JP5566214B2 - Stainless steel foil for power storage device container and method for producing the same - Google Patents

Stainless steel foil for power storage device container and method for producing the same Download PDF

Info

Publication number
JP5566214B2
JP5566214B2 JP2010169745A JP2010169745A JP5566214B2 JP 5566214 B2 JP5566214 B2 JP 5566214B2 JP 2010169745 A JP2010169745 A JP 2010169745A JP 2010169745 A JP2010169745 A JP 2010169745A JP 5566214 B2 JP5566214 B2 JP 5566214B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel foil
oxide film
less
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010169745A
Other languages
Japanese (ja)
Other versions
JP2012033295A (en
Inventor
雅晴 茨木
洋 上代
祐治 久保
淳 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2010169745A priority Critical patent/JP5566214B2/en
Publication of JP2012033295A publication Critical patent/JP2012033295A/en
Application granted granted Critical
Publication of JP5566214B2 publication Critical patent/JP5566214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、蓄電デバイス容器用ステンレス箔、蓄電デバイス容器用樹脂被覆ステンレス箔、及びそれらの製造方法に関する。   The present invention relates to a stainless steel foil for a power storage device container, a resin-coated stainless steel foil for a power storage device container, and a method for producing the same.

電子機器及び電子部品、特に携帯電話、ノート型パソコン、ビデオカメラ、衛星、電気・ハイブリッド自動車等に、ニッケル-カドニウム、ニッケル-水素、リチウムイオン電池等の2次電池やキャパシタを始めとする蓄電デバイスが広く使用されている。従来、ニッケル-カドニウム、ニッケル-水素等の強アルカリ電解質を使用する2次電池では、ニッケルめっきした冷延鋼板からなるケースやプラスチックケースが使用されてきた。また、リチウムイオン電池のように非水電解質を使用する電池でも、アルミニウムパウチに内蔵された電解質をプラスチックケースで包んだり、ニッケルめっき鋼板やステンレス鋼板ケースが使用されている。   Power storage devices such as secondary batteries and capacitors such as nickel-cadmium, nickel-hydrogen, and lithium-ion batteries for electronic devices and electronic parts, especially mobile phones, notebook computers, video cameras, satellites, electric / hybrid vehicles, etc. Is widely used. Conventionally, a secondary battery using a strong alkaline electrolyte such as nickel-cadmium, nickel-hydrogen, etc. has used a case made of a nickel-plated cold-rolled steel plate or a plastic case. Further, even in a battery using a non-aqueous electrolyte such as a lithium ion battery, an electrolyte incorporated in an aluminum pouch is wrapped in a plastic case, or a nickel-plated steel plate or a stainless steel plate case is used.

近年、電子・電気部品の小型化に伴い2次電池やキャパシタを始めとする蓄電デバイスにも小型化・軽量化が要望されるようになった。これらの動向の中で、容器の薄肉化は、限定された容積により多くの電解液やイオンを搭載し、電気容量を増大できるツールとして注目されている。しかし、薄肉化により容器の強度が低下すると、外力や突き刺しが加えられた際に変形、破壊して内容物電解液の液漏れが発生する危険性がある。電解液の液漏れは、蓄電デバイスが内蔵された装置に甚大な障害を与える可能性が高い。そのため、容器の部材がプラスチックやアルミニウムである場合、肉厚が200μm以下では強度が不十分であり、さらなる薄肉化には強度の高い材料が必要である。   In recent years, with the miniaturization of electronic and electrical components, there has been a demand for miniaturization and weight reduction of power storage devices such as secondary batteries and capacitors. Among these trends, the thinning of containers is attracting attention as a tool that can mount a large amount of electrolyte and ions in a limited volume and increase the electric capacity. However, if the strength of the container is reduced due to thinning, there is a risk that the content electrolyte solution may leak due to deformation or destruction when an external force or piercing is applied. There is a high possibility that the leakage of the electrolytic solution will cause a serious obstacle to the device in which the electricity storage device is built. Therefore, when the member of the container is plastic or aluminum, the strength is insufficient when the thickness is 200 μm or less, and a material with high strength is required for further thinning.

これらの要求特性を満たす材料としてステンレス箔がある。ステンレス箔は、ステンレス鋼を200μm厚み以下にまで薄肉化した金属箔であり、ステンレス鋼の引張強さ、ビッカース硬さは、一般にプラスチックやアルミニウムの2〜10倍で高強度であるため、蓄電デバイス容器の薄肉材料として有望である。今後の蓄電デバイス開発において、電気容量増大のための薄肉化と、安全性向上のための強度向上を両立するためには、ステンレス箔は必須であるともいえる。   Stainless steel foil is a material that satisfies these required characteristics. Stainless steel foil is a metal foil made by thinning stainless steel to a thickness of 200 μm or less, and the tensile strength and Vickers hardness of stainless steel are generally 2 to 10 times higher than that of plastic and aluminum. It is promising as a thin material for containers. It can be said that stainless steel foil is indispensable in the future development of electricity storage devices in order to achieve both a reduction in thickness for increasing the electric capacity and an improvement in strength for improving safety.

従来技術における小型化・軽量化が進んだ蓄電デバイスの代表的なものとしてリチウムイオン2次電池が挙げられ、その容器用の金属箔が特許文献1〜5等に開示されている。これらの特許文献で示されているように、金属箔を用いた蓄電デバイスの容器は、金属箔の片面、もしくは両面に樹脂を被覆することが一般的である。その主な理由は、小型、軽量の容器を封止するのに優れるヒートシールを利用するためである。ヒートシールは、加熱して樹脂を融着させて容器を密閉するため、溶接や巻き締めよりも、特に小型、薄型の容器において簡易に実施可能で、かつ経済性に優れるため、広く普及している。一般的にリチウムイオン2次電池において使用されるヒートシールは、容器の内面側に被覆されたポリオレフィン樹脂の融着によってなされ、近年はポリプロピレンが多く使用されている。ポリプロピレン樹脂を使用して、そのヒートシールは、200℃前後まで加熱されて瞬時に融着されて行われている。この密閉(シール)により、電解液の漏液や外部からの水分侵入を防止できる。   A typical example of an electricity storage device that has been reduced in size and weight in the prior art is a lithium ion secondary battery, and metal foils for the container are disclosed in Patent Documents 1 to 5 and the like. As shown in these patent documents, a container of an electricity storage device using a metal foil is generally coated with a resin on one side or both sides of the metal foil. The main reason is to use a heat seal that is excellent for sealing small and light containers. Heat sealing heats and melts the resin to seal the container, so it can be easily implemented in a small, thin container, and is more economical than welding and winding. Yes. Generally, heat sealing used in a lithium ion secondary battery is made by fusing a polyolefin resin coated on the inner surface side of a container, and in recent years, polypropylene is often used. Using a polypropylene resin, the heat sealing is performed by heating to around 200 ° C. and instantly fusing. By this sealing (sealing), leakage of the electrolytic solution and entry of moisture from the outside can be prevented.

耐薬品性に優れ、樹脂材料の中で比較的水分透過量が少ないポリオレフィン樹脂は、上記の用途において好適に使用されているのである。したがって、金属箔を蓄電デバイス容器に使用するには、金属箔が、前記ヒートシールの温度に耐えられることと、及び、ポリオレフィン樹脂を被覆できること、という要件を満たすことが必要である。また、金属箔の両面に樹脂を被覆する場合は、容器の外面側となる金属箔の片面は、絶縁性や耐食性といった外装の保護、ラベルとしての意匠性、及び加工性等を付与できるポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂などを被覆するのが一般的である。   Polyolefin resins having excellent chemical resistance and a relatively low moisture permeation amount among resin materials are suitably used in the above applications. Therefore, in order to use the metal foil for the electricity storage device container, it is necessary to satisfy the requirements that the metal foil can withstand the heat sealing temperature and can be coated with the polyolefin resin. In addition, when the resin is coated on both sides of the metal foil, one side of the metal foil on the outer surface side of the container is a polyester resin that can provide exterior protection such as insulation and corrosion resistance, designability as a label, workability, etc. In general, a polyamide resin, a polyolefin resin or the like is coated.

また、近年の電子製品、特にリチウムイオンを用いた蓄電デバイスでは、ゴミや異物の混入をはじめとする何らかの製品不良が原因と考えられる火災、異常発熱、破裂事故が数多く報告されている。内容物や容器に異常をきたす上に製品の外観不良も招くため、いかにしてゴミや異物を排除して優れたクリーン性を達成し、かつ樹脂と金属箔との接着欠陥を無くして製品不良を出さないかが重要である。   In recent electronic products, particularly power storage devices using lithium ions, there have been many reports of fires, abnormal heat generation, and rupture accidents that are thought to be caused by some kind of product failure including contamination of dust and foreign substances. In addition to causing abnormalities in the contents and containers, it also causes a defective appearance of the product, so it is possible to achieve excellent cleanliness by eliminating dust and foreign substances, and eliminate defects in the adhesion between the resin and metal foil. It is important not to give out.

また、表面処理をせずとも樹脂との密着力を向上させる方法として、ステンレス箔を還元雰囲気で熱処理することで密着性に優れる表面酸化被膜を得る技術が特許文献6に開示されている。これ以外にも、ステンレス鋼を還元雰囲気で熱処理して表面皮膜や材料組織を調質する技術が特許文献7〜9などに開示されている。   Further, Patent Document 6 discloses a technique for obtaining a surface oxide film having excellent adhesion by heat-treating a stainless steel foil in a reducing atmosphere as a method for improving the adhesion with a resin without surface treatment. In addition to this, Patent Documents 7 to 9 disclose techniques for heat-treating stainless steel in a reducing atmosphere to refine the surface film and material structure.

特開平10-208708号公報Japanese Patent Laid-Open No. 10-208708 特開2001-30407号公報JP 2001-30407 A 特開2001-266809号公報Japanese Patent Laid-Open No. 2001-266809 特開2000-123800号公報JP 2000-123800 A 特開2000-357494号公報JP 2000-357494 A 特開2005-1245号公報JP 2005-1245 A 特開平8-92652号公報JP-A-8-92652 特開平9-209033号公報Japanese Patent Laid-Open No. 9-209033 特開2005-213589号公報JP-A-2005-213589

しかし、金属箔の両面に樹脂を被覆して蓄電デバイス容器とする場合には、特許文献1〜5に示されているように、金属箔の少なくとも片面、特に容器の内側となる金属箔の面は、電解液と接触しても被覆樹脂と金属箔との密着力が低下して樹脂が剥離しないように、該密着力を向上させることができるクロメートなどのクロム化成処理が施されている。しかしながら、クロム化成処理で得られる皮膜は、加熱されると脱酸素反応による水和酸化クロムのネットワーク構造の分解が起こり、低分子化が進行して皮膜欠陥が増加し、耐食性などの性能が劣化し易い。よって、樹脂を被覆した金属箔を用いた蓄電デバイス容器はヒートシールにより封止されるが、このクロメートなどのクロム化成処理皮膜の低分子化は200〜300℃で進行するため、ヒートシール時に皮膜に欠陥が入って被覆樹脂との密着力が低下し易くなるという問題がある。   However, when an electric storage device container is formed by coating a resin on both surfaces of a metal foil, as shown in Patent Documents 1 to 5, at least one surface of the metal foil, particularly the surface of the metal foil that is the inside of the container Has been subjected to a chromic conversion treatment such as chromate which can improve the adhesion so that the adhesion between the coating resin and the metal foil does not drop and the resin does not peel even when it comes into contact with the electrolyte. However, when the film obtained by the chromic conversion treatment is heated, the network structure of the hydrated chromium oxide is decomposed by the deoxygenation reaction, the molecular weight is lowered, the film defects increase, and the performance such as corrosion resistance deteriorates. Easy to do. Therefore, the electricity storage device container using the metal foil coated with resin is sealed by heat sealing, but the reduction of the molecular weight of the chromic conversion coating such as chromate proceeds at 200-300 ° C, so the film during heat sealing There is a problem that a defect enters and the adhesive force with the coating resin tends to be reduced.

