JP5568059B2 - High purity hydrogen purification method - Google Patents

High purity hydrogen purification method Download PDF

Info

Publication number
JP5568059B2
JP5568059B2 JP2011129144A JP2011129144A JP5568059B2 JP 5568059 B2 JP5568059 B2 JP 5568059B2 JP 2011129144 A JP2011129144 A JP 2011129144A JP 2011129144 A JP2011129144 A JP 2011129144A JP 5568059 B2 JP5568059 B2 JP 5568059B2
Authority
JP
Japan
Prior art keywords
hydrogen
cleaning
storage alloy
hydrogen storage
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011129144A
Other languages
Japanese (ja)
Other versions
JP2012254900A (en
Inventor
脩平 留川
彰利 藤澤
大介 西川
真一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011129144A priority Critical patent/JP5568059B2/en
Publication of JP2012254900A publication Critical patent/JP2012254900A/en
Application granted granted Critical
Publication of JP5568059B2 publication Critical patent/JP5568059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素吸蔵合金が充填された水素回収塔を用いて、水素含有ガス中から水素を高純度かつ高回収率で精製する方法に関するものである。   The present invention relates to a method for purifying hydrogen from a hydrogen-containing gas with high purity and high recovery rate using a hydrogen recovery tower packed with a hydrogen storage alloy.

近年、地球環境の改善につながる燃料電池用の燃料として、水素への期待が高まっている。この水素は、天然ガス、ナフサ、灯油、メタノールなどの炭化水素含有燃料と水蒸気を金属触媒の存在下で改質・変成した後、精製して得ることが一般的である。また、この変成後のガスには水素以外に一酸化炭素、二酸化炭素、メタン、水など燃料電池用の燃料にとって不純物となる成分が含まれてしまう。しかし、燃料電池用の燃料としては、高純度な水素である方が、発電効率が向上する。このような高純度水素を得る代表的な方法としては、複数の吸着塔を用いた水素PSA法が知られている(例えば、特許文献1を参照)。   In recent years, there is an increasing expectation for hydrogen as a fuel for fuel cells that leads to improvement of the global environment. In general, this hydrogen is obtained by reforming and reforming a hydrocarbon-containing fuel such as natural gas, naphtha, kerosene, and methanol and steam in the presence of a metal catalyst. In addition to hydrogen, the gas after the transformation contains components that are impurities for fuel for fuel cells, such as carbon monoxide, carbon dioxide, methane, and water. However, as fuel for the fuel cell, high-purity hydrogen improves power generation efficiency. As a typical method for obtaining such high-purity hydrogen, a hydrogen PSA method using a plurality of adsorption towers is known (see, for example, Patent Document 1).

また、吸着塔を用いた水素PSA法以外にも純度の高い水素を得る方法が開発されている(例えば、特許文献2を参照)。この特許文献2に開示された技術は、水素吸蔵合金が充填された水素回収塔に水素含有ガスを通じ、この水素含有ガス中の水素のみを選択的に水素吸蔵合金に吸蔵させて不純物ガスと分離し、この水素吸蔵合金に吸蔵された水素のみを水素回収塔から放出させて水素を製造する方法(以下、「水素吸蔵合金法」と称す)である。   In addition to the hydrogen PSA method using an adsorption tower, a method for obtaining high-purity hydrogen has been developed (see, for example, Patent Document 2). The technique disclosed in Patent Document 2 is such that a hydrogen-containing gas is passed through a hydrogen recovery tower packed with a hydrogen storage alloy, and only hydrogen in the hydrogen-containing gas is selectively stored in the hydrogen storage alloy to be separated from the impurity gas. Then, only hydrogen stored in the hydrogen storage alloy is released from the hydrogen recovery tower to produce hydrogen (hereinafter referred to as “hydrogen storage alloy method”).

また、上記特許文献2に開示された技術をさらに発展させた技術も開発されている(例えば、特許文献3を参照)。この特許文献3に開示された技術は、水素吸蔵合金に水素を吸蔵させた後の水素回収塔内に残る不純物を精製した高純度水素の一部を用いて洗浄する洗浄工程を備えたものである。   Further, a technique that further develops the technique disclosed in Patent Document 2 has been developed (see, for example, Patent Document 3). The technique disclosed in Patent Document 3 includes a cleaning step of cleaning using a part of high-purity hydrogen obtained by purifying impurities remaining in the hydrogen recovery tower after hydrogen is stored in the hydrogen storage alloy. is there.

特開2002−177726号公報JP 2002-177726 A 特開平5−319802号公報Japanese Patent Laid-Open No. 5-319822 特開2002−338204号公報JP 2002-338204 A

上記特許文献1に開示された複数の吸着塔を用いた水素PSA法では、99.999容積%(以下、「容積%」を単に「%」と表す。)以上の高純度水素を製造することができるが、水素以外の除去成分に応じた吸着剤がそれぞれ必要となり、そのために吸着塔が大型化するばかりか、さらに水素の回収率が高くても80%と、20%以上のロスが発生するという問題点があった。   In the hydrogen PSA method using a plurality of adsorption towers disclosed in Patent Document 1, high purity hydrogen of 99.999 volume% (hereinafter, “volume%” is simply expressed as “%”) or more is produced. However, it is necessary to have an adsorbent according to the removal components other than hydrogen, which not only increases the size of the adsorption tower, but also generates a loss of 20% or more at 80% even when the hydrogen recovery rate is high. There was a problem of doing.

また、上記特許文献2に開示された水素吸蔵合金法では、水素吸蔵合金が多量の水素を吸蔵量できる利点を利用しているため、製造時の工程切り替えサイクルを上記特許文献1に開示した水素PSA法と比べて長くすることができる。そのため、水素吸蔵合金法の方が切り替え時の脱圧ロスが少なく、水素PSA法に比べて水素の回収率を向上させることができるのである。しかし、この水素吸蔵合金法では、水素吸蔵合金に水素を吸蔵させた後の水素回収塔内に残る不純物が、水素放出工程で前記水素回収塔内から放出した高純度水素とともに回収されてしまう。したがって、水素回収率は前記水素PSA法に比べて向上するものの、回収した水素純度は逆に前記水素PSA法で得られる99.999%以上よりも低くなってしまうという問題点があった。   Further, in the hydrogen storage alloy method disclosed in Patent Document 2, since the hydrogen storage alloy uses the advantage that a large amount of hydrogen can be stored, the process switching cycle at the time of production is disclosed in Patent Document 1 above. The length can be increased compared to the PSA method. Therefore, the hydrogen storage alloy method has less depressurization loss at the time of switching, and the hydrogen recovery rate can be improved compared to the hydrogen PSA method. However, in this hydrogen storage alloy method, impurities remaining in the hydrogen recovery tower after hydrogen is stored in the hydrogen storage alloy are recovered together with the high purity hydrogen released from the hydrogen recovery tower in the hydrogen release step. Therefore, although the hydrogen recovery rate is improved as compared with the hydrogen PSA method, there is a problem that the purity of the recovered hydrogen is conversely lower than 99.999% or more obtained by the hydrogen PSA method.

また、上記特許文献3に開示された水素吸蔵合金法では、上記特許文献2に開示された水素吸蔵合金法の問題点(回収した水素純度の低下)を改善しているが、洗浄のために用いる精製した高純度水素の一部をオフガスとして水素回収塔外へ排出するため、水素回収率は逆に上記特許文献2に開示された水素吸蔵合金法に比べて低くなってしまうという問題点があった。   In addition, the hydrogen storage alloy method disclosed in Patent Document 3 has improved the problems of the hydrogen storage alloy method disclosed in Patent Document 2 (reduction in the purity of recovered hydrogen). Since a part of the purified high-purity hydrogen used is discharged out of the hydrogen recovery tower as an off-gas, the hydrogen recovery rate is conversely lower than that of the hydrogen storage alloy method disclosed in Patent Document 2 above. there were.

本発明の目的は、水素含有ガス中から高い回収率で高純度水素を回収可能な高純度水素精製方法を提供することにある。   An object of the present invention is to provide a high purity hydrogen purification method capable of recovering high purity hydrogen from a hydrogen-containing gas at a high recovery rate.

