JP5568717B2 - Artificial patina-coated copper member and manufacturing method thereof - Google Patents

Artificial patina-coated copper member and manufacturing method thereof Download PDF

Info

Publication number
JP5568717B2
JP5568717B2 JP2009166696A JP2009166696A JP5568717B2 JP 5568717 B2 JP5568717 B2 JP 5568717B2 JP 2009166696 A JP2009166696 A JP 2009166696A JP 2009166696 A JP2009166696 A JP 2009166696A JP 5568717 B2 JP5568717 B2 JP 5568717B2
Authority
JP
Japan
Prior art keywords
copper
copper nitrate
patina
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009166696A
Other languages
Japanese (ja)
Other versions
JP2011021227A (en
Inventor
幸治 眞岩
博昭 中村
龍雄 中村
清一 飯島
忠志 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009166696A priority Critical patent/JP5568717B2/en
Publication of JP2011021227A publication Critical patent/JP2011021227A/en
Application granted granted Critical
Publication of JP5568717B2 publication Critical patent/JP5568717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)

Description

本発明は、銅板や銅像等の古くから緑青を被覆することにより耐候性を得ていた銅部材に関し、特に、人工的に生成した緑青とその生成方法に関する。   The present invention relates to a copper member that has been weather-resistant by coating patina, such as a copper plate or a copper image, and particularly relates to an artificially produced patina and a method for producing the same.

銅は建築材料の銅板と工芸品等の鋳造の銅合金がある。自然環境下の銅・銅合金は数十年の経年変化により、その表面に亜酸化銅と塩基性銅塩とからなる積層構造の緑青被膜を化学反応により生成する。
この緑青被膜は特有の色彩による美観と各種構造物を100年以上保護する水に不溶の被膜となる。 不溶性の緑青被膜は大気中において酸素、水蒸気、硝酸ガス、炭酸ガス、亜硫酸ガス、塩素ガス等の化学種の反応によって生成する。
自然環境下で得られた緑青被膜は亜酸化銅と塩基性硝酸銅、塩基性炭酸銅、塩基性硫酸銅、塩基性塩化銅等からなる積層構造を有する。これらの緑青被膜は、それぞれの塩基性銅塩による異なった独自の色彩の天然緑青となる。しかし、近年は自然環境の悪化による酸性の霧や雨のために永い年月を経ても、安定な不溶性の積層構造被膜の緑青を得ることが困難になっている。
そのため、人工緑青の亜酸化銅と塩基性銅塩とからなる積層構造被膜の作製法、並びに亜酸化銅と単一の塩基性銅塩とからなる積層構造被膜は、多くの歴史的建造物の修復による保全と、近代建築に必要とされている。従来の人工緑青の製法は、塩化アンモニウム、硫酸アンモニウム、硫酸銅、硝酸銅、酢酸銅、水酸化銅、塩化第二銅、塩化ナトリウム、明礬、亜硝酸エチル、亜砒酸等の化合物の幾つかを調合した水溶液を用いた各種の湿式による化学処理・電解処理及び、塗装等の湿式による方法を用いている。
得られた被膜は複雑な化合物と各種の塩基性銅塩の混合塩とからなるものであり、自然緑青とはかけ離れたものでしかなかった。
There are copper plates for building materials and cast copper alloys for crafts. A copper-copper alloy in a natural environment generates a patina coating of a laminated structure composed of cuprous oxide and a basic copper salt by chemical reaction on its surface due to aging over several decades.
This patina coating is a water-insoluble coating that protects aesthetics with unique colors and various structures for over 100 years. An insoluble patina coating is produced in the atmosphere by the reaction of chemical species such as oxygen, water vapor, nitric acid gas, carbon dioxide gas, sulfurous acid gas, and chlorine gas.
The patina coating obtained in a natural environment has a laminated structure composed of cuprous oxide and basic copper nitrate, basic copper carbonate, basic copper sulfate, basic copper chloride and the like. These patina coatings become natural patinas with different and unique colors due to their respective basic copper salts. However, in recent years, it has become difficult to obtain a stable insoluble multilayered structure patina even after a long time due to acidic fog and rain due to deterioration of the natural environment.
For this reason, a method for producing a laminated film composed of artificial patina cuprous oxide and a basic copper salt, and a laminated film composed of cuprous oxide and a single basic copper salt are used in many historical buildings. Necessary for conservation through restoration and modern architecture. Conventional artificial patina manufacturing methods prepared several compounds such as ammonium chloride, ammonium sulfate, copper sulfate, copper nitrate, copper acetate, copper hydroxide, cupric chloride, sodium chloride, alum, ethyl nitrite, arsenous acid, etc. Various wet chemical processes and electrolytic processes using aqueous solutions, and wet methods such as painting are used.
The obtained coating consisted of a complex compound and a mixed salt of various basic copper salts, and was only far from natural patina.

具体的には、以下のようなものであった。
特許文献1に示された薬液で化学処理する方法では、銅又は銅合金基材の銅酸化被膜生成面を腐食性液(化成処理液)と化学反応させて該金属の表面に固着性のある水に不溶な腐食生成物層を形成させる処理が示され、その処理液としては塩酸,硝酸又は硫酸のアンモニウム塩とアルカリ金属塩化物及びアルカリ土類金属塩化物のうちの1種以上とを含む水溶液や、これに更に塩化第二銅を添加した水溶液も化成処理液等が例示されている。
当該方法は、緑青の発生が不均一になりやすい。また、銅板面へ短時間で発色した塩基性塩の沈殿物は、密着性が悪いため経年で剥離する事が問題となる。人工緑青色は剥離を防止する為にクリヤー塗装が必要となる。塗膜は紫外線(UV)で劣化し白亜化(チョーキング;塗面が白く粉が吹いた状態)が起き、塗膜表面が徐々に分解して、塗膜成分が粉状に変化するので問題となる。また、自然緑青との色合わせと人的な色彩感覚が要求される。工業的に用いる場合は、屋根加工が済んだ現地で、ハケ等で何回も繰り返し処理する必要があり、作業性が悪いためコスト高になってしまう。
Specifically, it was as follows.
In the method of chemically treating with the chemical solution disclosed in Patent Document 1, the surface of the copper oxide film formed on the copper or copper alloy substrate is chemically reacted with a corrosive liquid (chemical conversion liquid) to be fixed to the surface of the metal. A treatment for forming a water-insoluble corrosion product layer is shown, and the treatment solution includes ammonium salt of hydrochloric acid, nitric acid or sulfuric acid and one or more of alkali metal chloride and alkaline earth metal chloride. Examples of the aqueous solution and an aqueous solution obtained by adding cupric chloride to the aqueous solution are chemical conversion treatment solutions.
This method tends to make the generation of patina uneven. In addition, a precipitate of a basic salt that develops color on a copper plate surface in a short time has a problem of peeling off over time because of poor adhesion. Artificial greenish blue needs clear coating to prevent peeling. The coating film is deteriorated by ultraviolet rays (UV) and whitening occurs (choking; the coating surface is white and the powder is blown), and the coating surface is gradually decomposed to change the coating component into powder. Become. In addition, color matching with natural patina and human color sense are required. When it is used industrially, it is necessary to repeatedly process it with a brush or the like at a site where the roof has been processed, and the workability is poor, resulting in high costs.

特許文献2には、緑青形成物質を含有する塗料を塗装する方法が示されている。
この方法は、塗装法であるので密着性が良く、加工性は優れているが、経時変化で銅板面の塗膜は白亜化により、徐々に褪色した後、劣化により、塗膜が不均一になり剥離する。塗膜が剥離した部分には、経年変化での緑青色と異なるので再塗装が必要になる。
特許文献3は、電解液中で銅材を陽極として浸漬し、電解反応により銅材の表面に人工緑青を発生させる方法が記述されている。
特許文献4から9にも同様な方法が示されているが、いずれも、電解による急激成長した被膜は、密着性が悪いため、緑青被膜が剥離するという欠点がある。
Patent Document 2 discloses a method of applying a paint containing a patina forming material.
Although this method is a coating method, it has good adhesion and excellent workability, but the coating film on the copper plate surface gradually fades due to whitening due to aging, and the coating film becomes uneven due to deterioration. Will peel off. The part where the coating film is peeled off needs to be repainted because it is different from the greenish blue color due to aging.
Patent Document 3 describes a method in which a copper material is immersed in an electrolytic solution as an anode, and artificial patina is generated on the surface of the copper material by an electrolytic reaction.
Patent Documents 4 to 9 also show similar methods. However, in any case, a rapidly growing coating film has a drawback that the patina coating peels off because of poor adhesion.