また、クロム化成処理の方法では、クロム酸溶液などの薬液により処理されるため、薬液の廃棄等で環境問題への負荷が大きく、将来より一層厳しくなる環境規制に十分に対応できるとは言い難い。   In addition, since the chromium conversion treatment method uses a chemical solution such as a chromic acid solution, it is difficult to say that it can sufficiently cope with environmental regulations that are more burdensome to environmental problems due to disposal of the chemical solution and become more severe in the future. .

また、クロム化成処理の方法では、基材となる金属箔への薬液塗布、加熱硬化、溶媒乾燥、養生等を必要とするので、工程が多くなり、煩雑であるため、経済性が悪いという課題がある。さらに、この方法では、ゴミや異物を混入し易く、また、金属箔の表面の濡れ性が不十分だと塗布抜けなどの塗布不良部が発生する懸念が強く、製品不良につながる。   In addition, the method of chromic conversion treatment requires chemical solution coating, heat curing, solvent drying, curing, etc. on the metal foil as a base material, and therefore the number of processes is complicated, and the problem is that the economy is poor. There is. Further, in this method, dust and foreign matters are easily mixed, and if the wettability of the surface of the metal foil is insufficient, there is a strong concern that a coating failure portion such as coating failure will occur, leading to a product failure.

また、特許文献6に開示されている技術では、ステンレス箔を還元雰囲気で熱処理することで得られる表面酸化被膜はSiを濃化させており(酸化珪素を含む酸化被膜、或いは、珪酸塩被膜となっており)、エポキシやポリエステルなどの樹脂組成物の密着力にしか寄与しない。一方、蓄電デバイス容器の内側には耐電解液性が求められるため、耐薬品性の高いポリエチレンやポリプロピレンなどのポリオレフィン系樹脂が被覆されるが、これらは極性が低く金属との密着が難しいため、この技術では十分な効果がない。また、特にリチウムイオン2次電池では、電解液に極少量の水分が混入するだけでフッ化水素が発生し、フッ化水素はSiと酸素(O)の結合(SiO結合)を優先的に開裂して樹脂組成物の密着力を低下させるため、蓄電デバイス容器用としては全く適していない。   Further, in the technique disclosed in Patent Document 6, the surface oxide film obtained by heat-treating the stainless steel foil in a reducing atmosphere has concentrated Si (an oxide film containing silicon oxide, or a silicate film and It contributes only to the adhesion of resin compositions such as epoxy and polyester. On the other hand, because the inside of the electricity storage device container is required to have an electrolyte solution resistance, it is coated with a polyolefin-based resin such as polyethylene or polypropylene with high chemical resistance, but these are low in polarity and difficult to adhere to a metal, This technique is not effective enough. In particular, in lithium ion secondary batteries, hydrogen fluoride is generated just by mixing a very small amount of water into the electrolyte, and hydrogen fluoride preferentially cleaves the bond between Si and oxygen (O) (SiO bond). Since the adhesive strength of the resin composition is reduced, it is not at all suitable for an electricity storage device container.

また、特許文献7に開示されている技術では、焼鈍後に急冷を要し、これによりCrの炭化物や窒化物の生成を避けていることから、酸化物皮膜中へCrが殆ど拡散していないものとなっている。このような酸化物皮膜では、前述のようなポリオレフィン樹脂との密着性が確保できない。よって、これらの技術では、蓄電デバイス容器用途での使用に耐えられない。   In addition, the technique disclosed in Patent Document 7 requires rapid cooling after annealing, thereby avoiding the formation of Cr carbides and nitrides, so that Cr is hardly diffused into the oxide film. It has become. Such an oxide film cannot ensure adhesion with the polyolefin resin as described above. Therefore, these technologies cannot withstand the use in power storage device container applications.

また、特許文献8、9に開示されている技術では、還元雰囲気下での焼鈍温度が1000℃以上の高温で実施するため、酸化皮膜が還元除去されてしまい、蓄電デバイス容器用途での使用に耐えうる十分な厚みの酸化被膜を得られず、電解液との接触により被覆樹脂が剥離する。   Further, in the techniques disclosed in Patent Documents 8 and 9, since the annealing temperature in a reducing atmosphere is carried out at a high temperature of 1000 ° C. or higher, the oxide film is reduced and removed, so that it can be used in power storage device container applications. An oxide film with a sufficient thickness cannot be obtained, and the coating resin is peeled off by contact with the electrolytic solution.

そこで、本発明は、上述の問題を解決し、クロム化成処理などの表面処理が無くともポリオレフィン系樹脂との密着性が確保でき、電解液との接触によっても密着力の低下がない蓄電デバイス容器用ステンレス箔及びその製造方法を提供することを目的とする。更に、耐熱性と環境負荷低減と経済性に優れ、製品不良が少ない、蓄電デバイス容器用樹脂被覆ステンレス箔及びその製造方法を提供することを目的とする。   Therefore, the present invention solves the above-mentioned problems, can ensure adhesion with a polyolefin-based resin without surface treatment such as chrome conversion treatment, and does not decrease adhesion even when contacted with an electrolytic solution. It is an object to provide a stainless steel foil and a method for producing the same. Furthermore, it aims at providing the resin-coated stainless steel foil for electrical storage device containers which is excellent in heat resistance, environmental impact reduction, and economical efficiency, and there are few product defects, and its manufacturing method.

本発明者らは、クロム化成処理などの表面処理を施していない様々な表面粗さのステンレス箔に様々な熱処理を施してポリオレフィン系樹脂を被覆し、ヒートシール相当の高温を加えた後に電解液に浸漬する試験を課し、樹脂組成物の剥離状況とステンレス箔の表面を詳細に解析した結果、ステンレス箔表面の酸化物の成分と表面形態によってポリオレフィン系樹脂の剥離状況が異なることを見出した。即ち、表面が粗いステンレス箔を、還元雰囲気で熱処理することによりステンレス箔表面から拡散してくるCrの濃度が高い酸化物皮膜が得られ、該酸化物被膜が存在すると、電解液中での樹脂組成物との優れた密着力とヒートシールのような高温にも耐える優れた耐熱性を有することを見出し、この知見に基づいて本発明に至った。即ち、本発明の要旨とするところは以下のとおりである。   The present inventors applied various heat treatments to stainless steel foils having various surface roughnesses that have not been subjected to surface treatment such as chrome conversion treatment to coat a polyolefin resin, and after applying a high temperature corresponding to heat sealing, an electrolytic solution As a result of a detailed analysis of the resin composition exfoliation situation and the surface of the stainless steel foil, it was found that the polyolefin resin exfoliation situation differs depending on the oxide component and surface morphology of the stainless steel foil surface. . That is, an oxide film having a high Cr concentration diffused from the surface of the stainless steel foil can be obtained by heat-treating the stainless steel foil having a rough surface in a reducing atmosphere. It has been found that it has excellent adhesion to the composition and excellent heat resistance that can withstand high temperatures such as heat sealing, and has reached the present invention based on this finding. That is, the gist of the present invention is as follows.

(1)酸素を20mol%以上60mol%以下含み、かつ、CrをFeよりも多く含む酸化物皮膜を有するステンレス箔であって、該酸化物皮膜の表面における、圧延方向の算術平均粗さRal、又は、圧延方向に対して直角方向の算術平均粗さRacが、0.1μm以上で該酸化物皮膜の表面の最大深さRt未満であり、Rtが、0.8μm以上で該ステンレス箔厚さの50%以下であり、該酸化物皮膜の厚みが6nm以上150nm未満であることを特徴とする蓄電デバイス容器用ステンレス箔。   (1) A stainless steel foil having an oxide film containing 20 mol% or more and 60 mol% or less of oxygen and containing more Cr than Fe, the arithmetic average roughness Ral in the rolling direction on the surface of the oxide film, Or, the arithmetic average roughness Rac in the direction perpendicular to the rolling direction is 0.1 μm or more and less than the maximum depth Rt of the surface of the oxide film, and Rt is 0.8 μm or more and 50% of the thickness of the stainless steel foil. %, And the thickness of the oxide film is 6 nm or more and less than 150 nm.

(2)(1)記載の蓄電デバイス容器用ステンレス箔の両面もしくは片面に、ポリオレフィン系樹脂を積層してなることを特徴とする蓄電デバイス容器用樹脂被覆ステンレス箔。   (2) A resin-coated stainless steel foil for an electricity storage device container, comprising a polyolefin resin laminated on both surfaces or one surface of the stainless steel foil for an electricity storage device container according to (1).

(3)ステンレス箔の圧延方向の表面の算術平均粗さRals、又は、ステンレス箔の圧延方向に対して直角方向の表面に算術平均粗さRacsが、0.1μm以上で該ステンレス箔の表面の最大深さRt未満であり、Rtsが、0.8μm以上で該ステンレス箔厚さの50%以下であるステンレス箔を、600℃以上800℃未満の温度で、還元雰囲気下にて焼鈍することを特徴とする(1)に記載の蓄電デバイス容器用ステンレス箔の製造方法。   (3) The arithmetic average roughness Rals of the surface in the rolling direction of the stainless steel foil, or the arithmetic average roughness Racs on the surface perpendicular to the rolling direction of the stainless steel foil is 0.1 μm or more and the maximum surface of the stainless steel foil A stainless steel foil having a depth of less than Rt and an Rts of 0.8 μm or more and 50% or less of the thickness of the stainless steel foil is annealed in a reducing atmosphere at a temperature of 600 ° C. or more and less than 800 ° C. The manufacturing method of the stainless steel foil for electrical storage device containers as described in (1).

(4)前記焼鈍を、0.5分以上3分以下行うことを特徴とする(3)に記載の蓄電デバイス容器用ステンレス箔の製造方法。   (4) The method for producing a stainless steel foil for an electricity storage device container according to (3), wherein the annealing is performed for 0.5 minutes or more and 3 minutes or less.

(5)前記焼鈍が、水素と水の分圧比H2/H2Oが10以上、露点40℃未満の雰囲気で600〜800℃の温度での熱処理である(3)又は(4)に記載の蓄電デバイス容器用ステンレス箔の製造方法。 (5) The annealing is a heat treatment at a temperature of 600 to 800 ° C. in an atmosphere having a partial pressure ratio H 2 / H 2 O of hydrogen and water of 10 or more and a dew point of less than 40 ° C. (3) or (4) Manufacturing method of stainless steel foil for electricity storage device container.

(3)〜(5)のいずれかに記載の製造方法で得られた蓄電デバイス容器用ステンレス箔の両面もしくは片面に、ポリオレフィン系樹脂組成物のフィルムを加熱圧着して積層することを特徴とする蓄電デバイス容器用樹脂被覆ステンレス箔の製造方法。   (3) A film of a polyolefin-based resin composition is laminated by thermocompression bonding on both surfaces or one surface of a stainless steel foil for an electricity storage device container obtained by the production method according to any one of (3) to (5). A method for producing a resin-coated stainless steel foil for a power storage device container.