この目的を達成するために、本発明の請求項1に記載の発明は、
水素含有ガスを水素吸蔵合金が充填された水素回収塔に通じ、この水素含有ガス中の水素を前記水素吸蔵合金に吸蔵させる第1の水素吸蔵工程と、前記水素吸蔵合金に水素を吸蔵させた後の水素回収塔内に残る不純物ガスをパージするための第1のパージ工程と、この第1のパージ工程後にも水素回収塔内に残る不純物を排出するための洗浄工程と、この洗浄工程後に前記第1の水素吸蔵工程で吸蔵された水素を前記水素回収塔内から放出し高純度水素を得る第1の水素放出工程と、を有した高純度水素精製方法において、
前記水素吸蔵合金の体積よりも小さな体積の洗浄用水素吸蔵合金が充填された洗浄用水素精製塔を備え、
前記第1の水素放出工程にある水素回収塔内から放出された高純度水素の一部をこの洗浄用水素精製塔に通じ、この一部の高純度水素中の水素をさらに前記洗浄用水素吸蔵合金に吸蔵させる第2の水素吸蔵工程と、前記洗浄用水素吸蔵合金に水素を吸蔵させた後の洗浄用水素精製塔内に僅かに残る不純物ガスをパージするための第2のパージ工程と、この第2のパージ工程後に前記第2の水素吸蔵工程で吸蔵された水素を前記洗浄用水素精製塔内から放出し洗浄用水素を得る第2の水素放出工程と、を有し、
この第2の水素放出工程で得られた洗浄用水素を前記洗浄工程における不純物の排出に用いたことを特徴とする高純度水素精製方法である。
In order to achieve this object, the invention according to claim 1 of the present invention provides:
A hydrogen-containing gas was passed through a hydrogen recovery tower filled with a hydrogen-occlusion alloy, a first hydrogen-occlusion step of occluding the hydrogen-containing gas in the hydrogen-occlusion alloy, and the hydrogen-occlusion alloy occluded hydrogen. A first purge step for purging impurity gas remaining in the subsequent hydrogen recovery tower, a cleaning step for discharging impurities remaining in the hydrogen recovery tower after the first purge step, and after this cleaning step A high-purity hydrogen refining method comprising: a first hydrogen releasing step of releasing hydrogen stored in the first hydrogen storage step from the hydrogen recovery tower to obtain high-purity hydrogen;
A cleaning hydrogen purification tower filled with a cleaning hydrogen storage alloy having a volume smaller than the volume of the hydrogen storage alloy;
A part of the high-purity hydrogen released from the hydrogen recovery tower in the first hydrogen releasing step is passed through the cleaning hydrogen purification tower, and the hydrogen in the part of the high-purity hydrogen is further stored in the cleaning hydrogen storage. A second hydrogen storage step for storing in the alloy; a second purge step for purging the impurity gas slightly remaining in the cleaning hydrogen purification tower after storing the hydrogen in the cleaning hydrogen storage alloy; A second hydrogen releasing step of releasing hydrogen stored in the second hydrogen storage step after the second purge step to obtain cleaning hydrogen by releasing the hydrogen stored in the cleaning hydrogen purification tower;
The high purity hydrogen purification method is characterized in that the cleaning hydrogen obtained in the second hydrogen releasing step is used for discharging impurities in the cleaning step.

請求項2に記載の発明は、請求項1に記載の発明において、
前記洗浄用水素吸蔵合金の体積は、前記水素吸蔵合金の体積に対して20%〜80%の体積であることを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The volume of the hydrogen storage alloy for cleaning is 20% to 80% of the volume of the hydrogen storage alloy.

請求項3に記載の発明は、請求項1または2に記載の発明において、
前記水素回収塔において、洗浄工程と第1の水素放出工程の間に水素回収塔内の水素吸蔵合金を予め加熱する第1の加熱工程を有し、第1の水素放出工程と第1の水素吸蔵工程の間に水素回収塔内の水素吸蔵合金を予め冷却する第1の冷却工程を有したことを特徴とする。
The invention according to claim 3 is the invention according to claim 1 or 2,
The hydrogen recovery tower has a first heating step for preheating the hydrogen storage alloy in the hydrogen recovery tower between the washing step and the first hydrogen releasing step, and the first hydrogen releasing step and the first hydrogen It has the 1st cooling process which cools in advance the hydrogen storage alloy in a hydrogen recovery tower between storage processes.

請求項4に記載の発明は、請求項1に記載の発明において、
前記水素吸蔵合金がAB5系水素吸蔵合金であることを特徴とする。
The invention according to claim 4 is the invention according to claim 1,
The hydrogen storage alloy is an AB5 hydrogen storage alloy.

請求項5に記載の発明は、請求項3に記載の発明において、
前記水素吸蔵合金がAB5系水素吸蔵合金であり、このAB5系水素吸蔵合金の水素平衡圧が0.05MPa以上0.3MPa以下であり、
前記AB5系水素吸蔵合金の温度制御用の媒体流通路が前記水素回収塔の内側または外側に設けられ、
前記第1の水素吸蔵工程、第1のパージ工程、洗浄工程と第1の冷却工程においては、前記媒体流通路に0℃以上40℃未満の媒体を流通させ、
前記第1の水素放出工程と第1の加熱工程においては、前記媒体流通路に40℃以上150℃未満の媒体を流通させることを特徴とする。
The invention according to claim 5 is the invention according to claim 3,
The hydrogen storage alloy is an AB5 hydrogen storage alloy, and the hydrogen equilibrium pressure of the AB5 hydrogen storage alloy is 0.05 MPa or more and 0.3 MPa or less,
A medium flow passage for temperature control of the AB5 hydrogen storage alloy is provided inside or outside the hydrogen recovery tower,
In the first hydrogen storage step, the first purge step, the cleaning step and the first cooling step, a medium having a temperature of 0 ° C. or more and less than 40 ° C. is circulated through the medium flow path,
In the first hydrogen releasing step and the first heating step, a medium having a temperature of 40 ° C. or higher and lower than 150 ° C. is circulated through the medium flow path.

請求項6に記載の発明は、請求項1または2に記載の発明において、
前記洗浄用水素精製塔において、第2のパージ工程と第2の水素放出工程の間に洗浄用水素精製塔内の洗浄用水素吸蔵合金を予め加熱する第2の加熱工程を有し、第2の水素放出工程と第2の水素吸蔵工程の間に洗浄用水素精製塔内の洗浄用水素吸蔵合金を予め冷却する第2の冷却工程を有したことを特徴とする。
The invention according to claim 6 is the invention according to claim 1 or 2,
The cleaning hydrogen purification tower has a second heating step of preheating the cleaning hydrogen storage alloy in the cleaning hydrogen purification tower between the second purge step and the second hydrogen release step, And a second cooling step for cooling the cleaning hydrogen storage alloy in the cleaning hydrogen purification tower in advance between the hydrogen release step and the second hydrogen storage step.

請求項7に記載の発明は、請求項1に記載の発明において、
前記洗浄用水素吸蔵合金がAB5系水素吸蔵合金であることを特徴とする。
The invention according to claim 7 is the invention according to claim 1,
The cleaning hydrogen storage alloy is an AB5 hydrogen storage alloy.

請求項8に記載の発明は、請求項6に記載の発明において、
前記洗浄用水素吸蔵合金がAB5系水素吸蔵合金であり、このAB5系水素吸蔵合金の水素平衡圧が0.05MPa以上0.3MPa以下であり、
前記AB5系水素吸蔵合金の温度制御用の媒体流通路が前記洗浄用水素精製塔の内側または外側に設けられ、
前記第2の水素吸蔵工程、第2のパージ工程と第2の冷却工程においては、前記媒体流通路に0℃以上40℃未満の媒体を流通させ、
前記第2の水素放出工程と第2の加熱工程においては、前記媒体流通路に40℃以上150℃未満の媒体を流通させることを特徴とする。
The invention according to claim 8 is the invention according to claim 6,
The cleaning hydrogen storage alloy is an AB5-based hydrogen storage alloy, and the hydrogen equilibrium pressure of the AB5-based hydrogen storage alloy is 0.05 MPa or more and 0.3 MPa or less,
A medium flow passage for temperature control of the AB5 hydrogen storage alloy is provided inside or outside the cleaning hydrogen purification tower,
In the second hydrogen storage step, the second purge step and the second cooling step, a medium having a temperature of 0 ° C. or more and less than 40 ° C. is circulated through the medium flow path,
In the second hydrogen releasing step and the second heating step, a medium having a temperature of 40 ° C. or higher and lower than 150 ° C. is circulated through the medium flow path.

以上のように、本発明に係る高純度水素精製方法によれば、
水素含有ガスを水素吸蔵合金が充填された水素回収塔に通じ、この水素含有ガス中の水素を前記水素吸蔵合金に吸蔵させる第1の水素吸蔵工程と、前記水素吸蔵合金に水素を吸蔵させた後の水素回収塔内に残る不純物ガスをパージするための第1のパージ工程と、この第1のパージ工程後にも水素回収塔内に残る不純物を排出するための洗浄工程と、この洗浄工程後に前記第1の水素吸蔵工程で吸蔵された水素を前記水素回収塔内から放出し高純度水素を得る第1の水素放出工程と、を有した高純度水素精製方法において、
前記水素吸蔵合金の体積よりも小さな体積の洗浄用水素吸蔵合金が充填された洗浄用水素精製塔を備え、
前記第1の水素放出工程にある水素回収塔内から放出された高純度水素の一部をこの洗浄用水素精製塔に通じ、この一部の高純度水素中の水素をさらに前記洗浄用水素吸蔵合金に吸蔵させる第2の水素吸蔵工程と、前記洗浄用水素吸蔵合金に水素を吸蔵させた後の洗浄用水素精製塔内に僅かに残る不純物ガスをパージするための第2のパージ工程と、この第2のパージ工程後に前記第2の水素吸蔵工程で吸蔵された水素を前記洗浄用水素精製塔内から放出し洗浄用水素を得る第2の水素放出工程と、を有し、
この第2の水素放出工程で得られた洗浄用水素を前記洗浄工程における不純物の排出に用いるようにしているため、
水素含有ガス中から高い回収率で高純度水素を回収可能な高純度水素精製方法を提供することができる。
As described above, according to the high purity hydrogen purification method of the present invention,
A hydrogen-containing gas was passed through a hydrogen recovery tower filled with a hydrogen-occlusion alloy, a first hydrogen-occlusion step of occluding the hydrogen-containing gas in the hydrogen-occlusion alloy, and the hydrogen-occlusion alloy occluded hydrogen. A first purge step for purging impurity gas remaining in the subsequent hydrogen recovery tower, a cleaning step for discharging impurities remaining in the hydrogen recovery tower after the first purge step, and after this cleaning step A high-purity hydrogen refining method comprising: a first hydrogen releasing step of releasing hydrogen stored in the first hydrogen storage step from the hydrogen recovery tower to obtain high-purity hydrogen;
A cleaning hydrogen purification tower filled with a cleaning hydrogen storage alloy having a volume smaller than the volume of the hydrogen storage alloy;
A part of the high-purity hydrogen released from the hydrogen recovery tower in the first hydrogen releasing step is passed through the cleaning hydrogen purification tower, and the hydrogen in the part of the high-purity hydrogen is further stored in the cleaning hydrogen storage. A second hydrogen storage step for storing in the alloy; a second purge step for purging the impurity gas slightly remaining in the cleaning hydrogen purification tower after storing the hydrogen in the cleaning hydrogen storage alloy; A second hydrogen releasing step of releasing hydrogen stored in the second hydrogen storage step after the second purge step to obtain cleaning hydrogen by releasing the hydrogen stored in the cleaning hydrogen purification tower;
Since the cleaning hydrogen obtained in the second hydrogen releasing step is used for discharging impurities in the cleaning step,
A high-purity hydrogen purification method that can recover high-purity hydrogen from a hydrogen-containing gas at a high recovery rate can be provided.

本発明の一実施形態に係る高純度水素精製システムの構成の概要を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the outline | summary of a structure of the high purity hydrogen purification system which concerns on one Embodiment of this invention.

以下、本発明の実施の形態について、添付図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態に係る高純度水素精製システムの構成の概要を模式的に説明する説明図である。   FIG. 1 is an explanatory diagram schematically illustrating an outline of a configuration of a high purity hydrogen purification system according to an embodiment of the present invention.

図1において、1a、1b、1cは水素吸蔵合金が充填された水素回収塔、2a、2b、2cは水素吸蔵合金の温度制御用に水素回収塔1a、1b、1cの外側に設けられた媒体流通路、3は圧力コントロール弁、4、5、14、15は弁、6は真空ポンプ、7、8、9はマスフローコントローラ、13は水素回収塔1a、1b、1c内に充填された水素吸蔵合金の体積に対してそれぞれ所定割合{例えば、50%}の体積を有した洗浄用水素吸蔵合金が充填された洗浄用水素精製塔(11a、11b、11c)から構成される洗浄用水素精製部である。   In FIG. 1, 1a, 1b and 1c are hydrogen recovery towers filled with a hydrogen storage alloy, 2a, 2b and 2c are media provided outside the hydrogen recovery towers 1a, 1b and 1c for temperature control of the hydrogen storage alloy. Flow path, 3 is a pressure control valve, 4, 5, 14, 15 are valves, 6 is a vacuum pump, 7, 8, 9 are mass flow controllers, 13 is a hydrogen occlusion filled in the hydrogen recovery towers 1 a, 1 b, 1 c The cleaning hydrogen purification section (11a, 11b, 11c) is composed of a cleaning hydrogen purification tower (11a, 11b, 11c) filled with a cleaning hydrogen storage alloy each having a predetermined ratio {eg, 50%} to the volume of the alloy. It is.

また、洗浄用水素精製塔11a、11b、11cの外側には、水素回収塔1a、1b、1cと同様にそれぞれ媒体流通路12a、12b、12cが設けられている。   Further, medium flow passages 12a, 12b, and 12c are provided outside the cleaning hydrogen purification towers 11a, 11b, and 11c, respectively, similarly to the hydrogen recovery towers 1a, 1b, and 1c.

ライン101は、水素含有ガスAの導入ラインである。ライン101と各水素回収塔1a、1b、1cとはそれぞれ弁A1、弁B1、弁C1を介して接続されている。   Line 101 is an introduction line for hydrogen-containing gas A. The line 101 and the hydrogen recovery towers 1a, 1b, and 1c are connected to each other through a valve A1, a valve B1, and a valve C1, respectively.

ライン102は、各水素回収塔1a〜1cにて水素含有ガスAより高純度水素を得て、この高純度水素(製品水素)Cを回収する回収ラインであり、各水素回収塔1a〜1cとはそれぞれ弁A2、弁B2、弁C2を介して接続されており、回収した高純度水素(製品水素)Cはマスフローコントローラ7を介してさらにバッファタンク(図示せず)に一時的に貯蔵される。   The line 102 is a recovery line that obtains high-purity hydrogen from the hydrogen-containing gas A in each of the hydrogen recovery towers 1a to 1c and recovers this high-purity hydrogen (product hydrogen) C. The hydrogen recovery towers 1a to 1c and Are connected via valves A2, B2 and C2, respectively, and the recovered high-purity hydrogen (product hydrogen) C is further temporarily stored in a buffer tank (not shown) via the mass flow controller 7. .

ライン103は、各水素回収塔1a〜1cで水素吸蔵合金に水素を吸蔵させた後の各水素回収塔1a〜1c内に残る不純物ガスを常圧まで、もしくは減圧することにより、オフガスBとしてパージするためのオフガスラインである。ライン103と各水素回収塔1a〜1cとはそれぞれ弁A4、弁B4、弁C4を介して接続され、さらに、ライン103は圧力コントロール弁3を介して常圧まで圧力を下げる弁4に接続されている。また、必要に応じてさらに減圧するためにライン103は圧力コントロール弁3、弁5を介して真空ポンプ6に接続されている。また、このライン103は、各洗浄用水素精製塔11a、11b、11cで洗浄用水素吸蔵合金に上記一部の高純度水素中の水素をさらに吸蔵させた後の各洗浄用水素精製塔11a〜11c内に僅かに残る不純物ガスをパージするためのオフガスラインでもあり、各洗浄用水素精製塔11a、11b、11cとは弁14を介して接続されている。   The line 103 is purged as off-gas B by reducing the impurity gas remaining in the hydrogen recovery towers 1a to 1c after the hydrogen storage alloy is occluded with hydrogen in each hydrogen recovery tower 1a to 1c to normal pressure or reduced pressure. It is an off-gas line. The line 103 and each of the hydrogen recovery towers 1a to 1c are connected to each other via a valve A4, a valve B4, and a valve C4, and the line 103 is connected to a valve 4 that reduces the pressure to normal pressure via a pressure control valve 3. ing. Further, the line 103 is connected to the vacuum pump 6 via the pressure control valve 3 and the valve 5 in order to further reduce the pressure as required. Further, this line 103 is provided with each of the cleaning hydrogen purification towers 11a to 11c after the cleaning hydrogen storage towers 11a, 11b, and 11c further store hydrogen in the part of the high-purity hydrogen. It is also an off-gas line for purging impurity gas slightly remaining in 11c, and is connected to each of the cleaning hydrogen purification towers 11a, 11b, 11c via a valve.

ライン104は、ライン102を経由して各水素回収塔1a、1b、1c内から放出された高純度水素の一部をマスフローコントローラ8、弁PW−1A、弁PW−1B、弁PW−1Cを介して各洗浄用水素精製塔11a、11b、11cに通ずるためのラインである。   The line 104 passes a part of the high purity hydrogen discharged from the hydrogen recovery towers 1a, 1b, and 1c via the line 102 to the mass flow controller 8, the valve PW-1A, the valve PW-1B, and the valve PW-1C. Through the cleaning hydrogen purification towers 11a, 11b, and 11c.

ライン105は、各洗浄用水素精製塔11a、11b、11cに上記一部の高純度水素中の水素を吸蔵させた後の洗浄用水素精製塔11a、11b、11c内に僅かに残る不純物ガスをパージした後、洗浄用水素精製塔11a、11b、11c内からそれぞれ弁PW−2A、弁PW−2B、弁PW−2C、弁15を介して洗浄用水素として放出し、マスフローコントローラ9に接続するためのラインである。   The line 105 contains impurity gas slightly remaining in the cleaning hydrogen purification towers 11a, 11b, and 11c after the hydrogen in the part of the high-purity hydrogen is occluded in the cleaning hydrogen purification towers 11a, 11b, and 11c. After purging, it is discharged as cleaning hydrogen from the cleaning hydrogen purification towers 11a, 11b, and 11c through the valves PW-2A, PW-2B, PW-2C, and valve 15, respectively, and connected to the mass flow controller 9. It is a line for.

ライン106は、上記マスフローコントローラ9から供給される洗浄用水素を水素回収塔1a、1b、1c内に残る不純物を排出するために供給するためのラインである。ライン106と各水素回収塔1a、1b、1cとはそれぞれ弁A3、弁B3、弁C3を介して接続されている。   The line 106 is a line for supplying the cleaning hydrogen supplied from the mass flow controller 9 in order to discharge impurities remaining in the hydrogen recovery towers 1a, 1b, and 1c. The line 106 and the hydrogen recovery towers 1a, 1b, and 1c are connected to each other through a valve A3, a valve B3, and a valve C3.

次に、水素含有ガスA中から高純度水素(製品水素)Cを精製する方法の操作手順を後記洗浄用水素を精製する過程(例えば、洗浄用水素精製塔11aを用いた場合)とともに具体的に説明する。なお、以下においては、原則として水素回収塔1aの操作手順のみについて説明するが、運転は下記表1のタイムステップテーブルに示すように、水素回収塔1a〜1cの3塔を用いてサイクリックに行う。   Next, the operation procedure of the method for purifying high-purity hydrogen (product hydrogen) C from the hydrogen-containing gas A is concretely described together with the process of purifying cleaning hydrogen (for example, when the cleaning hydrogen purifying tower 11a is used). Explained. In the following, although only the operation procedure of the hydrogen recovery tower 1a will be described in principle, the operation is cyclic using three hydrogen recovery towers 1a to 1c as shown in the time step table of Table 1 below. Do.

1)[水素回収塔1aの水素吸蔵工程(以下、「第1の水素吸蔵工程」と称す、タイムステップ番号1〜6)]:媒体流通路2aに0℃以上40℃未満の媒体(例えば、冷水)を流しながら、水素含有ガスAを水素回収塔1aに導入し、水素含有ガスA中の水素を水素吸蔵合金に吸蔵させる(弁A2,A3:閉、弁A1,A4:開)。水素吸蔵反応は発熱反応であるため、除熱のため、上述したように冷水を流しながら水素吸蔵を行なう。これにより、水素吸蔵速度も低下しないため、水素の回収率も向上する。また、水素吸蔵合金として、例えばAB5系水素吸蔵合金のような種類を用いる場合には、高圧化(例えば、0.9MPaに)した水素含有ガスAを水素回収塔1aに導入する。   1) [Hydrogen storage step of hydrogen recovery tower 1a (hereinafter referred to as “first hydrogen storage step”, time step numbers 1 to 6)]: medium having a temperature of 0 ° C. or higher and lower than 40 ° C. in medium flow passage 2a (for example, While flowing cold water), the hydrogen-containing gas A is introduced into the hydrogen recovery tower 1a and the hydrogen in the hydrogen-containing gas A is stored in the hydrogen storage alloy (valves A2, A3: closed, valves A1, A4: open). Since the hydrogen occlusion reaction is an exothermic reaction, hydrogen occlusion is performed while flowing cold water as described above for heat removal. Thereby, since the hydrogen occlusion speed is not lowered, the hydrogen recovery rate is also improved. Moreover, when using a kind like an AB5 type | system | group hydrogen storage alloy as a hydrogen storage alloy, the hydrogen-containing gas A made into high pressure (for example, 0.9 MPa) is introduce | transduced into the hydrogen recovery tower 1a.

2)[水素回収塔1aのパージ工程(以下、「第1のパージ工程」と称す、タイムステップ番号7)]:上記1)に示す第1の水素吸蔵工程終了後、水素回収塔1a内に残る不純物ガスを常圧まで、もしくは減圧することによりライン103を経由してオフガスBとしてパージする。なお、常圧にする場合には、弁A1、A2,A3を閉じ、弁A4,圧力コントロール弁3と弁4を開く。また、減圧する場合には、弁A1、A2,A3と弁4を閉じ、弁5を開け、真空ポンプ6を起動し、圧力コントロール弁3を調節しながら所定の圧力まで減圧する。なお、この第1のパージ工程中には、後記洗浄用水素を精製する過程における第2の加熱工程が行なわれている。   2) [Purge step of the hydrogen recovery tower 1a (hereinafter referred to as “first purge step”, time step number 7)]: After the completion of the first hydrogen storage step shown in 1) above, The remaining impurity gas is purged as off-gas B via the line 103 by reducing the pressure to normal pressure or down. In addition, when making it normal pressure, valve A1, A2, A3 is closed and valve A4, the pressure control valve 3, and the valve 4 are opened. When the pressure is reduced, the valves A1, A2, A3 and the valve 4 are closed, the valve 5 is opened, the vacuum pump 6 is activated, and the pressure control valve 3 is adjusted to reduce the pressure to a predetermined pressure. During the first purge process, a second heating process in the process of purifying cleaning hydrogen, which will be described later, is performed.

3)[水素回収塔1aの洗浄工程(タイムステップ番号8)]:上記2)に示す第1のパージ工程終了後、ライン106を経由して供給される洗浄用水素を用いて水素回収塔1a内に残る不純物を排出する(弁A1、A2,弁4:閉、弁A3,A4、圧力コントロール弁3、弁5、真空ポンプ6:開)。なお、この洗浄工程中には、同時に後記洗浄用水素を精製する過程における第2の水素放出工程で洗浄用水素が得られており、この第2の水素放出工程で得られた洗浄用水素が洗浄用水素精製塔11a内からマスフローコントローラ9を制御しながらライン106に供給されている。すなわち、このライン106に供給された洗浄用水素を用いて、上記水素回収塔1aの洗浄工程が行われているのである。   3) [Hydrogen recovery tower 1a cleaning step (time step number 8)]: After the completion of the first purging step shown in 2) above, the hydrogen recovery tower 1a using the cleaning hydrogen supplied via the line 106 is used. The impurities remaining inside are discharged (valves A1, A2, valve 4: closed, valves A3, A4, pressure control valve 3, valve 5, vacuum pump 6: opened). During this cleaning step, cleaning hydrogen is obtained in the second hydrogen releasing step in the process of purifying cleaning hydrogen, which will be described later, and the cleaning hydrogen obtained in this second hydrogen releasing step is obtained. The gas is supplied to the line 106 while controlling the mass flow controller 9 from the cleaning hydrogen purification tower 11a. That is, the cleaning process of the hydrogen recovery tower 1 a is performed using the cleaning hydrogen supplied to the line 106.

4)[水素回収塔1aの加熱工程(以下、「第1の加熱工程」と称す、タイムステップ番号9、10)]:上記3)に示す洗浄工程終了後、媒体流通路2aに40℃以上150℃未満の媒体(例えば、温水)を流しながら、水素回収塔1a内に充填された水素吸蔵合金を加熱する(弁A1、A2,A3:閉)。これにより、後記第1の水素放出工程で必要な熱量が事前に供給されるため、水素放出工程で十分な水素放出速度を素早く得られる。   4) [Heating step of the hydrogen recovery tower 1a (hereinafter referred to as “first heating step”, time step numbers 9, 10)]: After completion of the cleaning step shown in 3) above, the medium flow passage 2a is heated to 40 ° C. or higher. While flowing a medium lower than 150 ° C. (for example, warm water), the hydrogen storage alloy filled in the hydrogen recovery tower 1a is heated (valves A1, A2, A3: closed). As a result, the amount of heat necessary for the first hydrogen releasing step to be described later is supplied in advance, so that a sufficient hydrogen releasing speed can be quickly obtained in the hydrogen releasing step.

5)[水素回収塔1aの水素放出工程(以下、「第1の水素放出工程」と称す、タイムステップ番号11〜16)]:上記4)に示す第1の加熱工程終了後、媒体流通路2aに40℃以上150℃未満の媒体(例えば、温水)を流しながら、上記第1の水素吸蔵工程で吸蔵された水素を水素回収塔1a内から放出し高純度水素を得る(弁A1、A3,A4:閉、弁A2:開)。水素放出反応は吸熱反応のため、熱の補給のため、上述したように温水を流しながら水素放出を行なう。これにより、水素放出速度も低下しないため、高純度な水素が得られる。前述したように、水素回収塔1a内に残る不純物が予め洗浄用水素で排出されている{上記3)に示す洗浄工程に相当する}ため、この第1の水素放出工程で得られる高純度な水素は、より純度の高いものとなる。   5) [Hydrogen releasing step of the hydrogen recovery tower 1a (hereinafter referred to as “first hydrogen releasing step”, time step numbers 11 to 16)]: After the completion of the first heating step shown in 4) above, the medium flow path While flowing a medium (for example, warm water) of 40 ° C. or higher and lower than 150 ° C. to 2a, the hydrogen stored in the first hydrogen storage step is released from the hydrogen recovery tower 1a to obtain high purity hydrogen (valves A1, A3). , A4: closed, valve A2: open). Since the hydrogen releasing reaction is an endothermic reaction, hydrogen is released while flowing warm water as described above in order to replenish heat. Thereby, since the hydrogen release rate does not decrease, high-purity hydrogen can be obtained. As described above, since the impurities remaining in the hydrogen recovery tower 1a are previously discharged with cleaning hydrogen (corresponding to the cleaning step shown in 3) above, the high purity obtained in the first hydrogen releasing step is obtained. Hydrogen has a higher purity.