以上のように、いずれの従来技術による人工緑青は、古来の自然緑青と同等またはそれ以上のものが得られず、今日の自然環境の悪化による問題を解決する手段を得ることが望まれているので、本発明では、古来の自然緑青と同等の耐候性を得ることができる人工緑青被覆銅部材とその製造方法を提供とすることを目的とした。   As described above, the artificial patina according to any prior art cannot be obtained as much as or more than the natural patina of the past, and it is desired to obtain means for solving the problems caused by the deterioration of the natural environment today Therefore, an object of the present invention is to provide an artificial patina-coated copper member capable of obtaining a weather resistance equivalent to that of ancient natural patina and a method for producing the same.

発明1の人工緑青被覆銅部材の製造方法は、反応容器内に設置した加熱された銅又は銅合金からなる基材の表面に気化した硝酸のガスを反応させ、前記基材の表面に、亜酸化銅よりなる層と前記亜酸化銅層の外層表面に形成された硝酸銅の水和物層とからなる二層構造を生成させた後、気化した硝酸のガスを湿度調整し、大気に置換した反応容器内で前記基材を加熱、あるいは0〜40℃で1〜14日保持することにより、前記硝酸銅の水和物より塩基性硝酸銅を生成させることを特徴とする。
発明2は、発明1の人工緑青被覆銅部材の製造方法により製造される人工緑青被覆銅部材を提供する。
The method for producing an artificial patina-coated copper member according to the first aspect of the present invention comprises reacting vaporized nitric acid gas on the surface of a heated base material made of copper or a copper alloy installed in a reaction vessel. After generating a two-layer structure consisting of a copper oxide layer and a copper nitrate hydrate layer formed on the outer surface of the cuprous oxide layer, adjust the humidity of the vaporized nitric acid gas and replace it with the atmosphere. by holding 1-14 days said substrate heating, or at 0 to 40 ° C. in a reaction vessel, and wherein the Rukoto to produce a basic copper nitrate from hydrates of the copper nitrate.
Invention 2 provides an artificial patina-coated copper member produced by the method for producing an artificial patina-coated copper member of Invention 1.

本発明1の製造方法により製造された人工緑青被覆銅部材は、天然緑青と同様な耐候性を有するものであり、その理由は定かではないが、亜酸化銅(CuO)と塩基性硝酸銅(Cu(OH)NO)が積層された層構造を有していることによるものと考えられる。第二層の成分を除き天然緑青も同様な層構造を有していることによる推測であるが、層構造の類似性によるとすれば、塩基性硝酸銅(Cu(OH)NO)が天然緑青の主たる着色成分であり、また、耐候性成分であることとなる
さらに本発明の方法は、極めて簡便なものであることから、高い実用性を兼ね備えるものでもある。
The artificial patina-coated copper member produced by the production method of the present invention 1 has the same weather resistance as natural patina, and the reason is not clear, but cuprous oxide (Cu 2 O) and basic nitric acid This is considered to be due to having a layered structure in which copper (Cu 2 (OH) 3 NO 3 ) is laminated. It is presumed that natural patina also has a similar layer structure except for the components of the second layer, but according to the similarity of the layer structure, basic copper nitrate (Cu 2 (OH) 3 NO 3 ) Is the main coloring component of natural patina and is also a weather resistance component .
Furthermore, since the method of the present invention is extremely simple, it also has high practicality.

実施例に用いた装置の概要を示す概略図。Schematic which shows the outline | summary of the apparatus used for the Example. 実施例3で得られた被膜のX線解析結果の図。 □は銅(4−836)、○は亜酸化銅(5−667)、△は塩基性硝酸銅(15−14) X線解析線のそれぞれのピーク位置を示す。The figure of the X-ray analysis result of the film obtained in Example 3. □ indicates copper (4-836), ○ indicates cuprous oxide (5-667), and Δ indicates basic copper nitrate (15-14). Each peak position of the X-ray analysis line is shown. 実施例3の試作No.4の曝露試験前の人工緑青表面の写真。The prototype No. 3 of Example 3 was used. 4 Artificial patina surface before exposure test. 実施例3の試作No.4の曝露試験後の人工緑青表面の写真。The prototype No. 3 of Example 3 was used. Photo of artificial patina surface after 4 exposure tests. 実施例4の試作No.2曝露試験前の人工緑青表面の写真。Prototype No. 4 of Example 4 2 Photograph of artificial patina surface before exposure test. 実施例4の試作No.2曝露試験後の人工緑青表面の写真。Prototype No. 4 of Example 4 2 Photograph of artificial patina after exposure test. 実施例5の試作No.1の曝露試験前の人工緑青表面の写真。Prototype No. 5 of Example 5 Photo 1 of artificial patina before exposure test. 実施例5の試作No.1の曝露試験後の人工緑青表面の写真。Prototype No. 5 of Example 5 Photograph of artificial patina after exposure test 1 実施例7の試作No.3の曝露試験前の人工緑青表面の写真。Prototype No. 7 of Example 7 Photograph of artificial patina surface before exposure test of 3. 実施例7の試作No.3の曝露試験後の人工緑青表面の写真。Prototype No. 7 of Example 7 Photo of artificial patina surface after 3 exposure tests. 実施例8の試作No.2の曝露試験前の人工緑青表面の写真。Prototype No. 8 in Example 8 Photograph of artificial patina surface before exposure test of 2. 実施例8の試作No.2の曝露試験後の人工緑青表面の写真。Prototype No. 8 in Example 8 Photograph of artificial patina after exposure test of 2.

本発明の人工緑青被覆銅部材は、基材の表面に形成された亜酸化銅よりなる第一層と、この第一層の表面に形成された塩基性硝酸銅からなる第二層とにより緑青が形成されているものである。
また、その製造方法は、試薬の硝酸の気化中に、加熱した基材を曝露することにより、当該基材の表面に前記二層構造の緑青を生成するものである。
以下の実施例では、前記硝酸水溶液の蒸発分解により生成して、反応容器内に供給したが、二酸化窒素ガスと水蒸気とを別々に若しくは予め混合した雰囲気とすることも可能である。
The artificial patina-coated copper member of the present invention is a patina with a first layer made of cuprous oxide formed on the surface of the substrate and a second layer made of basic copper nitrate formed on the surface of the first layer. Is formed.
Moreover, the manufacturing method exposes the heated base material during vaporization of nitric acid as a reagent, thereby generating the two-layered patina on the surface of the base material.
In the following examples, it was generated by evaporative decomposition of the aqueous nitric acid solution and supplied into the reaction vessel, but it is also possible to create an atmosphere in which nitrogen dioxide gas and water vapor are separately or premixed.

以下の実施例に用いた反応装置は、以下の構造を有するものである。(図1参照)
反応容器(F)は、排気ポンプに接続した開閉バルブ付きの排気口(F2)と外気の流入を許す開閉バルブ付きの吸気口(F1)が設けてある。また、耐熱性のガラス(石英製ガラスも可能)よりなる容器で、熱的衝撃に耐え各種酸化性雰囲気で侵されないようにしてある。
なお、ガラスに変わりTi等の金属製又はテフロン(フッ素樹脂)等の耐熱性樹脂により形成するのも可能である。
反応容器台(E)は、前記反応容器(F)を設置する台であって、内部のヒータ(図外)が設置され、前記反応容器(F)内全体を一定の反応温度に保つようにしてある。
蒸発室(B)は、前記反応容器(F)内に、蒸発ヒータ(C)を受台にして設置した小型容器であって、前記反応容器(F)の外側に入り口と開閉コックとが配置された注入管(A)により、外部より硝酸溶液を注入可能にしてある。また、前記反応容器(F)の外部に切替弁とガス排出口(B1b)を配置し、前記切替弁により択一的に切り替えられる前記反応容器(F)の内側にて開口するガス注入口(B1a)を持つガス案内管(B1)が設けてある。この案内管(B1)により、前記蒸発室(B)内で発生した混合ガスを前記反応容器(F)内に供給するか、前記反応容器(F)外に排出するかを選択し、前記反応容器(F)内のガスを前記吸排気口(F1)(F2)との協働で、大気又は混合ガスのいずれかに変更できるようにしてある。
The reaction apparatus used in the following examples has the following structure. (refer graph1)
The reaction vessel (F) is provided with an exhaust port (F2) with an open / close valve connected to an exhaust pump and an intake port (F1) with an open / close valve that allows inflow of outside air. Further, it is a container made of heat-resistant glass (quartz glass is also possible), and is resistant to thermal shock so as not to be attacked in various oxidizing atmospheres.
It is also possible to use a metal such as Ti or a heat resistant resin such as Teflon (fluorine resin) instead of glass.
The reaction vessel table (E) is a table on which the reaction vessel (F) is installed, and an internal heater (not shown) is installed to keep the entire reaction vessel (F) at a constant reaction temperature. It is.
The evaporation chamber (B) is a small container installed in the reaction container (F) with the evaporation heater (C) as a cradle, and an entrance and an open / close cock are arranged outside the reaction container (F). The injection pipe (A) thus made can inject a nitric acid solution from the outside. In addition, a switching valve and a gas discharge port (B1b) are arranged outside the reaction vessel (F), and a gas injection port (inside the reaction vessel (F) that is selectively switched by the switching valve ( A gas guide tube (B1) with B1a) is provided. By this guide tube (B1), it is selected whether the mixed gas generated in the evaporation chamber (B) is supplied into the reaction vessel (F) or discharged out of the reaction vessel (F), and the reaction The gas in the container (F) can be changed to either air or mixed gas in cooperation with the intake / exhaust ports (F1) and (F2).

