JP5565694B2 - Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative - Google Patents

Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative Download PDF

Info

Publication number
JP5565694B2
JP5565694B2 JP2010178678A JP2010178678A JP5565694B2 JP 5565694 B2 JP5565694 B2 JP 5565694B2 JP 2010178678 A JP2010178678 A JP 2010178678A JP 2010178678 A JP2010178678 A JP 2010178678A JP 5565694 B2 JP5565694 B2 JP 5565694B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitride nanotube
nanotube derivative
solvent
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010178678A
Other languages
Japanese (ja)
Other versions
JP2012036046A (en
Inventor
広明 桑原
義雄 板東
ズィ チュンイ
タン チェンチュン
ゴルバーグ デミトリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010178678A priority Critical patent/JP5565694B2/en
Publication of JP2012036046A publication Critical patent/JP2012036046A/en
Application granted granted Critical
Publication of JP5565694B2 publication Critical patent/JP5565694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、各種溶媒への分散性が良好で、樹脂組成物への利用などに好適な窒化ホウ素ナノチューブ誘導体、その分散液、及び該窒化ホウ素ナノチューブ誘導体の製造方法に関する。   The present invention relates to a boron nitride nanotube derivative having good dispersibility in various solvents and suitable for use in a resin composition, a dispersion thereof, and a method for producing the boron nitride nanotube derivative.

カーボンナノチューブをはじめとする多くのナノチューブ材料は、一般的な溶媒に不溶のため、その成形・加工方法が著しく制限されている。この問題が解決されれば、実用上非常に有用であるため、ナノチューブ材料を溶媒に均一分散させる方法が種々検討されてきた。   Many nanotube materials, including carbon nanotubes, are insoluble in common solvents, and their molding and processing methods are significantly limited. If this problem is solved, it is very useful in practice, and various methods for uniformly dispersing the nanotube material in the solvent have been studied.

例えば非特許文献1においては、カーボンナノチューブの表面を鉱酸により酸化せしめ、水酸基やカルボキシル基を導入し溶媒に対する親和性を高め分散性を向上させることが報告されており、非特許文献2及び3においては、更にカーボンナノチューブの表面に存在するカルボキシル基を塩化チオニルで酸クロライドに変換した後、長鎖アルキル基を有するアルコールやアミンと反応させて、長鎖アルキル基が化学結合したカーボンナノチューブを製造することにより分散性を向上させることが報告されている。   For example, Non-Patent Document 1 reports that the surface of a carbon nanotube is oxidized with a mineral acid and a hydroxyl group or a carboxyl group is introduced to increase the affinity for a solvent and improve dispersibility. In addition, after converting the carboxyl group present on the surface of the carbon nanotube to acid chloride with thionyl chloride, it is reacted with an alcohol or amine having a long chain alkyl group to produce a carbon nanotube in which the long chain alkyl group is chemically bonded. It has been reported that dispersibility is improved by doing so.

ところで、カーボンナノチューブがその直径やキラリティが変化すると、それに伴って特性も変動するのに対して、窒化ホウ素ナノチューブは、その直径やキラリティが変化しても特性は変動せず、応用に当たって制御するパラメーターが少ないという利点がある。更に、窒化ホウ素ナノチューブは、優れた機械的性質、高い熱伝導性、優れた耐酸化性、及び広いバンドギャップエネルギーを有しているので、これらの特性が要求される分野、例えば、半導体材料、エミッタ材料、耐熱性充填材料、高強度材料、触媒等、特に酸化雰囲気や高温雰囲気中で作動するナノメートル(nm)サイズの半導体において有用であると考えられている。また、窒化ホウ素ナノチューブを複合材料の強化材として利用することで、材料のマトリックス相(連続相とも呼ばれている)の機械的性質や熱伝導率の向上に役立つことができる。よって窒化ホウ素ナノチューブの溶媒への分散性を向上させることができれば、種々の成形・加工方法を適用することができ、優れた機能を有する半導体材料などを得ることができる。   By the way, when the diameter and chirality of carbon nanotubes change, the characteristics change accordingly.On the other hand, the characteristics of boron nitride nanotubes do not change even if the diameter and chirality change. There is an advantage that there is little. Furthermore, boron nitride nanotubes have excellent mechanical properties, high thermal conductivity, excellent oxidation resistance, and wide band gap energy, so that these characteristics are required, for example, semiconductor materials, It is considered to be useful for emitter materials, heat-resistant filling materials, high-strength materials, catalysts, etc., particularly in nanometer (nm) size semiconductors that operate in oxidizing or high-temperature atmospheres. Further, by using boron nitride nanotubes as a reinforcing material for a composite material, it can be useful for improving mechanical properties and thermal conductivity of a matrix phase (also called a continuous phase) of the material. Therefore, if the dispersibility of the boron nitride nanotubes in the solvent can be improved, various molding / processing methods can be applied, and a semiconductor material having an excellent function can be obtained.

窒化ホウ素ナノチューブの分散性を向上する技術に関しては、例えば非特許文献4において、窒化ホウ素ナノチューブとアミン末端ポリエチレングリコールオリゴマーとを、100℃で3日間加熱を続けることにより、両者の間に非共有結合による付加体を形成させて、溶媒に対する溶解性(分散性)を向上させることが報告されている。しかし、この方法では、窒化ホウ素ナノチューブとアミン末端ポリエチレングリコールオリゴマーとの間に非共有結合による付加体を形成しているため、溶媒、特に有機溶媒への分散性が低く、しかも、製造に要する時間が長く収率が低いという問題がある。   Regarding the technology for improving the dispersibility of boron nitride nanotubes, for example, in Non-Patent Document 4, a boron nitride nanotube and an amine-terminated polyethylene glycol oligomer are heated at 100 ° C. for 3 days to thereby form a non-covalent bond therebetween. It is reported that the adduct formed by the above method is formed to improve the solubility (dispersibility) in a solvent. However, in this method, an adduct formed by non-covalent bonding is formed between the boron nitride nanotube and the amine-terminated polyethylene glycol oligomer, so that the dispersibility in a solvent, particularly an organic solvent, is low, and the time required for production is low. However, there is a problem that the yield is low.

また、特許文献1では、窒化ホウ素ナノチューブ、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)](以下、ラッピングポリマーと称する)、及び有機溶媒からなる窒化ホウ素ナノチューブ分散液が均一かつ透明であることが示されている。しかし、この技術は、液中にラッピングポリマーの存在を必須としている上、このラッピングポリマーを除去するには、有機溶媒除去後に数百℃の温度でラッピングポリマーを熱分解することを必要としている。このため、例えば、ラッピングポリマーとは別の種類のポリマーと窒化ホウ素ナノチューブとの組成物のキャストフィルムを得たい場合に当該技術の分散液を用いることができるのは、ラッピングポリマーの残存が許容される場合に限られる。このように、特許文献1の分散液は、様々な分野で利用しようとしても、適用できる場合が極めて限定されるという問題がある。   Patent Document 1 discloses a boron nitride nanotube comprising a boron nitride nanotube, poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] (hereinafter referred to as a wrapping polymer), and an organic solvent. The dispersion is shown to be uniform and transparent. However, this technique requires the presence of the wrapping polymer in the liquid, and in order to remove the wrapping polymer, it is necessary to thermally decompose the wrapping polymer at a temperature of several hundred degrees Celsius after removing the organic solvent. For this reason, for example, when it is desired to obtain a cast film of a composition of a different type of polymer from the wrapping polymer and boron nitride nanotubes, the dispersion of the technology can be used because the remaining wrapping polymer is allowed. Limited to Thus, even if it is going to utilize the dispersion liquid of patent document 1 in various fields, there exists a problem that the case where it can apply is very limited.

特開2007−230830号公報JP 2007-230830 A

Jie Liu et al、Science、1998、280、p.1253Jie Liu et al, Science, 1998, 280, p.1253 Jian Chen et al、Science、1998、282、p.95Jian Chen et al, Science, 1998, 282, p.95 Kefu Fu et al、Nano Letters、2001、1、p.439Kefu Fu et al, Nano Letters, 2001, 1, p.439 Su-Yuan Xie et al、Chem. Commun.、2005、p.3670Su-Yuan Xie et al, Chem. Commun., 2005, p.3670

本発明は、溶媒への分散性が良好な窒化ホウ素ナノチューブ誘導体、その分散液、及びその簡便な製造方法を提供することを目的とする。   An object of the present invention is to provide a boron nitride nanotube derivative having good dispersibility in a solvent, a dispersion thereof, and a simple production method thereof.

本発明者らは、前記課題に鑑み、窒化ホウ素ナノチューブの分散性改良について鋭意検討した結果、窒化ホウ素ナノチューブを過酸化水素溶液によって処理した後、更にシリル化剤で処理したところ、表面元素組成の2原子%以上がケイ素である窒化ホウ素ナノチューブ誘導体が得られ、当該誘導体が際立って良好な有機媒体への分散性を示すことを見出し、本発明を完成するに至った。本発明の要旨を以下に示す。   In view of the above problems, the inventors of the present invention have made extensive studies on improving the dispersibility of boron nitride nanotubes. As a result, the boron nitride nanotubes were treated with a hydrogen peroxide solution and then treated with a silylating agent. Boron nitride nanotube derivatives in which 2 atomic% or more of silicon is obtained were obtained, and it was found that the derivatives showed outstanding dispersibility in an organic medium, and the present invention was completed. The gist of the present invention is shown below.

1. 表面元素組成の2原子%以上がケイ素であることを特徴とする窒化ホウ素ナノチューブ誘導体。
2. 平均直径が0.4nm〜1μmであり、平均長さが1〜10μmである、上記1.項に記載の窒化ホウ素ナノチューブ誘導体。
3. 上記1.項又は2.項に記載の窒化ホウ素ナノチューブ誘導体が溶媒中に分散している、窒化ホウ素ナノチューブ誘導体分散液。
4. 溶媒が、鎖状および/または環状構造を含む、アルコール、アミド系溶媒、ハロゲン化炭化水素、エステル、ケトン、エーテル、ケイ素化合物溶媒、芳香族炭化水素、および脂肪族炭化水素よりなる群から選ばれる少なくとも1種類であることを特徴とする、上記3.項に記載の窒化ホウ素ナノチューブ誘導体分散液。
5. 窒化ホウ素ナノチューブを3〜70質量%の過酸化水素溶液、または過酸化水素を3〜70質量%、鉄(II)イオンを10〜1000質量ppm含む混合組成物溶液にて処理し、更に、シリル化剤により処理することを特徴とする、上記項1.項又は2.項に記載の窒化ホウ素ナノチューブ誘導体の製造方法。
6. シリル化剤による処理が、塩基の存在下にクロロシラン化合物を用いるものである上記5.項に記載の製造方法。
1. A boron nitride nanotube derivative characterized in that 2 atomic% or more of the surface elemental composition is silicon.
2. The average diameter is 0.4 nm to 1 μm and the average length is 1 to 10 μm. The boron nitride nanotube derivative according to item.
3. Above 1. Term or 2. A boron nitride nanotube derivative dispersion liquid in which the boron nitride nanotube derivative described in the item is dispersed in a solvent.
4). The solvent is selected from the group consisting of alcohols, amide solvents, halogenated hydrocarbons, esters, ketones, ethers, silicon compound solvents, aromatic hydrocarbons, and aliphatic hydrocarbons containing a chain and / or cyclic structure. 2. at least one kind described above, The boron nitride nanotube derivative dispersion liquid according to item.
5. The boron nitride nanotubes were treated with a 3-70 mass% hydrogen peroxide solution or a mixed composition solution containing 3-70 mass% hydrogen peroxide and 10-1000 mass ppm of iron (II) ions, and further silylated Item 1 above, characterized by being treated with an agent. Term or 2. A method for producing the boron nitride nanotube derivative according to Item.
6). 4. The treatment with a silylating agent uses a chlorosilane compound in the presence of a base. The production method according to item.

本発明によれば、溶媒への分散性に優れた窒化ホウ素ナノチューブ誘導体を提供することができる。また、本発明の製造方法によれば、窒化ホウ素ナノチューブ誘導体を高収率で得ることができる。本発明の窒化ホウ素ナノチューブ誘導体の分散液を用いて種々の成形加工を行うことが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, the boron nitride nanotube derivative excellent in the dispersibility to a solvent can be provided. Moreover, according to the production method of the present invention, a boron nitride nanotube derivative can be obtained in high yield. Various molding processes can be performed using the dispersion liquid of the boron nitride nanotube derivative of the present invention.

実施例1にて得た窒化ホウ素ナノチューブ誘導体試料の透過型電子顕微鏡写真図である。2 is a transmission electron micrograph of a boron nitride nanotube derivative sample obtained in Example 1. FIG.

本発明の窒化ホウ素ナノチューブ誘導体とは、表面元素組成の2原子%以上がケイ素であることを特徴とする窒化ホウ素ナノチューブ誘導体である。窒化ホウ素ナノチューブ誘導体の表面元素組成は窒化ホウ素ナノチューブ誘導体をX線光電子分光分析(XPS)、オージェ電子分光分析(AES)などにより求めることができる。また、本発明の窒化ホウ素ナノチューブ誘導体の表面元素組成におけるケイ素の割合の上限としては、50原子%以下が好ましく、30原子%以下であるとより好ましく、10原子%以下であるとより一層好ましい。   The boron nitride nanotube derivative of the present invention is a boron nitride nanotube derivative characterized in that 2 atomic% or more of the surface element composition is silicon. The surface elemental composition of the boron nitride nanotube derivative can be determined by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) or the like of the boron nitride nanotube derivative. Further, the upper limit of the ratio of silicon in the surface element composition of the boron nitride nanotube derivative of the present invention is preferably 50 atomic% or less, more preferably 30 atomic% or less, and even more preferably 10 atomic% or less.

本発明の窒化ホウ素ナノチューブ誘導体は、平均直径が0.4nm〜1μm(1000nm)であると好ましく、0.6〜500nmであるとより好ましく、0.8〜200nmのものであると更に好ましい。   The boron nitride nanotube derivative of the present invention preferably has an average diameter of 0.4 nm to 1 μm (1000 nm), more preferably 0.6 to 500 nm, and still more preferably 0.8 to 200 nm.

本発明の窒化ホウ素ナノチューブ誘導体は、平均長さが、10μm以下であると好ましく、5μm以下であるとより好ましく、アスペクト比が5以上であると好ましく、10以上であるとさらに好ましい。なお、本発明の窒化ホウ素ナノチューブ誘導体の平均長さの下限については、2nm以上が好ましく、4nm以上がより好ましく、100nm以上であるとより好ましく、1000nm(1μm)以上であると極めて好ましい。前記の平均直径、平均長さなど、窒化ホウ素ナノチューブ誘導体の寸法は、原料である窒化ホウ素ナノチューブと同程度である。   The boron nitride nanotube derivative of the present invention has an average length of preferably 10 μm or less, more preferably 5 μm or less, an aspect ratio of 5 or more, and even more preferably 10 or more. The lower limit of the average length of the boron nitride nanotube derivative of the present invention is preferably 2 nm or more, more preferably 4 nm or more, more preferably 100 nm or more, and extremely preferably 1000 nm (1 μm) or more. The dimensions of the boron nitride nanotube derivative, such as the average diameter and the average length, are the same as those of the boron nitride nanotube as a raw material.

本発明の窒化ホウ素ナノチューブ誘導体の原料である窒化ホウ素ナノチューブとは、窒化ホウ素からなるチューブ状材料であり、理想的な構造としては6角網目の面がチューブ軸に平行に管を形成し、一重管もしくは多重管になっているものである。   The boron nitride nanotube, which is a raw material of the boron nitride nanotube derivative of the present invention, is a tube-shaped material made of boron nitride. As an ideal structure, a hexagonal mesh surface forms a tube parallel to the tube axis, It is a tube or multiple tubes.

前記の窒化ホウ素ナノチューブは、一般的にはアーク放電法、レーザー加熱法、化学的気相成長法を用いて合成できる。また、ホウ化ニッケルを触媒として使用し、ボラジンを原料として合成する方法も知られている。また、カーボンナノチューブを鋳型として利用して、酸化ホウ素と窒素を反応させて合成する方法も提案されている。本発明に用いられる窒化ホウ素ナノチューブは、特定の方法により製造されるものに限定されず、各種製法により作製されたものを用いることができる。特にホウ素、酸化鉄(II)(FeO)及び酸化マグネシウム(MgO)の混合物を1100〜1700℃に加熱して、酸化ホウ素の蒸気を発生させ、この発生した蒸気にアンモニアガスを作用させて合成したものを用いるのが、収量及び高純度の点から好ましい。これらの方法においては、条件によりナノチューブの表面組成の0〜1%程度が酸化またはヒドロキシル化される場合があるが、反応の特性上、大部分は窒化ホウ素結合が優先して生成することにより、それ以上のヒドロキシル基の導入は起こらない。   The boron nitride nanotubes can be synthesized generally using an arc discharge method, a laser heating method, or a chemical vapor deposition method. A method of synthesizing borazine as a raw material using nickel boride as a catalyst is also known. A method of synthesizing boron oxide and nitrogen by using carbon nanotubes as a template has also been proposed. The boron nitride nanotubes used in the present invention are not limited to those produced by a specific method, and those produced by various production methods can be used. In particular, a mixture of boron, iron (II) oxide (FeO) and magnesium oxide (MgO) was heated to 1100 to 1700 ° C. to generate boron oxide vapor, which was synthesized by causing ammonia gas to act on the generated vapor. It is preferable to use one from the viewpoint of yield and high purity. In these methods, about 0 to 1% of the surface composition of the nanotubes may be oxidized or hydroxylated depending on conditions, but due to the characteristics of the reaction, most of them are formed by boron nitride bonds preferentially. No further introduction of hydroxyl groups occurs.

前記の窒化ホウ素ナノチューブの寸法は前記のとおり、窒化ホウ素ナノチューブ誘導体と同程度であり、窒化ホウ素ナノチューブの平均直径は、好ましくは0.4nm〜1μm(1000nm)、より好ましくは0.6〜500nm、さらにより好ましくは0.8〜200nmである。ここでいう平均直径とは、一重管の場合、その平均外径を、多重管の場合はその最外側の管の平均外径を意味する。窒化ホウ素ナノチューブの平均長さは、好ましくは10μm以下、より好ましくは5μm以下である。アスペクト比は、好ましくは5以上、さらに好ましくは10以上である。アスペクト比の上限は、平均長さが10μm以下であれば限定されるものではないが、上限は実質25000である。よって、窒化ホウ素ナノチューブは、平均直径が0.4nm〜1μm、アスペクト比が5以上であることが好ましい。   As described above, the boron nitride nanotube has the same size as the boron nitride nanotube derivative, and the average diameter of the boron nitride nanotube is preferably 0.4 nm to 1 μm (1000 nm), more preferably 0.6 to 500 nm, Even more preferably, it is 0.8 to 200 nm. The average diameter here means the average outer diameter in the case of a single pipe, and the average outer diameter of the outermost pipe in the case of a multiple pipe. The average length of the boron nitride nanotubes is preferably 10 μm or less, more preferably 5 μm or less. The aspect ratio is preferably 5 or more, more preferably 10 or more. The upper limit of the aspect ratio is not limited as long as the average length is 10 μm or less, but the upper limit is substantially 25000. Therefore, the boron nitride nanotubes preferably have an average diameter of 0.4 nm to 1 μm and an aspect ratio of 5 or more.

本発明の窒化ホウ素ナノチューブ誘導体、及びその原料である窒化ホウ素ナノチューブの平均直径、平均長さ、およびアスペクト比は、電子顕微鏡による観察から求めることが出来る。例えばTEM(透過型電子顕微鏡)測定を行い、その画像から直接窒化ホウ素ナノチューブの直径および長手方向の長さを測定することが可能である。また組成物中の窒化ホウ素ナノチューブの形態は例えば繊維軸と平行に切断した繊維断面のTEM(透過型電子顕微鏡)測定により把握することが出来る。   The average diameter, average length, and aspect ratio of the boron nitride nanotube derivative of the present invention and the boron nitride nanotube that is a raw material thereof can be determined from observation with an electron microscope. For example, a TEM (transmission electron microscope) measurement is performed, and the diameter and the length in the longitudinal direction of the boron nitride nanotube can be directly measured from the image. The form of the boron nitride nanotubes in the composition can be grasped by, for example, TEM (transmission electron microscope) measurement of a fiber cross section cut parallel to the fiber axis.

本発明の窒化ホウ素ナノチューブ誘導体は、種々の溶媒への分散性が良好である。該窒化ホウ素ナノチューブ誘導体を溶媒に分散させたものである本発明の窒化ホウ素ナノチューブ誘導体分散液は極めて安定で長期間、例えば1週間保存しても窒化ホウ素ナノチューブ誘導体の凝集や相分離による沈殿を生じない。また、本発明の窒化ホウ素ナノチューブ誘導体は、従来の窒化ホウ素ナノチューブ類が分散しにくいフッ素系溶媒への分散性も良好であり、例えば本発明の窒化ホウ素ナノチューブ誘導体とフルオロカーボン系化合物との複合分散液からコンポジットを調整する際に不均質性や相分離を起こす事無く効率的な成形加工ができ有利である。このような極めて良好な分散性、および分散液の安定性から考えると、窒化ホウ素ナノチューブを過酸化水素水などにより処理した後、更にシリル化剤で処理し本発明の窒化ホウ素ナノチューブ誘導体とした場合の表面元素組成におけるケイ素原子の増分は、当該処理時に、該誘導体の表面へのシリルエーテル基の導入に起因するものと思われる。   The boron nitride nanotube derivative of the present invention has good dispersibility in various solvents. The boron nitride nanotube derivative dispersion of the present invention, which is obtained by dispersing the boron nitride nanotube derivative in a solvent, is extremely stable and causes precipitation of the boron nitride nanotube derivative or phase separation even when stored for a long period of time, for example, one week. Absent. In addition, the boron nitride nanotube derivative of the present invention has good dispersibility in a fluorine-based solvent in which conventional boron nitride nanotubes are difficult to disperse. For example, a composite dispersion of the boron nitride nanotube derivative of the present invention and a fluorocarbon compound Therefore, it is advantageous in that an efficient molding process can be performed without causing inhomogeneity and phase separation when adjusting the composite. Considering such extremely good dispersibility and the stability of the dispersion, the boron nitride nanotubes are treated with a hydrogen peroxide solution and then further treated with a silylating agent to obtain the boron nitride nanotube derivatives of the present invention. The increment of silicon atoms in the surface elemental composition of is considered to be due to the introduction of silyl ether groups on the surface of the derivative during the treatment.

次に本発明の窒化ホウ素ナノチューブ誘導体分散液について説明する。
本発明の窒化ホウ素ナノチューブ誘導体分散液は、前記の本発明の窒化ホウ素ナノチューブ誘導体を溶媒に分散させたものであり、分散濃度としては、溶媒100質量部に対して窒化ホウ素ナノチューブ誘導体が0.1〜40質量部であると好ましく、0.3〜20質量部であるとより好ましく、0.5〜10質量部であると更に好ましく、0.8〜5質量部であると極めて好ましい。
Next, the boron nitride nanotube derivative dispersion of the present invention will be described.
The boron nitride nanotube derivative dispersion of the present invention is obtained by dispersing the boron nitride nanotube derivative of the present invention in a solvent. The dispersion concentration is 0.1% of boron nitride nanotube derivative with respect to 100 parts by mass of the solvent. It is preferably -40 parts by mass, more preferably 0.3-20 parts by mass, further preferably 0.5-10 parts by mass, and extremely preferably 0.8-5 parts by mass.

本発明の窒化ホウ素ナノチューブ誘導体分散液の溶媒としては、鎖状および/または環状構造を含む、アルコール、アミド系溶媒、ハロゲン化炭化水素、エステル、ケトン、エーテル、ケイ素化合物溶媒、芳香族炭化水素、および脂肪族炭化水素などよりなる群から選ばれる少なくとも1種類の、一般的に使用される溶媒であれば特に制限は無い。該溶媒として具体的には、メタノール、エタノール、プロパノールおよびブタノール、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、塩化メチレン、クロロホルム、四塩化炭素、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、γ―ブチロラクトン、アセトン、2−ブタノン、テトラヒドロフラン、ジオキソラン、ジオキサン、アニソール、ベンゼン、トルエン、キシレン及びアルコキシシラン(例えばテトラエトキシシラン)よりなる群から選ばれる1種類以上が好ましいものとして挙げられる。前記の溶媒のうち、特に、クロロホルム、N,N−ジメチルアセトアミド、テトラヒドロフラン、γ―ブチロラクトン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、アセトン、ベンゼン、トルエン及びアルコキシシランよりなる群から選ばれる1種類以上が好適である。   Examples of the solvent of the boron nitride nanotube derivative dispersion of the present invention include alcohols, amide solvents, halogenated hydrocarbons, esters, ketones, ethers, silicon compound solvents, aromatic hydrocarbons, which contain a chain and / or cyclic structure. And at least one kind of commonly used solvent selected from the group consisting of aliphatic hydrocarbons and the like. Specific examples of the solvent include methanol, ethanol, propanol and butanol, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, methylene chloride, chloroform, carbon tetrachloride, Selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, butyl acetate, γ-butyrolactone, acetone, 2-butanone, tetrahydrofuran, dioxolane, dioxane, anisole, benzene, toluene, xylene, and alkoxysilane (eg, tetraethoxysilane) One or more types are preferred. Among the above solvents, in particular, one or more selected from the group consisting of chloroform, N, N-dimethylacetamide, tetrahydrofuran, γ-butyrolactone, N, N-dimethylformamide, dimethyl sulfoxide, acetone, benzene, toluene and alkoxysilane Is preferred.

また、本発明の窒化ホウ素ナノチューブ誘導体分散液の溶媒であるハロゲン化炭化水素としては、特にフッ素系溶媒が好ましく、特に、パーフルオロトリアルキルアミン、パーフルオロ環状エーテル、パーフルオロ(ポリ)エーテル、(ポリ)フルオロ(ポリ)クロロアルカン、パーフルオロアルカン、脂環式フッ素化炭化水素および芳香族フッ素化炭化水素よりなる群から選ばれる1種類以上が好ましい。   Further, as the halogenated hydrocarbon which is a solvent of the boron nitride nanotube derivative dispersion liquid of the present invention, a fluorine-based solvent is particularly preferable, and in particular, perfluorotrialkylamine, perfluorocyclic ether, perfluoro (poly) ether, ( One or more selected from the group consisting of poly) fluoro (poly) chloroalkanes, perfluoroalkanes, alicyclic fluorinated hydrocarbons and aromatic fluorinated hydrocarbons are preferred.

本発明の窒化ホウ素ナノチューブ誘導体分散液の溶媒であるケイ素化合物溶媒としては、テトラメチルシラン、ヘキサメチルジシロキサン、デカメチルテトラシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランからなる群より選ばれる1種類以上が好ましい。   Examples of the silicon compound solvent that is the solvent of the boron nitride nanotube derivative dispersion of the present invention include tetramethylsilane, hexamethyldisiloxane, decamethyltetrasiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane. , One or more selected from the group consisting of dodecamethylcyclohexasiloxane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane are preferable.

本発明の窒化ホウ素ナノチューブ誘導体分散液を調製するにおいては、窒化ホウ素ナノチューブ誘導体と溶媒との混合液を機械的に撹拌して分散させる方法や、該混合液を超音波処理して分散させる方法、該混合液を湿式ジェットミルやビーズミルなどの粉砕機により分散させる方法などが挙げられる。なかでも超音波処理により分散させる方法は、簡便であり好ましい。   In preparing the boron nitride nanotube derivative dispersion of the present invention, a method of mechanically stirring and dispersing the mixture of the boron nitride nanotube derivative and the solvent, a method of dispersing the mixture by ultrasonic treatment, Examples thereof include a method of dispersing the mixed solution by a pulverizer such as a wet jet mill or a bead mill. Among them, the method of dispersing by ultrasonic treatment is simple and preferable.

本発明の窒化ホウ素ナノチューブ誘導体分散液を用いれば、窒化ホウ素ナノチューブ誘導体を材料とした成形・加工物を容易に得ることができる。例えば、基板やベルト状物の上に、窒化ホウ素ナノチューブ誘導体の分散液を流延し、加熱して溶媒を蒸発することにより、窒化ホウ素ナノチューブ誘導体からなるフィルム状物を容易に且つ効率よく製造することができる。   If the boron nitride nanotube derivative dispersion liquid of the present invention is used, a molded / processed product using the boron nitride nanotube derivative as a material can be easily obtained. For example, a boron nitride nanotube derivative dispersion is cast on a substrate or belt-like material, and heated to evaporate the solvent, thereby easily and efficiently producing a film-like material made of the boron nitride nanotube derivative. be able to.

次に本発明の窒化ホウ素ナノチューブ誘導体の製造方法について説明する。
本発明の窒化ホウ素ナノチューブ誘導体を製造する方法の一つとして、前記の窒化ホウ素ナノチューブを過酸化水素溶液によって処理した後、更にシリル化剤で処理する方法を示すことができる。
Next, a method for producing the boron nitride nanotube derivative of the present invention will be described.
One method for producing the boron nitride nanotube derivative of the present invention is to treat the boron nitride nanotube with a hydrogen peroxide solution and then treat with a silylating agent.