6)[水素回収塔1aの冷却工程(以下、「第1の冷却工程」と称す、タイムステップ番号17、18)]:上記5)に示す第1の水素放出工程終了後、再び媒体流通路2aに0℃以上40℃未満の媒体(例えば、冷水)を流しながら、水素回収塔1a内に充填された水素吸蔵合金を冷却する(弁A1、A2,A3,A4:閉)。これにより、次工程(上記第1の水素吸蔵工程)に備えて、必要な除熱が事前に行なわれるため、第1の水素吸蔵工程で十分な水素吸蔵速度を素早く得られる。   6) [Cooling step of hydrogen recovery tower 1a (hereinafter referred to as “first cooling step”, time step numbers 17, 18)]: After the completion of the first hydrogen releasing step shown in 5) above, the medium flow passage is again formed. While flowing a medium (for example, cold water) of 0 ° C. or higher and lower than 40 ° C. through 2a, the hydrogen storage alloy filled in the hydrogen recovery tower 1a is cooled (valves A1, A2, A3, A4: closed). Thereby, in preparation for the next step (the first hydrogen storage step), necessary heat removal is performed in advance, so that a sufficient hydrogen storage rate can be quickly obtained in the first hydrogen storage step.

上記1)から6)の操作手順を繰り返すことにより、水素含有ガスA中から高い回収率で高純度水素を回収可能である。   By repeating the operation procedures 1) to 6), high purity hydrogen can be recovered from the hydrogen-containing gas A at a high recovery rate.

Figure 0005568059
Figure 0005568059

次に、洗浄用水素を精製する過程について、詳述する。なお、以下においては、原則として洗浄用水素精製塔11aを用いて洗浄用水素を精製する方法について説明するが、運転は上記表1のタイムステップテーブルに示すように、洗浄用水素精製塔11a〜11cの3塔を用いてサイクリックに行う。   Next, the process of purifying cleaning hydrogen will be described in detail. In the following, a method for purifying cleaning hydrogen using the cleaning hydrogen purification tower 11a will be described in principle. However, as shown in the time step table of Table 1, the operation is as follows. Perform cyclically using 3 towers of 11c.

11)[洗浄用水素精製塔11aの水素吸蔵工程(以下、「第2の水素吸蔵工程」と称す、タイムステップ番号11、12)]:媒体流通路12aに0℃以上40℃未満の媒体(例えば、冷水)を流しながら、上記5)に示す第1の水素放出工程で得られる高純度水素(製品水素)Cの一部をマスフローコントローラ7、8を制御しながらライン104を介して洗浄用水素精製塔11aに導入し、この一部の高純度水素中の水素をさらに洗浄用水素吸蔵合金に吸蔵させる(弁PW−2A:閉、弁PW−1A:開)。この水素吸蔵反応も発熱反応であるため、除熱のため、上述したように冷水を流しながら水素吸蔵を行なう。これにより、水素吸蔵速度も低下しないため、水素の回収率も向上する。また、洗浄用水素吸蔵合金として、例えばAB5系水素吸蔵合金のような種類を用いる場合には、高圧化(例えば、0.9MPaに)した高純度水素(製品水素)Cの一部を洗浄用水素精製塔11aに導入する。   11) [Hydrogen storage step of cleaning hydrogen purification tower 11a (hereinafter referred to as “second hydrogen storage step”, time step numbers 11 and 12)]: Medium (0 ° C. or more and less than 40 ° C. in medium flow passage 12a) For example, a portion of the high purity hydrogen (product hydrogen) C obtained in the first hydrogen releasing step shown in 5) above is fed through the line 104 while controlling the mass flow controllers 7 and 8 while flowing cold water). The hydrogen is introduced into the hydrogen purification tower 11a, and the hydrogen in this part of high-purity hydrogen is further stored in the hydrogen storage alloy for cleaning (valve PW-2A: closed, valve PW-1A: open). Since this hydrogen occlusion reaction is also an exothermic reaction, hydrogen occlusion is performed while flowing cold water as described above for heat removal. Thereby, since the hydrogen occlusion speed is not lowered, the hydrogen recovery rate is also improved. In addition, when a cleaning hydrogen storage alloy such as an AB5 hydrogen storage alloy is used, a part of high-purity hydrogen (product hydrogen) C having a high pressure (for example, 0.9 MPa) is used for cleaning. It introduce | transduces into the hydrogen purification column 11a.

12)[洗浄用水素精製塔11aのパージ工程(以下、「第2のパージ工程」と称す、タイムステップ番号17)]:上記11)に示す第2の水素吸蔵工程終了後、洗浄用水素精製塔11a内に僅かに残る不純物ガスを常圧まで減圧することにより弁14を介してオフガスBとしてパージする。これにより、高純度水素(製品水素)Cからさらに水素純度を高めた洗浄用水素を精製する準備が整う。なお、常圧にする場合には、弁PW−1A、弁15を閉じ、弁PW−2A、弁14を開ける。また、この第2のパージ工程中には、上記6)に示す第1の冷却工程が行なわれている。   12) [Purging step of cleaning hydrogen purification column 11a (hereinafter referred to as “second purging step”, time step number 17)]: After completion of the second hydrogen storage step shown in 11) above, cleaning hydrogen purification The impurity gas slightly remaining in the column 11a is purged as off-gas B through the valve 14 by reducing the pressure to atmospheric pressure. Thus, preparation for purifying cleaning hydrogen having higher hydrogen purity from high-purity hydrogen (product hydrogen) C is completed. When normal pressure is used, the valves PW-1A and 15 are closed and the valves PW-2A and 14 are opened. Further, during the second purge process, the first cooling process shown in 6) above is performed.

13)[洗浄用水素精製塔11aの加熱工程(以下、「第2の加熱工程」と称す、タイムステップ番号7)]:上記12)に示す第2のパージ工程終了後、媒体流通路12aに40℃以上150℃未満の媒体(例えば、温水)を流しながら、洗浄用水素精製塔11a
内に充填された洗浄用水素吸蔵合金を加熱する(弁PW−1A、PW−2A:閉)。これにより、後記第2の水素放出工程で必要な熱量が事前に供給されるため、水素放出工程で十分な水素放出速度を素早く得られる。
13) [Heating step of cleaning hydrogen purification tower 11a (hereinafter referred to as "second heating step", time step number 7)]: After the completion of the second purging step shown in 12) above, While flowing a medium (for example, warm water) of 40 ° C. or higher and lower than 150 ° C., the cleaning hydrogen purification tower 11a
The cleaning hydrogen storage alloy filled therein is heated (valves PW-1A, PW-2A: closed). As a result, the amount of heat necessary for the second hydrogen releasing step to be described later is supplied in advance, so that a sufficient hydrogen releasing speed can be quickly obtained in the hydrogen releasing step.

14)[洗浄用水素精製塔11aの水素放出工程(以下、「第2の水素放出工程」と称す、タイムステップ番号8)]:上記13)に示す第2の加熱工程終了後、媒体流通路12aに40℃以上150℃未満の媒体(例えば、温水)を流しながら、上記第2の水素吸蔵工程で吸蔵された水素を洗浄用水素精製塔11a内から放出し洗浄用水素を得る(弁PW−1A、弁14:閉、弁PW−2A、弁15:開)。この水素放出反応も吸熱反応のため、熱の補給のため、上述したように温水を流しながら水素放出を行なう。これにより、水素放出速度も低下しないため、適当な洗浄用水素が得られる。   14) [Hydrogen releasing step of cleaning hydrogen purification column 11a (hereinafter referred to as “second hydrogen releasing step”, time step number 8)]: After the completion of the second heating step shown in 13) above, the medium flow path While flowing a medium of 40 ° C. or higher and lower than 150 ° C. (for example, warm water) through 12a, the hydrogen stored in the second hydrogen storage step is released from the cleaning hydrogen purification column 11a to obtain cleaning hydrogen (valve PW). -1A, valve 14: closed, valve PW-2A, valve 15: open). Since this hydrogen releasing reaction is also an endothermic reaction, hydrogen is released while flowing warm water as described above in order to replenish heat. As a result, the hydrogen release rate does not decrease, so that an appropriate cleaning hydrogen can be obtained.

15)[洗浄用水素精製塔11aの冷却工程(以下、「第2の冷却工程」と称す、タイムステップ番号9、10)]:上記14)に示す第2の水素放出工程終了後、再び媒体流通路12aに0℃以上40℃未満の媒体(例えば、冷水)を流しながら、洗浄用水素精製塔11a内に充填された洗浄用水素吸蔵合金を冷却する(弁PW−1A、PW−2A:閉)。これにより、次工程(上記第2の水素吸蔵工程)に備えて、必要な除熱が事前に行なわれるため、第2の水素吸蔵工程で十分な水素吸蔵速度を素早く得られる。   15) [Cooling step of cleaning hydrogen purification tower 11a (hereinafter referred to as “second cooling step”, time step numbers 9, 10)]: After completion of the second hydrogen releasing step shown in 14) above, the medium again While flowing a medium (for example, cold water) of 0 ° C. or higher and lower than 40 ° C. through the flow passage 12a, the cleaning hydrogen storage alloy filled in the cleaning hydrogen purification tower 11a is cooled (valves PW-1A, PW-2A: Closed). Thereby, in preparation for the next step (the second hydrogen storage step), necessary heat removal is performed in advance, so that a sufficient hydrogen storage rate can be quickly obtained in the second hydrogen storage step.

上記11)から15)の操作手順を繰り返すことにより、高純度水素(製品水素)Cからさらに水素純度を高めた洗浄用水素を精製することが可能である。   By repeating the operation procedures 11) to 15) above, it is possible to purify hydrogen for cleaning with higher hydrogen purity from high-purity hydrogen (product hydrogen) C.

なお、本実施形態に係る高純度水素精製システムにおける高純度水素精製方法では、1つの水素回収塔についての1サイクルの中に水素吸蔵工程、パージ工程、洗浄工程、加熱工程、水素放出工程と冷却工程を備え、かつ、1つの洗浄用水素精製塔についての1サイクルの中に水素吸蔵工程、パージ工程、加熱工程、水素放出工程と冷却工程を備えた例について説明したが、必ずしもこれに限定されるものではない。すなわち、前記1つの水素回収塔についての1サイクルの中および1つの洗浄用水素精製塔についての1サイクルの中にそれぞれ加熱工程と冷却工程を有しているが、本発明の技術思想においては、必ずしも必須の構成要件でない。しかし、この加熱工程と冷却工程を有することで、上述したようなさらなる作用効果を生ずるため、これらの工程を設けるのがより好ましい。   In the high-purity hydrogen purification method in the high-purity hydrogen purification system according to the present embodiment, the hydrogen storage process, purge process, cleaning process, heating process, hydrogen release process and cooling are performed in one cycle for one hydrogen recovery tower. Although an example in which a hydrogen storage step, a purge step, a heating step, a hydrogen release step and a cooling step are provided in one cycle for one cleaning hydrogen purification tower has been described, it is not necessarily limited to this. It is not something. That is, the heating process and the cooling process are respectively included in one cycle for the one hydrogen recovery tower and in one cycle for one cleaning hydrogen purification tower. In the technical idea of the present invention, It is not necessarily an essential configuration requirement. However, it is more preferable to provide these steps because the heating and cooling steps provide the above-described further effects.

また、本実施形態に係る高純度水素精製システムにおける高純度水素精製方法では、3つの水素回収塔1a〜1cと3つの洗浄用水素精製塔11a〜11cを有した例について説明したが、必ずしもこれに限定されるものではない。例えば、1つの水素回収塔と1つの洗浄用水素精製塔を備えた構成であっても本発明の技術思想を満足する。しかし、本実施形態の構成(3つの水素回収塔1a〜1cと3つの洗浄用水素精製塔11a〜11cを含有した構成)とすることで、高純度水素精製の連続的かつ生産効率向上の点から好適である。   In the high-purity hydrogen purification method in the high-purity hydrogen purification system according to the present embodiment, the example in which the three hydrogen recovery towers 1a to 1c and the three cleaning hydrogen purification towers 11a to 11c are described has been described. It is not limited to. For example, even a configuration provided with one hydrogen recovery tower and one cleaning hydrogen purification tower satisfies the technical idea of the present invention. However, by adopting the configuration of the present embodiment (the configuration including the three hydrogen recovery towers 1a to 1c and the three cleaning hydrogen purification towers 11a to 11c), continuous and improved production efficiency of high-purity hydrogen purification To preferred.

また、CO、Nなどの不純物が水素含有ガスAに含まれた場合、水素吸蔵合金および洗浄用水素吸蔵合金としてAB5系水素吸蔵合金を採用すると、AB2系水素吸蔵合金を初めとした他の水素吸蔵合金と比較してCO、Nなどの不純物に対する耐性が強く、システムとしての耐久性を持たせることが可能となり好ましい。特に、水素回収塔内に充填される水素吸蔵合金にあっては、重要である。このAB5系水素吸蔵合金の水素平衡圧が0.05MPa以上0.3MPa以下であり、前記AB5系水素吸蔵合金の温度制御用の媒体流通路が水素回収塔の内側または外側に設けられ、水素吸蔵工程、パージ工程、洗浄工程と冷却工程においては、前記媒体流通路に0℃以上40℃未満の媒体(以下、「冷媒」と称す)を流通させ、水素放出工程と加熱工程においては、前記媒体流通路に40℃以上150℃未満の媒体(以下、「熱媒」と称す)を流通させるのが好ましい。何故ならば、冷媒の温度がこの範囲より低すぎると冷媒を作成するためのエネルギーが必要となりエネルギー効率が落ちる。一方、この範囲より高すぎると十分な水素吸蔵速度が得られなくなる。また、熱媒の温度がこの範囲より低すぎると十分な水素放出速度が得られなくなり、一方この範囲より高すぎると熱媒を作製するためのエネルギーが必要となり、エネルギー効率が落ちる。エネルギー効率ならびにコストを考えるとより好ましい冷媒温度は20℃〜40℃であり、より好ましい熱媒温度は通常利用されていない低品位排熱で回収可能な60℃〜80℃である。以上のことに関しては、洗浄用水素精製塔内に充填される洗浄用水素吸蔵合金についても言えることである。 Further, when impurities such as CO 2 and N 2 are contained in the hydrogen-containing gas A, if an AB5 type hydrogen storage alloy is adopted as the hydrogen storage alloy and the cleaning hydrogen storage alloy, the AB2 type hydrogen storage alloy and the like can be used. Compared to other hydrogen storage alloys, it is more resistant to impurities such as CO 2 and N 2, and it is possible to provide durability as a system, which is preferable. In particular, it is important for a hydrogen storage alloy filled in a hydrogen recovery tower. The hydrogen equilibrium pressure of the AB5-based hydrogen storage alloy is 0.05 MPa or more and 0.3 MPa or less, and a medium flow passage for controlling the temperature of the AB5-based hydrogen storage alloy is provided inside or outside the hydrogen recovery tower. In the process, the purge process, the cleaning process, and the cooling process, a medium (hereinafter referred to as “refrigerant”) of 0 ° C. or more and less than 40 ° C. is circulated through the medium flow path, and in the hydrogen release process and the heating process, the medium It is preferable to circulate a medium (hereinafter referred to as “heat medium”) having a temperature of 40 ° C. or higher and lower than 150 ° C. in the flow path. This is because if the temperature of the refrigerant is too lower than this range, energy for producing the refrigerant is required and energy efficiency is lowered. On the other hand, if it is higher than this range, a sufficient hydrogen storage rate cannot be obtained. On the other hand, if the temperature of the heat medium is lower than this range, a sufficient hydrogen release rate cannot be obtained. On the other hand, if it is higher than this range, energy for producing the heat medium is required, and the energy efficiency is lowered. Considering energy efficiency and cost, a more preferable refrigerant temperature is 20 ° C. to 40 ° C., and a more preferable heat medium temperature is 60 ° C. to 80 ° C. that can be recovered by low-grade exhaust heat that is not normally used. The above is also true for the cleaning hydrogen storage alloy filled in the cleaning hydrogen purification tower.

なお、本実施形態においては、洗浄用水素精製塔11a、11b、11c内に充填された洗浄用水素吸蔵合金の体積が水素回収塔1a、1b、1c内に充填された水素吸蔵合金の体積に対してそれぞれ50%の場合を例に説明したが、必ずしもこれに限定されるものではない。例えば、前記洗浄用水素吸蔵合金の体積は、前記水素吸蔵合金の体積に対して20%〜80%の体積とするのが好適である。このような比率にすることにより、上述した水素回収塔の洗浄工程における洗浄用水素として適当な量を確保しながらも、マスフローコントローラ等による微量の流量制御が可能であり、かつ、上記第1の水素放出工程(水素回収塔の水素放出工程)で得られた高純度水素のロスを減少させることも可能である。また、前記比率を確保しさえすれば、システムを前日の夕方にストップし、翌朝再びスタートさせる{この時点では、まだ上述した第1の水素放出工程(水素回収塔の水素放出工程)は稼動していない}場合にも、洗浄用水素精製塔内に残存する洗浄用水素を用いて水素回収塔の洗浄工程を実施可能となる。   In this embodiment, the volume of the cleaning hydrogen storage alloy filled in the cleaning hydrogen purification towers 11a, 11b, and 11c is equal to the volume of the hydrogen storage alloy filled in the hydrogen recovery towers 1a, 1b, and 1c. On the other hand, the case of 50% has been described as an example, but it is not necessarily limited thereto. For example, the volume of the hydrogen storage alloy for cleaning is preferably 20% to 80% of the volume of the hydrogen storage alloy. By setting such a ratio, it is possible to control a small amount of flow rate using a mass flow controller or the like while securing an appropriate amount as hydrogen for cleaning in the above-described cleaning step of the hydrogen recovery tower, and the first It is also possible to reduce the loss of high purity hydrogen obtained in the hydrogen releasing step (hydrogen releasing step of the hydrogen recovery tower). Also, as long as the ratio is ensured, the system is stopped in the evening of the previous day and restarted the next morning. {At this point, the first hydrogen release step (hydrogen recovery step of the hydrogen recovery tower) described above is still in operation. Even if not, the cleaning step of the hydrogen recovery tower can be performed using the cleaning hydrogen remaining in the cleaning hydrogen purification tower.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited by the following Example from the first.