図1の装置を用いるに当たり、吸排気口(F1)(F2)は閉、案内管(B1)は、ガス注入口(B1a)側を解放して用いた。
厚さ0.4mmのリン脱酸銅(JIS C1220、99.9%以上)を用い、15×10mmに銅板を切断後、表面をサンドペーパー#180〜#600により研磨後、硫酸10wt%で洗浄後、更に水→エタノール→アセトンの順に洗浄した銅板を試料(D)とした。
硝酸(HNO3特級、比重1.38(61.38%)、H2O38.62%含有)により混合ガスを発生させるガス源として用い、注入管(A)により、表1に示す量を蒸発室(B)に注入した。
また、蒸発ヒータ(C)により、表1に示す蒸発温度に加熱し、反応容器(F)内に硝酸が気化して発生した二酸化窒素(NO2)ガスと水蒸気(H2O)からなる混合ガスを注入した。
一方反応容器(F)は、受台(E)のヒータにより加熱して、表1の容器内温度にしてある。
一方、前記試料(D)は試料ヒータ(D1)により、表1に示す基材温度に加熱する。
反応容器内では注入した硝酸の加熱によって気化し、二酸化窒素ガスと水蒸気が発生して、表1の生成時間に示す時間が経過すると試料(D)表面には生成反応により、表1に示す被膜量の亜酸化銅と硝酸銅6水和物(Cu(NO3)2・6H2O)の積層構造の被膜が得られる。
得られる積層構造の被膜は少ないほど生成時間を短縮でき試料との密着性が良いが、被膜の色は薄くなる。
In using the apparatus of FIG. 1, the intake and exhaust ports (F1) and (F2) were closed, and the guide tube (B1) was used with the gas inlet (B1a) side opened.
Using 0.4 mm thick phosphorous deoxidized copper (JIS C1220, 99.9% or more), cutting the copper plate to 15 x 10 mm, polishing the surface with sandpaper # 180- # 600, washing with 10 wt% sulfuric acid, and further A copper plate washed in the order of water → ethanol → acetone was used as a sample (D).
Nitric acid (HNO 3 special grade, specific gravity 1.38 (61.38%), H 2 O 38.62% contained) is used as a gas source to generate a mixed gas, and the amount shown in Table 1 is given by the injection pipe (A) in the evaporation chamber (B) Injected into.
Further, the mixture is composed of nitrogen dioxide (NO 2 ) gas generated by vaporization of nitric acid in the reaction vessel (F) and water vapor (H 2 O) heated to the evaporation temperature shown in Table 1 by the evaporation heater (C). Gas was injected.
On the other hand, the reaction vessel (F) is heated by the heater of the cradle (E) to have the temperature in the vessel shown in Table 1.
On the other hand, the sample (D) is heated to the substrate temperature shown in Table 1 by the sample heater (D1).
The reaction vessel is vaporized by heating the injected nitric acid, and nitrogen dioxide gas and water vapor are generated. When the time shown in Table 1 is reached, the coating shown in Table 1 is formed on the surface of the sample (D) by the formation reaction. A layered film of cuprous oxide and copper nitrate hexahydrate (Cu (NO 3 ) 2 · 6H 2 O) is obtained.
The fewer the coatings with a laminated structure obtained, the shorter the generation time and the better the adhesion to the sample, but the color of the coating becomes lighter.

この反応容器内温度は、5×10℃〜18×10℃、8×10℃〜17×10℃、より好ましくは10×10℃〜16×10℃とするのが望ましい。
当該温度が高温すぎると、銅板が酸化し酸化銅(CuO)になる。(試作No.5)
低温すぎると試料(D)表面への亜酸化銅と硝酸銅6水和物の積層構造の被膜量が少なくなる。(試作No.4)
この試薬の硝酸と水との比率は、硝酸水溶液の濃度に密接に関係するので、前記範囲とするには、硝酸の濃度を5.7×10-3〜13.5×10-3mol/l、8.0×10-3〜12.0×10-3mol/l、より好ましくは8.0×10-3〜13.5×10-3mol/lとするのが望ましい。
蒸発室への硝酸滴下量は、0.01〜0.05ml、0.02〜0.04mlより好ましくは0.02ml〜0.20mlとするのが望ましい。(0.02ml〜0.20mlこの時のガス量は、7.7×10-5ml/cm3〜7.7×10-4ml/cm3
硝酸水溶液の蒸発温度は、15×10℃〜45×10℃、15×10℃〜35×10℃、より好ましくは15×10℃〜30×10℃とするのが望ましい。
蒸発温度が低すぎると、試薬の硝酸が気化しないで、二酸化窒素ガスと水蒸気が発生しないため、生成反応は起きない。(試作No.1)(試料(D)表面へ亜酸化銅と硝酸銅6水和物の積層構造の被膜が得られない。)
また高すぎると硝酸水溶液を蒸発させるためのエネルギーを消費するのみで反応に特に影響はない。(試作No.3)
The temperature in the reaction vessel is desirably 5 × 10 ° C. to 18 × 10 ° C., 8 × 10 ° C. to 17 × 10 ° C., and more preferably 10 × 10 ° C. to 16 × 10 ° C.
When the temperature is too high, the copper plate is oxidized to become copper oxide (CuO). (Prototype No. 5)
If the temperature is too low, the coating amount of the laminated structure of cuprous oxide and copper nitrate hexahydrate on the surface of the sample (D) decreases. (Prototype No. 4)
Since the ratio of nitric acid to water in this reagent is closely related to the concentration of the aqueous nitric acid solution, the nitric acid concentration is 5.7 × 10 −3 to 13.5 × 10 −3 mol / l, 8.0 × 10 −3 to 12.0 × 10 −3 mol / l, more preferably 8.0 × 10 −3 to 13.5 × 10 −3 mol / l.
The amount of nitric acid dropped into the evaporation chamber is desirably 0.01 to 0.05 ml, 0.02 to 0.04 ml, more preferably 0.02 to 0.20 ml. (The gas volume at this time is 7.7 x 10 -5 ml / cm 3 to 7.7 x 10 -4 ml / cm 3 )
The evaporation temperature of the aqueous nitric acid solution is preferably 15 × 10 ° C. to 45 × 10 ° C., 15 × 10 ° C. to 35 × 10 ° C., more preferably 15 × 10 ° C. to 30 × 10 ° C.
When the evaporation temperature is too low, the nitric acid of the reagent is not vaporized, and nitrogen dioxide gas and water vapor are not generated, so that no generation reaction occurs. (Prototype No. 1) (A film having a laminated structure of cuprous oxide and copper nitrate hexahydrate cannot be obtained on the surface of the sample (D).)
On the other hand, if it is too high, the energy for evaporating the aqueous nitric acid solution is consumed, and the reaction is not particularly affected. (Prototype No. 3)

