す。なお、測定の条件はプルスピード0.5mm/秒であった。
(Evaluation of wire bond pull strength)
The copper lead frames 11 produced in Examples 1 to 10 and Comparative Examples 1 to 4 were subjected to (Step e) and (Step f) of Example 1 to produce a sample in which the semiconductor chip 16 was mounted and wire bonded. The wire bond pull strength was measured using a bond tester BT2400 (trade name, manufactured by Dage). The results are shown in Table 4. The measurement conditions were a pull speed of 0.5 mm / second.

以上の結果から、本発明の実施例では、封止材との接着力、ワイヤボンドプル強度、表面のキズ、処理ムラ等の特性に優れた銅リードフレームを製造することができ、この銅リードフレームを用いることで、信頼性に優れた半導体パッケージを製造することができた。一方、従来技術を用いた比較例では、上記特性の全てを満足できる銅リードフレームおよび半導体パッケージを製造することはできなかった。   From the above results, in the embodiment of the present invention, it is possible to manufacture a copper lead frame having excellent properties such as adhesive strength with a sealing material, wire bond pull strength, surface scratches, processing unevenness, and the like. By using the frame, a highly reliable semiconductor package could be manufactured. On the other hand, in the comparative example using the prior art, a copper lead frame and a semiconductor package that can satisfy all of the above characteristics could not be manufactured.

Figure 0005571364
Figure 0005571364

Figure 0005571364
Figure 0005571364

Figure 0005571364
Figure 0005571364

Figure 0005571364
Figure 0005571364

本発明は、封止材との接着性を向上できる半導体実装用導電基材の表面処理方法を提供するものであり、特に銅または銅合金よりなる放熱板やリードフレーム、およびこれらを用いた半導体パッケージに好適に適用できる。   The present invention provides a surface treatment method for a conductive substrate for semiconductor mounting that can improve adhesion with a sealing material, and in particular, a heat sink or lead frame made of copper or a copper alloy, and a semiconductor using these It can be suitably applied to a package.

10 半導体パッケージ(QFP)
11 導電基材(リードフレーム)
12 ダイパッド
13 インナーリード
14 アウターリード
15 めっき
16、56 半導体チップ
17、54 ダイボンド材(ダイボンドフィルム)
18、55 金ワイヤ
19、57 封止材
20 ガイド穴
21 銅または銅合金条
22 粗化形状付き銅リードフレーム
30 被着体
31 封止材(シェア強度測定用)
32 シェアツール
33 試料台
34 サンプル固定治具
10 Semiconductor package (QFP)
11 Conductive substrate (lead frame)
12 Die Pad 13 Inner Lead 14 Outer Lead 15 Plating 16, 56 Semiconductor Chip 17, 54 Die Bond Material (Die Bond Film)
18, 55 Gold wires 19, 57 Sealing material 20 Guide hole 21 Copper or copper alloy strip 22 Copper lead frame with roughened shape 30 Substrate 31 Sealing material (for shear strength measurement)
32 Share tool 33 Sample stage 34 Sample fixing jig

Claims (3)

半導体実装用導電基材に、腐食抑制剤、硫酸及び過酸化水素を含有する化学粗化液を接触させ、当該半導体実装用導電基材の表面に、有機皮膜で覆われた粗化形状を形成する粗化工程と、
前記有機皮膜を除去する皮膜除去工程とを有し、
前記粗化工程は、前記化学粗化液に接触させる第1粗化工程と、前記第1粗化工程の後に前記化学粗化液に接触させる第2粗化工程とを有し
前記腐食抑制剤は、1,2,3−ベンゾトリアゾール及び5−アミノ−1H−テトラゾールを含有する、封止材との接着に用いる半導体実装用導電基材の表面処理方法。
A conductive roughening solution containing a corrosion inhibitor, sulfuric acid and hydrogen peroxide is brought into contact with a conductive substrate for semiconductor mounting to form a roughened shape covered with an organic film on the surface of the conductive substrate for semiconductor mounting. A roughening step ,
A film removing step for removing the organic film ,
The roughening step includes a first roughening step of contacting the chemical roughening solution and a second roughening step of contacting the chemical roughening solution after the first roughening step,
The corrosion inhibitor is 1,2,3-benzotriazole and 5-amino -1H- tetrazole that the Yusuke containing surface treatment method of a semiconductor mounting conductive base material used for bonding and sealing material.
前記皮膜除去工程は、前記有機皮膜にアルカリ性溶液を接触させる工程を有する、請求項1に記載の半導体実装用導電基材の表面処理方法。 The surface treatment method for a conductive substrate for semiconductor mounting according to claim 1, wherein the film removal step includes a step of bringing an alkaline solution into contact with the organic film. 前記アルカリ性溶液は、水酸化ナトリウム及び水酸化カリウムから選択されるアルカリ金属化合物と、トリエタノールアミン及びモノエタノールアミンから選択されるエタノールアミンを含有する、請求項2に記載の半導体実装用導電基材の表面処理方法。 The alkaline solution is an alkali metal compound selected from sodium hydroxide and potassium hydroxide, containing and ethanol amine selected from triethanolamine and monoethanolamine, guide for semiconductor mounting as claimed in claim 2 Denmoto Material surface treatment method.
JP2009270310A 2009-11-27 2009-11-27 Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method Active JP5571364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270310A JP5571364B2 (en) 2009-11-27 2009-11-27 Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270310A JP5571364B2 (en) 2009-11-27 2009-11-27 Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012021931A Division JP5692108B2 (en) 2012-02-03 2012-02-03 Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method
JP2012021932A Division JP5621799B2 (en) 2012-02-03 2012-02-03 Copper surface treatment method

Publications (2)

Publication Number Publication Date
JP2011114223A JP2011114223A (en) 2011-06-09
JP5571364B2 true JP5571364B2 (en) 2014-08-13

Family

ID=44236318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270310A Active JP5571364B2 (en) 2009-11-27 2009-11-27 Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method

Country Status (1)

Country Link
JP (1) JP5571364B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587268B2 (en) * 2011-09-22 2014-09-10 富士フイルム株式会社 Ink jet head and manufacturing method thereof
JP6589577B2 (en) * 2015-11-10 2019-10-16 凸版印刷株式会社 Manufacturing method of lead frame substrate with resin
EP3575077B1 (en) * 2017-01-27 2021-08-04 DIC Corporation Metal/resin composite structure and method for manufacturing same
JP7029504B2 (en) * 2020-09-23 2022-03-03 Shプレシジョン株式会社 Manufacturing method of lead frame and power semiconductor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720941B2 (en) * 1997-03-10 2005-11-30 株式会社神戸製鋼所 Copper alloy material for lead frames with excellent oxide film adhesion
JPH1129883A (en) * 1997-07-08 1999-02-02 Mec Kk Microetching agent for copper and copper alloy
JP2000064067A (en) * 1998-06-09 2000-02-29 Ebara Densan Ltd Etching solution and roughening treatment of copper surface
JP2000133763A (en) * 1998-10-26 2000-05-12 Dainippon Printing Co Ltd Circuit member for resin-sealing semiconductor device and manufacture thereof
JP2000183505A (en) * 1998-12-14 2000-06-30 Mitsubishi Gas Chem Co Inc Method for treating copper foil before application of heat-resistant resist
JP2002036430A (en) * 2000-07-26 2002-02-05 Matsushita Electric Works Ltd Resin applied metal foil and multilayered printed wiring board
JP2002124762A (en) * 2000-10-16 2002-04-26 Toshiba Chem Corp Production method for multilayered printed wiring board
JP3930885B2 (en) * 2000-12-27 2007-06-13 荏原ユージライト株式会社 Microetching agents for copper and copper alloys
JP2002305198A (en) * 2001-04-06 2002-10-18 Toshiba Corp Method for manufacturing electronic device
JP2003124311A (en) * 2001-10-15 2003-04-25 Hitachi Ltd Method for manufacturing semiconductor device and semiconductor device
JP2006210492A (en) * 2005-01-26 2006-08-10 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
JP4652157B2 (en) * 2005-07-06 2011-03-16 花王株式会社 Cleaning composition for copper or copper alloy
JP5454834B2 (en) * 2007-08-30 2014-03-26 日立化成株式会社 Roughening device

Also Published As

Publication number Publication date
JP2011114223A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
EP1480270B1 (en) Packaging component and semiconductor package
CN106575646B (en) Lead frame and method for manufacturing the same
JP5441276B2 (en) Improved method of adhesion between silver surface and resin material
JP5621799B2 (en) Copper surface treatment method
JP5692108B2 (en) Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method
JP5571364B2 (en) Surface treatment method for conductive substrate for semiconductor mounting, and conductive substrate and semiconductor package using this treatment method
JP2013023766A (en) Surface treatment method for conductive base material for mounting tape carrier-fitted semiconductor, conductive base material for mounting tape carrier-fitted semiconductor obtained by using the treatment method, and semiconductor package
KR100685160B1 (en) Coating for enhancing adhesion of molding compound to semiconductor devices
JP6870245B2 (en) Surface treatment method for copper members and manufacturing method for semiconductor mounting substrates
CN112530896A (en) Lead frame for semiconductor packaging and preparation method thereof
KR101503250B1 (en) Adhesion promoting composition for metal leadframes
KR101208082B1 (en) Adhesive tape for semiconductor process and manufacturing method thereof
US10867895B2 (en) Lead-frame structure, lead-frame, surface mount electronic device and methods of producing same
US20130045391A1 (en) Tarnish Inhibiting Composition for Metal Leadframes
JP2017210639A (en) Surface treatment method of copper-made member, and manufacturing method of semiconductor mounting substrate
JP2006080576A (en) Package component and its manufacturing method, and semiconductor package
JP5264939B2 (en) Package parts and semiconductor packages
JP4722961B2 (en) Method for manufacturing multilayer printed wiring board incorporating semiconductor element
KR101375192B1 (en) Method for preventing epoxy bleed out of lead frame
JP2004137397A (en) Resin composition and electronic part device
JPH05152362A (en) Manufacture of semiconductor device
JPH05152378A (en) Tape carrier package
US20230272536A1 (en) Chemically anchored mold compounds in semiconductor packages
JP3644181B2 (en) Tape with adhesive for TAB, semiconductor connection substrate, and semiconductor device
KR20110019006A (en) Adhesive tape composition for electronic components

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130718

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250