上記の過酸化水素溶液による処理について、具体的には、前記の窒化ホウ素ナノチューブを3〜70質量%の過酸化水素溶液、または過酸化水素を3〜70質量%、鉄(II)イオンを10〜1000質量ppm含む混合組成物溶液にて処理することが好ましく、その際の過酸化水素の濃度としては5〜60質量%であると好ましく、30〜55質量%であるとより好ましい。また、上記の過酸化水素と鉄(II)イオンを含む前記混合組成物溶液中の鉄(II)イオン濃度としては50〜500質量ppmであるとより好ましく、100〜300質量ppmであると特に好ましい。   Regarding the treatment with the hydrogen peroxide solution, specifically, the boron nitride nanotube is 3 to 70% by mass of hydrogen peroxide solution, or 3 to 70% by mass of hydrogen peroxide and 10% of iron (II) ions. It is preferable to treat with a mixed composition solution containing ˜1000 mass ppm, and the concentration of hydrogen peroxide at that time is preferably 5 to 60 mass%, more preferably 30 to 55 mass%. In addition, the iron (II) ion concentration in the mixed composition solution containing hydrogen peroxide and iron (II) ions is more preferably 50 to 500 ppm by mass, and particularly preferably 100 to 300 ppm by mass. preferable.

上記の過酸化水素溶液による処理において、過酸化水素溶液としては、過酸化水素水が好ましいが、メタノール、エタノール、エチレングリコール、アセトン、酢酸などからなる群より選ばれる少なくとも1種の有機溶媒に過酸化水素を溶解させた溶液でもよく、該有機溶媒と水とを混和させた溶媒に過酸化水素を溶解させた溶液もよい。過酸化水素水としては市販の過酸化水素水溶液を用いる他、これを水などで適当に希釈して用いることもできる。鉄(II)イオンとしては硫酸鉄、塩化鉄、酢酸鉄、及び硝酸鉄、など、通常の鉄(II)塩を過酸化水素溶液に添加したものを好適に使用することができる。   In the treatment with the hydrogen peroxide solution, a hydrogen peroxide solution is preferable as the hydrogen peroxide solution. However, the hydrogen peroxide solution must be added to at least one organic solvent selected from the group consisting of methanol, ethanol, ethylene glycol, acetone, acetic acid, and the like. A solution in which hydrogen oxide is dissolved may be used, or a solution in which hydrogen peroxide is dissolved in a solvent in which the organic solvent and water are mixed may be used. As the hydrogen peroxide solution, a commercially available aqueous hydrogen peroxide solution can be used, or it can be appropriately diluted with water or the like. As iron (II) ions, those obtained by adding ordinary iron (II) salts such as iron sulfate, iron chloride, iron acetate, and iron nitrate to a hydrogen peroxide solution can be preferably used.

上記の過酸化水素溶液による処理において、前記の過酸化水素溶液、または過酸化水素と鉄(II)イオンとの前記の混合組成物溶液にて反応処理する際は、室温あるいは反応を加速するために適温(30〜100℃以下)に加熱するほか、超音波を印加しながら処理することも好ましい。また、加圧下に高温(100℃以上)反応にて処理するなど、窒化ホウ素ナノチューブ誘導体表面の原子組成の程度や処理時間を制御するための各種処理条件を好適に適用することができる。   In the treatment with the hydrogen peroxide solution, when the reaction treatment is performed with the hydrogen peroxide solution or the mixed composition solution of hydrogen peroxide and iron (II) ions, room temperature or the reaction is accelerated. In addition to heating to an appropriate temperature (30 to 100 ° C. or lower), it is also preferable to perform treatment while applying ultrasonic waves. In addition, various treatment conditions for controlling the degree of atomic composition on the surface of the boron nitride nanotube derivative and the treatment time, such as treatment with a high temperature (100 ° C. or higher) reaction under pressure, can be suitably applied.

上記の過酸化水素溶液による処理においては、原料である前記窒化ホウ素ナノチューブに対して、質量比で2倍を超える量の前記過酸化水素溶液、または質量比で2倍を超える量の前記混合組成物溶液を添加して該窒化ホウ素ナノチューブを処理することが好ましい。この量よりも前記過酸化水素溶液、または前記混合組成物溶液の量が少ない場合は、その後のシリル化剤による処理による窒化ホウ素ナノチューブへのケイ素原子の導入が円滑に進まず、得られた窒化ホウ素ナノチューブ誘導体の溶媒への分散性が不十分となることがあり好ましくない。   In the treatment with the hydrogen peroxide solution, the hydrogen peroxide solution in an amount exceeding twice the mass ratio or the mixed composition in an amount exceeding twice the mass ratio with respect to the boron nitride nanotube as a raw material. It is preferable to treat the boron nitride nanotubes by adding a physical solution. When the amount of the hydrogen peroxide solution or the mixed composition solution is less than this amount, the introduction of silicon atoms into the boron nitride nanotubes by subsequent treatment with a silylating agent does not proceed smoothly, and the resulting nitriding The dispersibility of the boron nanotube derivative in the solvent may be insufficient, which is not preferable.

次に、本発明の窒化ホウ素ナノチューブ誘導体の製造方法におけるシリル化剤による処理について述べる。
本発明の製造方法における、シリル化剤による処理(以下、「シリル化処理」と略称することがある)としては、前記のとおり過酸化水素溶液により処理された窒化ホウ素ナノチューブ(以下、「窒化ホウ素ナノチューブ酸化物」と略称することがある)を、公知のシリル化剤を用いたシリルエーテル化の方法・条件により処理するものが好ましく、具体的には、以下の(A)〜(E)の処理方法を例示することができる。
Next, treatment with a silylating agent in the method for producing a boron nitride nanotube derivative of the present invention will be described.
In the production method of the present invention, the treatment with a silylating agent (hereinafter sometimes abbreviated as “silylation treatment”) includes boron nitride nanotubes treated with a hydrogen peroxide solution as described above (hereinafter referred to as “boron nitride”). Are preferably treated with a silyl etherification method / condition using a known silylating agent. Specifically, the following (A) to (E) A processing method can be exemplified.

(A) トリエチルアミンなどの塩基の存在下に、シリル化剤としてクロロシラン化合物(Greene and Wuts、 Protective Groups in Organic Synthesis,Third Edition;John Wiley & Sons:New York、1999、 P.113-148、 237-241、 273-276、 428-431)を用い、窒化ホウ素ナノチューブ酸化物をシリルエーテル化条件にて処理する方法。
(B) シリル化剤としてヘキサメチルジシラザンを用いるシリルエーテル化条件(例えば、J.Am.Chem.Soc.、 1963、 85 P.2497-2507)にて窒化ホウ素ナノチューブ酸化物を処理する方法。
(C) シリル化剤として、N,O−ビス(トリメチルシリル)トリフルオロアセタミド等を用いるシリルエーテル化条件(例えば、Biochem. Biophys. Res. Commun.、 1968、 31、 P.616-622)にて窒化ホウ素ナノチューブ酸化物を処理する方法。
(D) シリル化剤として、N,N’−ビス(トリメチルシリル)尿素等を用いるシリルエーテル化条件(Synthesis, 1981, P.807-809)にて窒化ホウ素ナノチューブ酸化物を処理する方法。
(E) シリル化剤として、tert−ブチルジメチルシラノール等を用いるシリルエーテル化条件(Tetrahedron Lett.、 1991、 P.7159-7160)にて窒化ホウ素ナノチューブ酸化物を処理する方法。
(A) In the presence of a base such as triethylamine, a chlorosilane compound (Greene and Wuts, Protective Groups in Organic Synthesis, Third Edition; John Wiley & Sons: New York, 1999, P. 113-148, 237- 241, 273-276, 428-431) and treating boron nitride nanotube oxide under silyl etherification conditions.
(B) A method of treating boron nitride nanotube oxide under silyl etherification conditions (eg, J. Am. Chem. Soc., 1963, 85 P.2497-2507) using hexamethyldisilazane as a silylating agent.
(C) Under silyl etherification conditions (for example, Biochem. Biophys. Res. Commun., 1968, 31, P.616-622) using N, O-bis (trimethylsilyl) trifluoroacetamide or the like as a silylating agent. To treat boron nitride nanotube oxide.
(D) A method of treating boron nitride nanotube oxide under silyl etherification conditions (Synthesis, 1981, P. 807-809) using N, N′-bis (trimethylsilyl) urea or the like as a silylating agent.
(E) A method of treating boron nitride nanotube oxide under silyl etherification conditions (Tetrahedron Lett., 1991, P.7159-7160) using tert-butyldimethylsilanol or the like as a silylating agent.

なお、上記(A)におけるクロロシラン化合物としては、トリメチルシリルクロライド、トリエチルシリルクロライド、ジメチルヒドロシリルクロライド、ジメチルビニルシリルクロライド、メチルビニルヒドロシリルクロライド、ジメチルフェニルシリルクロライド、ビニルトリクロルシラン、ジメチルジクロルシラン、ビニルメチルジクロルシラン、オクチルメチルジクロルシラン、オクタデシルメチルジクロルシランよりなる群から選ばれる1種類以上が好ましい。   As the chlorosilane compound in the above (A), trimethylsilyl chloride, triethylsilyl chloride, dimethylhydrosilyl chloride, dimethylvinylsilyl chloride, methylvinylhydrosilyl chloride, dimethylphenylsilyl chloride, vinyltrichlorosilane, dimethyldichlorosilane, vinylmethyldisilane. One or more selected from the group consisting of chlorosilane, octylmethyldichlorosilane, and octadecylmethyldichlorosilane are preferred.

本発明の製造方法におけるシリル化処理において、上記のようなシリル化剤は市販のものをそのままニートで用いても良く、また、非プロトン性の有機溶媒などで適当に希釈して用いてもよい。   In the silylation treatment in the production method of the present invention, commercially available silylating agents as described above may be used neat as they are, or may be appropriately diluted with an aprotic organic solvent or the like. .

本発明の製造方法におけるシリル化処理の際は、室温あるいは反応を加速するために適温(30〜100℃以下)に加熱するほか、超音波を印加しながら処理することも好ましい。また、加圧下に高温(100℃以上)反応にて処理するなど、窒化ホウ素ナノチューブ誘導体のケイ素原子量の程度や処理時間を制御するための各種処理条件を好適に適用することができる。   In the silylation treatment in the production method of the present invention, it is preferable to carry out the treatment while applying ultrasonic waves in addition to heating to room temperature or an appropriate temperature (30 to 100 ° C. or lower) in order to accelerate the reaction. In addition, various treatment conditions for controlling the degree of silicon atom amount of the boron nitride nanotube derivative and the treatment time, such as treatment with a high temperature (100 ° C. or higher) reaction under pressure, can be suitably applied.

以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of these examples.

<窒化ホウ素ナノチューブ及びその誘導体の平均直径、平均長さ、及び外観>
透過型電子顕微鏡(TEM)により50点以上窒化ホウ素ナノチューブを観察し、その直径と長さの平均をとることで窒化ホウ素ナノチューブの平均直径および平均長さとした。また、窒化ホウ素ナノチューブ誘導体についても同様に観察及び測定を行い、写真撮影も行った。
<Average diameter, average length, and appearance of boron nitride nanotube and its derivatives>
More than 50 boron nitride nanotubes were observed with a transmission electron microscope (TEM), and the average diameter and length thereof were taken to obtain the average diameter and average length of the boron nitride nanotubes. The boron nitride nanotube derivative was also observed and measured in the same manner and photographed.

<窒化ホウ素ナノチューブ及びその誘導体の表面元素組成>
窒化ホウ素ナノチューブ及びその誘導体の試料を用いて、硬X線光電子分光スペクトル測定を行い、表面元素組成の分析を行った。
<Surface elemental composition of boron nitride nanotubes and their derivatives>
Using samples of boron nitride nanotubes and derivatives thereof, hard X-ray photoelectron spectroscopy was performed to analyze the surface elemental composition.

[参考例1 窒化ホウ素ナノチューブの製造]
窒化ホウ素製のるつぼに、1:1のモル比でホウ素と酸化マグネシウムを入れ、坩堝を高周波誘導加熱炉で1300℃に加熱した。ホウ素と酸化マグネシウムは反応し、気体状の酸化ホウ素(B)とマグネシウムの蒸気が生成した。この生成物をアルゴンガスにより反応室へ移送し、温度を1100℃に維持してアンモニアガスを導入した。酸化ホウ素とアンモニアが反応し、窒化ホウ素が生成した。1.55gの混合物を十分に加熱し、副生成物を蒸発させると、反応室の壁から310mgの白色の固体が得られた。続いて得られた白色固体を濃塩酸で洗浄、イオン交換水で中性になるまで洗浄後、60℃で減圧乾燥を行い窒化ホウ素ナノチューブ(以下、BNNTと略すことがある)を得た。得られたBNNTは、平均直径が27.6nm、平均長さが2460nm(2.46μm)のチューブ状であった。表1に硬X線光電子分光スペクトル測定による該窒化ホウ素ナノチューブの表面元素組成解析結果を示した。
[Reference Example 1 Production of Boron Nitride Nanotubes]
Boron and a magnesium oxide were put into the crucible made from boron nitride by the molar ratio of 1: 1, and the crucible was heated at 1300 degreeC with the high frequency induction heating furnace. Boron and magnesium oxide reacted to form gaseous boron oxide (B 2 O 2 ) and magnesium vapor. This product was transferred to the reaction chamber with argon gas, and ammonia gas was introduced while maintaining the temperature at 1100 ° C. Boron oxide and ammonia reacted to form boron nitride. When 1.55 g of the mixture was fully heated and the by-product was evaporated, 310 mg of a white solid was obtained from the walls of the reaction chamber. Subsequently, the obtained white solid was washed with concentrated hydrochloric acid and washed with ion-exchanged water until neutral, and then dried at 60 ° C. under reduced pressure to obtain boron nitride nanotubes (hereinafter sometimes abbreviated as BNNT). The obtained BNNT was in the form of a tube having an average diameter of 27.6 nm and an average length of 2460 nm (2.46 μm). Table 1 shows the results of surface element composition analysis of the boron nitride nanotubes by hard X-ray photoelectron spectroscopy.

[参考例2 過酸化水素水による窒化ホウ素ナノチューブの処理]
参考例1と同様の方法にて調製した窒化ホウ素ナノチューブ1g及び50%過酸化水素水溶液(シグマ アルドリッチ ジャパン株式会社)50mLをフラスコに入れ、超音波照射下に50℃で24時間撹拌した。その後、この分散液を2000rpmの条件で遠心分離し、得られた固体分をロ別、イオン交換水500mLおよびメタノール洗浄することで、白色粉末の窒化ホウ素ナノチューブ酸化物1gを得た。表1に硬X線光電子分光スペクトル測定による該窒化ホウ素ナノチューブ酸化物の表面元素組成解析結果を示した。
[Reference Example 2 Treatment of boron nitride nanotubes with hydrogen peroxide solution]
1 g of boron nitride nanotubes prepared in the same manner as in Reference Example 1 and 50 mL of a 50% aqueous hydrogen peroxide solution (Sigma Aldrich Japan Co., Ltd.) were placed in a flask and stirred at 50 ° C. for 24 hours under ultrasonic irradiation. Thereafter, the dispersion was centrifuged under the condition of 2000 rpm, and the obtained solid was separated and washed with 500 mL of ion exchange water and methanol to obtain 1 g of boron nitride nanotube oxide as white powder. Table 1 shows the results of surface element composition analysis of the boron nitride nanotube oxide by hard X-ray photoelectron spectroscopy.

[実施例1]
参考例2と同様の方法にて調製した窒化ホウ素ナノチューブ酸化物1gおよびトリエチルアミン1.85g、およびテトラヒドロフラン30mlを温度計、攪拌機、還流冷却器および滴下フロートを装着した100ml三つ口フラスコに加え、超音波照射下に40℃で30時間撹拌した。ついで30℃にてトリメチルシリルクロライド1.9gを40分かけて滴下した。滴下終了後、超音波を照射した状態で室温にて4時間攪拌し反応させた。その後、この分散液を2000rpmの条件で遠心分離し、得られた固体分をロ別、イオン交換水500mLおよびメタノール洗浄することで、白色粉末の窒化ホウ素ナノチューブ誘導体1gを得た。図1に、該窒化ホウ素ナノチューブ誘導体試料の透過型電子顕微鏡写真図を示す。該窒化ホウ素ナノチューブ誘導体は、平均直径が30.5nmであり、平均長さが2200nm(220μm)であった。これにより、窒化ホウ素ナノチューブ誘導体の一次元性、寸法およびアスペクト比は処理前の窒化ホウ素ナノチューブの構造がほぼ維持されていることが確認できた。また、表1に硬X線光電子分光スペクトル測定による窒化ホウ素ナノチューブ誘導体の表面元素組成解析結果を示した。表1から明らかなように、処理前後の窒化ホウ素ナノチューブ組成と比較して、窒化ホウ素ナノチューブ誘導体ではケイ素原子由来の吸収ピークが増大しており、表面組成の約2.4原子%がケイ素となったことが確認された。
[Example 1]
1 g of boron nitride nanotube oxide and 1.85 g of triethylamine prepared in the same manner as in Reference Example 2 and 30 ml of tetrahydrofuran were added to a 100 ml three-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a dropping float. The mixture was stirred at 40 ° C. for 30 hours under sonic irradiation. Then, 1.9 g of trimethylsilyl chloride was added dropwise at 30 ° C. over 40 minutes. After completion of the dropwise addition, the mixture was stirred and reacted at room temperature for 4 hours while being irradiated with ultrasonic waves. Thereafter, the dispersion was centrifuged under the condition of 2000 rpm, and the obtained solid was separated and washed with 500 mL of ion-exchanged water and methanol to obtain 1 g of boron nitride nanotube derivative of white powder. FIG. 1 shows a transmission electron micrograph of the boron nitride nanotube derivative sample. The boron nitride nanotube derivative had an average diameter of 30.5 nm and an average length of 2200 nm (220 μm). As a result, it was confirmed that the one-dimensionality, size and aspect ratio of the boron nitride nanotube derivative substantially maintained the structure of the boron nitride nanotube before treatment. Table 1 shows the results of surface element composition analysis of boron nitride nanotube derivatives by hard X-ray photoelectron spectroscopy. As is apparent from Table 1, the boron nitride nanotube derivative has an increased absorption peak derived from silicon atoms compared to the boron nitride nanotube composition before and after the treatment, and about 2.4 atomic% of the surface composition is silicon. It was confirmed that

また、ベンゼン、トルエン、γ−ブチロラクトン、ヘキサンおよびテトラエトキシシランの各溶媒(10質量部ずつ)に対して、前記の窒化ホウ素ナノチューブ誘導体0.1質量部を加え、バス型超音波分散機にて20秒分散処理を行って、窒化ホウ素ナノチューブ誘導体分散液を調製した後、これを室温に静置して分散状態を観察評価した。得られた分散液は、何れの溶媒系でも安定に分散状態を保ち、一週間そのまま保存しても窒化ホウ素ナノチューブ誘導体の凝集や相分離による沈殿を生じることはなかった。   Further, 0.1 parts by mass of the boron nitride nanotube derivative is added to each solvent (10 parts by mass) of benzene, toluene, γ-butyrolactone, hexane, and tetraethoxysilane, and a bath type ultrasonic dispersing machine is used. After carrying out a dispersion treatment for 20 seconds to prepare a boron nitride nanotube derivative dispersion, this was left at room temperature to observe and evaluate the dispersion state. The obtained dispersion maintained a stable dispersion state in any solvent system, and even when stored as it was for one week, the boron nitride nanotube derivative did not aggregate or precipitate due to phase separation.

[比較例1]
ベンゼン、トルエン、γ−ブチロラクトン、ヘキサンおよびテトラエトキシシランの各溶媒(10質量部ずつ)に対して、参考例1と同様の方法にて調製した窒化ホウ素ナノチューブ0.1質量部を加え、バス型超音波分散機にて20秒分散処理を行った処理液を室温に静置して分散状態を観察評価したが、いずれの溶媒においても窒化ホウ素ナノチューブの凝集や相分離による沈殿が起こり、安定な分散液にはならなかった。
[Comparative Example 1]
To each solvent (10 parts by mass) of benzene, toluene, γ-butyrolactone, hexane and tetraethoxysilane, 0.1 part by mass of boron nitride nanotubes prepared in the same manner as in Reference Example 1 was added, and a bath type was added. The treatment liquid that had been subjected to the dispersion treatment for 20 seconds with an ultrasonic disperser was allowed to stand at room temperature, and the dispersion state was observed and evaluated. It did not become a dispersion.

本発明により、有機溶媒への分散性が極めて良好な窒化ホウ素ナノチューブ誘導体を得ることができる。この窒化ホウ素ナノチューブ誘導体を用いて分散液を作製することができる。この分散液を用いれば、窒化ホウ素ナノチューブ誘導体を成形加工し、半導体材料など多くの分野で活用することが可能となる。   According to the present invention, a boron nitride nanotube derivative having extremely good dispersibility in an organic solvent can be obtained. A dispersion can be produced using this boron nitride nanotube derivative. If this dispersion is used, the boron nitride nanotube derivative can be molded and used in many fields such as semiconductor materials.

Claims (7)

表面元素組成の2原子%以上がケイ素であり、溶媒に対する分散性を有する窒化ホウ素ナノチューブ誘導体。 2 atomic% or more is Ri silicon der, boron nanotubes derivatives nitride having dispersibility in the solvent of the surface elemental composition. 前記溶媒が、鎖状および/または環状構造を含む、アルコール、アミド系溶媒、ハロゲン化炭化水素、エステル、ケトン、エーテル、ケイ素化合物溶媒、芳香族炭化水素、および脂肪族炭化水素よりなる群から選ばれる少なくとも1種類である、請求項1に記載の窒化ホウ素ナノチューブ誘導体。 The solvent is selected from the group consisting of alcohols, amide solvents, halogenated hydrocarbons, esters, ketones, ethers, silicon compound solvents, aromatic hydrocarbons, and aliphatic hydrocarbons containing a chain and / or cyclic structure. The boron nitride nanotube derivative according to claim 1, wherein the boron nitride nanotube derivative is at least one kind . 平均直径が0.4nm〜1μmであり、平均長さが1〜10μmである、請求項1または2に記載の窒化ホウ素ナノチューブ誘導体。The boron nitride nanotube derivative according to claim 1 or 2, having an average diameter of 0.4 nm to 1 µm and an average length of 1 to 10 µm. 請求項1から3の何れかに記載の窒化ホウ素ナノチューブ誘導体が溶媒中に分散している、窒化ホウ素ナノチューブ誘導体分散液。 A boron nitride nanotube derivative dispersion in which the boron nitride nanotube derivative according to any one of claims 1 to 3 is dispersed in a solvent . 溶媒が、鎖状および/または環状構造を含む、アルコール、アミド系溶媒、ハロゲン化炭化水素、エステル、ケトン、エーテル、ケイ素化合物溶媒、芳香族炭化水素、および脂肪族炭化水素よりなる群から選ばれる少なくとも1種類であることを特徴とする、請求項4に記載の窒化ホウ素ナノチューブ誘導体分散液。The solvent is selected from the group consisting of alcohols, amide solvents, halogenated hydrocarbons, esters, ketones, ethers, silicon compound solvents, aromatic hydrocarbons, and aliphatic hydrocarbons containing a chain and / or cyclic structure. The boron nitride nanotube derivative dispersion liquid according to claim 4, wherein the dispersion liquid is at least one kind. 窒化ホウ素ナノチューブを3〜70質量%の過酸化水素溶液、または過酸化水素を3〜70質量%、鉄(II)イオンを10〜1000質量ppm含む混合組成物溶液にて処理し、更に、シリル化剤により処理することを特徴とする、請求項1から3の何れかに記載の窒化ホウ素ナノチューブ誘導体の製造方法。 The boron nitride nanotubes were treated with a 3-70 mass% hydrogen peroxide solution or a mixed composition solution containing 3-70 mass% hydrogen peroxide and 10-1000 mass ppm of iron (II) ions, and further silylated The method for producing a boron nitride nanotube derivative according to any one of claims 1 to 3, wherein the treatment is performed with an agent . シリル化剤による処理が、塩基の存在下にクロロシラン化合物を用いるものである請求項6に記載の製造方法。The process according to claim 6, wherein the treatment with the silylating agent uses a chlorosilane compound in the presence of a base.
JP2010178678A 2010-08-09 2010-08-09 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative Expired - Fee Related JP5565694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178678A JP5565694B2 (en) 2010-08-09 2010-08-09 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178678A JP5565694B2 (en) 2010-08-09 2010-08-09 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative

Publications (2)

Publication Number Publication Date
JP2012036046A JP2012036046A (en) 2012-02-23
JP5565694B2 true JP5565694B2 (en) 2014-08-06

Family

ID=45848466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178678A Expired - Fee Related JP5565694B2 (en) 2010-08-09 2010-08-09 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative

Country Status (1)

Country Link
JP (1) JP5565694B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105439118A (en) * 2014-09-28 2016-03-30 中国科学院大连化学物理研究所 Method for preparation of bamboo-shaped carbon nanotube by ultrasonic atomization
AU2016265016B2 (en) * 2015-05-21 2019-11-28 Bnnt, Llc Boron nitride nanotube synthesis via direct induction
JP6581481B2 (en) * 2015-11-19 2019-09-25 積水化学工業株式会社 Boron nitride nanotubes and thermosetting materials
CN111956666B (en) * 2020-08-31 2021-07-23 南开大学 A kind of polyethylene glycol modified two-dimensional nanomaterial and its preparation method and application

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794507B2 (en) * 1995-06-28 2006-07-05 信越化学工業株式会社 High water and oil repellent BN powder
JP4070345B2 (en) * 1999-02-15 2008-04-02 信越化学工業株式会社 Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet
CN1954043B (en) * 2004-09-23 2011-03-23 六号元素(控股)公司 Coated abrasive materials and method of manufacture
JP2007145677A (en) * 2005-11-30 2007-06-14 Teijin Ltd Boron nitride nanotubes coated with aromatic polyamide
JP4670100B2 (en) * 2006-03-01 2011-04-13 独立行政法人物質・材料研究機構 Method for purifying boron nitride nanotubes
JP4873690B2 (en) * 2006-03-20 2012-02-08 独立行政法人物質・材料研究機構 Method for controlling the outer wall dimensions of boron nitride nanotubes
JP4725890B2 (en) * 2006-05-09 2011-07-13 独立行政法人物質・材料研究機構 Acylated boron nitride nanotubes, dispersion thereof, and method for producing the boron nitride nanotubes
WO2009126207A1 (en) * 2008-04-08 2009-10-15 Waters Technologies Corporation Composite materials containing nanoparticles and their use in chromatography
JP5477702B2 (en) * 2009-11-10 2014-04-23 独立行政法人物質・材料研究機構 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative

Also Published As

Publication number Publication date
JP2012036046A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
Zheng et al. Surface modification of hexagonal boron nitride nanomaterials: a review
JP5477702B2 (en) Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative
Lu et al. Growth of SiC nanorods at low temperature
CN103627139B (en) A kind of preparation method of functional graphene oxide/epoxy resin nano composites
Su et al. Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts
JP5152716B2 (en) Chemically modified carbon nanotube and method for producing the same
JP5565694B2 (en) Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative
Xiao et al. Study on the phase change thermal storage performance of palmitic acid/carbon nanotubes composites
Zhang et al. The synthesis of functionalized carbon nanotubes by hyperbranched poly (amine-ester) with liquid-like behavior at room temperature
Zhou et al. Fabrication of silica nanoparticles on the surface of functionalized multi-walled carbon nanotubes
Gao et al. Polyhedral oligomeric silsesquioxane modified carbon nanotube hybrid material with a bump structure via polydopamine transition layer
Johan et al. Physico-chemical studies of cuprous oxide (Cu2O) nanoparticles coated on amorphous carbon nanotubes (α-CNTs)
Wang et al. Multiwalled boron nitride nanotubes: growth, properties, and applications
JP4725890B2 (en) Acylated boron nitride nanotubes, dispersion thereof, and method for producing the boron nitride nanotubes
Li et al. Composition-controlled synthesis and tunable optical properties of ternary boron carbonitride nanotubes
Jandial et al. Review of carbon nanotubes/poly (methyl methacrylate) composite fabrication and mechanical characterization techniques
Chen et al. Efficient and green synthesis of SiOC nanoparticles at near-ambient conditions by liquid-phase plasma
CN100391834C (en) Preparation method of high-purity multi-walled carbon nanotubes
KR20210069478A (en) A method of preparing a reduced graphene oxide and the reduced graphene oxide prepared by the method
Kumanek et al. Multi-layered graphenic structures as the effect of chemical modification of thermally treated anthracite
WO2014084042A1 (en) Complex containing double-walled carbon nanotubes
JP2023024853A (en) Boron nitride nanotube mixture
Yan et al. Functionalized multiwalled carbon nanotubes by grafting hyperbranched polysiloxane
KR101809355B1 (en) 3-dimensional carbon nano structure and preparing method thereof
Meng et al. β-SiC nanorods with uniform amorphous SiO2 wrappers on the outside surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5565694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees