JP6158648B2 - Chromium-free chemical conversion treatment liquid and chemical conversion treatment method - Google Patents

Chromium-free chemical conversion treatment liquid and chemical conversion treatment method Download PDF

Info

Publication number
JP6158648B2
JP6158648B2 JP2013181647A JP2013181647A JP6158648B2 JP 6158648 B2 JP6158648 B2 JP 6158648B2 JP 2013181647 A JP2013181647 A JP 2013181647A JP 2013181647 A JP2013181647 A JP 2013181647A JP 6158648 B2 JP6158648 B2 JP 6158648B2
Authority
JP
Japan
Prior art keywords
chemical conversion
conversion treatment
sample
film
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013181647A
Other languages
Japanese (ja)
Other versions
JP2015048513A (en
Inventor
香織里 浦崎
香織里 浦崎
山崎 章弘
章弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2013181647A priority Critical patent/JP6158648B2/en
Publication of JP2015048513A publication Critical patent/JP2015048513A/en
Application granted granted Critical
Publication of JP6158648B2 publication Critical patent/JP6158648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

本発明は、亜鉛や亜鉛合金等の金属表面にクロムを含まない皮膜を化成処理により形成する技術に関する。   The present invention relates to a technique for forming a film not containing chromium on a metal surface such as zinc or zinc alloy by chemical conversion treatment.

従来、亜鉛めっきは自らが腐食することによる犠牲防食作用により鉄を守る性質から鉄鋼の防食方法として広く利用されている。しかしながら、亜鉛はそのままでは変色しやすく、白色斑点などを生じやすいなどの欠点があるため、亜鉛めっき後にクロメート処理といわれる防錆処理が施される。   Conventionally, galvanizing has been widely used as a method for preventing corrosion of steel because of its property of protecting iron by sacrificial anticorrosive action caused by corrosion of itself. However, since zinc has the disadvantages that it is easily discolored as it is and white spots are likely to occur, a rust-proofing process called chromate treatment is applied after zinc plating.

クロメート処理は、亜鉛めっきしたものを重クロム酸溶液に浸漬して表面に微量の6価クロムを含むクロム酸皮膜を形成することによる防食処理である。クロメート皮膜の最大の特徴は自己修復性であり、これによって亜鉛皮膜を防食する。   The chromate treatment is an anticorrosion treatment by immersing the galvanized material in a dichromic acid solution to form a chromic acid film containing a small amount of hexavalent chromium on the surface. The greatest feature of chromate coatings is self-healing, which protects the zinc coating from corrosion.

しかし、環境汚染等のため、近年になって6価クロムの使用が大きく制限されてきている。そのため、6価クロメート皮膜の代替技術の研究が取り組まれている。6価クロムを使用しない代替技術としては、3価クロム系化成皮膜が実用化されている。   However, the use of hexavalent chromium has been greatly restricted in recent years due to environmental pollution and the like. For this reason, research on alternative technologies for hexavalent chromate coatings is underway. As an alternative technique that does not use hexavalent chromium, a trivalent chromium-based chemical conversion film has been put into practical use.

3価クロム系化成皮膜の場合、6価クロムを使用しないが、共存物質によっては皮膜中や排水中の3価クロムが酸化されて6価クロムを生じることが懸念される。よってクロムを使用しない、いわゆるクロムフリーの亜鉛めっきの耐食性化成皮膜の開発が求められている。クロムを用いない、いわゆるクロムフリーの皮膜を形成する化成処理方法としては、特許文献1〜4などの技術がある。   In the case of a trivalent chromium-based chemical conversion film, hexavalent chromium is not used, but depending on the coexisting substances, there is a concern that trivalent chromium in the film or waste water may be oxidized to produce hexavalent chromium. Therefore, development of a so-called chromium-free galvanized corrosion-resistant chemical conversion film that does not use chromium is required. As a chemical conversion treatment method for forming a so-called chromium-free film without using chromium, there are techniques such as Patent Documents 1 to 4.

特許文献1はバナジウム族元素の化合物と、希土類元素のイオンと、塩素イオン・フッ素イオン・硝酸イオン・硫酸イオン・リンの酸素酸のイオン・酢酸イオンのうち少なくとも一種と、を含むクロムフリーの亜鉛または亜鉛合金の表面に用いる表面処理液を開示する。また特許文献2は、バナジウム族元素の化合物と、希土類元素のイオンと、硝酸イオンと、有機硫黄化合物と、を含む亜鉛または亜鉛合金の表面に用いる表面処理液を開示する。   Patent Document 1 discloses a chromium-free zinc containing a compound of a vanadium group element, an ion of a rare earth element, and at least one of a chloride ion, a fluoride ion, a nitrate ion, a sulfate ion, an ion of an oxygen acid of phosphorus, and an acetate ion. Or the surface treatment liquid used for the surface of a zinc alloy is disclosed. Patent Document 2 discloses a surface treatment liquid used on the surface of zinc or a zinc alloy containing a vanadium group element compound, a rare earth element ion, a nitrate ion, and an organic sulfur compound.

また特許文献3は、アルミニウムおよびアルミニウム合金材料に対して良好な耐食性と塗料密着性を付与するチタン錯フッ化物イオンとバナジウム化合物イオン等を含む化成処理液を開示する。また、特許文献4は、アルミニウムイオンとケイ素化合物とチタン化合物と硝酸イオンとクエン酸とを含有する化成処理液を開示する。   Patent Document 3 discloses a chemical conversion treatment solution containing titanium complex fluoride ions, vanadium compound ions, and the like that impart good corrosion resistance and paint adhesion to aluminum and aluminum alloy materials. Moreover, patent document 4 discloses the chemical conversion liquid containing an aluminum ion, a silicon compound, a titanium compound, nitrate ion, and a citric acid.

特開2011−202226号公報JP 2011-202226 A 特開2013−23758号公報JP 2013-23758 A 特開2010−261058号公報JP 2010-261058 A 特開2008−133502号公報JP 2008-133502 A

しかし、いずれの技術も、亜鉛や亜鉛合金の表面に形成した場合に耐食性が不十分であった。   However, both techniques have insufficient corrosion resistance when formed on the surface of zinc or a zinc alloy.

そこで本発明は、クロムを用いずに、亜鉛や亜鉛合金等の表面に耐食性のより高い耐食性化成皮膜を形成する化成処理液を提供することを目的とする。   Accordingly, an object of the present invention is to provide a chemical conversion treatment liquid that forms a corrosion-resistant chemical conversion film having higher corrosion resistance on the surface of zinc, a zinc alloy or the like without using chromium.