本発明によれば、クロム酸溶液などの薬液を使用した表面処理を施さずとも、蓄電デバイスに必須の電解液に浸漬してもポリオレフィン被覆樹脂が剥離しない強固な密着力を確保できる蓄電デバイス容器用ステンレス箔を提供できる。また、ヒートシールなどの高温でも全く劣化しない耐熱性、及び環境負荷の低減と経済性に優れ、製品不良が少ない蓄電デバイス容器用樹脂被覆ステンレス箔を提供することができ、蓄電デバイスの将来的な発展に寄与するものである。   According to the present invention, an electricity storage device container capable of ensuring a strong adhesion that does not peel off the polyolefin-coated resin even when immersed in an electrolyte solution essential to the electricity storage device without performing a surface treatment using a chemical solution such as a chromic acid solution. Stainless steel foil can be provided. In addition, it is possible to provide a resin-coated stainless steel foil for power storage device containers that has excellent heat resistance, such as heat sealing, which does not deteriorate at all, and is excellent in reducing environmental impact and economy, and with few product defects. It contributes to development.

蓄電デバイス容器用樹脂被覆ステンレス箔の断面構造図Cross-sectional structure of resin-coated stainless steel foil for power storage device containers

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1に本発明による蓄電デバイス容器用樹脂被覆ステンレス箔の典型的な断面構造図を示す。図1において、ステンレス鋼箔1の表面に酸化物皮膜2が形成され、さらにその表面にポリエチレンもしくはポリプロピレンなどのポリオレフィン樹脂層3が形成されている。   FIG. 1 shows a typical cross-sectional structure diagram of a resin-coated stainless steel foil for a power storage device container according to the present invention. In FIG. 1, an oxide film 2 is formed on the surface of a stainless steel foil 1, and a polyolefin resin layer 3 such as polyethylene or polypropylene is further formed on the surface.

本発明の蓄電デバイス容器用ステンレス箔では、蓄電デバイス容器用として使用するために、容器の内側となる片面にポリエチレン、もしくはポリプロピレン等のポリオレフィン系樹脂が被覆されて使用される(図1)が、クロム酸溶液などの薬液で表面処理に使用しなくても、ポリオレフィン樹脂とステンレス箔の界面に密着性と耐熱性優れ、ヒートシール温度では全く分解や劣化を起こさないものである。   In the stainless steel foil for an electricity storage device container of the present invention, in order to use it for an electricity storage device container, polyethylene or polypropylene-based polyolefin resin such as polypropylene is used on one side which is the inside of the container (FIG. 1), Even if it is not used for surface treatment with a chemical solution such as a chromic acid solution, it has excellent adhesion and heat resistance at the interface between the polyolefin resin and the stainless steel foil, and does not decompose or deteriorate at all at the heat seal temperature.

一方、少なくとも片面に樹脂を被覆した蓄電デバイス容器用金属箔として、特許文献1〜5に記載されている金属箔では、クロム酸溶液を使用して金属箔にクロメートなどのクロム化成処理を施すため、耐熱性が低くてヒートシールにより性能劣化の危険がある上に、環境負荷も大きい。さらに、工程が煩雑となるため経済性の悪化とゴミや異物の混入の恐れがある。   On the other hand, as metal foils for power storage device containers coated with resin on at least one side, the metal foils described in Patent Documents 1 to 5 use a chromic acid solution to perform chromium conversion treatment such as chromate on the metal foil. The heat resistance is low and there is a risk of performance deterioration due to heat sealing, and the environmental load is also large. Furthermore, since the process becomes complicated, there is a risk of deterioration of economic efficiency and contamination of dust and foreign matters.

また、特許文献6に記載されているステンレス鋼板では、上述のように蓄電デバイス容器の内側に被覆するポリエチレンやポリプロピレンとの密着には効果がない。また、特許文献6では、Siが酸化物として酸化皮膜中に濃化してしまうため、十分な密着性が確保できず、上述のように、蓄電デバイス容器用としては適していない。また、特許文献7〜9に記載されているステンレス鋼板では、本発明の酸化物皮膜とは成分が異なり、やはり十分な密着性を確保できず、本発明のような効果は全く得られない。   In addition, the stainless steel plate described in Patent Document 6 has no effect on adhesion with polyethylene or polypropylene covering the inside of the electricity storage device container as described above. Moreover, in patent document 6, since Si will concentrate in an oxide film as an oxide, sufficient adhesiveness cannot be ensured, and as above-mentioned, it is not suitable for an electrical storage device container. In addition, the stainless steel sheets described in Patent Documents 7 to 9 have different components from the oxide film of the present invention, and as a result, sufficient adhesion cannot be ensured, and the effects of the present invention are not obtained at all.

本発明に係るステンレス箔は、オーステナイト系(SUS301、304、316等)、フェライト系(SUS430等)、マルテンサイト系(SUS410等)のいずれでもよく、200μm以下の厚さの箔である。蓄電デバイス容器としての加工性と強度の観点から、ステンレス箔の厚さは、200μm以下10μm以上であることが好ましい。   The stainless steel foil according to the present invention may be any one of austenite (SUS301, 304, 316, etc.), ferrite (SUS430, etc.), and martensite (SUS410, etc.), and is a foil having a thickness of 200 μm or less. From the viewpoint of processability and strength as an electricity storage device container, the thickness of the stainless steel foil is preferably 200 μm or less and 10 μm or more.

本発明に係るステンレス箔の表面には、酸化物皮膜が存在する。該酸化物皮膜が、次のようであると、上述のような本発明の効果が得られる。   An oxide film is present on the surface of the stainless steel foil according to the present invention. When the oxide film is as follows, the effects of the present invention as described above can be obtained.

(i)前記酸化物皮膜は、酸素Oを20mol%以上60mol%以下含み、かつ、CrとFeを含む酸化物であり、CrをFeよりも多く含むものである。   (I) The oxide film is an oxide containing 20 mol% or more and 60 mol% or less of oxygen O and containing Cr and Fe, and contains more Cr than Fe.

(ii)前記酸化物皮膜の表面が、圧延方向の算術平均粗さRal、又は、圧延方向に対して直角方向の算術平均粗さRacが、0.1μm以上で前記酸化物皮膜の表面の最大深さRt未満である。   (Ii) When the surface of the oxide film has an arithmetic average roughness Ral in the rolling direction or an arithmetic average roughness Rac in the direction perpendicular to the rolling direction of 0.1 μm or more, the maximum depth of the surface of the oxide film Is less than Rt.

(iii )前記酸化物皮膜の表面の最大深さRtが、0.8μm以上で該ステンレス箔厚さの50%以下である。   (Iii) The maximum depth Rt of the surface of the oxide film is 0.8 μm or more and 50% or less of the thickness of the stainless steel foil.

(iv)前記酸化物皮膜の厚みが、6nm以上150nm未満である。   (Iv) The oxide film has a thickness of 6 nm or more and less than 150 nm.

ここで、Ral、及びRacとは、それぞれ、ステンレス箔コイル材の通板方向、及びその垂直方向におけるステンレス箔表面に有する酸化物皮膜の表面の算術平均粗さである。また、Rtとは、ステンレス箔表面に有する酸化物被膜の表面の粗さ曲線の最大断面高さである。これらの粗さは、触針式表面粗さ測定機、レーザー式表面粗さ測定機などを用いて容易に測定できる。本発明では、前記測定機のいずれか1つで得られた値が、上記本発明の範囲内にあれば、本発明の効果が得られるものである。   Here, Ral and Rac are the arithmetic mean roughness of the surface of the oxide film on the surface of the stainless steel foil in the sheet passing direction of the stainless steel foil coil material and the vertical direction thereof, respectively. Rt is the maximum cross-sectional height of the roughness curve of the surface of the oxide film on the stainless steel foil surface. These roughnesses can be easily measured using a stylus type surface roughness measuring machine, a laser type surface roughness measuring machine, or the like. In the present invention, the effect of the present invention can be obtained if the value obtained by any one of the measuring machines is within the scope of the present invention.

また、上記(ii)及び(iii )におけるRal、Rac、Rtの上限の設定に関し、Ral、Racは理論上Rtより大きくなることはなく、Rtをステンレス箔の厚さの50%以下としたのは、ステンレス箔厚さの50%より大きくなると、材料強度や加工性に悪影響を及ぼすため、好ましくないからである。具体的な例で示すと、厚さ100μmのステンレス箔の表面が、Rtが50μmより大きくなるまで粗くなると、材料厚みが50μm以下になる箇所が発生し、そこが強度低下、破断、破壊の起点と成り、ステンレス箔の基本性能が損なわれる。よって、このような粗さにすると、悪影響が非常に大きい。   In addition, regarding the setting of the upper limits of Ral, Rac, and Rt in the above (ii) and (iii), Ral and Rac are not theoretically larger than Rt, and Rt was set to 50% or less of the thickness of the stainless steel foil. This is because if it exceeds 50% of the thickness of the stainless steel foil, the material strength and workability are adversely affected. As a specific example, when the surface of a stainless steel foil with a thickness of 100 μm becomes rough until Rt becomes larger than 50 μm, a part where the material thickness becomes 50 μm or less occurs, which is the starting point of strength reduction, fracture, and fracture As a result, the basic performance of the stainless steel foil is impaired. Therefore, when such a roughness is used, the adverse effect is very large.

また、(i)における酸化物皮膜中のCr原子、Fe原子、O原子のmol%(原子%)は、X線光電子分光分析(通称XPS、ESCA)、オージェ電子分光分析(通称AES)、高周波グロー放電発光表面分析(通称GDS)などの一般的な元素分析手法により、容易に測定できる。本発明では、前記分析方法のいずれか1つで得られた値が、上記本発明の範囲内にあれば、本発明の効果が得られるものである。   In addition, the mol% (atomic%) of Cr, Fe, and O atoms in the oxide film in (i) is X-ray photoelectron spectroscopy (commonly known as XPS, ESCA), Auger electron spectroscopy (commonly known as AES), high frequency It can be easily measured by general elemental analysis techniques such as glow discharge emission surface analysis (commonly known as GDS). In the present invention, the effect of the present invention can be obtained if the value obtained by any one of the analysis methods is within the scope of the present invention.

また、(iv)における酸化物被膜の厚さについては、これらの元素分析を深さ方向にアルゴンなどのイオンビームでスパッタリングしながら酸素原子(O原子)のmol%(原子%)を測定し、酸素濃度の微分プロファイルにおいて、ピークの両側に半値があるときはピーク半値幅、もしくは表面側は半値より高濃度でピークの片方のみに半値があるときは最表面から半値までの間の距離を、本発明における酸化物皮膜の厚みとした。   Moreover, about the thickness of the oxide film in (iv), mol% (atomic%) of an oxygen atom (O atom) is measured, sputtering these elemental analysis by ion beams, such as argon, in the depth direction, In the differential profile of oxygen concentration, when there are half-values on both sides of the peak, the peak half-width, or when the surface side is higher than half-value and when only one of the peaks has half-value, the distance between the outermost surface and half-value, It was set as the thickness of the oxide film in the present invention.