本発明の効果を確証するために、上記本実施形態で例示した図1の高純度水素精製システムの構成を有し、かつ、上記表1のタイムステップテーブルに示す運転を採用して、高純度水素精製の試験を行った。   In order to confirm the effect of the present invention, the configuration of the high-purity hydrogen purification system of FIG. 1 exemplified in the present embodiment is employed, and the operation shown in the time step table of Table 1 is adopted to achieve high purity. A hydrogen purification test was conducted.

実験条件は以下の通りである。
<被精製ガス(水素含有ガスA)条件>
圧力:0.9MPa
温度:20℃
流量:2.0NL/min
組成:H:80%、CO:20%(水素分圧0.72MPa)
<水素吸蔵合金および洗浄用水素吸蔵合金>
20℃における平衡圧が0.2MPaとなるように調整したAB5系水素吸蔵合金
<熱媒および冷媒条件>
熱媒条件:80℃温水・流量3L/min
冷媒条件:20℃冷水・流量3L/min
<水素回収塔(1塔ごと)のサイクルパターン>
第1の水素吸蔵工程:30分
第1のパージ工程:5分
洗浄工程:5分
第1の加熱工程:10分
第1の水素放出工程:30分
第1の冷却工程:10分
<洗浄用水素精製塔(1塔ごと)のサイクルパターン>
第2の水素吸蔵工程:10分(高純度水素(製品水素)Cの一部を0.125NL/min吸蔵)
第2のパージ工程:5分
第2の加熱工程:5分
第2の水素放出工程:5分(洗浄用水素として0.25NL/min放出)
第2の冷却工程:10分

以上の工程を30サイクル行ったところ、水素回収率は87%、高純度水素の平均濃度は99.9999%が得られた。
The experimental conditions are as follows.
<Purified gas (hydrogen-containing gas A) conditions>
Pressure: 0.9 MPa
Temperature: 20 ° C
Flow rate: 2.0NL / min
Composition: H 2 : 80%, CO 2 : 20% (hydrogen partial pressure 0.72 MPa)
<Hydrogen storage alloy and cleaning hydrogen storage alloy>
AB5 hydrogen storage alloy adjusted so that the equilibrium pressure at 20 ° C. is 0.2 MPa <Heat medium and refrigerant conditions>
Heating medium conditions: 80 ° C hot water, flow rate 3L / min
Refrigerant conditions: 20 ° C cold water, flow rate 3L / min
<Cycle pattern of hydrogen recovery tower (each tower)>
First hydrogen storage step: 30 minutes First purge step: 5 minutes Cleaning step: 5 minutes First heating step: 10 minutes First hydrogen releasing step: 30 minutes First cooling step: 10 minutes <for washing Cycle pattern of hydrogen purification tower (each tower)>
Second hydrogen storage step: 10 minutes (a portion of high-purity hydrogen (product hydrogen) C is stored at 0.125 NL / min)
Second purge step: 5 minutes Second heating step: 5 minutes Second hydrogen release step: 5 minutes (release of 0.25 NL / min as cleaning hydrogen)
Second cooling step: 10 minutes

When the above steps were performed 30 cycles, a hydrogen recovery rate of 87% and an average concentration of high purity hydrogen of 99.9999% were obtained.

〔比較例〕
実験条件は、上記実施例(本発明)において、洗浄用水素精製塔が設置されず、水素回収塔の洗浄工程において高純度水素(製品水素)Cの一部をそのまま洗浄用水素として使用する以外は上記実施例と同じである。その結果、水素回収率は85%、得られた高純度水素の平均濃度は99.9%であった。
[Comparative example]
The experimental condition is that, in the above-described example (the present invention), a cleaning hydrogen purification tower is not installed, and a part of high-purity hydrogen (product hydrogen) C is used as cleaning hydrogen in the cleaning process of the hydrogen recovery tower. Is the same as in the above embodiment. As a result, the hydrogen recovery rate was 85%, and the average concentration of the obtained high purity hydrogen was 99.9%.

以上のように、高純度水素の平均濃度が99.9999%で、水素回収率が87%以上を満足するのは上記実施例(本発明)のみである。   As described above, only the above-described example (the present invention) satisfies the average concentration of high-purity hydrogen of 99.9999% and the hydrogen recovery rate of 87% or more.

なお、本実施例ならびに比較例で用いた水素含有ガスAの水素濃度は80%、圧力は0.9MPaとしたが、必ずしもこの濃度に限られたものではなく、温度ならびに水素分圧が用いる水素吸蔵合金および洗浄用水素吸蔵合金の平衡圧以上であればどの圧力・温度でも高純度水素精製は可能である。また、水素以外のガスに特に水素吸蔵合金および洗浄用水素吸蔵合金の被毒要因となるCOが含まれている場合は、前段でCO選択吸着剤を用いて除去してもよい。   The hydrogen concentration of the hydrogen-containing gas A used in this example and the comparative example was 80% and the pressure was 0.9 MPa. However, the hydrogen concentration is not necessarily limited to this concentration. High-purity hydrogen purification is possible at any pressure and temperature as long as it is equal to or higher than the equilibrium pressure of the storage alloy and the hydrogen storage alloy for cleaning. Further, when CO other than hydrogen, which is a poisoning factor of the hydrogen storage alloy and the cleaning hydrogen storage alloy, is contained in the gas other than hydrogen, it may be removed using a CO selective adsorbent in the previous stage.

1a、1b、1c:水素回収塔
2a、2b、2c、12a、12b、12c:媒体流通路
3:圧力コントロール弁
4、5、14、15:弁
6:真空ポンプ
7、8、9:マスフローコントローラ
11a、11b、11c:洗浄用水素精製塔
A:水素含有ガス
B:オフガス
C:高純度水素(製品水素)

















1a, 1b, 1c: Hydrogen recovery towers 2a, 2b, 2c, 12a, 12b, 12c: Medium flow passage 3: Pressure control valves 4, 5, 14, 15: Valve 6: Vacuum pumps 7, 8, 9: Mass flow controller 11a, 11b, 11c: Hydrogen purification tower for cleaning A: Hydrogen-containing gas B: Off-gas C: High-purity hydrogen (product hydrogen)

















Claims (8)

水素含有ガスを水素吸蔵合金が充填された水素回収塔に通じ、この水素含有ガス中の水素を前記水素吸蔵合金に吸蔵させる第1の水素吸蔵工程と、前記水素吸蔵合金に水素を吸蔵させた後の水素回収塔内に残る不純物ガスをパージするための第1のパージ工程と、この第1のパージ工程後にも水素回収塔内に残る不純物を排出するための洗浄工程と、この洗浄工程後に前記第1の水素吸蔵工程で吸蔵された水素を前記水素回収塔内から放出し高純度水素を得る第1の水素放出工程と、を有した高純度水素精製方法において、
前記水素吸蔵合金の体積よりも小さな体積の洗浄用水素吸蔵合金が充填された洗浄用水素精製塔を備え、
前記第1の水素放出工程にある水素回収塔内から放出された高純度水素の一部をこの洗浄用水素精製塔に通じ、この一部の高純度水素中の水素をさらに前記洗浄用水素吸蔵合金に吸蔵させる第2の水素吸蔵工程と、前記洗浄用水素吸蔵合金に水素を吸蔵させた後の洗浄用水素精製塔内に僅かに残る不純物ガスをパージするための第2のパージ工程と、この第2のパージ工程後に前記第2の水素吸蔵工程で吸蔵された水素を前記洗浄用水素精製塔内から放出し洗浄用水素を得る第2の水素放出工程と、を有し、
この第2の水素放出工程で得られた洗浄用水素を前記洗浄工程における不純物の排出に用いたことを特徴とする高純度水素精製方法。
A hydrogen-containing gas was passed through a hydrogen recovery tower filled with a hydrogen-occlusion alloy, a first hydrogen-occlusion step of occluding the hydrogen-containing gas in the hydrogen-occlusion alloy, and the hydrogen-occlusion alloy occluded hydrogen. A first purge step for purging impurity gas remaining in the subsequent hydrogen recovery tower, a cleaning step for discharging impurities remaining in the hydrogen recovery tower after the first purge step, and after this cleaning step A high-purity hydrogen refining method comprising: a first hydrogen releasing step of releasing hydrogen stored in the first hydrogen storage step from the hydrogen recovery tower to obtain high-purity hydrogen;
A cleaning hydrogen purification tower filled with a cleaning hydrogen storage alloy having a volume smaller than the volume of the hydrogen storage alloy;
A part of the high-purity hydrogen released from the hydrogen recovery tower in the first hydrogen releasing step is passed through the cleaning hydrogen purification tower, and the hydrogen in the part of the high-purity hydrogen is further stored in the cleaning hydrogen storage. A second hydrogen storage step for storing in the alloy; a second purge step for purging the impurity gas slightly remaining in the cleaning hydrogen purification tower after storing the hydrogen in the cleaning hydrogen storage alloy; A second hydrogen releasing step of releasing hydrogen stored in the second hydrogen storage step after the second purge step to obtain cleaning hydrogen by releasing the hydrogen stored in the cleaning hydrogen purification tower;
A high-purity hydrogen refining method, wherein the cleaning hydrogen obtained in the second hydrogen releasing step is used for discharging impurities in the cleaning step.
前記洗浄用水素吸蔵合金の体積は、前記水素吸蔵合金の体積に対して20%〜80%の体積であることを特徴とする請求項1に記載の高純度水素精製方法。   2. The high-purity hydrogen purification method according to claim 1, wherein the volume of the hydrogen storage alloy for cleaning is 20% to 80% of the volume of the hydrogen storage alloy. 前記水素回収塔において、洗浄工程と第1の水素放出工程の間に水素回収塔内の水素吸蔵合金を予め加熱する第1の加熱工程を有し、第1の水素放出工程と第1の水素吸蔵工程の間に水素回収塔内の水素吸蔵合金を予め冷却する第1の冷却工程を有したことを特徴とする請求項1または2に記載の高純度水素精製方法。   The hydrogen recovery tower has a first heating step for preheating the hydrogen storage alloy in the hydrogen recovery tower between the washing step and the first hydrogen releasing step, and the first hydrogen releasing step and the first hydrogen The high-purity hydrogen purification method according to claim 1 or 2, further comprising a first cooling step of cooling the hydrogen storage alloy in the hydrogen recovery tower in advance during the storage step. 前記水素吸蔵合金がAB5系水素吸蔵合金であることを特徴とする請求項1に記載の高純度水素精製方法。   The high-purity hydrogen purification method according to claim 1, wherein the hydrogen storage alloy is an AB5 hydrogen storage alloy. 前記水素吸蔵合金がAB5系水素吸蔵合金であり、このAB5系水素吸蔵合金の水素平衡圧が0.05MPa以上0.3MPa以下であり、
前記AB5系水素吸蔵合金の温度制御用の媒体流通路が前記水素回収塔の内側または外側に設けられ、
前記第1の水素吸蔵工程、第1のパージ工程、洗浄工程と第1の冷却工程においては、前記媒体流通路に0℃以上40℃未満の媒体を流通させ、
前記第1の水素放出工程と第1の加熱工程においては、前記媒体流通路に40℃以上150℃未満の媒体を流通させることを特徴とする請求項3に記載の高純度水素精製方法。
The hydrogen storage alloy is an AB5 hydrogen storage alloy, and the hydrogen equilibrium pressure of the AB5 hydrogen storage alloy is 0.05 MPa or more and 0.3 MPa or less,
A medium flow passage for temperature control of the AB5 hydrogen storage alloy is provided inside or outside the hydrogen recovery tower,
In the first hydrogen storage step, the first purge step, the cleaning step and the first cooling step, a medium having a temperature of 0 ° C. or more and less than 40 ° C. is circulated through the medium flow path,
4. The high purity hydrogen purification method according to claim 3, wherein in the first hydrogen releasing step and the first heating step, a medium of 40 ° C. or higher and lower than 150 ° C. is circulated through the medium flow passage.
前記洗浄用水素精製塔において、第2のパージ工程と第2の水素放出工程の間に洗浄用水素精製塔内の洗浄用水素吸蔵合金を予め加熱する第2の加熱工程を有し、第2の水素放出工程と第2の水素吸蔵工程の間に洗浄用水素精製塔内の洗浄用水素吸蔵合金を予め冷却する第2の冷却工程を有したことを特徴とする請求項1または2に記載の高純度水素精製方法。   The cleaning hydrogen purification tower has a second heating step of preheating the cleaning hydrogen storage alloy in the cleaning hydrogen purification tower between the second purge step and the second hydrogen release step, 3. The method according to claim 1, further comprising a second cooling step of cooling the cleaning hydrogen storage alloy in the cleaning hydrogen purification tower in advance between the hydrogen release step and the second hydrogen storage step. High-purity hydrogen purification method. 前記洗浄用水素吸蔵合金がAB5系水素吸蔵合金であることを特徴とする請求項1に記載の高純度水素精製方法。   2. The high-purity hydrogen purification method according to claim 1, wherein the cleaning hydrogen storage alloy is an AB5 hydrogen storage alloy. 前記洗浄用水素吸蔵合金がAB5系水素吸蔵合金であり、このAB5系水素吸蔵合金の水素平衡圧が0.05MPa以上0.3MPa以下であり、
前記AB5系水素吸蔵合金の温度制御用の媒体流通路が前記洗浄用水素精製塔の内側または外側に設けられ、
前記第2の水素吸蔵工程、第2のパージ工程と第2の冷却工程においては、前記媒体流通路に0℃以上40℃未満の媒体を流通させ、
前記第2の水素放出工程と第2の加熱工程においては、前記媒体流通路に40℃以上150℃未満の媒体を流通させることを特徴とする請求項6に記載の高純度水素精製方法。

The cleaning hydrogen storage alloy is an AB5-based hydrogen storage alloy, and the hydrogen equilibrium pressure of the AB5-based hydrogen storage alloy is 0.05 MPa or more and 0.3 MPa or less,
A medium flow passage for temperature control of the AB5 hydrogen storage alloy is provided inside or outside the cleaning hydrogen purification tower,
In the second hydrogen storage step, the second purge step and the second cooling step, a medium having a temperature of 0 ° C. or more and less than 40 ° C. is circulated through the medium flow path,
The high-purity hydrogen purification method according to claim 6, wherein in the second hydrogen releasing step and the second heating step, a medium of 40 ° C. or higher and lower than 150 ° C. is circulated through the medium flow path.

JP2011129144A 2011-06-09 2011-06-09 High purity hydrogen purification method Active JP5568059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129144A JP5568059B2 (en) 2011-06-09 2011-06-09 High purity hydrogen purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129144A JP5568059B2 (en) 2011-06-09 2011-06-09 High purity hydrogen purification method

Publications (2)

Publication Number Publication Date
JP2012254900A JP2012254900A (en) 2012-12-27
JP5568059B2 true JP5568059B2 (en) 2014-08-06

Family

ID=47526860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129144A Active JP5568059B2 (en) 2011-06-09 2011-06-09 High purity hydrogen purification method

Country Status (1)

Country Link
JP (1) JP5568059B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983907A (en) * 1982-11-02 1984-05-15 Kawasaki Heavy Ind Ltd Method for purifying hydrogen gas using metallic hydride
JPS6272503A (en) * 1985-09-27 1987-04-03 Mitsubishi Heavy Ind Ltd Device for continuously supplying high-purity gaseous hydrogen
JPS62128902A (en) * 1985-11-27 1987-06-11 Japan Steel Works Ltd:The Method for separating and purifying high-concentration gaseous hydrogen using hydrogen storage alloy
JPS62167204A (en) * 1986-01-17 1987-07-23 Mitsubishi Heavy Ind Ltd Method and device for continuously purifying high-purity gaseous hydrogen
JP2002338204A (en) * 2001-05-22 2002-11-27 Mitsubishi Gas Chem Co Inc High purity hydrogen producing equipment

Also Published As

Publication number Publication date
JP2012254900A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP6328755B2 (en) Station and method for filling a gas tank
JP2006342014A (en) Method for producing high purity hydrogen
JPWO2008056579A1 (en) Method and apparatus for separating hydrogen gas
JP6566639B2 (en) Method for operating hydrogen production apparatus and hydrogen production apparatus
JP2016084272A (en) Method for producing hydrogen gas and apparatus for producing hydrogen gas
JP5679433B2 (en) Argon gas purification method and purification apparatus
JP5690165B2 (en) PSA high purity hydrogen production method
JP2011167629A (en) Method and apparatus for separating hydrogen gas
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP5457854B2 (en) Production method of high purity hydrogen
JP5134252B2 (en) Hydrogen production apparatus and method
JP2012214371A (en) Method for refining high-purity hydrogen
JP5665120B2 (en) Argon gas purification method and purification apparatus
JP5237873B2 (en) Hydrogen purification method and hydrogen storage alloy reaction vessel
JP5568059B2 (en) High purity hydrogen purification method
JP5357465B2 (en) High purity hydrogen production method
JP5237870B2 (en) High purity hydrogen production method
CN116390797A (en) Process and apparatus for producing ultra-high purity hydrogen from low grade hydrogen
JP2013155091A (en) Method and apparatus for purifying argon gas
JP6058472B2 (en) Method of using hydrogen production apparatus and hydrogen production apparatus
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP4771668B2 (en) Hydrogen production method and apparatus
JP5829205B2 (en) Hydrogen storage / release method and hydrogen storage / release apparatus
JP6937087B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20130902

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20140603

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R150 Certificate of patent (=grant) or registration of utility model

Country of ref document: JP

Ref document number: 5568059

Free format text: JAPANESE INTERMEDIATE CODE: R150