基材を加熱する温度は、5×10℃〜18×10℃、8×10℃〜17×10℃、より好ましくは10×10℃〜16×10℃とするのが望ましい。
当該温度が高温すぎると、銅板が酸化し酸化銅(CuO)になる。(試作No.5)
低温すぎると試料(D)表面への亜酸化銅と硝酸銅6水和物の積層構造の被膜量が少なくなる。(試作No.4)
また反応時間は、60秒〜300秒、90秒〜300秒、より好ましくは90秒〜120秒とするのが望ましい。
反応時間が長すぎると、被膜量が過剰となり、短すぎると不足することとなる。
被膜の量は、10×10-4g/cm2〜40×10-4g/cm2、12×10-4g/cm2〜35×10-4g/cm2、より好ましくは12~30×10-4g/cm2とするのが望ましい。
被膜量がこれより多くなると反応(後述する実施例2と実施例3による反応)により塩基性硝酸銅(Cu2(OH)3NO3)の被膜が過剰に得られ、外観色(色彩)は濃くなり、密着性は、悪くなる。(試作No.6)
少ないと反応(後述する実施例2と実施例3による反応)により塩基性硝酸銅の被膜と亜酸化銅の被膜が試料表面にまだらに得られ、外観色(色彩)は薄くなり、密着性は、良くなる。(試作No.7)
The temperature for heating the substrate is desirably 5 × 10 ° C. to 18 × 10 ° C., 8 × 10 ° C. to 17 × 10 ° C., and more preferably 10 × 10 ° C. to 16 × 10 ° C.
When the temperature is too high, the copper plate is oxidized to become copper oxide (CuO). (Prototype No. 5)
If the temperature is too low, the coating amount of the laminated structure of cuprous oxide and copper nitrate hexahydrate on the surface of the sample (D) decreases. (Prototype No. 4)
The reaction time is desirably 60 seconds to 300 seconds, 90 seconds to 300 seconds, more preferably 90 seconds to 120 seconds.
If the reaction time is too long, the coating amount will be excessive, and if it is too short, it will be insufficient.
The amount of the coating is 10 × 10 −4 g / cm 2 to 40 × 10 −4 g / cm 2 , 12 × 10 −4 g / cm 2 to 35 × 10 −4 g / cm 2 , more preferably 12 to 10 30 × 10 −4 g / cm 2 is desirable.
When the coating amount is larger than this, an excessive coating of basic copper nitrate (Cu 2 (OH) 3 NO 3 ) is obtained by the reaction (reactions in Examples 2 and 3 described later), and the appearance color (color) is It becomes darker and the adhesion becomes worse. (Prototype No. 6)
If it is less, a basic copper nitrate film and a cuprous oxide film will be mottled on the surface of the sample due to the reaction (reactions in Example 2 and Example 3 described later), the appearance color (color) will become light, and the adhesion will be ,Get better. (Prototype No. 7)

反応(後述する実施例2と実施例3による反応)により塩基性硝酸銅(Cu2(OH)3NO3)が得られ、塩基性硝酸銅の最適な外観色(色彩)と密着性は、生成する亜酸化銅と硝酸銅6水和物の積層構造の被膜量に深く関係している。 Basic copper nitrate (Cu 2 (OH) 3 NO 3 ) is obtained by the reaction (reaction according to Example 2 and Example 3 described later), and the optimal appearance color (color) and adhesion of basic copper nitrate are: It is closely related to the amount of coating of the laminated structure of cuprous oxide and copper nitrate hexahydrate.

銅板表面に試薬の硝酸が気化して発生した二酸化窒素ガスと水蒸気との接触による化学反応で硝酸銅6水和物が生成した試料(表1)を、さらに恒温湿度処理することで、硝酸銅6水和物(Cu(NO3)2・6H2O)は、硝酸銅3水和物(Cu(NO3)2・3H2O)と硝酸銅2.5水和物(Cu(NO3)2・2.5H2O) へと移行させて安定化する。
その恒温湿度処理と、その安定化については、表2に示す通りの条件で結果を得た。
A sample (Table 1) in which copper nitrate hexahydrate was produced by a chemical reaction caused by the contact of water vapor with nitrogen dioxide gas generated by the vaporization of the nitric acid reagent on the copper plate surface was further treated with constant temperature and humidity. Hexahydrate (Cu (NO 3 ) 2 · 6H 2 O) is composed of copper nitrate trihydrate (Cu (NO3) 2 · 3H 2 O) and copper nitrate 2.5 hydrate (Cu (NO 3 ) 2 · Shift to 2.5H 2 O) and stabilize.
With respect to the constant temperature and humidity treatment and its stabilization, the results were obtained under the conditions shown in Table 2.

この場合、硝酸銅6水和物の量が多い(重い)ほど、長時間を要する傾向にある。
恒温湿槽の試料温度は、1×10℃〜5×10℃、1.5×10〜5×10℃、より好ましくは2×10℃〜5×10℃とするのが望ましい。
この試料温度が低すぎると、極端に長い処理時間を要することとなる。(試作No.1)
高すぎると、硝酸銅3水和物と硝酸銅2.5水和物の安定化を通過せず、塩基性硝酸銅の不安定な被膜が生成する。
湿度は、25%以上、40%以上、より好ましくは8×10%以上とするのが望ましい。
試料温度が高い場合は、湿度が少々低い場合でも反応が生じるが、この範囲を超えて低く過ぎると反応が生じない。また、前記範囲の高温域でも湿度が高いと塩基性硝酸銅の不安定な被膜が生成するので、試料温度の上限を設定することが望ましい。湿度の上限は特にないが具体的な試料温度上限は、50度となる。
例えば、被膜量12~30×10-4g/cm2が安定化するための槽内湿度と試料温度と時間の範囲は、槽内湿度85%以上、試料温度30~45℃、維持時間が半時間〜2時間とするのが最適である。
In this case, the longer (heavy) the amount of copper nitrate hexahydrate, the longer it takes.
The sample temperature of the constant temperature and humidity chamber is desirably 1 × 10 ° C. to 5 × 10 ° C., 1.5 × 10 to 5 × 10 ° C., more preferably 2 × 10 ° C. to 5 × 10 ° C.
If the sample temperature is too low, an extremely long processing time is required. (Prototype No. 1)
If it is too high, it will not pass the stabilization of copper nitrate trihydrate and copper nitrate 2.5 hydrate, and an unstable coating of basic copper nitrate will form.
The humidity is preferably 25% or more, 40% or more, more preferably 8 × 10% or more.
When the sample temperature is high, the reaction occurs even when the humidity is slightly low. However, when the sample temperature is too low beyond this range, the reaction does not occur. In addition, if the humidity is high even in a high temperature range of the above range, an unstable film of basic copper nitrate is generated, so it is desirable to set the upper limit of the sample temperature. There is no particular upper limit on humidity, but the specific upper limit of sample temperature is 50 degrees.
For example, the range of the humidity in the tank and the sample temperature and time for stabilizing the coating amount 12 to 30 × 10 -4 g / cm 2 is 85% or more in the tank, the sample temperature 30 to 45 ° C, and the maintenance time. It is optimal to set it to half an hour to 2 hours.

銅板表面に生成した積層構造の化合物である、硝酸銅3水和物と硝酸銅2.5水和物(実施例2により得られた表2に示す試料)を塩基性硝酸銅に反応させるために、大気中で反応容器を用いて焼成した。
この場合、図1の装置を用いるに当たり、吸排気口(F1)(F2)を開き、反応容器(F)内の気体を、混合ガスから大気に交換してから用いた。
また、案内管(B1)は、ガス排出口(B1b)側を開き、万一でも反応容器(F)内に混合ガスが流入しないようにして用いた。
このようにして表3に示す条件にて、焼成した。
得られた試料の表面には自然緑青に類似する亜酸化銅と塩基性硝酸銅との水に不溶な積層構造被膜が得られる。
得られた被膜のX線による分析では亜酸化銅と塩基性硝酸銅との積層構造被膜であることを図2のX線回折の回折線から確認できる。
In order to react copper nitrate trihydrate and copper nitrate 2.5 hydrate (samples shown in Table 2 obtained in Example 2), which are compounds of a laminated structure formed on the copper plate surface, with basic copper nitrate, Firing was performed in the atmosphere using a reaction vessel.
In this case, the apparatus shown in FIG. 1 was used after the intake and exhaust ports (F1) and (F2) were opened and the gas in the reaction vessel (F) was exchanged from the mixed gas to the atmosphere.
Further, the guide tube (B1) was used so that the gas discharge port (B1b) side was opened and the mixed gas did not flow into the reaction vessel (F) by any chance.
Thus, firing was performed under the conditions shown in Table 3.
On the surface of the obtained sample, a laminated structure coating insoluble in water of cuprous oxide and basic copper nitrate similar to natural patina is obtained.
The X-ray analysis of the resulting film can confirm from the X-ray diffraction lines in FIG. 2 that the film has a laminated structure of cuprous oxide and basic copper nitrate.