上記(i)に係る構成要件に関し、その理由は、Cr原子を多く含む酸化物皮膜は、ポリオレフィン系樹脂との化学的相互作用が強く、電解液中でもポリオレフィン系樹脂と良好な密着力を発揮するため、蓄電デバイス容器用途に好適であるからである。よって、反対に、Cr原子が少なくFe原子が多い酸化物皮膜は、Fe原子よりCr原子を多く含む酸化物皮膜のように良好な密着力が発揮できないため蓄電デバイス容器用途に適さない。酸化物皮膜に含まれるCrは環境負荷低減の問題上、3価であることが必須であるため、密着力を考慮すると、酸素が60mol%、Cr原子が40mol%、Fe原子が0mol%であることが理想であるが、実質は格子欠陥による酸素の欠乏やFe原子が存在しているため、酸素が20〜60mol%、Cr原子が10〜60mol%、Fe原子はCr原子よりも少なくかつ0mol%以上30mol%未満の範囲内で存在する。酸素が20mol%よりも少ないと格子欠陥などによる酸素欠乏が著しく、酸化物皮膜としての密着力向上などの性能が得られづらく、好ましくない。酸素が60mol%よりも多いと、Crが6価となっている可能性があり、好ましくない。酸素が30〜60mol%、Cr原子が15〜40mol%、Fe原子はCr原子よりも少なくかつ0〜20mol%、さらには0〜10mol%の範囲内で存在することがより好ましい。   Regarding the structural requirements related to (i) above, the reason is that the oxide film containing a large amount of Cr atoms has a strong chemical interaction with the polyolefin resin and exhibits good adhesion to the polyolefin resin even in the electrolyte. Therefore, it is suitable for the electricity storage device container application. Therefore, on the contrary, an oxide film having few Cr atoms and many Fe atoms is not suitable for an electrical storage device container because it cannot exhibit good adhesion as an oxide film containing more Cr atoms than Fe atoms. Since Cr contained in the oxide film is indispensable to be trivalent due to the problem of reducing environmental burden, oxygen is 60 mol%, Cr atom is 40 mol%, and Fe atom is 0 mol%, considering adhesion. Ideally, however, oxygen is deficient due to lattice defects and Fe atoms are present, so oxygen is 20-60 mol%, Cr atoms are 10-60 mol%, Fe atoms are less than Cr atoms and 0 mol % Or more and less than 30 mol%. If the oxygen content is less than 20 mol%, oxygen deficiency due to lattice defects or the like is remarkable, and it is difficult to obtain performance such as improved adhesion as an oxide film. If there is more oxygen than 60 mol%, Cr may be hexavalent, which is not preferable. More preferably, oxygen is 30 to 60 mol%, Cr atoms are 15 to 40 mol%, Fe atoms are less than Cr atoms, and are present in the range of 0 to 20 mol%, and more preferably 0 to 10 mol%.

さらに、前記酸化物皮膜の表面を、上記(ii)と(iii )で規定するような表面粗さにすることで、ポリオレフィン系樹脂が表面の凹凸に食い込むように被覆されるため、より強固な密着を促進し、Fe原子よりCr原子を多く含む酸化物皮膜による化学的相互作用とによって優れた相乗効果をもたらすため、蓄電デバイス容器用途において好ましい。具体的には、前記Ral又はRacが、0.1μm以上である必要があり、前記RalとRacとの両方が、0.1μm未満であると、ポリオレフィン系樹脂との密着性が十分得られない。また、RalとRacの上限は、理論上(幾何学上)、最大深さRtを超えることはあり得ないので、最大深さRt未満とした。前記Ral又はRacが、0.4〜2.0μmであることが好ましい。   Furthermore, since the surface of the oxide film is made to have a surface roughness as defined in the above (ii) and (iii), the polyolefin-based resin is coated so as to bite into the irregularities on the surface. The adhesion is promoted, and an excellent synergistic effect is brought about by the chemical interaction by the oxide film containing more Cr atoms than Fe atoms. Specifically, Ral or Rac needs to be 0.1 μm or more, and if both Ral and Rac are less than 0.1 μm, sufficient adhesion to a polyolefin resin cannot be obtained. In addition, the upper limit of Ral and Rac is theoretically (geometrically) not allowed to exceed the maximum depth Rt, and thus is set to be less than the maximum depth Rt. The Ral or Rac is preferably 0.4 to 2.0 μm.

また、前記Rtが、0.8μm以上である必要もあり、前記Rtが、0.8μm未満であっても、ポリオレフィン系樹脂との密着性が十分得られない。また、Rtがステンレス箔厚さの50%を超えると、ステンレス箔が強度低下及びプレス加工で破断して製造性が不適となる。   Further, the Rt needs to be 0.8 μm or more, and even when the Rt is less than 0.8 μm, sufficient adhesion with a polyolefin resin cannot be obtained. On the other hand, when Rt exceeds 50% of the thickness of the stainless steel foil, the stainless steel foil is deteriorated in strength and broken by press working, resulting in unsuitability for productivity.

また、上記(iv)に係る構成要件に関し、前記酸化物皮膜は、適正な厚さであることが好ましく、具体的には、6nm以上150nm未満である。6nm未満だと、十分な密着力を発揮出来なかったり、蓄電デバイス容器の実使用上、安定的に生産することができないので好ましくない。150nm以上だと、ステンレス特有のテンパーカラーが不安定に発生して、審美性に悪影響を及ぼしたり、製品不良を誘発したりするので好ましくない。10〜100nmであることが好ましい。   In addition, with respect to the constituent requirement according to (iv) above, the oxide film preferably has an appropriate thickness, and specifically, is 6 nm or more and less than 150 nm. If the thickness is less than 6 nm, it is not preferable because sufficient adhesion cannot be exhibited, and stable production cannot be achieved in actual use of the electricity storage device container. If it is 150 nm or more, the temper color peculiar to stainless steel is unstable, which adversely affects aesthetics and induces product defects. It is preferably 10 to 100 nm.

また、本発明の蓄電デバイス容器用ステンレス箔には、下地処理をしておいても良い。下地処理をすることにより、さらに効率的に本発明の効果を発現出来、ポリオレフィン系樹脂及び容器外側に被覆する樹脂組成物とステンレス箔との化学的な密着力を増加できる。具体的には、必要に応じてステンレス箔表面の油分、スケール除去処理をしたり、又はその後、Cr+6を使用しないノンクロメート化成処理する方法が下地処理として挙げられる。スケール除去処理法を例示すると、酸洗、サンドブラスト処理、グリッドブラスト処理等、化成処理法を例示するとCr+6を使用しないノンクロメート処理、ストライクめっき処理、エポキシプライマー処理、シランカップリング処理、チタンカップリング処理等が挙げられる。 In addition, the stainless steel foil for the electricity storage device container of the present invention may be subjected to a base treatment. By performing the base treatment, the effects of the present invention can be more efficiently exhibited, and the chemical adhesion between the polyolefin resin and the resin composition coated on the outside of the container and the stainless steel foil can be increased. Specifically, a method of removing the oil and the scale on the surface of the stainless steel foil as necessary, or thereafter performing a non-chromate chemical conversion treatment without using Cr +6 can be mentioned as the base treatment. Examples of scale removal treatment methods include pickling, sand blast treatment, grid blast treatment, and chemical conversion treatment methods. Non-chromate treatment without using Cr +6 , strike plating treatment, epoxy primer treatment, silane coupling treatment, titanium cup, etc. A ring process etc. are mentioned.

本発明の蓄電デバイス容器用ステンレス箔は、その両面もしくは片面に、ポリオレフィン系樹脂を積層して蓄電デバイス容器用樹脂被覆ステンレス箔とすることができる。   The stainless steel foil for an electricity storage device container of the present invention can be made into a resin-coated stainless steel foil for an electricity storage device container by laminating a polyolefin resin on both sides or one side.

前記ポリオレフィン系樹脂とは、下記(式1)の繰り返し単位を有する樹脂を主成分にした樹脂組成物である。ここで、主成分とは、(式1)の繰り返し単位を有する樹脂が、50質量%以上を構成することである。   The polyolefin-based resin is a resin composition mainly composed of a resin having a repeating unit of the following (formula 1). Here, the main component is that the resin having the repeating unit of (Formula 1) constitutes 50% by mass or more.

-CR1H-CR2R3- (式1)
(式中、R1、R2は各々独立に炭素数1〜12のアルキル基又は水素を、R3は炭素数1〜12のアルキル基、アリール基又は水素を示す。)
本発明に係るポリオレフィンは、これらの構成単位の単独重合体でも、2種類以上の共重合体であってもよい。繰り返し単位は、5個以上化学的に結合していることが好ましい。5個未満では高分子効果が発揮し難い。繰り返し単位を例示すると、プロペン、1-ブテン、1-ペンテン、4-メチル-1ペンテン、1-ヘキセン、1−オクテン、1-デセン、1-ドデセン等の末端オレフィンを付加重合した時に現われる繰り返し単位、イソブテンを付加したときの繰り返し単位等の脂肪族オレフィンや、スチレンモノマーの他に、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、o-エチルスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン等のアルキル化スチレン、モノクロロスチレン等のハロゲン化スチレン、末端メチルスチレン等のスチレン系モノマー付加重合体単位等の芳香族オレフィン等が挙げられる。例示すると、末端オレフィンの単独重合体である低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、架橋型ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリへキセン、ポリオクテニレン、ポリイソプレン、ポリブタジエン等が挙げられる。上記単位の共重合体を例示すると、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-プロピレン-ヘキサジエン共重合体、エチレン-プロピレン-5-エチリデン-2-ノルボ-ネン共重合体等の脂肪族ポリオレフィンや、スチレン系共重合体等の芳香族ポリオレフィン等が挙げられるが、これらに限定されるものではなく、上記の繰り返し単位を満足していればよい。また、ブロック共重合体でもランダム共重合体でもよい。また、これらの樹脂は単独もしくは2種類以上混合して使用してもよい。
-CR 1 H-CR 2 R 3- (Formula 1)
(In the formula, R 1 and R 2 each independently represents an alkyl group having 1 to 12 carbon atoms or hydrogen, and R 3 represents an alkyl group having 1 to 12 carbon atoms, an aryl group or hydrogen.)
The polyolefin according to the present invention may be a homopolymer of these structural units or two or more kinds of copolymers. It is preferable that five or more repeating units are chemically bonded. If it is less than 5, the polymer effect is difficult to exert. Examples of repeating units include repeating units appearing when addition polymerization of terminal olefins such as propene, 1-butene, 1-pentene, 4-methyl-1pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, etc. In addition to aliphatic olefins such as repeating units when isobutene is added, and styrene monomer, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, o-ethyl Aromatic olefins such as styrene monomer addition polymer units such as alkylated styrene such as styrene, ot-butylstyrene, m-t-butylstyrene, pt-butylstyrene, halogenated styrene such as monochlorostyrene, and terminal methylstyrene Is mentioned. For example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, cross-linked polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyoctenylene, polyisoprene, polybutadiene, which are homopolymers of terminal olefins Etc. Examples of the copolymer of the above unit include ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-propylene-hexadiene copolymer, ethylene-propylene-5-ethylidene-2-norbornene copolymer, etc. Aliphatic polyolefins, aromatic polyolefins such as styrene copolymers, and the like, but are not limited thereto, as long as the above repeating units are satisfied. Further, it may be a block copolymer or a random copolymer. These resins may be used alone or in combination of two or more.

取扱性、腐食原因物質のバリア性から最も好ましいのは、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、架橋型ポリエチレン、ポリプロピレンもしくはこれらの2種類以上の混合物である。   Most preferable from the viewpoints of handling properties and barrier properties of corrosion-causing substances are low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, cross-linked polyethylene, polypropylene or a mixture of two or more of these.

また、本発明に係るポリオレフィンは、上記のオレフィン単位が主成分であればよく、上記の単位の置換体であるビニルモノマー、極性ビニルモノマー、ジエンモノマーがモノマー単位もしくは樹脂単位で共重合されていてもよい。共重合組成としては、上記単位に対して50質量%以下、好ましくは30質量%以下である。50質量%超では腐食原因物質に対するバリア性等のオレフィン系樹脂としての特性が低下する可能性がある。極性ビニルモノマーの例としては、アクリル酸、アクリル酸メチル、アクリル酸エチル等のアクリル酸誘導体、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸誘導体、アクリロニトリル、無水マレイン酸、無水マレイン酸のイミド誘導体、塩化ビニル等が挙げられる。   In addition, the polyolefin according to the present invention only needs to have the olefin unit as a main component, and a vinyl monomer, a polar vinyl monomer, and a diene monomer, which are substitutes of the unit, are copolymerized in a monomer unit or a resin unit. Also good. The copolymer composition is 50% by mass or less, preferably 30% by mass or less, based on the above unit. If it exceeds 50% by mass, properties as an olefin resin such as a barrier property against a causative substance may be deteriorated. Examples of polar vinyl monomers include acrylic acid derivatives such as acrylic acid, methyl acrylate and ethyl acrylate, methacrylic acid derivatives such as methacrylic acid, methyl methacrylate and ethyl methacrylate, acrylonitrile, maleic anhydride and maleic anhydride. Examples thereof include imide derivatives and vinyl chloride.

さらに、本発明で使用するポリオレフィン系樹脂には、目的に応じて、酸化防止剤、熱安定剤、光安定剤、離型剤、滑剤、顔料、難燃剤、可塑剤、帯電防止剤、抗菌抗カビ剤等を適正量添加することも可能である。   Further, the polyolefin resin used in the present invention includes an antioxidant, a heat stabilizer, a light stabilizer, a mold release agent, a lubricant, a pigment, a flame retardant, a plasticizer, an antistatic agent, an antibacterial agent, depending on the purpose. It is also possible to add an appropriate amount of a mold agent or the like.

本発明に係るポリオレフィン系樹脂は、単一層でも複数層でも構わない。ポリエステル、ポリアミド、ポリイミド等の異なる樹脂を被覆した複数層でも構わない。   The polyolefin resin according to the present invention may be a single layer or a plurality of layers. A plurality of layers coated with different resins such as polyester, polyamide, and polyimide may be used.

ポリオレフィン系樹脂は、単一層であっても複数層であっても、全層厚みで5〜200μmの範囲が好ましく、さらに好ましくは10〜150μmの範囲である。5μm未満では加工性、意匠性、絶縁性等の機能の付与が不十分である場合があり、200μmより厚いと、加工性が悪くなる場合がある等、蓄電デバイス容器用部材として不適切となる恐れがあり、経済メリットも発現し難い。また、5μm未満では、ヒートシールで容器成形した際のシール部の強度が不足し、200μmを超えると、シール部からの水分透過が大きくなって、蓄電デバイスに悪影響を及ぼし易い。また、蓄電デバイス容器の最外面に、ポリオレフィン、ポリエステル、ポリアミド、ポリイミド等の樹脂を被覆しても構わない。また、その最外層の被覆樹脂に、アクリルフィルム等を積層して耐候性を向上したり、ハードコートフィルムを積層、もしくはハードコート剤を塗布して表面硬度を向上したり、印刷層を設けて意匠性を向上したり、コロナ処理を施して印刷性を向上したり、あるいは難燃、可塑、帯電防止、抗菌抗カビ層を積層することもできる。   Whether the polyolefin resin is a single layer or a plurality of layers, the total thickness is preferably in the range of 5 to 200 μm, more preferably in the range of 10 to 150 μm. If it is less than 5 μm, functions such as processability, designability, and insulation may not be sufficiently imparted, and if it is thicker than 200 μm, the processability may be deteriorated. There is a fear and it is difficult to realize economic benefits. If the thickness is less than 5 μm, the strength of the seal portion when the container is molded by heat sealing is insufficient, and if it exceeds 200 μm, moisture permeation from the seal portion increases, which tends to adversely affect the electricity storage device. Moreover, you may coat | cover resin, such as polyolefin, polyester, polyamide, a polyimide, on the outermost surface of an electrical storage device container. In addition, an acrylic film or the like is laminated on the outermost coating resin to improve weather resistance, a hard coat film is laminated, or a hard coat agent is applied to improve surface hardness, or a printing layer is provided. Designability can be improved, corona treatment can be applied to improve printability, or a flame retardant, plastic, antistatic, antibacterial and antifungal layer can be laminated.

本発明の蓄電デバイス容器用ステンレス箔は、例えば、次のようにして製造される。特に、前記ステンレス箔の酸化物皮膜は、例えば、次のようにして形成されるものである。   The stainless steel foil for an electricity storage device container of the present invention is manufactured, for example, as follows. In particular, the oxide film of the stainless steel foil is formed, for example, as follows.

次のようなステンレス箔を用いて、前記酸化物皮膜を形成する。   The oxide film is formed using the following stainless steel foil.

(I)ステンレス箔の圧延方向の表面の算術平均粗さRals、又は、ステンレス箔の圧延方向に対して直角方向の表面に算術平均粗さRacsが、0.1μm以上で該ステンレス箔の表面の最大深さRts未満である。ここで、Rals及びRacsが、0.1μm未満では、本発明に係る、CrをFeよりも多く含む酸化物被膜が得られない。また、Rals及びRacsの上限は、最大深さRtsを超えることはあり得ないので、最大深さRts未満とした。   (I) The arithmetic average roughness Rals of the surface in the rolling direction of the stainless steel foil, or the arithmetic average roughness Racs on the surface perpendicular to the rolling direction of the stainless steel foil is 0.1 μm or more and the maximum surface of the stainless steel foil The depth is less than Rts. Here, when Rals and Racs are less than 0.1 μm, an oxide film containing more Cr than Fe according to the present invention cannot be obtained. Further, the upper limit of Rals and Racs cannot exceed the maximum depth Rts, and therefore is set to be less than the maximum depth Rts.

(II)ステンレス箔の表面の最大深さRtsが、0.8μm以上で該ステンレス箔厚さの50%以下である。ここで、Rtsが、0.8μm未満では、本発明に係る、CrをFeよりも多く含む酸化物被膜が得られない。また、Rtsがステンレス箔厚さの50%を超えると、ステンレス箔が強度低下及びプレス加工で破断して製造性が不適となる。   (II) The maximum depth Rts of the surface of the stainless steel foil is 0.8 μm or more and 50% or less of the stainless steel foil thickness. Here, when Rts is less than 0.8 μm, an oxide film containing more Cr than Fe according to the present invention cannot be obtained. On the other hand, if Rts exceeds 50% of the thickness of the stainless steel foil, the stainless steel foil is deteriorated in strength and is broken by press working, so that the productivity becomes unsuitable.

上記のステンレス箔を、600℃以上800℃未満の温度で、還元雰囲気下にて焼鈍することで、前記酸化物皮膜を有するステンレス箔を製造できる。   The stainless steel foil having the oxide film can be produced by annealing the stainless steel foil at a temperature of 600 ° C. or higher and lower than 800 ° C. in a reducing atmosphere.

ステンレス鋼の主成分は、FeとCrであるため、ステンレス鋼表面の酸化物皮膜は、Fe原子とCr原子とが多く含まれる酸化物になる傾向があるが、それだけでは本発明に係る酸化物皮膜を形成することができない。上記(I)と(II)で規定するような表面粗さに加工されたステンレス箔を用いることで、ステンレス箔表面が加工硬化して原子の拡散係数が変化し、還元雰囲気での熱処理では、Feよりも酸化されやすいCrが、ステンレス箔の表面に拡散しやすくなり、本発明に係る酸化物皮膜を形成できる。即ち、当該ステンレス箔の粗さでは、それ以下の粗さのステンレス箔と比較して、FeよりもCrが多い酸化物被膜が形成される。さらに、上記(I)と(II)で規定するようなステンレス箔の粗さでは、それ以下の粗さのステンレス箔と比較して表面積が大きいため、表面の酸化物量が多く厚くなり、安定的な皮膜となるため、好ましい。   Since the main components of stainless steel are Fe and Cr, the oxide film on the surface of stainless steel tends to be an oxide containing a large amount of Fe atoms and Cr atoms. A film cannot be formed. By using a stainless steel foil processed to have a surface roughness as defined in (I) and (II) above, the surface of the stainless steel foil is work hardened and the diffusion coefficient of atoms changes, and in the heat treatment in a reducing atmosphere, Cr, which is more easily oxidized than Fe, becomes easier to diffuse on the surface of the stainless steel foil, and the oxide film according to the present invention can be formed. That is, in the roughness of the stainless steel foil, an oxide film containing more Cr than Fe is formed as compared with a stainless steel foil having a roughness less than that. Further, the roughness of the stainless steel foil as defined in the above (I) and (II) has a large surface area compared to the stainless steel foil having a roughness less than that, so that the amount of oxide on the surface increases and becomes stable. It is preferable because it becomes a thick film.

また、本発明に係る酸化物皮膜は、クロメートのような水和酸化物ではないため、ヒートシール温度、及び、それよりも高温の200〜300℃では脱酸素反応による水和酸化物の低分子化は起こらない。   In addition, since the oxide film according to the present invention is not a hydrated oxide such as chromate, the low molecular weight of the hydrated oxide due to the deoxygenation reaction at a heat sealing temperature and a temperature higher than 200 to 300 ° C. Does not happen.

また、ステンレス箔の表面を粗くする方法としては、特に限定されるものではないが、公知技術のヘアライン研磨を使用したり、ステンレス鋼の圧延時に表面が粗い圧延ロールを使用するなどが挙げられる。   In addition, the method for roughening the surface of the stainless steel foil is not particularly limited, and examples thereof include using a known technique of hairline polishing, and using a rolling roll having a rough surface when stainless steel is rolled.

また、Cr原子がFe原子よりも多い酸化物皮膜を効率的に形成する方法は、特に限定されるものではないが、上述のように、還元雰囲気で熱処理することが好ましい。例えば、水素と窒素の分圧比(モル比)が75:25程度で、水素と水の分圧比H2/H2Oが10以上、露点40℃未満の雰囲気で600〜800℃の温度で0.5〜3分の熱処理である。前記条件では、好ましくは600〜700℃で1〜3分の熱処理である。これよりも温度が低い、もしくは時間が短いと還元が不十分でCr原子が十分に表面に拡散せず、Cr原子がFe原子よりも少ない酸化物皮膜となる場合があり、電解液中でのポリオレフィン樹脂の良好な密着力を発現することができない場合がある。また、前記温度が高すぎると、もしくは前記時間が長すぎると、ステンレス鋼中のCr原子が必要以上に表面に拡散し、母材でCrが欠乏する状態となって錆が発生し易く、また、酸化物皮膜が厚くなり過ぎてステンレス特有のテンパーカラーが不安定に発生して、審美性に悪影響を及ぼしたり、製品不良を誘発したりするので好ましくない場合がある。上記の温度と時間を超えた過剰な熱処理にしないようにするのが好ましいが、形成される酸化物皮膜の厚さが150nm以上になるような過剰な熱処理をしないようにするのが好ましいという目安もある。即ち、形成される酸化皮膜の厚さが、150nm未満となるように熱処理することである。形成される酸化物皮膜の厚みが150nm以上になるような熱処理では、必要以上にCr原子が表面に拡散し、母材でCrが欠乏する状態となり、好ましくない場合がある。また、水素と水の分圧比H2/H2Oが106より大きいの極々強い還元雰囲気では、酸化物皮膜の形成に悪影響を及ぼすので、好ましくない場合がある。上記の水素と窒素の分圧比は、還元雰囲気であれば特に限定するものではないが、製造上の観点から、5:95〜100:0の範囲が好ましい。水素と窒素の分圧比は、20:80〜80:20の範囲がより好ましい。水素と水の分圧比H2/H2Oは50〜106がより好ましい。露点は10℃以下がより好ましい。 Further, the method for efficiently forming an oxide film having more Cr atoms than Fe atoms is not particularly limited, but it is preferable to perform heat treatment in a reducing atmosphere as described above. For example, the partial pressure ratio (molar ratio) of hydrogen to nitrogen is about 75:25, the partial pressure ratio H 2 / H 2 O of hydrogen to water is 10 or more, and the temperature is 600 to 800 ° C. in an atmosphere with a dew point of less than 40 ° C. ~ 3 minutes heat treatment. Under the above conditions, the heat treatment is preferably performed at 600 to 700 ° C. for 1 to 3 minutes. If the temperature is lower than this, or if the time is short, the reduction is insufficient and Cr atoms do not diffuse sufficiently to the surface, which may result in an oxide film with fewer Cr atoms than Fe atoms. There are cases where good adhesion of polyolefin resin cannot be expressed. If the temperature is too high, or if the time is too long, Cr atoms in the stainless steel will diffuse more than necessary on the surface, and Cr will be deficient in the base metal, and rust will easily occur. In some cases, the oxide film becomes too thick and the temper color specific to stainless steel is unstable, which adversely affects aesthetics and induces product defects. It is preferable to avoid excessive heat treatment exceeding the above temperature and time, but it is preferable to avoid excessive heat treatment so that the thickness of the oxide film to be formed is 150 nm or more There is also. That is, heat treatment is performed so that the thickness of the formed oxide film is less than 150 nm. In the heat treatment in which the thickness of the formed oxide film is 150 nm or more, Cr atoms diffuse to the surface more than necessary, and the base material becomes deficient in Cr, which may not be preferable. In addition, an extremely strong reducing atmosphere having a hydrogen / water partial pressure ratio H 2 / H 2 O of greater than 10 6 may adversely affect the formation of an oxide film, which may be undesirable. The partial pressure ratio of hydrogen and nitrogen is not particularly limited as long as it is a reducing atmosphere, but is preferably in the range of 5:95 to 100: 0 from the viewpoint of production. The partial pressure ratio of hydrogen and nitrogen is more preferably in the range of 20:80 to 80:20. Partial pressure ratio H 2 / H 2 O of hydrogen and water from 50 to 10 6 is more preferable. The dew point is more preferably 10 ° C or lower.

蓄電デバイス容器用ステンレス箔の両面もしくは片面に、ポリオレフィン系樹脂を積層してなる蓄電デバイス容器用樹脂被覆ステンレス箔を製造する方法は、特に限定されるものではないが、蓄電デバイス容器用ステンレス箔の両面もしくは片面に、次のような方法で被覆することが挙げられる。(1)事前にポリオレフィン系樹脂を押し出しもしくは成形したシート又はフィルムをステンレス箔に熱圧着する方法。(2)事前にポリオレフィン系樹脂を押し出しもしくは成形したシート又はフィルムをステンレス箔にドライラミネートなど接着剤を介して被覆する方法。(1)、(2)の場合、ポリオレフィン系樹脂シート又はフィルムを1軸もしくは2軸方向に延伸しても、複数層に積層しておいてもよい。(3)ポリオレフィン系樹脂をTダイス付きの押し出し機で溶融混練してフィルム状にし、押し出し直後にステンレス箔に熱圧着する方法。この場合、複数層の同時押出しでも構わない。(4)ポリオレフィン系樹脂を溶融、もしくは溶媒に溶解してバーコーター、ロールコーター、スピンコーター、又はスプレー等でステンレス箔にコーティングする方法。(5)溶融、もしくは溶媒に溶解したポリオレフィン系樹脂にステンレス箔を浸漬する方法等により、被覆することが可能である。中でも、作業能率から好ましいのは、上記(1)、(2)及び(3)の方法である。   The method for producing a resin-coated stainless steel foil for a power storage device container obtained by laminating a polyolefin-based resin on both sides or one side of the stainless steel foil for a power storage device container is not particularly limited. Covering both sides or one side by the following method can be mentioned. (1) A method in which a sheet or film obtained by extruding or molding a polyolefin resin in advance is thermocompression bonded to a stainless steel foil. (2) A method in which a sheet or film obtained by extruding or molding a polyolefin-based resin in advance is coated on a stainless steel foil with an adhesive such as dry lamination. In the case of (1) and (2), the polyolefin resin sheet or film may be stretched uniaxially or biaxially or may be laminated in a plurality of layers. (3) A method in which a polyolefin resin is melt-kneaded with an extruder equipped with a T-die to form a film, and is thermocompression bonded to the stainless steel foil immediately after extrusion. In this case, simultaneous extrusion of a plurality of layers may be performed. (4) A method in which a polyolefin resin is melted or dissolved in a solvent and coated on a stainless steel foil with a bar coater, roll coater, spin coater, spray or the like. (5) It can be coated by a method of immersing a stainless steel foil in a polyolefin resin melted or dissolved in a solvent. Among these, the methods (1), (2) and (3) are preferable from the viewpoint of work efficiency.

また、(1)や(3)の方法における具体的に熱圧着の条件を例示すると、ポリオレフィン系樹脂のフィルムは20〜200μmの厚みであり、100〜200℃の温度範囲で0.1〜2.0MPaに加圧して0.1〜120秒保持することなどが挙げられる。ポリオレフィン系樹脂のフィルムが30〜100μmの厚み、150〜180℃の温度範囲で0.5〜1.5MPaに加圧して0.2〜60秒保持することがより好ましい。   Moreover, when the conditions of thermocompression bonding in the methods (1) and (3) are specifically exemplified, the polyolefin resin film has a thickness of 20 to 200 μm, and is 0.1 to 2.0 MPa in a temperature range of 100 to 200 ° C. And pressurizing and holding for 0.1 to 120 seconds. More preferably, the polyolefin resin film is pressurized to 0.5 to 1.5 MPa at a thickness of 30 to 100 μm and a temperature range of 150 to 180 ° C. and held for 0.2 to 60 seconds.

また、ポリオレフィン系樹脂被覆ステンレス箔の容器形状への成形方法はプレス加工、しごき加工、絞り加工等、従来の方法が使用でき、特に限定されるものではない。容器の形状は直方体の角筒形状、円筒形状等、特に限定されるものではない。また、容器としての使用においては蓋と底とを合わせて密閉するのが好ましい。この際、プレス加工等で絞られたステンレス箔同士を貼り合せても良いし、片方だけ絞られていても良い。また、密閉する方法としては従来の接着方法を使用することができ、具体的には接着剤を使用して接着する方法、ヒートシールにより熱融着で接着する方法等が挙げられ、特に限定されるものではないが、製造性の面からヒートシールが好ましい。ヒートシールする場合には、ポリオレフィン系樹脂がラミネートされている面同士を合わせるのが好ましい。   In addition, the method for forming the polyolefin resin-coated stainless steel foil into a container shape is not particularly limited, and conventional methods such as pressing, ironing, and drawing can be used. The shape of the container is not particularly limited, such as a rectangular parallelepiped rectangular tube shape or a cylindrical shape. Further, in use as a container, it is preferable to seal the lid and the bottom together. At this time, stainless steel foils squeezed by pressing or the like may be bonded together, or only one of them may be squeezed. Further, as a method of sealing, a conventional bonding method can be used, and specifically, a method of bonding using an adhesive, a method of bonding by heat fusion by heat sealing, and the like are specifically limited. Although not intended, heat sealing is preferred in terms of manufacturability. In the case of heat sealing, it is preferable to match the surfaces on which the polyolefin resin is laminated.

次に、実施例及び比較例に基づいて、本発明をより具体的に説明するが、本発明は下記実施例にのみ限定されるものではない。   Next, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.

本実施例及び比較例に使用するステンレス箔は、全て、厚みが100μmのSUS304を使用した。   All the stainless steel foils used in the present examples and comparative examples were SUS304 having a thickness of 100 μm.

実施例1〜4、7、9〜14、比較例1、2、4〜7のステンレス箔は、JIS G 4305に準拠し、砥粒粗さ180番の研磨ベルトを用いて、表面をヘアライン研磨した。実施例5のステンレス箔は、JIS G 4305に準拠し、つや消しロールを用いて最終仕上げ圧延をした。実施例6のステンレス箔は同じつや消しロールを用いて実施例5のステンレス箔の圧延方向とは垂直方向に最終仕上げ圧延をした。実施例8のステンレス箔は、上記ヘアライン研磨したステンレス箔を、さらに粗さ100番の紙やすりを用いて2000往復して擦り、粗い表面仕上げをした。比較例3のステンレス箔は、JIS R 6001のNo.8仕上げにより、表面を鏡面にした。比較例8のステンレス箔は、上記ヘアライン研磨したステンレス箔を、さらに粗さ100番の紙やすりを用いて3000往復して擦り、粗い表面仕上げをした。   The stainless steel foils of Examples 1 to 4, 7, 9 to 14 and Comparative Examples 1, 2, and 4 to 7 are based on JIS G 4305, and the surface is hairline polished using a polishing belt having an abrasive grain number of 180. did. The stainless steel foil of Example 5 was subjected to final finish rolling using a matte roll in accordance with JIS G 4305. The stainless steel foil of Example 6 was subjected to final finish rolling in the direction perpendicular to the rolling direction of the stainless steel foil of Example 5 using the same matte roll. The stainless steel foil of Example 8 was rubbed with the hairline-polished stainless steel foil 2000 times using a paper sand having a roughness of No. 100 to give a rough surface finish. The stainless steel foil of Comparative Example 3 was mirror-finished by No. 8 finish of JIS R 6001. The stainless steel foil of Comparative Example 8 was rubbed with the hairline-polished stainless steel foil 3,000 times using a paper sand having a roughness of 100 to give a rough surface finish.

ステンレス箔コイル材の通板方向とその垂直方向におけるステンレス箔表面の算術平均粗さRals、Racs、及び粗さの最大深さRtsは、触針式表面粗さ測定機(株式会社東京精密製、Surfcom 575A-3D)で、標準ピックアップ(触針半径5μm)を用い、基準長さ0.25mm、評価長さ1.25mm、移動速度0.06mm/sにて測定した。また、酸化物皮膜の表面の粗さに関しても、同じ方法で測定した。   The arithmetic average roughness Rals, Racs, and the maximum roughness depth Rts of the stainless steel foil surface in the threading direction and the vertical direction of the stainless steel foil coil material are stylus type surface roughness measuring machines (manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 575A-3D), using a standard pickup (stylus radius 5 μm), with a reference length of 0.25 mm, an evaluation length of 1.25 mm, and a moving speed of 0.06 mm / s. Further, the surface roughness of the oxide film was also measured by the same method.

ステンレス箔は、上記の表面仕上げを実施した後、実施例1〜6、8〜14、比較例1〜3、8では、水素75vol%、窒素25vol%、露点-65℃の雰囲気で、実施例7、比較例6では窒素47vol%、アンモニア50vol%、二酸化炭素3vol%の雰囲気で、温度と時間をそれぞれ表1に示す条件で熱処理を実施しした。   After carrying out the above-mentioned surface finish, the stainless steel foil was used in Examples 1 to 6, 8 to 14 and Comparative Examples 1 to 3 and 8, in an atmosphere of 75 vol% hydrogen, 25 vol% nitrogen, and dew point -65 ° C. 7. In Comparative Example 6, heat treatment was performed in an atmosphere of 47 vol% nitrogen, 50 vol% ammonia, and 3 vol% carbon dioxide under the conditions shown in Table 1 for temperature and time.

比較例5、7では、酸化クロムとポリアクリル酸を主成分とした、三価と六価のCr含有量が5mg/mlの水溶液をそれぞれステンレス箔表面に均一に塗布し、180℃で30秒間乾燥して塗布クロメートを表面にコーティングしたステンレス箔を得た。   In Comparative Examples 5 and 7, an aqueous solution containing chromium oxide and polyacrylic acid as the main components and a trivalent and hexavalent Cr content of 5 mg / ml was uniformly applied to the surface of the stainless steel foil, respectively, at 180 ° C. for 30 seconds. A dried stainless steel foil coated with coated chromate was obtained.

Figure 0005566214
Figure 0005566214

ステンレス箔表面の酸化物皮膜の厚み、及び組成は、オージェ電子分光分析装置(PHI社製、FE型)を用い、電子ビーム5kV、10nA、ビームサイズ0.05μm、Arイオンビーム3kV、スパッタ速度約10nm/分(SiO2換算)で測定した。 The thickness and composition of the oxide film on the surface of the stainless steel foil were measured using an Auger electron spectroscopy analyzer (PHI, FE type), electron beam 5 kV, 10 nA, beam size 0.05 μm, Ar ion beam 3 kV, sputtering rate about 10 nm. It was measured by / min (SiO 2 conversion).

酸化物皮膜の厚みと組成を測定した後、実施例1〜8、11〜14、比較例1〜8はステンレス箔に厚さ50μmの変性ポリプロピレンフィルム(東セロ株式会社製、アドマーQE060#50)を温度175℃、圧力0.5MPaでステンレス箔に熱圧着して樹脂被覆ステンレス箔を得た。実施例9、10では、変性ポリプロピレン(三井化学株式会社製、アドマーQE060)に、ポリアセタール(日本ポリペンコ株式会社製、POM-NC)をそれぞれ50、60wt%ドライブレンドしてフィルム押出し成形機(株式会社東洋精機製作所製、2D25F2)を用いて200℃で混練、押出して作製した厚さ50μmのフィルムを温度175℃、圧力0.5MPaでステンレス箔に熱圧着して樹脂被覆ステンレス箔を得た。   After measuring the thickness and composition of the oxide film, Examples 1-8, 11-14, and Comparative Examples 1-8 were modified stainless steel foil with a 50 μm thick modified polypropylene film (manufactured by Tosero Co., Ltd., Admer QE060 # 50). A resin-coated stainless steel foil was obtained by thermocompression bonding to the stainless steel foil at a temperature of 175 ° C. and a pressure of 0.5 MPa. In Examples 9 and 10, a modified polypropylene (Mitsui Chemicals Co., Ltd., Admer QE060) and polyacetal (Nihon Polypenco Co., Ltd., POM-NC) were 50 and 60 wt% dry blended, respectively, and a film extrusion molding machine (Co., Ltd.) A 50 μm thick film prepared by kneading and extruding using 2D25F2) manufactured by Toyo Seiki Seisakusho was thermocompression bonded to the stainless steel foil at a temperature of 175 ° C. and a pressure of 0.5 MPa to obtain a resin-coated stainless steel foil.

上記樹脂被覆ステンレス箔の外観を目視にて確認し、○:テンパーカラーが全く出ていない、△:テンパーカラーによる薄黄色が確認される、×:テンパーカラーによる濃黄色から青色が確認される、を基準として審美性を評価した。また、同様に目視にて錆の有無も確認し、○:錆が全くなし、△:直径1mm以下の錆が発生、×:直径1mm以上の錆が発生、を基準として防錆性を評価した。   Visually confirm the appearance of the resin-coated stainless steel foil, ◯: no temper color, △: light yellow due to temper color, x: dark yellow to blue due to temper color, confirmed The aesthetics were evaluated based on Similarly, the presence or absence of rust was also visually confirmed, and rust prevention was evaluated based on the following criteria: ○: No rust, △: Rust with a diameter of 1 mm or less, ×: Rust with a diameter of 1 mm or more. .

さらに、上記樹脂被覆ステンレス箔を10mm×10mmの寸法に切り出し、電解液(富山薬品工業株式会社製、1MLiPF6 EC/DEC-1/1)に浸漬して80℃1週間保持し、目視にて変性ポリプロピレンの剥離状況を確認し、○:剥離無し、△:端部剥離あり、×:全面剥離、を基準として、耐電解液性を評価した。   Furthermore, the above-mentioned resin-coated stainless steel foil was cut out to a size of 10 mm × 10 mm, immersed in an electrolytic solution (manufactured by Toyama Pharmaceutical Co., Ltd., 1MLiPF6 EC / DEC-1 / 1), kept at 80 ° C. for 1 week, and visually modified. The peeling condition of the polypropylene was confirmed, and the electrolytic solution resistance was evaluated on the basis of ○: no peeling, Δ: edge peeling, and x: whole surface peeling.

さらに、環境負荷物質についても、次のような基準にて評価した。○:環境負荷物質使用無し、×:環境負荷原因物質(クロム酸など)使用あり。   Furthermore, environmentally hazardous substances were also evaluated according to the following criteria. ○: No environmentally hazardous substances used, ×: Environmentally causative substances (chromic acid etc.) used.

さらに、製造性についても、次のような基準にて評価した。○:強度低下、破断などなく容易にプレス加工が可能、△:プレス加工で破断しないが強度低下がある、×:プレス加工で破断する箇所がある。なお、ここでいうプレス加工とは下記のプレス成形品製造に準じた。   Furthermore, manufacturability was also evaluated according to the following criteria. ○: Easily press working without strength reduction, breakage, etc., Δ: Not ruptured by pressing, but there is strength reduction, X: There is a portion broken by pressing. In addition, press work here was based on the following press-molded article manufacture.

上記全ての評価において、一つでも×があるものは、蓄電デバイス容器用のステンレス箔として不適と判断した。   In all the above evaluations, one having at least one x was judged to be unsuitable as a stainless steel foil for an electricity storage device container.

また、実施例1〜5の樹脂被覆ステンレス箔に、蓄電デバイス容器としてよく使用される角筒容器形状の絞り成形を実施した。条件は、ダイス142mm×142mmでコーナーR径4mm、ポンチ140mm×140mmでコーナーR径4mm、しわ押え力6トン、潤滑剤はJohnson WAX122とマシン油を1:1に混合したものを用い、プレス速度60mm/分で、ブランクサイズ200mm×200mm、深さ5mmとした。   In addition, the resin-coated stainless steel foils of Examples 1 to 5 were subjected to drawing in a rectangular tube container shape often used as an electricity storage device container. The conditions are: Die 142 mm x 142 mm, corner R diameter 4 mm, punch 140 mm x 140 mm, corner R diameter 4 mm, wrinkle holding force 6 tons, lubricant mixed with Johnson WAX122 and machine oil 1: 1, press speed The blank size was 200 mm × 200 mm and the depth was 5 mm at 60 mm / min.

また、このプレス成型品を2つ合わせ、その中に電解銅箔に負極物質として黒鉛をコーティングしたもの、セパレーター、アルミニウム箔に正極物質としてLiNiCo0.15Al0.05O2をコーティングしたものを順次積層し、これに電解液(富山薬品工業株式会社製 1M LiPF6 EC/DEC-1/1)を注入して、200℃、0.4MPa、10秒のヒートシール条件で真空シールしてリチウムイオン二次電池を作製した。この電池に初期充放電特性評価試験と充放電サイクル特性評価試験を実施した。初期充放電特性評価試験は、25℃で初回の充電を行い、その直後に放電を行って充電容量と放電容量の比率を測定し、80%以上を合格とした。充放電サイクル特性評価試験は、25℃で300回の充放電を繰り返した後の放電容量と初回放電容量の比率を測定し、80%以上を合格とした。 Also, two of these press-molded products were combined, and in that, electrolytic copper foil coated with graphite as a negative electrode material, separator, and aluminum foil coated with LiNiCo 0.15 Al 0.05 O 2 as a positive electrode material were sequentially laminated, The electrolyte (1M LiPF 6 EC / DEC-1 / 1 manufactured by Toyama Pharmaceutical Co., Ltd.) was injected into this, and the lithium ion secondary battery was sealed by vacuum sealing at 200 ° C, 0.4 MPa, and heat sealing conditions of 10 seconds. Produced. This battery was subjected to an initial charge / discharge characteristic evaluation test and a charge / discharge cycle characteristic evaluation test. In the initial charge / discharge characteristic evaluation test, the first charge was performed at 25 ° C., and the discharge was performed immediately after that to measure the ratio between the charge capacity and the discharge capacity. In the charge / discharge cycle characteristic evaluation test, the ratio between the discharge capacity and the initial discharge capacity after 300 charge / discharge cycles at 25 ° C. was measured, and 80% or more was determined to be acceptable.

Figure 0005566214
Figure 0005566214

実施例1〜14を用いて作製した電池の初期充放電特性評価試験と充放電サイクル特性評価試験の結果は、どちらも80%以上であり、電池として適正に作動することを確認した。   The results of the initial charge / discharge characteristic evaluation test and the charge / discharge cycle characteristic evaluation test of the batteries produced using Examples 1 to 14 were both 80% or more, and it was confirmed that the batteries were properly operated.

実施例1は全ての評価項目が○で最も優れていた。実施例2は還元熱処理時間がやや短く、酸化皮膜がやや薄いため耐電解液性にやや劣り、実施例3は還元熱処理がやや強く、テンパーカラーが発生したため審美性にやや劣り、実施例4、14は還元熱処理がさらにやや強く、酸化皮膜がやや厚く脆化したため審美性と耐電解液性にやや劣り、実施例5、6はステンレス箔の表面粗さがやや少ないために酸化皮膜がやや薄く、かつ酸化皮膜の粗さがやや少ないために耐電解液性にやや劣り、実施例7は酸化皮膜中の酸素が少なく窒素が約30mol%程度存在して多いため耐電解液性にやや劣り、実施例8はステンレス箔の表面粗さがやや大きいためにステンレス箔が強度低下して製造性にやや劣り、実施例9はポリオレフィン系樹脂の割合が少ないため耐電解液性にやや劣り、実施例10はポリオレフィン系樹脂の割合がさらに少ないため耐電解液性と防錆性にやや劣り、実施例11、13は酸化皮膜中のCrの割合が少ないために耐電解液性と防錆性にやや劣り、実施例12は還元熱処理の時間がやや長く、テンパーカラーが発生したため審美性にやや劣る結果となった。   In Example 1, all evaluation items were the best with ○. Example 2 is slightly inferior in electrolytic solution resistance because the reductive heat treatment time is slightly short and the oxide film is slightly thin.Example 3 is slightly inferior in aesthetics because reductive heat treatment is somewhat strong and temper color occurs. 14 is slightly stronger in reducing heat treatment, and the oxide film is slightly thicker and brittle, so it is slightly inferior in aesthetics and electrolyte resistance. In Examples 5 and 6, the surface roughness of the stainless steel foil is slightly less, so the oxide film is slightly thinner. In addition, since the roughness of the oxide film is slightly less, the electrolyte solution resistance is slightly inferior, and since Example 7 is a little inferior in electrolyte solution resistance because there is little oxygen in the oxide film and about 30 mol% of nitrogen is present, Example 8 is slightly inferior in manufacturability because the stainless steel foil has a slightly large surface roughness, and Example 9 is slightly inferior in electrolytic solution resistance because of a small proportion of polyolefin resin. 10 is the polyolefin resin The electrolyte solution resistance and rust resistance are slightly inferior because of the smaller amount, and Examples 11 and 13 are slightly inferior in electrolyte resistance and rust resistance because the ratio of Cr in the oxide film is small. The time of reductive heat treatment was slightly longer, and temper color was generated.

一方、比較例1は酸化皮膜中のCrとFeのmol%がほぼ同じであるため耐電解液性が不適であり、比較例2は還元熱処理が強過ぎるため酸化皮膜が厚く脆化し過ぎたために耐電解液性が不適であり、比較例3はステンレス箔の表面粗さが少な過ぎるために酸化皮膜が薄過ぎ、かつ酸化皮膜の粗さが少な過ぎるために耐電解液性が不適であり、比較例4は還元熱処理が無いため表面の酸化皮膜のCrの量が少な過ぎ、かつ酸化皮膜が薄過ぎるために耐電解液性が不適であり、比較例5、7は3価及び6価の塗布クロメートを用いているため環境負荷物質の観点から不適であり、比較例6は酸化皮膜中の酸素が少な過ぎ、窒素が約50mol%程度存在して多過ぎるため耐電解液性が不適であり、比較例8はステンレス箔の表面粗さが大き過ぎるためにステンレス箔が強度低下及びプレス加工で破断して製造性が不適である結果となった。   On the other hand, Comparative Example 1 is not suitable for electrolytic solution resistance because the mol% of Cr and Fe in the oxide film is almost the same, and Comparative Example 2 is because the oxide film is too thick and brittle because the reduction heat treatment is too strong. Electrolytic solution resistance is unsuitable.Comparative Example 3 has an excessively thin oxide film because the surface roughness of the stainless steel foil is too small, and the anti-electrolyte solution is unsuitable because the oxide film is too coarse. In Comparative Example 4, since there is no reduction heat treatment, the amount of Cr in the surface oxide film is too small, and the oxide film is too thin, so that the electrolytic solution resistance is unsuitable. Comparative Examples 5 and 7 are trivalent and hexavalent. Since coated chromate is used, it is unsuitable from the viewpoint of an environmentally hazardous substance. In Comparative Example 6, the amount of oxygen in the oxide film is too small, and about 50 mol% of nitrogen is present, so the resistance to electrolyte solution is unsuitable. In Comparative Example 8, the surface roughness of the stainless steel foil is too large and the strength of the stainless steel foil is reduced. Fine stamping manufacturability and broken at the resulted unsuitable.

以上の実施例1〜14と比較例1〜8より、本発明のステンレス箔は、蓄電デバイスに必須の電解液に浸漬しても被覆樹脂が剥離しない強固な密着力を、クロム酸溶液などの薬液を使用した表面処理を施さずとも実現し、ヒートシールなどの高温でも全く劣化しない耐熱性、及び環境負荷の低減と経済性に優れ、製品不良が少ない蓄電デバイス容器用樹脂被覆ステンレス箔を提供することができ、蓄電デバイスの将来的な発展に寄与するものであることを確認できた。   From Examples 1 to 14 and Comparative Examples 1 to 8 above, the stainless steel foil of the present invention has a strong adhesive force that prevents the coating resin from being peeled even when immersed in an electrolyte solution essential for an electricity storage device, such as a chromic acid solution. Provided with resin-coated stainless steel foil for power storage device containers, which can be realized without surface treatment using chemicals, has heat resistance that does not deteriorate at all even at high temperatures such as heat sealing, is excellent in environmental impact and economy, and has few product defects It has been confirmed that it contributes to the future development of electricity storage devices.

Claims (4)

酸素を20mol%以上60mol%以下含みCrをFeよりも多く含む酸化物皮膜を有するステンレス箔であって、該酸化物皮膜の表面における、圧延方向の算術平均粗さRal、又は、圧延方向に対して直角方向の算術平均粗さRacが、0.1μm以上で該酸化物皮膜の表面の最大深さRt未満であり、Rtが、0.8μm以上で該ステンレス箔厚さの50%以下であり、該酸化物皮膜の厚みが6nm以上150nm未満である該ステンレス箔の両面もしくは片面にポリオレフィン系樹脂を積層してなることを特徴とする蓄電デバイス容器用ステンレス箔。 A stainless steel foil having an oxide film containing 20 mol% or more and 60 mol% or less of oxygen and containing more Cr than Fe, and on the surface of the oxide film , the arithmetic average roughness Ral in the rolling direction or the rolling direction The arithmetic average roughness Rac in the perpendicular direction is 0.1 μm or more and less than the maximum depth Rt of the surface of the oxide film, Rt is 0.8 μm or more and 50% or less of the stainless steel foil thickness, A stainless steel foil for an electricity storage device container, wherein a polyolefin resin is laminated on both sides or one side of the stainless steel foil having an oxide film thickness of 6 nm or more and less than 150 nm. ステンレス箔の圧延方向の表面の算術平均粗さRals、又は、ステンレス箔の圧延方向に対して直角方向の表面に算術平均粗さRacsが、0.1μm以上で前記ステンレス箔の表面の最大深さRts未満であり、Rtsが、0.8μm以上で該ステンレス箔厚さの50%以下であるステンレス箔を、600℃以上800℃未満の温度で、還元雰囲気下にて焼鈍すること、該ステンレス箔の両面もしくは片面にポリオレフィン樹脂を50質量%以上含有する樹脂組成物フィルムを加熱圧着して積層することを特徴とする請求項1に記載の蓄電デバイス容器用ステンレス箔の製造方法。 The arithmetic average roughness Rals of the surface in the rolling direction of the stainless steel foil, or the arithmetic average roughness Racs on the surface perpendicular to the rolling direction of the stainless steel foil is 0.1 μm or more and the maximum depth Rts of the stainless steel foil surface. Annealing a stainless steel foil having a Rts of 0.8 μm or more and 50% or less of the thickness of the stainless steel foil in a reducing atmosphere at a temperature of 600 ° C. or more and less than 800 ° C. , both surfaces of the stainless steel foil 2. The method for producing a stainless steel foil for an electricity storage device container according to claim 1, wherein a resin composition film containing 50% by mass or more of a polyolefin resin is laminated on one surface by thermocompression bonding . 前記焼鈍を、0.5分以上3分以下行うことを特徴とする請求項に記載の蓄電デバイス容器用ステンレス箔の製造方法。 The method for producing a stainless steel foil for a power storage device container according to claim 2 , wherein the annealing is performed for 0.5 minutes or more and 3 minutes or less. 前記焼鈍が、水素と水の分圧比H2/H2Oが10以上、露点40℃未満の雰囲気で600〜800℃の温度での熱処理である請求項2又は3に記載の蓄電デバイス容器用ステンレス箔の製造方法。 The electrical storage device container according to claim 2 or 3 , wherein the annealing is a heat treatment at a temperature of 600 to 800 ° C in an atmosphere having a hydrogen / water partial pressure ratio H 2 / H 2 O of 10 or more and a dew point of less than 40 ° C. Stainless steel foil manufacturing method.
JP2010169745A 2010-07-28 2010-07-28 Stainless steel foil for power storage device container and method for producing the same Active JP5566214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169745A JP5566214B2 (en) 2010-07-28 2010-07-28 Stainless steel foil for power storage device container and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169745A JP5566214B2 (en) 2010-07-28 2010-07-28 Stainless steel foil for power storage device container and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012033295A JP2012033295A (en) 2012-02-16
JP5566214B2 true JP5566214B2 (en) 2014-08-06

Family

ID=45846511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169745A Active JP5566214B2 (en) 2010-07-28 2010-07-28 Stainless steel foil for power storage device container and method for producing the same

Country Status (1)

Country Link
JP (1) JP5566214B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127221B2 (en) * 2015-04-09 2017-05-10 新日鐵住金株式会社 Steel foil for power storage device container, power storage device container and power storage device
JP6016988B1 (en) * 2015-05-29 2016-10-26 日新製鋼株式会社 Stainless steel foil for battery exterior and manufacturing method thereof
JP6016987B1 (en) 2015-05-29 2016-10-26 日新製鋼株式会社 Stainless steel foil for battery exterior and manufacturing method thereof
JP6456260B2 (en) * 2015-07-30 2019-01-23 日鉄ケミカル&マテリアル株式会社 Surface treated stainless steel foil
JP6722437B2 (en) * 2015-11-16 2020-07-15 藤森工業株式会社 Battery exterior laminate, battery exterior body and battery
CN108326516B (en) * 2018-02-02 2020-08-18 南京钢铁股份有限公司 Preparation method of titanium steel composite board
CN115803478A (en) * 2020-07-16 2023-03-14 东洋钢钣株式会社 Electrolytic iron foil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325918A (en) * 1992-03-31 1993-12-10 Sumitomo Metal Ind Ltd Stainless steel plate for button type battery case
JP2004052100A (en) * 2002-05-27 2004-02-19 Nippon Steel Corp Sheath material for battery
JP2005298883A (en) * 2004-04-09 2005-10-27 Nikko Metal Manufacturing Co Ltd Fe-Cr-Ni BASED ALLOY STRIP HAVING EXCELLENT PRESS WORKABILITY
JP2006103269A (en) * 2004-10-08 2006-04-20 Nisshin Steel Co Ltd Silver-tone clear-coated stainless steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2012033295A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5566214B2 (en) Stainless steel foil for power storage device container and method for producing the same
EP3121863B1 (en) Packaging material for batteries, battery, and production methods therefor
KR102185314B1 (en) Battery packaging material
CN110001149B (en) Packaging material for battery
JP5080738B2 (en) Resin coated stainless steel foil, container and secondary battery
JP5266628B2 (en) Battery packaging material
EP3689599B1 (en) Packaging material for battery
JP4940496B2 (en) Lithium ion battery packaging material and manufacturing method thereof
WO2001045183A1 (en) Packaging material for polymer cell and method for producing the same
JP2023109775A (en) Packaging material and battery
KR20020080455A (en) Battery device and lead wire film
CN111312936A (en) Battery packaging material, method for producing same, and battery
US10556400B2 (en) Battery packaging material
WO2017073774A1 (en) Battery packaging material, battery, battery packaging material manufacturing method, and aluminum alloy foil
JP2023011625A (en) Outer package material for power storage device, manufacturing method thereof, and power storage device
JP4736189B2 (en) Lithium-ion battery packaging materials
JP4993051B2 (en) Lithium ion battery packaging material and manufacturing method thereof
JP4736188B2 (en) Lithium ion battery packaging material and manufacturing method thereof
JP6673394B2 (en) Battery packaging material
JP2001266809A (en) Packing material for polymer battery and manufacturing method of the same
TW201702068A (en) Stainless steel foil for outer package of battery
TW201700752A (en) Stainless steel foil for outer package of battery
JP4968419B2 (en) Lithium ion battery packaging material and manufacturing method thereof
JP2001266810A (en) Packing material for polymer battery and manufacturing method of the same
KR20240118392A (en) Sealant resin composition, and secondary battery packaging material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140617

R150 Certificate of patent or registration of utility model

Ref document number: 5566214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250