上記課題を解決するために、本発明に係るクロムフリー化成処理液は、バナジン酸イオンと、硝酸イオンと、錯化剤であるジカルボン酸と、を含むことを特徴とする。   In order to solve the above-described problems, a chromium-free chemical conversion treatment liquid according to the present invention includes vanadate ions, nitrate ions, and dicarboxylic acid as a complexing agent.

本発明によれば、クロムを用いずに、亜鉛や亜鉛合金の表面に耐食性のより高い化成皮膜を形成する化成処理液を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the chemical conversion liquid which forms a chemical film with higher corrosion resistance on the surface of zinc or a zinc alloy can be provided, without using chromium.

以下、本発明に係るクロムフリー化成処理液および化成処理方法の実施形態について説明する。   Hereinafter, embodiments of a chromium-free chemical conversion treatment solution and a chemical conversion treatment method according to the present invention will be described.

本実施形態のクロムフリーの化成処理液は、金属材料の表面に耐食性化成皮膜を形成する化成処理液である。本実施形態の化成処理液を用いる化成処理対象物である金属材料は特に限定されないが、亜鉛または亜鉛合金のめっき皮膜等が形成された、少なくとも表面部が亜鉛または亜鉛合金の金属材料の表面に対して表面処理を行って耐食性皮膜を形成する場合に用いられることが好ましい。本実施形態の化成処理液は、バナジン酸イオンと、硝酸イオンと、錯化剤と、を含む。   The chromium-free chemical conversion treatment liquid of this embodiment is a chemical conversion treatment liquid that forms a corrosion-resistant chemical conversion film on the surface of a metal material. Although the metal material which is the chemical conversion treatment target using the chemical conversion treatment liquid of the present embodiment is not particularly limited, at least the surface portion is formed on the surface of the metal material of zinc or zinc alloy on which a plating film of zinc or zinc alloy is formed. On the other hand, it is preferably used when a surface treatment is performed to form a corrosion-resistant film. The chemical conversion treatment liquid of the present embodiment includes vanadate ions, nitrate ions, and a complexing agent.

バナジン酸イオン(VO )の供給源は特に限定されないが、バナジン酸塩を化成処理液中に溶解させてバナジン酸イオンを生成させればよい。バナジン酸塩としては、バナジン酸ナトリウム(メタバナジン酸ナトリウム(NaVO)またはオルトバナジン酸ナトリウム)やバナジン酸アンモニウム等を用いることが好ましく、メタバナジン酸ナトリウムがより好ましい。 Although the supply source of vanadate ion (VO 3 ) is not particularly limited, vanadate may be generated by dissolving vanadate in the chemical conversion solution. As the vanadate, sodium vanadate (sodium metavanadate (NaVO 3 ) or sodium orthovanadate) or ammonium vanadate is preferably used, and sodium metavanadate is more preferable.

メタバナジン酸ナトリウムは化成処理液中において2g/L以上4g/L以下含まれることが好ましい。メタバナジン酸ナトリウムの含有量が2g/L以上4g/L以下であれば、耐食性がより向上する。また、4g/Lより多いと、完全溶解しない場合がある。   Sodium metavanadate is preferably contained in the chemical conversion solution in an amount of 2 g / L to 4 g / L. If content of sodium metavanadate is 2 g / L or more and 4 g / L or less, corrosion resistance will improve more. Moreover, when it exceeds 4 g / L, it may not completely dissolve.

硝酸イオン(NO )は皮膜形成対象の素地の亜鉛を均一に溶解させる酸化剤である。硝酸イオンの供給源は特に限定されないが、硝酸塩を化成処理液中に溶解させて硝酸イオンを生成させればよく、硝酸ナトリウムを化成処理液中に溶解させて硝酸イオンを生成させることが好ましい。硝酸ナトリウムは化成処理液中において85g/L以上150g/L以下含まれることが好ましい。硝酸ナトリウムが85g/L以上150g/L以下含有されることで、耐食性がより向上する。硝酸ナトリウムの含有量が85g/Lより少ないと、化成皮膜形成に影響を及ぼし、結果として好適な範囲内の場合に比べて耐食性が低下する。また150g/Lより多いと、化成皮膜は形成するものの、好適な範囲内の場合に比べて耐食性は低下する。 Nitrate ion (NO 3 ) is an oxidizing agent that uniformly dissolves the zinc of the substrate on which the film is to be formed. Although the supply source of nitrate ions is not particularly limited, nitrate ions may be generated by dissolving nitrate in the chemical conversion treatment liquid, and it is preferable to generate nitrate ions by dissolving sodium nitrate in the chemical conversion treatment liquid. Sodium nitrate is preferably contained in the chemical conversion solution at 85 g / L or more and 150 g / L or less. When sodium nitrate is contained in an amount of 85 g / L to 150 g / L, the corrosion resistance is further improved. When the content of sodium nitrate is less than 85 g / L, the formation of the chemical conversion film is affected, and as a result, the corrosion resistance is reduced as compared with a case where it is within a suitable range. On the other hand, when the amount is more than 150 g / L, a chemical conversion film is formed, but the corrosion resistance is lowered as compared with a case where it is within a preferable range.

錯化剤は、バナジウムイオン(バナジン酸塩)の安定化のために加えられる。本実施形態の錯化剤の種類は、バナジウムを安定化することができれば特に限定されないが、カルボン酸を用いることが好ましく、ジカルボン酸を用いることがより好ましい。   Complexing agents are added for the stabilization of vanadium ions (vanadate). Although the kind of complexing agent of this embodiment will not be specifically limited if vanadium can be stabilized, It is preferable to use carboxylic acid, and it is more preferable to use dicarboxylic acid.

錯化剤として用いられるジカルボン酸としては、具体的には、マロン酸やコハク酸やフマル酸などが好ましい。このなかでもマロン酸が特に好ましい。   Specifically, the dicarboxylic acid used as the complexing agent is preferably malonic acid, succinic acid, fumaric acid, or the like. Of these, malonic acid is particularly preferred.

錯化剤としてマロン酸を用いた場合にマロン酸の含有量は化成処理液中において7.5g/L以上16g/L以下であることが好ましい。マロン酸の化成処理液中における含有量が7.5g/L以上16g/L以下であれば、耐食性がより向上する。マロン酸の化成処理液中における含有量が7.5g/Lより少ないと、化成皮膜の形成を阻害する場合があり範囲内の場合に比べて耐食性が低い。また16g/Lより多いと、化成皮膜は形成するものの、耐食性は範囲内である場合に比べて低下する。   When malonic acid is used as the complexing agent, the content of malonic acid is preferably 7.5 g / L or more and 16 g / L or less in the chemical conversion solution. When the content of malonic acid in the chemical conversion treatment liquid is 7.5 g / L or more and 16 g / L or less, the corrosion resistance is further improved. If the content of malonic acid in the chemical conversion treatment liquid is less than 7.5 g / L, the formation of the chemical conversion film may be inhibited, and the corrosion resistance is lower than that in the range. On the other hand, when the amount is more than 16 g / L, a chemical conversion film is formed, but the corrosion resistance is lower than that in the range.

また、本実施形態のクロムフリーの化成処理液において、バナジン酸ナトリウム(NaVO)と錯化剤の含有量のモル比は、バナジン酸ナトリウム/錯化剤の値で、1/10以上、1/2.0以下が好ましい。さらに、下限値は1/5以上がより好ましく、上限値は1/2.5以下がより好ましい。1/10以上1/2.0以下であれば、十分な耐食性が得られる。1/5以上1/2.5以下であれば、3価クロム系の化成処理皮膜と同等以上の優れた耐食性を有する皮膜が得られる。 In the chromium-free chemical conversion treatment liquid of the present embodiment, the molar ratio of the content of sodium vanadate (NaVO 3 ) and the complexing agent is 1/10 or more in terms of sodium vanadate / complexing agent. /2.0 or less is preferable. Furthermore, the lower limit is more preferably 1/5 or more, and the upper limit is more preferably 1 / 2.5 or less. If it is 1/10 or more and 1 / 2.0 or less, sufficient corrosion resistance is obtained. If it is 1/5 or more and 1 / 2.5 or less, a film having excellent corrosion resistance equivalent to or higher than that of a trivalent chromium-based chemical conversion film can be obtained.

以上の本実施形態の化成処理液は、そのpHが1以上5以下であることが好ましい。pHが1より小さいと亜鉛めっきの溶解が急速に進行し、化成皮膜形成を阻害する場合がある。またpHが5より大きいと亜鉛めっきの溶解速度が遅くなり、よってバナジウムの還元速度も遅くなるため、皮膜形成に時間がかかる。   The chemical conversion treatment liquid of the above embodiment preferably has a pH of 1 or more and 5 or less. If the pH is less than 1, dissolution of the galvanizing proceeds rapidly, which may inhibit the formation of the chemical conversion film. On the other hand, if the pH is higher than 5, the dissolution rate of galvanizing is slowed down, so that the reduction rate of vanadium is also slowed down, so that it takes time to form a film.

次に、本実施形態の化成処理液を用いた金属の化成処理方法を説明する。なお本実施形態では、鋼板の表面に亜鉛めっき皮膜(または亜鉛合金めっき皮膜)が形成された金属材料に対して、亜鉛めっき皮膜上に化成処理皮膜を形成する方法を説明する。本実施形態の化成処理方法は、亜鉛めっき皮膜が形成された金属材料に本実施形態の化成処理液を接触させる方法である。   Next, a metal chemical conversion method using the chemical conversion solution of the present embodiment will be described. In the present embodiment, a method of forming a chemical conversion film on a galvanized film for a metal material having a galvanized film (or zinc alloy plated film) formed on the surface of a steel sheet will be described. The chemical conversion treatment method of this embodiment is a method in which the chemical conversion treatment liquid of this embodiment is brought into contact with a metal material on which a galvanized film is formed.

処理対象の金属材料を化成処理液に接触させる方法は特に限定されないが、金属材料を化成処理液に浸漬すればよい。浸漬処理する場合の化成処理液の温度は40℃以上70℃以下が好ましい。40℃未満であると、バナジウムの還元が遅くなり、化成皮膜形成を阻害する場合がある。また70℃より高いと、化成皮膜は形成するものの、耐食性が低下する。   The method for bringing the metal material to be treated into contact with the chemical conversion treatment liquid is not particularly limited, but the metal material may be immersed in the chemical conversion treatment liquid. The temperature of the chemical conversion treatment liquid in the case of immersion treatment is preferably 40 ° C. or higher and 70 ° C. or lower. When the temperature is lower than 40 ° C., the reduction of vanadium is slow, which may inhibit the formation of the chemical conversion film. On the other hand, if it is higher than 70 ° C., a chemical conversion film is formed, but the corrosion resistance is lowered.

また、金属材料の化成処理液への浸漬時間は0.5分以上2分以下が好ましい。0.5分未満であると、亜鉛めっき皮膜上に形成される化成処理皮膜の形成が十分ではなく、十分な耐食性が得られない場合がある。また2分より長く浸漬してもそれ以上皮膜形成は行われず、亜鉛めっき皮膜の溶解が起こる場合がある。   The immersion time of the metal material in the chemical conversion treatment liquid is preferably 0.5 minutes or more and 2 minutes or less. If it is less than 0.5 minutes, the formation of the chemical conversion film formed on the galvanized film is not sufficient, and sufficient corrosion resistance may not be obtained. Further, even when immersed for more than 2 minutes, no further film formation is performed, and dissolution of the galvanized film may occur.

化成処理対象の金属材料を化成処理液に浸漬した後、浸漬した金属材料を乾燥処理することで化成処理膜が形成された金属材料が得られる。乾燥処理は、常温での通風乾燥で行うことが好ましい。6価クロメート皮膜の代替技術である3価クロム系の化成処理の場合には、通常は高温(70℃〜90℃程度)での通風乾燥が必要となるが、本実施形態の化成処理液の場合には常温通風乾燥が好ましい。たとえば、80℃以上の温度で乾燥させた場合に比べて、常温乾燥した場合の方がより耐食性を向上させることができる。従って、3価クロム系の化成処理液を用いる場合に比べて、本実施形態によれば化成処理工程をより簡易化することができる。なお、本実施形態における常温での通風乾燥は、加熱や冷却をせずに常温での通風を行って乾燥させるものであり、たとえば乾燥機を用いて常温での通風乾燥を行ってもよい。また、常温は日本工業規格に定められている5℃〜35℃程度でよい。   After immersing the metal material to be subjected to the chemical conversion treatment in the chemical conversion treatment liquid, the metal material on which the chemical conversion treatment film is formed is obtained by drying the immersed metal material. The drying treatment is preferably performed by ventilation drying at room temperature. In the case of a trivalent chromium-based chemical conversion treatment, which is an alternative technology for a hexavalent chromate film, normally, drying by ventilation at a high temperature (about 70 ° C. to 90 ° C.) is required. In some cases, room temperature ventilation drying is preferred. For example, the corrosion resistance can be improved more when dried at room temperature than when dried at a temperature of 80 ° C. or higher. Therefore, compared with the case where a trivalent chromium-based chemical conversion treatment solution is used, the chemical conversion treatment step can be further simplified according to this embodiment. In addition, the ventilation drying at normal temperature in this embodiment is performed by performing ventilation at normal temperature without heating or cooling. For example, ventilation drying at normal temperature may be performed using a dryer. The room temperature may be about 5 ° C to 35 ° C as defined in Japanese Industrial Standards.

なお、本実施形態の化成処理方法において、亜鉛めっき皮膜が形成されている金属材料を化成処理液に浸漬する前に、硝酸に浸漬する処理を行ってもよい。この硝酸への浸漬工程は、亜鉛めっき皮膜上に形成されている亜鉛の酸化物を除去するために行う。硝酸への浸漬処理を行うことで、化成皮膜を形成しやすくする。硝酸への浸漬処理工程で用いる硝酸は、濃度は0.5%以上2.0%以下が好ましく、温度は常温が好ましい。   In addition, in the chemical conversion treatment method of this embodiment, you may perform the process immersed in nitric acid, before immersing the metal material in which the zinc plating film is formed in chemical conversion liquid. This dipping step in nitric acid is performed to remove zinc oxide formed on the galvanized film. By performing immersion treatment in nitric acid, a chemical conversion film is easily formed. The concentration of nitric acid used in the immersion treatment step in nitric acid is preferably 0.5% or more and 2.0% or less, and the temperature is preferably room temperature.

以上が、本実施形態の化成処理液および化成処理方法である。本実施形態によれば、6価クロムや3価クロムを用いずに、亜鉛や亜鉛合金の表面に、耐食性に優れた化成処理皮膜を形成することができる。また、本実施形態の化成処理皮膜は、外観が6価クロムによる化成処理皮膜に近く、さらに十分な耐食性を得るために必要なバナジン酸塩の量が非常に少量でよいため、コストを抑えて6価クロムと同等の耐食性や外観を備えた皮膜を形成できる。よって、本実施形態の化成処理液によって、より最適な6価クロメートの代替処理方法を実現することができる。   The above is the chemical conversion treatment liquid and chemical conversion treatment method of the present embodiment. According to this embodiment, a chemical conversion treatment film having excellent corrosion resistance can be formed on the surface of zinc or a zinc alloy without using hexavalent chromium or trivalent chromium. In addition, the chemical conversion treatment film of the present embodiment has an appearance close to that of a hexavalent chromium chemical conversion treatment film, and further requires a very small amount of vanadate to obtain sufficient corrosion resistance. A film having the same corrosion resistance and appearance as hexavalent chromium can be formed. Therefore, a more optimal alternative treatment method of hexavalent chromate can be realized by the chemical conversion treatment liquid of the present embodiment.

これに対して従来の3価クロム系の化成処理の場合には、それだけでは耐食性が不十分であり、耐食性を補うために樹脂等を用いたクリア塗装といったトップコートがさらに必要になるとともに、3価クロム系の化成処理液自体も非常に高価である。よって、6価クロムの代替技術としては十分でない。   On the other hand, in the case of the conventional trivalent chromium chemical conversion treatment, the corrosion resistance is not sufficient by itself, and a top coat such as clear coating using a resin or the like is further required to supplement the corrosion resistance. The chromic chemical conversion solution itself is very expensive. Therefore, it is not sufficient as an alternative technology for hexavalent chromium.

また、本実施形態の化成処理の場合、化成処理対象の金属材料を化成処理液に浸漬させるなどして接触させた後の乾燥工程を、常温での通風乾燥で行うことができる。一方で、3価クロム系の化成処理の場合、高温で通風乾燥する必要がある。従って、本実施形態の化成処理液によれば、化成処理工程をより簡易化することができる。   Moreover, in the case of the chemical conversion treatment of this embodiment, the drying process after making the metal material of chemical conversion treatment contact by immersing in a chemical conversion liquid etc. can be performed by ventilation drying at normal temperature. On the other hand, in the case of a trivalent chromium-based chemical conversion treatment, it is necessary to perform ventilation drying at a high temperature. Therefore, according to the chemical conversion treatment liquid of this embodiment, the chemical conversion treatment step can be further simplified.

次に、実施例を挙げて本発明をより詳細に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。   Next, an Example is given and this invention is demonstrated in detail. However, the present invention is not limited to only these examples.

(亜鉛めっき金属材料の作成)
化成処理液を作用させて化成処理皮膜を形成する対象物として、亜鉛めっき皮膜を有する金属材料を以下のように作成した。まず、金属材料である冷間圧延鋼板(SPCC)を溶剤で脱脂し、さらに電解脱脂した。そして、電解脱脂した鋼板に対して電気亜鉛めっきを行い、亜鉛めっき皮膜が形成された金属材料を得た。
(Creation of galvanized metal material)
A metal material having a galvanized film was prepared as follows as an object for forming a chemical conversion film by applying a chemical conversion solution. First, a cold rolled steel plate (SPCC), which is a metal material, was degreased with a solvent and further electrolytically degreased. Then, electrogalvanizing was performed on the electrolytically degreased steel sheet to obtain a metal material on which a galvanized film was formed.

(化成処理液による化成処理)
本発明に係る化成処理液により上記の金属材料に対して化成処理を行って、化成処理皮膜を有する金属材料を得た。以下、各試料の化成処理について具体的に説明する。
(Chemical conversion treatment with chemical conversion solution)
The above metal material was subjected to chemical conversion treatment using the chemical conversion liquid according to the present invention to obtain a metal material having a chemical conversion coating. Hereinafter, the chemical conversion treatment of each sample will be specifically described.

(試料1)
試料1の化成処理に用いた化成処理液は、バナジン酸ナトリウム(NaVO)を2.0g/L(0.02mol/L)、硝酸ナトリウムを100.0g/L(1.18mol/L)、マロン酸を7.8g/L(0.07mol/L)含有し、pHを2.0に調整したものである。化成処理方法は、まず60℃とした化成処理液に上述の亜鉛めっき皮膜が形成された金属材料を1分間浸漬した。そして浸漬処理を行った金属材料を常温(25℃)で通風乾燥し、化成処理皮膜が形成された試料1の金属材料を得た。
(Sample 1)
The chemical conversion treatment solution used for the chemical conversion treatment of Sample 1 was sodium vanadate (NaVO 3 ) 2.0 g / L (0.02 mol / L), sodium nitrate 100.0 g / L (1.18 mol / L), Malonic acid is contained at 7.8 g / L (0.07 mol / L) and the pH is adjusted to 2.0. In the chemical conversion treatment method, first, the metal material on which the above-described galvanized film was formed was immersed in a chemical conversion treatment solution at 60 ° C. for 1 minute. And the metal material which performed the immersion process was ventilated at normal temperature (25 degreeC), and the metal material of the sample 1 with which the chemical conversion treatment film was formed was obtained.

(試料2)
試料1において、バナジン酸ナトリウムを4.0g/L(0.03mol/L)とし、それに合わせて錯化剤であるマロン酸を15.5g/L(0.15mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料2の金属材料を得た。
(Sample 2)
In sample 1, sodium vanadate was adjusted to 4.0 g / L (0.03 mol / L), and malonic acid, which is a complexing agent, was contained correspondingly to 15.5 g / L (0.15 mol / L). Except for the above, chemical conversion treatment was performed in the same manner to obtain a metal material of Sample 2 on which a chemical conversion treatment film was formed.

(試料3)
試料1において、バナジン酸ナトリウムを8.0g/L(0.06mol/L)とし、それに合わせて錯化剤であるマロン酸を31.2g/L(0.30mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料3の金属材料を得た。
(Sample 3)
In Sample 1, sodium vanadate was 8.0 g / L (0.06 mol / L), and malonic acid as a complexing agent was contained 31.2 g / L (0.30 mol / L) accordingly. Except for the above, chemical conversion treatment was performed in the same manner to obtain a metal material of Sample 3 on which a chemical conversion treatment film was formed.

(試料4)
試料1において、バナジン酸ナトリウムを16.0g/L(0.13mol/L)とし、それに合わせて錯化剤であるマロン酸を62.4g/L(0.60mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料4の金属材料を得た。
(Sample 4)
In sample 1, sodium vanadate was adjusted to 16.0 g / L (0.13 mol / L), and malonic acid, which is a complexing agent, was contained in accordance with 66.0 g / L (0.60 mol / L). Except for the above, a chemical conversion treatment was performed in the same manner to obtain a metal material of Sample 4 on which a chemical conversion treatment film was formed.

(試料5)
試料1において、錯化剤であるマロン酸の代わりにコハク酸を9.1g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料5の金属材料を得た。
(Sample 5)
In Sample 1, chemical conversion treatment was performed in the same manner except that 9.1 g / L (0.07 mol / L) of succinic acid was used instead of malonic acid, which is a complexing agent, to form a chemical conversion film. The obtained metal material of Sample 5 was obtained.

(試料6)
試料1において、錯化剤であるマロン酸の代わりにフマル酸を8.9g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料6の金属材料を得た。
(Sample 6)
In Sample 1, chemical conversion treatment was performed in the same manner except that fumaric acid was contained in an amount of 8.9 g / L (0.07 mol / L) instead of malonic acid, which is a complexing agent. The obtained metal material of Sample 6 was obtained.

(試料7)
試料1において、錯化剤であるマロン酸の代わりにサリチル酸を10.6g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料7の金属材料を得た。
(Sample 7)
In Sample 1, a chemical conversion treatment was performed in the same manner except that salicylic acid was contained at 10.6 g / L (0.07 mol / L) instead of malonic acid, which is a complexing agent, to form a chemical conversion treatment film. The metal material of Sample 7 was obtained.

(試料8)
試料1において、錯化剤であるマロン酸の代わりに乳酸を6.9g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料8の金属材料を得た。
(Sample 8)
In Sample 1, chemical conversion treatment was performed in the same manner except that 6.9 g / L (0.07 mol / L) of lactic acid was used instead of malonic acid, which is a complexing agent, to form a chemical conversion coating film. A metal material of Sample 8 was obtained.

(試料9)
試料1において、錯化剤であるマロン酸の代わりにグリコール酸を5.9g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料9の金属材料を得た。
(Sample 9)
In Sample 1, a chemical conversion treatment was performed in the same manner except that glycolic acid was contained in the amount of 5.9 g / L (0.07 mol / L) instead of malonic acid as a complexing agent. The obtained metal material of Sample 9 was obtained.

(試料10)
試料1において、錯化剤であるマロン酸の代わりにクエン酸(水和物)を15.8g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料10の金属材料を得た。
(Sample 10)
Sample 1 was subjected to chemical conversion treatment in the same manner except that it contained 15.8 g / L (0.07 mol / L) of citric acid (hydrate) instead of malonic acid as a complexing agent. A metal material of Sample 10 on which a chemical conversion treatment film was formed was obtained.

(試料11)
試料1において、錯化剤であるマロン酸の代わりに酒石酸を11.6g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料11の金属材料を得た。
(Sample 11)
In Sample 1, a chemical conversion treatment was performed in the same manner except that tartaric acid was contained in place of malonic acid, which is a complexing agent, at 11.6 g / L (0.07 mol / L). The metal material of Sample 11 was obtained.

(試料12)
試料1において、錯化剤であるマロン酸の代わりにリンゴ酸を10.3g/L(0.07mol/L)含有するものとしたこと以外は同様にして化成処理を行い、化成処理皮膜が形成された試料12の金属材料を得た。
(Sample 12)
In Sample 1, chemical conversion treatment was performed in the same manner except that malic acid was contained in an amount of 10.3 g / L (0.07 mol / L) instead of malonic acid, which is a complexing agent, and a chemical conversion treatment film was formed. Thus obtained metal material of Sample 12 was obtained.

(試料13)
試料1において、化成処理液のpHを3.0とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料13の金属材料を得た。
(Sample 13)
Sample 1 was subjected to a chemical conversion treatment in the same manner except that the pH of the chemical conversion treatment solution was set to 3.0, thereby obtaining a metal material of Sample 13 on which a chemical conversion treatment film was formed.

(試料14)
試料13において、化成処理における金属材料の化成処理液への浸漬時間を5分間とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料14の金属材料を得た。
(Sample 14)
The sample 13 was subjected to a chemical conversion treatment in the same manner except that the immersion time of the metal material in the chemical conversion treatment in the chemical conversion treatment was 5 minutes, thereby obtaining the metal material of the sample 14 on which the chemical conversion treatment film was formed.

(試料15)
試料13において、化成処理における金属材料の化成処理液への浸漬時間を10分間とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料15の金属材料を得た。
(Sample 15)
Sample 13 was subjected to a chemical conversion treatment in the same manner except that the immersion time of the metal material in the chemical conversion treatment solution in the chemical conversion treatment was set to 10 minutes, thereby obtaining a metal material of Sample 15 on which a chemical conversion treatment film was formed.

(試料16)
試料1において、化成処理における化成処理液の温度を40℃とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料16の金属材料を得た。
(Sample 16)
Sample 1 was subjected to a chemical conversion treatment in the same manner except that the temperature of the chemical conversion treatment liquid in the chemical conversion treatment was 40 ° C., thereby obtaining a metal material of Sample 16 on which a chemical conversion treatment film was formed.

(試料17)
試料1において、化成処理における化成処理液の温度を25℃とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料17の金属材料を得た。
(Sample 17)
Sample 1 was subjected to a chemical conversion treatment in the same manner except that the temperature of the chemical conversion treatment liquid in the chemical conversion treatment was 25 ° C., thereby obtaining a metal material of Sample 17 on which a chemical conversion treatment film was formed.

(試料18)
試料1において、化成処理液に浸漬後の金属材料を80℃で通風乾燥した以外は同様にして化成処理を行い、化成処理皮膜が形成された試料18の金属材料を得た。
(Sample 18)
Sample 1 was subjected to a chemical conversion treatment in the same manner except that the metal material immersed in the chemical conversion treatment solution was dried by ventilation at 80 ° C. to obtain a metal material of Sample 18 on which a chemical conversion treatment film was formed.

(試料19)
試料1において、化成処理液に浸漬後の金属材料を120℃で通風乾燥を行った以外は同様にして化成処理を行い、化成処理皮膜が形成さされた試料19の金属材料を得た。
(Sample 19)
In Sample 1, the metal material after immersion in the chemical conversion solution was subjected to chemical conversion in the same manner except that the metal material was dried by ventilation at 120 ° C. to obtain the metal material of Sample 19 on which a chemical conversion film was formed.

(試料20)
試料3において、錯化剤であるマロン酸の含有量を15.6g/L(0.15mol/L)とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料20の金属材料を得た。
(Sample 20)
In Sample 3, the chemical conversion treatment was carried out in the same manner except that the content of malonic acid as a complexing agent was changed to 15.6 g / L (0.15 mol / L), and the metal of Sample 20 on which a chemical conversion film was formed. Obtained material.

(試料21)
試料3において、錯化剤であるマロン酸の含有量を62.4g/L(0.60mol/L)とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料21の金属材料を得た。
(Sample 21)
In Sample 3, the chemical conversion treatment was performed in the same manner except that the content of malonic acid as a complexing agent was changed to 62.4 g / L (0.60 mol / L), and the metal of Sample 21 on which a chemical conversion treatment film was formed. Obtained material.

(試料22)
試料3において、バナジン酸ナトリウムの含有量を4.0g/L(0.03mol/L)とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料22の金属材料を得た。
(Sample 22)
Sample 3 was subjected to a chemical conversion treatment in the same manner except that the content of sodium vanadate was 4.0 g / L (0.03 mol / L), to obtain the metal material of Sample 22 on which a chemical conversion treatment film was formed. .

(試料23)
試料3において、バナジン酸ナトリウムの含有量を16.0g/L(0.13mol/L)とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料23の金属材料を得た。
(Sample 23)
Sample 3 was subjected to chemical conversion treatment in the same manner except that the content of sodium vanadate was changed to 16.0 g / L (0.13 mol / L) to obtain a metal material of Sample 23 on which a chemical conversion treatment film was formed. .

(試料24)
試料3において、硝酸ナトリウムの含有量を50g/L(0.59mol/L)とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料24の金属材料を得た。
(Sample 24)
In Sample 3, chemical conversion treatment was performed in the same manner except that the content of sodium nitrate was changed to 50 g / L (0.59 mol / L), and the metal material of Sample 24 on which a chemical conversion treatment film was formed was obtained.

(試料25)
試料3において、硝酸ナトリウムの含有量を200g/L(2.36mol/L)とした以外は同様にして化成処理を行い、化成処理皮膜が形成された試料25の金属材料を得た。
(Sample 25)
In Sample 3, chemical conversion treatment was performed in the same manner except that the content of sodium nitrate was changed to 200 g / L (2.36 mol / L) to obtain a metal material of Sample 25 on which a chemical conversion treatment film was formed.

(試料26)
参考例として、試料1と同じ金属材料に3価クロム系化成皮膜を形成した。化成処理液は、CrCl・6HOを50.0g/L(0.19mol/L)、NaNOを100.0g/L(1.18mol/L)、マロン酸を31.2g/L(0.30mol/L)、Co(NOを3.0g/L(0.01mol/L)含み、pHは2.0である。化成処理方法は、60℃とした化成処理液に亜鉛めっき皮膜が形成された金属材料を、1分間浸漬した。そして浸漬処理を行った金属材料を70℃で通風乾燥し、化成処理皮膜が形成された試料26の金属材料を得た。
(Sample 26)
As a reference example, a trivalent chromium conversion coating was formed on the same metal material as Sample 1. The chemical conversion treatment solution was CrCl 3 · 6H 2 O 50.0 g / L (0.19 mol / L), NaNO 3 100.0 g / L (1.18 mol / L), and malonic acid 31.2 g / L ( 0.30 mol / L), 3.0 g / L (0.01 mol / L) of Co (NO 3 ) 2 , and pH is 2.0. In the chemical conversion treatment method, a metal material on which a galvanized film was formed was immersed in a chemical conversion treatment solution at 60 ° C. for 1 minute. And the metal material which performed the immersion process was dried by ventilation at 70 degreeC, and the metal material of the sample 26 with which the chemical conversion treatment film was formed was obtained.

(耐食性試験)
上述の各試料について、JIS H8502に規定される中性塩水噴霧試験の試験方法に準じて、塩水噴霧試験機(スガ試験機(株)、型番:STP−110)により耐食性試験を行った。塩水を噴霧して24時間経過後の各試料の皮膜表面を目視で観察し、白色腐食生成物の発生を認めない場合を二重丸(◎)、16時間で白色腐食生成物の発生を認めた場合を丸(○)、8時間で白色腐食生成物の発生を認めた場合を三角(△)、4時間後に白色腐食生成物の発生を認めた場合をバツ(×)として評価した。
(Corrosion resistance test)
Each of the above samples was subjected to a corrosion resistance test using a salt spray tester (Suga Test Instruments Co., Ltd., model number: STP-110) according to the test method of the neutral salt spray test specified in JIS H8502. When the surface of the film of each sample after the lapse of 24 hours after spraying with salt water is visually observed, no white corrosion product is observed. Double circle (◎). White corrosion product is observed after 16 hours. The case where a white corrosion product was observed after 8 hours was evaluated as a triangle (Δ), and the case where a white corrosion product was observed after 4 hours was evaluated as a cross (×).

各試料作成に用いた化成処理液の組成、化成処理条件、および耐食性試験結果を表1に示す。   Table 1 shows the composition of the chemical conversion treatment solution used for preparation of each sample, chemical conversion treatment conditions, and corrosion resistance test results.

Figure 0006158648
Figure 0006158648

耐食性の試験結果より、化成処理液の組成や化成処理条件が上述した実施形態において好ましいとした範囲内にある試料1や試料2や試料13や試料16は、耐食性に非常に優れた皮膜が得られたことが分かった。また、バナジン酸ナトリウムの含有量が好ましい範囲から外れた試料3、4、20は、3価クロム系化成皮膜の参考例と同等以上ではあるが若干耐食性が劣ることが分かった。   From the results of the corrosion resistance test, Sample 1, Sample 2, Sample 13, and Sample 16 in which the composition of the chemical conversion treatment solution and the chemical conversion treatment conditions are within the preferred range in the above-described embodiment, provide a film with extremely excellent corrosion resistance. I found out. In addition, it was found that Samples 3, 4, and 20 in which the content of sodium vanadate was out of the preferred range were slightly inferior in corrosion resistance, although they were equal to or higher than those of the reference example of the trivalent chromium-based chemical conversion coating.

バナジン酸ナトリウムと錯化剤のモル比の好適な範囲を外れた試料21、22、23、は耐食性は得られたが、範囲内のものに比べて耐食性は劣った。また、硝酸ナトリウムの含有量が、好適な範囲を外れた試料24と25は、耐食性は得られたが、範囲内のものに比べて耐食性が劣った。   Samples 21, 22, and 23, which were out of the preferred range of the molar ratio of sodium vanadate and complexing agent, exhibited corrosion resistance, but were inferior to those in the range. Samples 24 and 25 in which the content of sodium nitrate was out of the preferred range obtained corrosion resistance, but were inferior in corrosion resistance to those in the range.

また、錯化剤としてマロン酸以外のジカルボン酸であるコハク酸やフマル酸を用いた試料5、6も耐食性に優れた皮膜であることが分かった。一方で、ジカルボン酸以外の化合物を錯化剤として用いた試料はサリチル酸(No.7)を除いて耐食性が大きく劣った。   Moreover, it turned out that the samples 5 and 6 using succinic acid and fumaric acid which are dicarboxylic acids other than malonic acid as a complexing agent are also excellent in corrosion resistance. On the other hand, samples using compounds other than dicarboxylic acids as complexing agents were greatly inferior in corrosion resistance except for salicylic acid (No. 7).

化成処理液のpHを3とした試料13は十分な耐食性が得られたことが分かった。   It was found that Sample 13 in which the pH of the chemical conversion solution was 3 had sufficient corrosion resistance.

化成処理において金属材料の化成処理液への浸漬時間を5分とした試料14はある程度耐食性が得られたが、浸漬時間を10分とした試料15は好適な範囲内の場合に比べて耐食性に優れた化成処理皮膜は得られなかった。また、化成処理液の温度が25℃の試料17は好適な範囲内のものに比べて耐食性が劣った。   In the chemical conversion treatment, the sample 14 in which the immersion time of the metal material in the chemical conversion treatment solution was 5 minutes obtained corrosion resistance to some extent, but the sample 15 in which the immersion time was 10 minutes was more resistant to corrosion than in the preferred range. An excellent chemical conversion coating was not obtained. Further, the sample 17 having a chemical conversion treatment liquid temperature of 25 ° C. was inferior in corrosion resistance to that in a suitable range.

乾燥工程での温度が80℃の試料18と、120℃の試料19は、範囲内のものに比べて耐食性が劣った。   The sample 18 having a temperature in the drying step of 80 ° C. and the sample 19 having a temperature of 120 ° C. were inferior in corrosion resistance to those in the range.

以上のように、本発明の実施例によれば、3価クロム系の化成処理皮膜と同等の耐食性を備えたクロムフリーの化成処理皮膜が形成されることが分かった。   As mentioned above, according to the Example of this invention, it turned out that the chromium free chemical conversion treatment film provided with the corrosion resistance equivalent to a trivalent chromium type chemical conversion treatment film is formed.

本発明のいくつかの実施形態・実施例を説明したが、これらの実施形態・実施例は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態・実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態・実施例やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Although several embodiments and examples of the present invention have been described, these embodiments and examples are presented as examples and are not intended to limit the scope of the invention. These embodiments and examples can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments / examples and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

Claims (7)

バナジン酸イオンと、硝酸イオンと、錯化剤であるジカルボン酸と、を含み、
前記バナジン酸イオンの供給源がメタバナジン酸ナトリウムであって、前記メタバナジン酸ナトリウムと前記錯化剤であるジカルボン酸との含有量の比率が、メタバナジン酸ナトリウム/ジカルボン酸(モル比)の値で1/5以上1/2.5以下であることを特徴とするクロムフリー化成処理液。
Vanadate ions, and nitrate ions, a dicarboxylic acid is a complexing agent, only including,
The supply source of the vanadate ion is sodium metavanadate, and the content ratio of the sodium metavanadate and the dicarboxylic acid as the complexing agent is 1 in terms of sodium metavanadate / dicarboxylic acid (molar ratio). A chromium-free chemical conversion treatment liquid characterized by being / 5 or more and 1 / 2.5 or less .
バナジン酸イオンと、硝酸イオンと、錯化剤であるジカルボン酸と、を含み、
前記バナジン酸イオンの供給源がメタバナジン酸ナトリウムであって、前記メタバナジン酸ナトリウムを2g/L以上4g/L以下含むことを特徴とするクロムフリー化成処理液。
A vanadate ion, a nitrate ion, and a dicarboxylic acid as a complexing agent,
It said source of vanadate ion is a sodium metavanadate, features and to torque Romufuri chemical conversion treatment liquid that containing the sodium metavanadate 2 g / L or more 4g / L or less.
バナジン酸イオンと、硝酸イオンと、錯化剤であるジカルボン酸と、を含み、
前記硝酸イオンの供給源が硝酸ナトリウムであって、前記硝酸ナトリウムを85g/L以上150g/L以下含むことを特徴とするクロムフリー化成処理液。
A vanadate ion, a nitrate ion, and a dicarboxylic acid as a complexing agent,
The source of nitrate ions is a sodium nitrate, features and to torque Romufuri chemical conversion treatment solution that includes the sodium nitrate 85 g / L or more 150 g / L or less.
バナジン酸イオンと、硝酸イオンと、錯化剤であるジカルボン酸と、を含み、
前記ジカルボン酸がマロン酸であり、前記マロン酸を7.5g/L以上16g/L以下含むことを特徴とするクロムフリー化成処理液。
A vanadate ion, a nitrate ion, and a dicarboxylic acid as a complexing agent,
Wherein the dicarboxylic acid is malonic acid, features and to torque Romufuri chemical conversion treatment solution to include the malonic acid 7.5 g / L or more 16g / L or less.
バナジン酸イオンと、硝酸イオンと、錯化剤であるジカルボン酸と、を含み、
pHが1以上5以下であることを特徴とするクロムフリー化成処理液。
A vanadate ion, a nitrate ion, and a dicarboxylic acid as a complexing agent,
Features and to torque Romufuri chemical conversion treatment solution to a pH of 1 or more and 5 or less.
少なくとも表面部が亜鉛または亜鉛合金である化成処理対象物を、液温が40℃以上70℃以下である請求項1からのいずれかに記載のクロムフリー化成処理液に、0.5分以上2分以下浸漬することを特徴とするクロムフリー化成処理方法。 At least the surface portion is zinc or zinc alloy in a chemical conversion treatment object, a chromium-free chemical conversion treatment solution according to any one of claims 1 to 5 liquid temperature is 40 ° C. or higher 70 ° C. or less, 0.5 minutes A chromium-free chemical conversion treatment method characterized by dipping for 2 minutes or less. 前記クロムフリー化成処理液に浸漬した前記化成処理対象物を、常温で通風乾燥することを特徴とする請求項に記載のクロムフリー化成処理方法。 The chromium-free chemical conversion treatment method according to claim 6 , wherein the chemical conversion treatment object immersed in the chromium-free chemical conversion treatment solution is air-dried at room temperature.
JP2013181647A 2013-09-02 2013-09-02 Chromium-free chemical conversion treatment liquid and chemical conversion treatment method Active JP6158648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181647A JP6158648B2 (en) 2013-09-02 2013-09-02 Chromium-free chemical conversion treatment liquid and chemical conversion treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181647A JP6158648B2 (en) 2013-09-02 2013-09-02 Chromium-free chemical conversion treatment liquid and chemical conversion treatment method

Publications (2)

Publication Number Publication Date
JP2015048513A JP2015048513A (en) 2015-03-16
JP6158648B2 true JP6158648B2 (en) 2017-07-05

Family

ID=52698776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181647A Active JP6158648B2 (en) 2013-09-02 2013-09-02 Chromium-free chemical conversion treatment liquid and chemical conversion treatment method

Country Status (1)

Country Link
JP (1) JP6158648B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686868B (en) * 2022-03-31 2024-05-24 东莞理工学院 Chromium-free and phosphorus-free conversion liquid and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298404A (en) * 1979-09-06 1981-11-03 Richardson Chemical Company Chromium-free or low-chromium metal surface passivation
JP2003306777A (en) * 2002-04-19 2003-10-31 Nisshin Steel Co Ltd Zn-Al ALLOY PLATED STEEL SHEET HAVING IMPROVED CORROSION RESISTANCE
JP2004010938A (en) * 2002-06-05 2004-01-15 Nippon Hyomen Kagaku Kk Agent and method for forming colored rust-preventive film
JP2004232047A (en) * 2003-01-31 2004-08-19 Dipsol Chem Co Ltd Treatment agent for forming highly corrosion resistant chromium-free chemical conversion film on aluminum and aluminum alloy, method of forming the chemical conversion film, and aluminum and aluminum alloy with the chemical conversion film formed
JP4969831B2 (en) * 2004-10-26 2012-07-04 日本パーカライジング株式会社 Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
JP2006176847A (en) * 2004-12-24 2006-07-06 Isao Kawafune Composition for chemical-conversion-treating zinc or zinc alloy
JP5563236B2 (en) * 2009-04-30 2014-07-30 日本パーカライジング株式会社 Chromium-free chemical conversion treatment solution, chemical conversion treatment method, and chemical conversion treatment article
JP5779777B2 (en) * 2010-03-25 2015-09-16 日本表面化学株式会社 Zinc and zinc alloy member surface treatment liquid, surface treatment method and treated member
JP2012012668A (en) * 2010-07-01 2012-01-19 Sambix:Kk Composition for forming rust preventive film and method for forming rust preventive film using the same and rust prevention-treated metal

Also Published As

Publication number Publication date
JP2015048513A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5957742B2 (en) Trivalent chromium corrosion-resistant chemical conversion coating and trivalent chromium chemical conversion treatment solution
EP1451388B1 (en) Post-treatment for metal coated substrates
JPS6352114B2 (en)
JP5130226B2 (en) Aqueous reaction solution and method for passivating workpieces with zinc or zinc alloy surfaces
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
JP4429214B2 (en) Surface treatment liquid and method for forming chemical conversion film
US20080274363A1 (en) Passivating of tin, zinc and steel surfaces
JP2011515587A (en) Aluminum treatment composition
JP2016132784A (en) Trivalent chromium black chemical conversion coating treatment solution, trivalent chromium containing water-soluble finish treatment solution and method for treating metal base material
JP5549837B2 (en) Rust treatment solution for rust prevention of chromium plating film and rust prevention treatment method
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JP2013249528A (en) Trivalent chromium-conversion processing solution containing aluminum-modified colloidal silica
JP5336742B2 (en) Chemical conversion treatment method for forming a trivalent chromium chemical conversion coating having good heat and corrosion resistance on zinc or zinc alloy plating
CN107109659B (en) 3-valent chromium chemical conversion treatment liquid and chemical conversion coating for zinc or zinc alloy substrate
JP6158648B2 (en) Chromium-free chemical conversion treatment liquid and chemical conversion treatment method
JP2007023309A (en) Hot-dip zinc alloy plated steel sheet having excellent corrosion resistance
JP2005194553A (en) Hexavalent-chromium-free black rust-preventive film, surface treatment liquid and treatment method
JP2008214744A (en) Black rust prevention treatment liquid on galvanized or galvannealed metal surface, and black rust prevention film treatment method
JP4794248B2 (en) Surface treatment agent for zinc or zinc alloy products
JP5300113B2 (en) Metal surface treatment agent, metal surface treatment method using metal surface treatment agent, and iron component subjected to surface treatment
JP4436885B1 (en) Chemical conversion treatment liquid and chemical film forming method
JP4865139B2 (en) Method for forming chromium-free corrosion-resistant film on Sn-Zn alloy plating
JP4179527B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet obtained by coating surface-treated steel sheet with organic resin
JP2008121101A (en) Rust-preventing liquid for metal surface plated with zinc or zinc alloy, and method for forming rust-preventing film on the metal surface
US9228263B1 (en) Chemical conversion coating for protecting magnesium alloys from corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250