なお、銅板表面に亜酸化銅と硝酸銅3水和物・硝酸銅2.5水和物とが生成した試料の焼成は、試料温度(焼成温度)は、5×10℃〜18×10℃、8×10℃〜17×10℃、より好ましくは10×10℃〜16×10℃とするのが望ましい。
当該温度が高温すぎると、例えば180℃以上では銅板が酸化し酸化銅(CuO)になる。(試作No.6)
低温すぎると硝酸銅3水和物・硝酸銅2.5水和物とが残り、塩基性硝酸銅に完全に移行しない。(試作No.1.2)
また、焼成時間は、60秒〜300秒、90秒~300秒、より好ましくは90秒~180秒とするのが望ましい。
焼成時間が過剰に長いと塩基性硝酸銅へ生成させるためのエネルギーを消費するのみで反応に特に影響はない。
また、短すぎると硝酸銅3水和物・硝酸銅2.5水和物とが残り、塩基性硝酸銅に完全に移行しない。
これら焼成条件は、被膜量に比例して変化し、例えば、亜酸化銅と硝酸銅3水和物・硝酸銅2.5水和物の被膜量12~30×10-4g/cm2の焼成では、温度100~150℃、焼成時間120~300秒が最適な範囲である。
In addition, firing of a sample in which cuprous oxide and copper nitrate trihydrate / copper nitrate 2.5 hydrate were formed on the copper plate surface, the sample temperature (firing temperature) is 5 × 10 ° C. to 18 × 10 ° C., 8 It is desirable to set it to x10 degreeC-17x10 degreeC, More preferably, it is 10x10 degreeC-16x10 degreeC.
If the temperature is too high, for example, at 180 ° C. or higher, the copper plate is oxidized to become copper oxide (CuO). (Prototype No. 6)
If the temperature is too low, copper nitrate trihydrate and copper nitrate 2.5 hydrate remain and do not completely transfer to basic copper nitrate. (Prototype No. 1.2)
The firing time is desirably 60 seconds to 300 seconds, 90 seconds to 300 seconds, more preferably 90 seconds to 180 seconds.
If the calcination time is excessively long, only the energy for generating basic copper nitrate is consumed, and the reaction is not particularly affected.
On the other hand, if it is too short, copper nitrate trihydrate and copper nitrate 2.5 hydrate remain and do not completely transfer to basic copper nitrate.
These firing conditions change in proportion to the coating amount.For example, in the firing of cuprous oxide and copper nitrate trihydrate / copper nitrate 2.5 hydrate with a coating amount of 12-30 × 10 -4 g / cm 2 The optimal range is a temperature of 100 to 150 ° C. and a firing time of 120 to 300 seconds.

銅板表面に生成した積層構造の化合物の一部である、硝酸銅6水和物(実施例1により得られ、表1に示す試料)を塩基性硝酸銅に変化させるために、図1の反応容器(F)内に試料Dを放置する方法もある。
この場合、前記実施例1での処理が終了した後、案内管(B1)のガス排出口(B1b)側を開き、混合ガスの反応容器(F)内への流入を阻止し、吸排気口(F1)(F2)を開き、反応容器(F)内の気体を、混合ガスから大気に交換しながら放置した。
その具体例を以下の表4に示す。
In order to change copper nitrate hexahydrate (the sample obtained in Example 1 and shown in Table 1), which is a part of the compound of the laminated structure formed on the copper plate surface, to basic copper nitrate, the reaction of FIG. There is also a method of leaving the sample D in the container (F).
In this case, after the processing in the first embodiment is completed, the gas discharge port (B1b) side of the guide tube (B1) is opened to prevent the mixed gas from flowing into the reaction vessel (F), and the intake / exhaust port (F1) (F2) was opened, and the gas in the reaction vessel (F) was left while being exchanged from the mixed gas to the atmosphere.
Specific examples thereof are shown in Table 4 below.

放置時の反応容器内温度は、5×10℃〜18×10℃、8×10℃〜17×10℃、より好ましくは10×10℃〜16×10℃とするのが望ましい。
当該温度が高温すぎると、例えば180℃以上では銅板が酸化し酸化銅(CuO)になる。(試作No.4)
低温すぎると硝酸銅6水和物が残り、塩基性硝酸銅に完全に移行しない。(試作No.5)
また、このときの放置時間は、10min〜30min、20min〜60min、より好ましくは10min〜20minとするのが望ましい。
当該時間が長すぎると、塩基性硝酸銅へ生成させるためのエネルギーを消費するのみで特に影響はない。
短すぎると、硝酸銅6水和物が残り、塩基性硝酸銅に完全に移行しない。
さらに、この間の試料温度は、10×10℃〜18×10℃、11×10℃〜17×10℃、より好ましくは12×10℃〜16×10℃とするのが望ましい。
当該温度が高温すぎると、例えば180℃以上では銅板が酸化し酸化銅(CuO)になる。(試作No.4)
低温すぎると硝酸銅6水和物が残り、塩基性硝酸銅に完全に移行しない。(試作No.5)
この製法では生成する被膜量を調整することが難しいが、硝酸の濃度が生成反応に深く関与していることから、硝酸の濃度を水の混合により調整する事によって、塩基性硝酸銅の被膜量を制御することは容易に類推できる。
The temperature in the reaction vessel at the time of standing is desirably 5 × 10 ° C. to 18 × 10 ° C., 8 × 10 ° C. to 17 × 10 ° C., more preferably 10 × 10 ° C. to 16 × 10 ° C.
If the temperature is too high, for example, at 180 ° C. or higher, the copper plate is oxidized to become copper oxide (CuO). (Prototype No. 4)
If the temperature is too low, copper nitrate hexahydrate remains and does not completely transfer to basic copper nitrate. (Prototype No. 5)
Further, the standing time at this time is preferably 10 min to 30 min, 20 min to 60 min, more preferably 10 min to 20 min.
When the said time is too long, it will only consume the energy for producing | generating to basic copper nitrate, and will not have an influence in particular.
If it is too short, copper nitrate hexahydrate remains and does not completely migrate to basic copper nitrate.
Further, the sample temperature during this period is desirably 10 × 10 ° C. to 18 × 10 ° C., 11 × 10 ° C. to 17 × 10 ° C., and more preferably 12 × 10 ° C. to 16 × 10 ° C.
If the temperature is too high, for example, at 180 ° C. or higher, the copper plate is oxidized to become copper oxide (CuO). (Prototype No. 4)
If the temperature is too low, copper nitrate hexahydrate remains and does not completely transfer to basic copper nitrate. (Prototype No. 5)
Although it is difficult to adjust the coating amount to be produced by this manufacturing method, the concentration of nitric acid is deeply involved in the production reaction. It is easy to analogize.

銅板表面に亜酸化銅と硝酸銅3水和物・硝酸銅2.5水和物が生成した試料(実施例2により得られた試料)を表5に示す条件で自然曝露してみた。   A sample (sample obtained in Example 2) in which cuprous oxide and copper nitrate trihydrate / copper nitrate hemihydrate were formed on the copper plate surface was naturally exposed under the conditions shown in Table 5.

外気温度0〜40℃、湿度15〜90%、1〜14日間曝露すると塩基性硝酸銅に反応することを確認できる。しかし、自然曝露では外観色(色彩)は均一にならないが、温度と反応時間を考慮すると塩基性硝酸銅に至る反応過程であることから、以下のような範囲で曝露を行えば外観色(色彩)は均一になると類推できる。   It can be confirmed that it reacts with basic copper nitrate when exposed to outside air temperature 0 to 40 ° C., humidity 15 to 90%, and 1 to 14 days. However, although the appearance color (color) does not become uniform under natural exposure, it is a reaction process that leads to basic copper nitrate in consideration of temperature and reaction time. ) Can be inferred to be uniform.

曝露時の外気平均温度は、0℃〜45℃、10℃〜30℃、より好ましくは30℃〜45℃とするのが望ましい。
当該温度が高温すぎると、塩基性硝酸銅の不安定な被膜が生成する。
低温すぎると極端に長い処理時間を要することとなる。
曝露時の外気平均湿度は、0%〜25%、10%〜40%、より好ましくは5%〜20%とするのが望ましい。
当該湿度が高すぎると、短時間では塩基性硝酸銅の被膜の外観色(色彩)が均一にならない。
低すぎる場合は、硝酸銅3水和物と硝酸銅2.5水和物から水和物が抜け塩基性硝酸銅の被膜へ生成しやすい。
また、このときの曝露時間は、1日〜14日、2日〜7日、より好ましくは7日〜14日とするのが望ましい。
当該時間が長すぎても特に問題はない。
短すぎると、硝酸銅3水和物と硝酸銅2.5水和物から水和物が抜けず、塩基性硝酸銅の不安定な被膜が生成する。

The average outside air temperature during exposure is preferably 0 ° C to 45 ° C, 10 ° C to 30 ° C, more preferably 30 ° C to 45 ° C.
If the temperature is too high, an unstable coating of basic copper nitrate is generated.
If the temperature is too low, an extremely long processing time is required.
The average outside humidity during exposure is preferably 0% to 25%, 10% to 40%, more preferably 5% to 20%.
When the humidity is too high, the appearance color (color) of the basic copper nitrate film is not uniform in a short time.
If it is too low, the hydrate will be removed from the copper nitrate trihydrate and copper nitrate 2.5 hydrate, and a basic copper nitrate film is likely to be formed.
The exposure time at this time is desirably 1 day to 14 days, 2 days to 7 days, more preferably 7 days to 14 days.
There is no particular problem if the time is too long.
If it is too short, hydrate cannot be removed from copper nitrate trihydrate and copper nitrate 2.5 hydrate, and an unstable film of basic copper nitrate is formed.

最短で銅板の表面に自然緑青の積層構造からなる銅化合物被膜と、同構造の人工被膜を得る方法として銅板表面に生成した積層構造の化合物の一部である、硝酸銅6水和物(実施例1により得られた表1に示す試料)を塩基性硝酸銅に変化させるために、実施例1の処理後に、案内管(B1)のガス排出口(B1b)側を開き、混合ガスの反応容器(F)内への流入を阻止し、吸排気口(F1)(F2)を開き、反応容器(F)内の気体を、混合ガスから大気に交換してから、反応容器(F)内にて、焼成した。
その条件と結果は、表6に示す通りである。
Copper nitrate hexahydrate, which is a part of the compound of the laminated structure produced on the copper plate surface as a method of obtaining the artificial coating of the same structure and the copper compound film consisting of a natural patina laminate structure on the copper plate surface at the shortest In order to change the sample shown in Table 1 obtained in Example 1 into basic copper nitrate, after the treatment in Example 1, the gas outlet (B1b) side of the guide tube (B1) is opened to react the mixed gas. The inflow into the container (F) is blocked, the intake / exhaust ports (F1) (F2) are opened, the gas in the reaction container (F) is exchanged from the mixed gas to the atmosphere, and then the reaction container (F) And baked.
The conditions and results are as shown in Table 6.

焼成時の試料温度は、10×10℃〜18×10℃、11×10℃〜17×10℃、より好ましくは12×10℃〜16×10℃とするのが望ましい。
当該温度が高温すぎると、180℃以上では銅板が酸化し酸化銅(CuO)になる。(試作No.6)
低温すぎると硝酸銅6水和物が残り、塩基性硝酸銅に完全に移行しない。(試作No.5)
また、このときの焼成時間は、60秒〜300秒、90秒〜300秒、より好ましくは90秒〜180秒とするのが望ましい。
当該時間が長すぎると、塩基性硝酸銅へ生成させるためのエネルギーを消費するのみで特に影響はない。
短すぎると、硝酸銅6水和物が残り、塩基性硝酸銅に完全に移行しない。
焼成時の反応容器内温度は、10×10℃〜18×10℃、11×10℃〜17×10℃、より好ましくは12×10℃〜16×10℃とするのが望ましい。
なお、この方法では、最短5分で被膜が得られるが、急激に安定化させたため被膜へ突沸が起きてしまう。被膜の突沸を回避するためには、実施例2に記載した恒温湿度槽での装填か実施例4の処理が必要となる。
The sample temperature during firing is desirably 10 × 10 ° C. to 18 × 10 ° C., 11 × 10 ° C. to 17 × 10 ° C., more preferably 12 × 10 ° C. to 16 × 10 ° C.
If the temperature is too high, the copper plate is oxidized to copper oxide (CuO) at 180 ° C. or higher. (Prototype No. 6)
If the temperature is too low, copper nitrate hexahydrate remains and does not completely transfer to basic copper nitrate. (Prototype No. 5)
The firing time at this time is desirably 60 seconds to 300 seconds, 90 seconds to 300 seconds, more preferably 90 seconds to 180 seconds.
When the said time is too long, it will only consume the energy for producing | generating to basic copper nitrate, and will not have an influence in particular.
If it is too short, copper nitrate hexahydrate remains and does not completely migrate to basic copper nitrate.
The temperature in the reaction vessel at the time of firing is desirably 10 × 10 ° C. to 18 × 10 ° C., 11 × 10 ° C. to 17 × 10 ° C., more preferably 12 × 10 ° C. to 16 × 10 ° C.
In this method, a film can be obtained in a minimum of 5 minutes. However, sudden stabilization has caused the film to undergo bumping. In order to avoid bumping of the coating, it is necessary to load in the constant temperature / humidity tank described in the second embodiment or the processing of the fourth embodiment.

試料の表面に、亜酸化銅と塩基性硝酸銅による二層構造からなる緑青とすることにより、均一な自然緑青の積層構造からなる銅化合物被膜と、同構造の人工被膜を得る方法としては、次のような方法がある。
各ステップでの処理は表7に示すとおりとした。
ステップ1(SNo.1)
前記実施例1と同様に試薬の硝酸の気化中で、硝酸銅6水和物からなる層を生成する。
当該処理における諸条件範囲は前記実施例1と同様とする。
初期の被膜量はSNo.4で重要となり、SNo.2以降の生成反応時間調整のため多く付着しないようにする。
当該被膜量が多くなると、SNo.2以降の反応時間が多く掛かってしまう。
被膜の量は、10×10-4g/cm2以下、20×10-4g/cm2以下、より好ましくは5×10-4g/cm2~15×10-4g/cm2とするのが望ましい。
ステップ2(SNo.2)
SNo.1で得られた試料を、実施例2の恒温湿度処理して、硝酸銅6水和物を硝酸銅3水和物と硝酸銅2.5水和物に移行させる。
当該処理における諸条件範囲は前記実施例2と同様とする。特に、槽内湿度85%以上、試料温度30~45℃で半時間〜1時間維持し、硝酸銅3水和物と硝酸銅2.5水和物へと化学反応により移行させ安定化させるのが最適である。
ステップ3(SNo.3)
SNo.2で得られた硝酸銅3水和物と硝酸銅2.5水和物の試料を、実施例3と同様な焼成処理を行うことで、亜酸化銅と塩基性硝酸銅の二層構造を生成させる。
基本的には前記実施例3と同様な条件で行うことが可能であるが、焼成温度10×10℃~15×10℃、焼成時間2~5分焼成(実施例3により)するのが最適である。
ステップ4(SNo.4)
SNo.3で得られた試料を前記実施例1と同様に試薬の硝酸の気化中で、前記SNo.3で得られた層を溶解し、硝酸銅6水和物からなる層を生成する。
基本的には、前記実施例1と同様の条件で作成可能で、既に生成されている硝酸銅3水和物と硝酸銅2.5水和物の被膜をSNo.1よりも厚く、密着を強くするために硝酸銅6水和物とする。
As a method of obtaining a copper compound film having a uniform natural patina laminated structure and an artificial film of the same structure by making the surface of the sample a patina having a two-layer structure of cuprous oxide and basic copper nitrate, There are the following methods.
The processing at each step was as shown in Table 7.
Step 1 (SNo. 1)
As in Example 1, during the vaporization of the nitric acid reagent, a layer made of copper nitrate hexahydrate is formed.
Various condition ranges in this processing are the same as those in the first embodiment.
The initial coating amount is SNo. 4 is important. Do not attach much to adjust the reaction time for production after 2.
When the coating amount increases, SNo. It takes a lot of reaction time after 2.
The amount of the coating is 10 × 10 −4 g / cm 2 or less, 20 × 10 −4 g / cm 2 or less, more preferably 5 × 10 −4 g / cm 2 to 15 × 10 −4 g / cm 2 . It is desirable to do.
Step 2 (SNo. 2)
SNo. The sample obtained in 1 is subjected to the constant temperature and humidity treatment of Example 2 to transfer copper nitrate hexahydrate to copper nitrate trihydrate and copper nitrate 2.5 hydrate.
Various condition ranges in the processing are the same as those in the second embodiment. In particular, it is best to maintain the humidity in the tank at 85% or more and maintain the sample temperature at 30 to 45 ° C for half an hour to 1 hour, and transfer to copper nitrate trihydrate and copper nitrate 2.5 hydrate by chemical reaction for stabilization. It is.
Step 3 (SNo. 3)
SNo. The sample of copper nitrate trihydrate and copper nitrate 2.5 hydrate obtained in step 2 is subjected to the same baking treatment as in Example 3 to generate a bilayer structure of cuprous oxide and basic copper nitrate. .
Basically, it is possible to carry out under the same conditions as in Example 3 above, but it is best to perform firing at a firing temperature of 10 × 10 ° C. to 15 × 10 ° C. and a firing time of 2 to 5 minutes (according to Example 3). It is.
Step 4 (SNo. 4)
SNo. As in Example 1, the sample obtained in 3 was vaporized with nitric acid as a reagent. The layer obtained in 3 is dissolved to form a layer composed of copper nitrate hexahydrate.
Basically, it can be prepared under the same conditions as in Example 1, and a coating of copper nitrate trihydrate and copper nitrate 2.5 hydrate already produced was prepared using SNo. Thicker than 1 and copper nitrate hexahydrate to strengthen adhesion.

ステップ5(SNo.5)
SNo.4で得られた試料を、実施例2の恒温湿度処理して、その硝酸銅6水和物を硝酸銅3水和物と硝酸銅2.5水和物に移行させる。
実施例2と基本的には同様な条件で実施できるが、特に槽内湿度85%以上、試料温度30~45℃で半時間〜2時間維持するのが最適である。
ステップ6(SNo.6)
SNo.5で得られた試料を、実施例3と同様な焼成処理を行うことで、亜酸化銅と塩基性硝酸銅の二層構造が積層した人工緑青を得た。
基本的には前記実施例3と同様な条件で行うことが可能であるが、焼成温度10×10℃~15×10℃、焼成時間2~5分で焼成(実施例3により)するのが最適であり、このようにすることでSNo.1〜SNo.6までの総時間は3時間〜4時間で銅板表面へ“均一な”自然緑青の被膜と合致した、人工緑青の亜酸化銅と塩基性硝酸銅の積層構造被膜を得ることができる。
このように、銅板の表面に“均一な”自然緑青の積層構造からなる銅化合物被膜と、同構造の人工被膜を得る方法として実施例1と実施例2と実施例3を2回以上繰り返し実施することにより、3時間〜4時間で銅板の表面へ“均一な”自然緑青の積層構造被膜と合致した、人工緑青の亜酸化銅と塩基性硝酸銅の積層構造被膜を得ることができる。
Step 5 (SNo. 5)
SNo. The sample obtained in 4 is subjected to the constant temperature and humidity treatment of Example 2, and the copper nitrate hexahydrate is transferred to copper nitrate trihydrate and copper nitrate 2.5 hydrate.
Although it can be carried out under basically the same conditions as in Example 2, it is optimal to maintain at a humidity of 85% or more and a sample temperature of 30 to 45 ° C. for half an hour to 2 hours.
Step 6 (SNo. 6)
SNo. The sample obtained in 5 was subjected to the same baking treatment as in Example 3 to obtain an artificial patina in which a bilayer structure of cuprous oxide and basic copper nitrate was laminated.
Basically, it is possible to carry out under the same conditions as in Example 3, but the firing is performed at a firing temperature of 10 × 10 ° C. to 15 × 10 ° C. and a firing time of 2 to 5 minutes (according to Example 3). In this way, SNo. 1 to SNo. The total time up to 6 is 3 to 4 hours, and it is possible to obtain a laminated structure coating of artificial patina cuprous oxide and basic copper nitrate that matches the “uniform” natural patina coating on the copper plate surface.
As described above, Example 1, Example 2 and Example 3 were repeated twice or more as a method for obtaining a copper compound film having a “uniform” natural patina laminated structure on the surface of the copper plate and an artificial film having the same structure. By doing so, it is possible to obtain a laminated film of artificial patina cuprous oxide and basic copper nitrate that matches the “uniform” natural patina laminated film on the surface of the copper plate in 3 to 4 hours.

試料の表面に、亜酸化銅と塩基性硝酸銅による二層構造からなる緑青とすることにより、均一な自然緑青の積層構造からなる銅化合物被膜と、同構造の人工被膜を得る方法としては、前記実施例7とは異なる方法として、次のような方法がある。
各ステップでの処理は表8に示すとおりである。
ステップ1(SNo.1)
前記実施例7のステップ1(SNo.1)と同様にして、硝酸銅6水和物からなる層を持つ試料を得た。
ステップ2(SNo.2)
SNo.1にて得られた試料の表面に、メタノール、エタノール等のアルコール液を塗布して、アルコール層を形成した。
アルコールの塗布量は、1.0×10-2ml/cm2〜7.0×10-2ml/cm2、1.2×10-2ml/cm2〜6.0×10-2ml/cm2より好ましくは、1.3×10-2ml/cm2〜2.6×10-2ml/cm2とするのが望ましい。
この含浸量が過剰な場合は、硝酸銅6水和物を溶解してしまう。
この含浸量が少なすぎる場合は、硝酸銅6水和物の安定化反応が小さくなり安定した被膜を得難い。
ステップ3(SNo.3)
SNo.2で得られた試料に、前記実施例3と同様な焼成処理を行うことで、亜酸化銅と塩基性硝酸銅の二層構造を生成させる。
基本的には前記実施例3と同様な条件で行うことが可能であるが、焼成温度10×10℃~15×10℃、焼成時間2~5分焼成(実施例3により)するのが最適である。
ステップ4(SNo.4)
SNo.3で得られた試料を前記実施例1と同様に試薬の硝酸の気化中で、前記SNo.3で得られた層を溶解し、硝酸銅6水和物からなる層を生成する。
基本的には、前記実施例1と同様に作成することが可能である。
As a method of obtaining a copper compound film having a uniform natural patina laminated structure and an artificial film of the same structure by making the surface of the sample a patina having a two-layer structure of cuprous oxide and basic copper nitrate, As a method different from the seventh embodiment, there is the following method.
The processing in each step is as shown in Table 8.
Step 1 (SNo. 1)
A sample having a layer made of copper nitrate hexahydrate was obtained in the same manner as in Step 1 (SNo. 1) of Example 7.
Step 2 (SNo. 2)
SNo. An alcohol liquid such as methanol or ethanol was applied to the surface of the sample obtained in 1 to form an alcohol layer.
The application amount of alcohol is 1.0 × 10 −2 ml / cm 2 to 7.0 × 10 −2 ml / cm 2 , 1.2 × 10 −2 ml / cm 2 to 6.0 × 10 −2 ml / cm 2, more preferably 1.3 × is desirably set to 10 -2 ml / cm 2 ~2.6 × 10 -2 ml / cm 2.
If this amount of impregnation is excessive, copper nitrate hexahydrate will be dissolved.
When the amount of impregnation is too small, the stabilization reaction of copper nitrate hexahydrate becomes small and it is difficult to obtain a stable coating.
Step 3 (SNo. 3)
SNo. The sample obtained in 2 is subjected to the same baking treatment as in Example 3 to generate a two-layer structure of cuprous oxide and basic copper nitrate.
Basically, it is possible to carry out under the same conditions as in Example 3 above, but it is best to perform firing at a firing temperature of 10 × 10 ° C. to 15 × 10 ° C. and a firing time of 2 to 5 minutes (according to Example 3). It is.
Step 4 (SNo. 4)
SNo. As in Example 1, the sample obtained in 3 was vaporized with nitric acid as a reagent. The layer obtained in 3 is dissolved to form a layer composed of copper nitrate hexahydrate.
Basically, it can be created in the same manner as in the first embodiment.

ステップ5(SNo.5)
SNo.4で得られた試料を、実施例2の恒温湿度処理して、その硝酸銅6水和物を硝酸銅3水和物と硝酸銅2.5水和物に移行させる。
実施例2と基本的には同様な条件で実施できるが、特に槽内湿度85%以上、試料温度30~45℃で半時間〜2時間維持するのが最適である。
ステップ6(SNo.6)
SNo.5で得られた試料を、実施例3と同様な焼成処理を行うことで、亜酸化銅と塩基性硝酸銅の二層構造が積層した人工緑青を得た。
基本的には前記実施例3と同様な条件で行うことが可能であるが、焼成温度10×10℃~15×10℃、焼成時間2~5分焼成(実施例3により)するのが最適であり、このようにしてSNo.1〜SNo.6までの総時間は2時間〜3時間で銅板の表面へ“均一な”自然緑青の被膜と合致した、人工緑青の亜酸化銅と塩基性硝酸銅の積層構造被膜を得ることができる。
このように、銅板の表面に“均一な”自然緑青の積層構造からなる銅化合物被膜と、同構造の人工被膜を得る方法として実施例1を実施し、アルコール類を1.0×10-2ml/cm2以上添加した後、実施例3後、再び、実施例1を実施した後、実施例2、実施例3と実施することにより、3時間〜4時間で銅板の表面へ“均一な”自然緑青の被膜と合致した、人工緑青の亜酸化銅と塩基性硝酸銅の積層構造被膜を得ることができる。
この方法は、実施例1〜実施例3により人工緑青の亜酸化銅と塩基性硝酸銅の積層構造被膜が得られる生成時間の3時間〜4時間よりも1時間〜3時間(最大)短縮することができる。
Step 5 (SNo. 5)
SNo. The sample obtained in 4 is subjected to the constant temperature and humidity treatment of Example 2, and the copper nitrate hexahydrate is transferred to copper nitrate trihydrate and copper nitrate 2.5 hydrate.
Although it can be carried out under basically the same conditions as in Example 2, it is optimal to maintain at a humidity of 85% or more and a sample temperature of 30 to 45 ° C. for half an hour to 2 hours.
Step 6 (SNo. 6)
SNo. The sample obtained in 5 was subjected to the same baking treatment as in Example 3 to obtain an artificial patina in which a bilayer structure of cuprous oxide and basic copper nitrate was laminated.
Basically, it is possible to carry out under the same conditions as in Example 3 above, but it is best to perform firing at a firing temperature of 10 × 10 ° C. to 15 × 10 ° C. and a firing time of 2 to 5 minutes (according to Example 3). In this way, SNo. 1 to SNo. The total time up to 6 is 2 to 3 hours, and it is possible to obtain a laminated film of artificial patina cuprous oxide and basic copper nitrate that matches the “uniform” natural patina coating on the surface of the copper plate.
As described above, Example 1 was carried out as a method for obtaining a copper compound film having a “uniform” natural patina laminate structure on the surface of a copper plate and an artificial film having the same structure, and alcohols were added at 1.0 × 10 −2 ml / After addition of cm 2 or more, after Example 3 and again after Example 1, Example 2 and Example 3 were performed to achieve “uniform” nature on the surface of the copper plate in 3 to 4 hours. A laminated film of artificial patina cuprous oxide and basic copper nitrate that matches the patina coating can be obtained.
This method is shortened by 1 to 3 hours (maximum) from the production time of 3 hours to 4 hours in which a laminated film of artificial patina cuprous oxide and basic copper nitrate is obtained according to Examples 1 to 3. be able to.

銅板の表面に実施例1〜実施例3の方法によって得られた試料(表3の試料No.4)と、実施例4の試料(表4の試料No.2)、実施例5の試料(表5の試料No.1)、実施例7の試料(表7の試料No.3)、実施例8の試料(表8の試料No.2)の五種類を、自然環境で1年間の曝露試験を行った結果、人工緑青被膜の剥離は認められなかった。さらに、時間経過による不均一な色彩および色調変化も認められない。
A sample (sample No. 4 in Table 3) obtained by the method of Examples 1 to 3 on the surface of the copper plate, a sample of Example 4 (sample No. 2 in Table 4), and a sample of Example 5 ( Sample No. 1 in Table 5), sample of Example 7 (Sample No. 3 in Table 7), sample of Example 8 (Sample No. 2 in Table 8) were exposed to the natural environment for one year. As a result of the test, peeling of the artificial patina coating was not recognized. Furthermore, non-uniform color and tone changes over time are not observed.

(A) 注入管
(B) 蒸発室
(B1) ガス案内管
(B1a) ガス注入口
(B1b) ガス排出口
(C) 蒸発ヒータ
(D) 試料
(D1) 試料ヒータ
(E) 反応容器台
(F) 反応容器
(F1) 吸気口
(F2) 排気口
(A) Injection tube (B) Evaporation chamber (B1) Gas guide tube (B1a) Gas injection port (B1b) Gas discharge port (C) Evaporation heater (D) Sample (D1) Sample heater (E) Reaction vessel base (F) ) Reaction vessel (F1) Inlet (F2) Exhaust

特開平07−150365JP 07-150365 A 特開昭61−37975JP 61-37975 A 特開昭64−4493JP-A 64-4493 特公昭55-12117Japanese Patent Publication No.55-12117 特公昭55-14157JP55-14157 特公昭55-15558JP 55-15558 特公昭60-7036Shoko 60-7036 特公昭60-7038Shoko 60-7038 特公昭60-34640Shoko 60-34640

Claims (2)

人工緑青被覆銅部材を製造する方法であって、反応容器内に設置した加熱された銅又は銅合金からなる基材の表面に気化した硝酸のガスを反応させ、前記基材の表面に、亜酸化銅よりなる層と前記亜酸化銅層の外層表面に形成された硝酸銅の水和物層とからなる二層構造を生成させた後、気化した硝酸のガスを湿度調整した大気に置換し、反応容器内で前記基材を加熱、あるいは0〜40℃で1〜14日保持することにより、前記硝酸銅の水和物より塩基性硝酸銅を生成させることを特徴とする人工緑青被覆銅部材の製造方法。 A method for producing an artificial patina-covered copper member, comprising reacting vaporized nitric acid gas on the surface of a heated copper or copper alloy substrate installed in a reaction vessel, After generating a two-layer structure consisting of a copper oxide layer and a copper nitrate hydrate layer formed on the outer surface of the cuprous oxide layer, the vaporized nitric acid gas was replaced with humidity-adjusted air. The artificial patina-covered copper is characterized in that basic copper nitrate is produced from the hydrate of copper nitrate by heating the substrate in a reaction vessel or holding at 0 to 40 ° C. for 1 to 14 days. Manufacturing method of member. 請求項1に記載の人工緑青被覆銅部材の製造方法により製造されることを特徴とする人工緑青被覆銅部材。
An artificial patina-coated copper member manufactured by the method for producing an artificial patina-coated copper member according to claim 1.
JP2009166696A 2009-07-15 2009-07-15 Artificial patina-coated copper member and manufacturing method thereof Expired - Fee Related JP5568717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166696A JP5568717B2 (en) 2009-07-15 2009-07-15 Artificial patina-coated copper member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166696A JP5568717B2 (en) 2009-07-15 2009-07-15 Artificial patina-coated copper member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011021227A JP2011021227A (en) 2011-02-03
JP5568717B2 true JP5568717B2 (en) 2014-08-13

Family

ID=43631543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166696A Expired - Fee Related JP5568717B2 (en) 2009-07-15 2009-07-15 Artificial patina-coated copper member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5568717B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA734897A (en) * 1960-02-11 1966-05-24 Aktiebolaget Svenska Metallverken Method for applying green patina to objects, preferably made from copper or copper alloys
JP2896837B2 (en) * 1993-11-30 1999-05-31 日鉱金属株式会社 How to repair the patina
FI120048B (en) * 2004-09-29 2009-06-15 Luvata Espoo Oy A method of making a multilayer patina and a multilayer patina

Also Published As

Publication number Publication date
JP2011021227A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
Scholes et al. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings
JP3194593B2 (en) Method of forming cobalt conversion coating
TW402645B (en) Process for forming a cobalt conversion coating on an aluminum or aluminum alloy substrate and the chemical conversion coating solution for use in the process
CN100497734C (en) Chemical treatment method for aluminum alloy surface
CN108179403A (en) Resin material etching process composition
JP4686234B2 (en) Method for producing metal oxide film
Möller et al. A novel deposition technique for compound semiconductors on highly porous substrates: ILGAR
JP5090901B2 (en) Manufacturing method of iridium oxide coating.
JP5568717B2 (en) Artificial patina-coated copper member and manufacturing method thereof
CN1307323C (en) Trivalent chromic rainbow color passivating agent for galvanizing and its production
CN107815703B (en) Hydrogen evolution activity cathode and preparation method thereof and electrolytic cell comprising the hydrogen evolution activity cathode
JP2000312830A (en) Photocatalyst composite material and production thereof
EP1492903B1 (en) Method for preparing patination materials and patination material
JP3325334B2 (en) Bright blue treatment method for hot-dip zinc-aluminum alloy plated steel sheet
JPS58501089A (en) Method for manufacturing selective absorber of solar energy capture device and obtained selective absorber
CA2188661A1 (en) Artificial patina
CN105609310B (en) A kind of SnO2The surface modification method of base light anode
CN113186487A (en) Marine antifouling coating on surface of copper alloy part and preparation method thereof
JPS5928638B2 (en) Method of forming a colored protective film on the surface of magnesium material
KR101741011B1 (en) Metal materials and manufacturing methods having various colored metal oxide film
US1974140A (en) Production of an adherent patina upon copper or its alloys
JP2006131987A (en) Chromium-plating method
JPH0891842A (en) Production of basic chromium sulfate to be used for chromium system electroplating
JPS6357500B2 (en)
JP6158648B2 (en) Chromium-free chemical conversion treatment liquid and chemical conversion treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5568717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees