JP4070345B2 - Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet - Google Patents

Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet Download PDF

Info

Publication number
JP4070345B2
JP4070345B2 JP03573699A JP3573699A JP4070345B2 JP 4070345 B2 JP4070345 B2 JP 4070345B2 JP 03573699 A JP03573699 A JP 03573699A JP 3573699 A JP3573699 A JP 3573699A JP 4070345 B2 JP4070345 B2 JP 4070345B2
Authority
JP
Japan
Prior art keywords
fine powder
group
thermally conductive
boron nitride
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03573699A
Other languages
Japanese (ja)
Other versions
JP2000233907A (en
Inventor
登喜男 関矢
友一 鷲尾
健英 岡見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP03573699A priority Critical patent/JP4070345B2/en
Publication of JP2000233907A publication Critical patent/JP2000233907A/en
Application granted granted Critical
Publication of JP4070345B2 publication Critical patent/JP4070345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は新規な表面改質窒化ほう素(BN)微粉末、該微粉末を含有する熱伝導性シリコーンゴム組成物、及び該組成物を硬化することにより得られる絶縁放熱シートに関する。
【0002】
【従来の技術】
絶縁放熱シートがパワートランジスター、サイリスタ、ダイオード等の発熱性電子部品の絶縁放熱に使用されている。該シートの代表的な材料としてシリコーンゴムが知られている。シリコーンゴム製絶縁放熱シートは、通常オルガノポリシロキサン、熱伝導性に優れた無機質フィラー及び架橋剤を含有するシリコーンゴム組成物をシート状に成形後、加硫する事により得られ、その無機質フィラーとしては、六方晶窒化硼素(以下BNと記する)、アルミナ、ベリリア、ダイアモンド等が例示される。これらのフィラーのうち、特性、コスト、安全性を総合的に考慮するとBNが最も好ましい。
【0003】
【発明が解決しようとする課題】
しかし、従来のBN微粉末を使用した絶縁放熱シートは電気絶縁性が不十分であり、特に湿度の高い場合に吸湿導電が生じるという問題があった。
この問題を解決するため本発明者らは先に特開平7−105739及び特開平7−330927に、耐水性の高い有機珪素化合物被膜を形成する化合物を添加した絶縁放熱シート用シリコーンゴム組成物、及びステアリン酸化合物を添加した絶縁放熱シート用シリコーンゴム組成物をそれぞれ提案した。しかし、これらの組成物では湿度の高い場合の吸湿導電は防止できるものの、熱抵抗が大きくなり放熱性が低下するという問題が生じる。
【0004】
【課題を解決するための手段】
そこで本発明者らは、以上の従来技術の有する問題点に鑑み、絶縁放熱シートの放熱性を維持したまま、湿度の高い場合の吸湿導電を防止する技術について鋭意検討を重ねた結果、本発明を完成するに到った。
【0005】
即ち、本発明は、第一に、アミノ基及びメルカプト基から選ばれる基を含有する有機基を有するシランカップリング剤で表面改質処理を行った熱伝導性窒化ほう素微粉末を提供する。
本発明は、第二に、
(イ)下記平均組成式(1)を有するオルガノポリシロキサン 100重量部、
aSiO(4-a)/2 (1)
(Rは一価炭化水素基、aは1.85〜2.10の正数)
(ロ)上記の熱伝導性窒化ほう素微粉末 30〜500重量部、及び
(ハ)架橋剤
を含有する熱伝導性シリコーンゴム組成物を提供する。
本発明は、第三に、上記の組成物を硬化することにより得られる絶縁放熱シートを提供する。
【0006】
【発明の実施の形態】
以下、本発明について詳述する。
[窒化ほう素微粉末]
本発明の熱伝導性窒化ほう素微粉末(BN微粉末)はアミノ基及びメルカプト基から選ばれる基を含有する有機基を有するシランカップリング剤で表面処理してなるものである。
【0007】
表面処理に供されるBN微粉末は、純度が95wt%以上、特に99wt%以上であることが好ましい。一般にBNには表面酸化膜としてのB23及びFe、Al、Ca等の数種類の金属元素が不可避不純物として含有されており、純度が95wt%未満の場合は、それらの不純物の影響でシートの熱的、電気的特性が損なわれる場合がある。更にBN微粉末は結晶化が発達していることが好ましく学振炭素材料117委員会法により測定したLc値が500Å以上特に700Å以上であることが好ましい。500Å未満である非晶質なBNを使用した場合は充分な特性が得られない場合がある。また、平均粒子径は1〜30μm、特に5〜20μmであることが好ましい。
【0008】
表面処理剤として使用されるシランカップリング剤はアミノ基及びメルカプト基から選ばれる基を含有する有機基を有することが必須である
【0009】
このような有機基を有するシランカップリング剤としては、例えば下記一般式(2)を有するオルガノシラン化合物があげられる。
SiR1 i2 j3 k (2)
[式中、R1アミノ基及びメルカプト基から選ばれる基を含有する有機基であり、R2はアルコキシ基、ハロゲン基等の加水分解性基であり、 R3はアルキル基であり、iは1〜3の整数、jは1〜3の整数、kは0〜2の整数であり、かつ、i+j+k=4である。]
【0010】
式(2)に於いて、R1アミノ基及びメルカプト基から選ばれる基を含有する有機基である。R1としては、N−(β−アミノエチル)−γ−アミノプロピル基、アミノプロピル基、N−フェニルアミノプロピル基、ジブチルアミノプロピル基、メルカプトプロピル基等が挙げられる。R2の加水分解基としては、例えばメトキシ基、エトキシ基、プロポキシ基等の炭素数1〜4のアルコキシ基、塩素、臭素等のハロゲン原子等が挙げられ、特にメトキシ基、エトキシ基等の低級アルコキシ基である事が好ましい。R3はアルキル基、好ましくは炭素数1〜8のアルキル基であり、例えばメチル基、エチル基、プロピル基等が挙げられる。iは1〜3、好ましくは1の整数、jは1〜3の整数、好ましくは2又は3であり、kは0〜2、好ましくは0又は1の整数で、i+j+k=4である。
【0011】
一般式(2)のシランカップリング剤の具体例としては、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン、N−(β−アミノエチル)γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)γ−アミノプロピルメチルジメトキシシラン、メルカプトプロピルトリメトキシシラン等が挙げられる。
【0012】
表面改質処理の方法は、従来公知の湿式処理又は乾式処理が適用できる。処理の均一性を考慮した場合、シラン溶液を調製してBN微粉末と混合後、乾燥させる湿式処理で行う事が好ましい。シラン溶液の調製は水にシランカップリング剤を添加後、又は、メタノール、エタノール等の低級アルコールにシランカップリング剤を溶解後に水を添加した後、必要に応じて酢酸、塩酸、Sn等の加水分解触媒を添加して、攪拌、超音波振動等を加えて行う。上記例示のシランカップリング剤のうち、アミノ基を含有するもの(以下アミノシランと総称する)は加水分解速度が速く、触媒も不要である。そのため、取り扱い上はアミノシランを使用する事が好ましいが、後述の絶縁放熱シート用シリコーンゴム組成物の硬化機構が付加反応の場合は触媒毒作用による硬化不良が生じることがあるため好ましくない。またシラン溶液の濃度は0.001〜5重量%、特に0.1〜2.0重量%とする事が好ましい。この様にして調製したシラン溶液とBN微粉末とをプラネタリーミキサー、ゲートミキサー、品川ミキサー等の汎用的な設備を使用して均一混合した後、乾燥させれば表面改質処理は終了である。ここで処理量は、BN微粉末の比表面積、その他の物性に合わせて適宜調整し得るが一般的にはBN微粉末100重量部に対して0.1〜5.0重量部である。
【0013】
[熱伝導性シリコーンゴム組成物]
次に、上記の表面改質処理を行ったBN微粉末を含有する熱伝導性シリコーンゴム組成物について詳述する。
(イ)成分:
該組成物を構成する(イ)成分としてのオルガノポリシロキサンは前記のように式(1)で示される平均組成式を有するものである。
aSiO(4-a)/2 (1)
式(1)に於いてRは同種又は異種の置換又は非置換の一価炭化水素基、好ましくは炭素数1〜8の一価炭化水素基であり、例えばメチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、シクロヘキシル基、シクロペンチル基等のシクロアルキル基、又はこれらの基の炭素原子に直結した水素原子の一部又は全部をハロゲン原子、シアノ基等で置換したクロロメチル基、クロロエチル基、トリフロロプロピル基、シアノエチル基、シアノプロピル基等であり、好ましくはメチル基、フェニル基、トリフロロプロピル基、ビニル基であり、aは1.85〜2.10の正数である。
(イ)成分のオルガノポリシロキサンは直鎖状の分子構造を有することが好ましいが、分子中に一部分子鎖状構造を有していてもよい。更にオルガノポリシロキサンは分子鎖末端をトリオルガノシリル基又は水酸基で封鎖されていることが好ましい。トリオルガノシリル基としてはトリメチルシリル基、ジメチルビニルシリル基、トリビニルシリル基、メチルフェニルビニルシリル基、メチルジフェニルシリル基、ジメチルヒドロキシシリル基等が例示される。
【0014】
(イ)成分のオルガノポリシロキサンの粘度は特に限定されないが、25℃に於ける粘度が25cSt以上とすることが好ましく、特に後述する架橋系が有機過酸化物架橋の場合は1,000,000〜100,000,000cStであることが好ましく、付加架橋の場合は100〜100,000,000cStであることが好ましく、縮合架橋の場合は100〜500,000cStであることが好ましい。
【0015】
(ロ)成分:
(ロ)成分としての前述の表面改質処理を行ったBN微粉末は絶縁放熱シートの電気絶縁性を維持した上で熱伝導性を向上させるための成分である。その平均粒子径は1〜30μm、特に5〜20μmであることが好ましい。粒子径が小さすぎると凝集粒が多くなってシリコーンゴム組成物中に均一分散させることが困難となったり、放熱経路上の粒界の数が多くなって充分な熱伝導性が得られなかったりする場合がある。一方、粒子径が大きすぎるとシートの表面に凸凹が生じて発熱性電子部品及び放熱フィンとの密着性が悪くなる場合がある。
【0016】
(ロ)成分のBN微粉末の配合量は(イ)成分のオルガノポリシロキサン100重量部に対し30〜500重量部、特に好ましくは100〜300重量部である。30重量部未満では充分な熱伝導性が得られず、一方500重量部を超えるとBN微粉末をシリコーンゴム組成物中に均一分散させることが困難となったり、組成物の粘度が上昇してシート成形性が悪化する等の不都合が生じる。
【0017】
(ハ)成分:
(ハ)成分の架橋剤は(イ)成分のオルガノポリシロキサンの架橋反応の機構により適宜選択される。
架橋がラジカル反応の場合は有機過酸化物が使用され、具体的にはベンゾイルパーオキサイド、モノクロルベンゾイルパーオキサイド、2,4,ジクロロベンゾイルパーオキサイド、o−メチルベンゾイルパーオキサイド、p−メチルベンゾイルパーオキサイド、ジ(t−ブチル)パーベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチル)パーオキシヘキサン、ジ(t−ブチル)パーオキサイド等が例示される。
有機過酸化物は(イ)成分のオルガノポリシロキサン100重量部に対して0.1〜10重量部、特に0.2〜5重量部添加することが好ましい。
【0018】
また架橋が付加反応の場合は珪素原子に直結した水素原子を1分子中に2個以上含有するオルガノハイドロジェンシロキサンと触媒として有効量(触媒量)の白金族元素(好ましくは白金)又はその化合物が使用される。この場合は(イ)成分のオルガノポリシロキサンが1分子中に2個以上のアルケニル基を含有することが必要である。但し、前述の通り、アミノシランで表面改質を行ったBN微粉末はかかる硬化機構において触媒毒として作用し硬化不良を起すことがあるため(ロ)成分として好ましくない。オルガノハイドロジエンポリシロキサンは水素原子に直結した水素原子が(イ)成分のアルケニル基に対し0.5〜5倍、特に0.7〜3.0倍となる量配合することが好ましい。
【0019】
更に架橋が縮合反応の場合は、アルコキシ基、アセトキシ基、オキシム基等の加水分解性基を1分子中に2個以上、好ましくは3個以上含有する加水分解性シラン又はシロキサンが架橋剤として使用される。この配合量は(イ)成分100重量部に対して1〜20重量部、特に2〜10重量部である。また触媒としてSn、Ti、Fe、Co等の有機金属化合物を使用することが好ましい。この場合は、(イ)成分のオルガノポリシロキサンの分子鎖両末端が水酸基で封鎖されていることが必要である。
(ハ)成分の架橋剤の配合量はその他の成分の種類や配合比に合わせて適宜調整し得るが一般的には組成物全体の0.1〜5重量%である。
【0020】
本発明のシリコーンゴム組成物には、上述して必須成分の他に、必要に応じて、例えば補強性充填剤としてのシリカ微粉末、分散剤としてのシラノール基含有低分子量シロキサン、環状シロキサン、シラノール基含有シラン、アルコキシ基含有シラン、難燃助剤としてのプラチナ化合物、パラジウム化合物、耐熱助剤としての酸化鉄、酸化セリウム、酸化オクチル、希釈用有機溶剤、着色のための顔料、架橋が付加反応の場合の硬化抑制剤としてのアセチレンアルコール、トリアゾール、ビニル基含有環状シロキサン等を配合することができる。また、後述の成形時にシートの骨格となるガラス繊維クロスを含有させることもできる。
【0021】
[絶縁放熱シート]
本発明の絶縁放熱シートは、以上の(イ)、(ロ)、(ハ)の3成分を必須成分として含有するシリコーンゴム組成物をプラネタリーミキサー、ゲートミキサー、品川ミキサー、バンバリーミキサー、3本ロール、ニーダー等の汎用的な設備を使用して均一混合し、ドクターブレード、カレンダーロール、押出成形等従来公知の成形方法でシート状に成形後加硫することにより得られる。
こうして得られた絶縁放熱シートに発熱性電子部品との接着のため粘着剤及び剥離紙を設けること等は任意である。
以上により、放熱性が良好で且つ湿度の高い場合にも吸湿導電が生じない絶縁放熱シートを得ることができる。
【0022】
【実施例】
参考例
γ−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製KBM403)2重量部を30重量部のメタノールに溶解し、水100重量部、60%酢酸水溶液10重量部を順次加えて1時間超音波振動を加えてシラン溶液を調製した。次に該シラン溶液と平均粒子径10μmのBN微粉末(信越化学工業(株)製KBN(h)−10)100重量部とをプラネタリーミキサーで1時間混合後、110℃の真空中で20時間乾燥させて表面改質処理を行ったBN微粉末を得た。
【0023】
次にジメチルシロキサン単位99.85mol%、メチルビニルシロキサン単位0.15mol%で平均重合度約8000のオルガノポリシロキサン100重量部、上記表面改質処理を行ったBN微粉末175重量部、及び架橋剤として2,5−ジメチル−2,5−ビス(t−ブチル)パーオキシヘキサン1.5重量部を300重量部のトルエンに分散してプラネタリーミキサーで3時間混合し、シリコーンゴム組成物を調製した。この組成物を厚さ0.05mmのガラス繊維クロスの両面にドクターブレードで厚さ0.25mmにコーティングした後、80℃で20分乾燥させて、温度170℃、圧力100kg/cm2の条件で10分間のプレス熱加硫を行って絶縁放熱シートを得た。次いでそれを常圧200℃で4時間の2次加硫を行った後、TO−3型トランジスターを使用して熱抵抗を測定した。更にシートをアルミニウム板とTO−3型トランジスターとの間に挟み、M3のネジを使用してトルク5kgf・cmで取り付けたものを温度40℃、相対湿度95%の条件で4時間吸湿させた直後の電気抵抗を測定した。
【0024】
実施例
アミノプロピルトリメトキシシラン(信越化学工業(株)製KBM903)2重量部を100重量部の水に溶解して1時間超音波振動を加えてシラン溶液を調製した。以下、このシラン溶液でBN微粉末の表面改質処理を行った以外は、参考例1と同様にして絶縁放熱シートの試作と特性の評価を行った。
【0025】
比較例1
BN微粉末として表面改質処理を行っていないBN微粉末を使用した以外は参考例1と同様にして絶縁放熱シートの試作、特性評価を行った。
比較例2
BN微粉末の表面処理剤としてビニルトリスメトキシエトキシシラン(信越化学工業(株)製KBC1003)を使用(触媒不使用)した以外は実施例と同様に試作、特性評価を行った。
比較例3
比較例1と同様に表面処理を行っていないBN微粉末を使用し、且つプラネタリーミキサー混合時にシリコーンゴム組成物にステアリン酸亜鉛3重量部を配合して、以下同様に試作、評価を行った。
以上の結果を合わせて表1に示す。
【0026】
【表1】

Figure 0004070345
表1に示す通り、本発明の実施例1の放熱絶縁シートは熱抵抗が小さく放熱性に優れると同時に吸湿後の電気抵抗は大きく絶縁性に優れている。これに対し、比較例1,2のシートは吸湿後の電気抵抗が小さく吸湿導電が起る恐れが大であり、比較例3のシートは熱抵抗が大きく放熱性に劣る。
【0027】
【発明の効果】
本発明の熱伝導性BN微粉末を含有する熱伝導性シリコーン組成物からなる絶縁放熱シートは良好な放熱性を有するとともに、吸湿後の電気絶縁性が大きく、湿度の高い場合でも吸湿導電を防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel surface-modified boron nitride (BN) fine powder, a thermally conductive silicone rubber composition containing the fine powder, and an insulating heat-radiating sheet obtained by curing the composition.
[0002]
[Prior art]
Insulating heat dissipation sheets are used for insulating heat dissipation of heat-generating electronic components such as power transistors, thyristors, and diodes. Silicone rubber is known as a typical material for the sheet. Silicone rubber insulating heat dissipation sheet is usually obtained by molding a silicone rubber composition containing organopolysiloxane, an inorganic filler with excellent thermal conductivity and a crosslinking agent into a sheet, and then vulcanizing it. Examples include hexagonal boron nitride (hereinafter referred to as BN), alumina, beryllia, diamond and the like. Among these fillers, BN is most preferable in consideration of characteristics, cost, and safety.
[0003]
[Problems to be solved by the invention]
However, the insulating heat-radiating sheet using the conventional BN fine powder has insufficient electrical insulation, and has a problem that moisture-absorbing conduction occurs particularly when the humidity is high.
In order to solve this problem, the present inventors previously disclosed a silicone rubber composition for an insulating heat-dissipating sheet in which a compound that forms a highly water-resistant organic silicon compound film is added to JP-A-7-105739 and JP-A-7-330927, And a silicone rubber composition for insulating heat-dissipating sheets to which a stearic acid compound was added were proposed. However, although these compositions can prevent moisture-absorbing conduction when the humidity is high, there arises a problem that heat resistance increases and heat dissipation decreases.
0004
[Means for Solving the Problems]
Therefore, in view of the above-described problems of the prior art, the present inventors have conducted extensive studies on a technique for preventing moisture absorption conduction when the humidity is high while maintaining the heat dissipation of the insulating heat dissipation sheet. It came to complete.
[0005]
That is, the present invention first provides a thermally conductive boron nitride fine powder subjected to surface modification treatment with a silane coupling agent having an organic group containing a group selected from an amino group and a mercapto group .
The present invention secondly,
(I) 100 parts by weight of an organopolysiloxane having the following average composition formula (1):
R a SiO (4-a) / 2 (1)
(R is a monovalent hydrocarbon group, a is a positive number from 1.85 to 2.10)
(B) A thermally conductive silicone rubber composition containing 30 to 500 parts by weight of the above-mentioned thermally conductive boron nitride fine powder and (c) a crosslinking agent is provided.
Thirdly, the present invention provides an insulating heat dissipation sheet obtained by curing the above composition.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[Boron nitride fine powder]
The thermally conductive boron nitride fine powder (BN fine powder) of the present invention is obtained by surface treatment with a silane coupling agent having an organic group containing a group selected from an amino group and a mercapto group .
[0007]
The BN fine powder to be subjected to the surface treatment preferably has a purity of 95 wt% or more, particularly 99 wt% or more. In general, BN contains B 2 O 3 as a surface oxide film and several kinds of metal elements such as Fe, Al, and Ca as inevitable impurities. When the purity is less than 95 wt%, the sheet is affected by the impurities. The thermal and electrical properties of the may be impaired. Further, the BN fine powder is preferably well-crystallized, and the Lc value measured by the Gakushin Carbon Materials 117 Committee method is preferably 500Å or more, particularly preferably 700Å or more. When amorphous BN of less than 500 mm is used, sufficient characteristics may not be obtained. The average particle size is preferably 1 to 30 μm, particularly preferably 5 to 20 μm.
[0008]
The silane coupling agent used as the surface treatment agent must have an organic group containing a group selected from an amino group and a mercapto group .
[0009]
The silane coupling agent having such organic group, organosilane compounds having following general formula (2).
SiR 1 i R 2 j R 3 k (2)
[Wherein R 1 is an organic group containing a group selected from an amino group and a mercapto group , R 2 is a hydrolyzable group such as an alkoxy group or a halogen group, R 3 is an alkyl group, i Is an integer of 1-3, j is an integer of 1-3, k is an integer of 0-2, and i + j + k = 4. ]
[0010]
In the formula (2), R 1 is an organic group containing a group selected from an amino group and a mercapto group . Examples of R 1 include N- (β-aminoethyl) -γ-aminopropyl group, aminopropyl group, N-phenylaminopropyl group, dibutylaminopropyl group, mercaptopropyl group and the like. Examples of the hydrolyzable group of R 2 include C 1-4 alkoxy groups such as methoxy group, ethoxy group and propoxy group, halogen atoms such as chlorine and bromine, etc., particularly lower groups such as methoxy group and ethoxy group. An alkoxy group is preferred. R 3 is an alkyl group, preferably an alkyl group having 1 to 8 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. i is an integer of 1 to 3, preferably 1, and j is an integer of 1 to 3, preferably 2 or 3, k is an integer of 0 to 2, preferably 0 or 1, and i + j + k = 4.
[0011]
Specific examples of the silane coupling agent of the general formula (2), amino propyl trimethoxysilane, aminopropyltriethoxysilane, N-(beta-aminoethyl) .gamma.-aminopropyltrimethoxysilane, N-(beta- Aminoethyl) γ-aminopropyltriethoxysilane, N- (β-aminoethyl) γ-aminopropylmethyldimethoxysilane, mercaptopropyltrimethoxysilane and the like.
[0012]
A conventionally known wet process or dry process can be applied to the surface modification process. In consideration of the uniformity of the treatment, it is preferable to prepare a silane solution, mix it with the BN fine powder, and then dry it by a wet treatment. The silane solution is prepared after adding a silane coupling agent to water or after adding the water after dissolving the silane coupling agent in a lower alcohol such as methanol or ethanol, and then adding water such as acetic acid, hydrochloric acid, or Sn as necessary. A decomposition catalyst is added, and stirring, ultrasonic vibration, etc. are added. Among the above-exemplified silane coupling agent, (collectively referred to as aminosilane or less) those containing amino groups has a high hydrolysis rate, the catalyst is not necessary. For this reason, aminosilane is preferably used for handling. However, when the curing mechanism of the silicone rubber composition for an insulating heat-dissipating sheet, which will be described later, is an addition reaction, curing failure due to catalyst poisoning may occur. The concentration of the silane solution is preferably 0.001 to 5% by weight, particularly 0.1 to 2.0% by weight. The surface modification treatment is completed when the silane solution thus prepared and the BN fine powder are uniformly mixed using general-purpose equipment such as a planetary mixer, a gate mixer, and a Shinagawa mixer, and then dried. . Here, the treatment amount can be appropriately adjusted according to the specific surface area of the BN fine powder and other physical properties, but is generally 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the BN fine powder.
[0013]
[Heat conductive silicone rubber composition]
Next, the heat conductive silicone rubber composition containing the BN fine powder subjected to the surface modification treatment will be described in detail.
(I) Ingredients:
The organopolysiloxane as the component (a) constituting the composition has an average composition formula represented by the formula (1) as described above.
R a SiO (4-a) / 2 (1)
In the formula (1), R is the same or different substituted or unsubstituted monovalent hydrocarbon group, preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms, such as methyl group, ethyl group, propyl group, etc. Alkyl groups, alkenyl groups such as vinyl groups and allyl groups, aryl groups such as phenyl groups and tolyl groups, cycloalkyl groups such as cyclohexyl groups and cyclopentyl groups, or a part of hydrogen atoms directly bonded to carbon atoms of these groups Or a chloromethyl group, a chloroethyl group, a trifluoropropyl group, a cyanoethyl group, a cyanopropyl group, etc., all substituted with a halogen atom, a cyano group, etc., preferably a methyl group, a phenyl group, a trifluoropropyl group, a vinyl group Yes, a is a positive number from 1.85 to 2.10.
The organopolysiloxane of component (a) preferably has a linear molecular structure, but may partially have a molecular chain structure in the molecule. Further, the organopolysiloxane is preferably blocked at the molecular chain end with a triorganosilyl group or a hydroxyl group. Examples of the triorganosilyl group include a trimethylsilyl group, a dimethylvinylsilyl group, a trivinylsilyl group, a methylphenylvinylsilyl group, a methyldiphenylsilyl group, and a dimethylhydroxysilyl group.
[0014]
The viscosity of the organopolysiloxane of component (a) is not particularly limited, but the viscosity at 25 ° C. is preferably 25 cSt or more. Particularly when the crosslinking system described later is organic peroxide crosslinking, it is 1,000,000 to 100,000,000 cSt. In the case of addition crosslinking, it is preferably 100 to 100,000,000 cSt, and in the case of condensation crosslinking, it is preferably 100 to 500,000 cSt.
[0015]
(B) Ingredients:
(B) The BN fine powder subjected to the surface modification treatment as the component is a component for improving the thermal conductivity while maintaining the electrical insulation of the insulating heat-radiating sheet. The average particle diameter is preferably 1 to 30 μm, particularly preferably 5 to 20 μm. If the particle size is too small, it becomes difficult to uniformly disperse in the silicone rubber composition due to an increase in aggregated particles, or the number of grain boundaries on the heat dissipation path increases and sufficient thermal conductivity cannot be obtained. There is a case. On the other hand, if the particle diameter is too large, unevenness may occur on the surface of the sheet, resulting in poor adhesion between the heat-generating electronic component and the radiation fin.
0016
The blending amount of the BN fine powder of component (b) is 30 to 500 parts by weight, particularly preferably 100 to 300 parts by weight, per 100 parts by weight of the organopolysiloxane of component (a). If it is less than 30 parts by weight, sufficient thermal conductivity cannot be obtained. On the other hand, if it exceeds 500 parts by weight, it becomes difficult to uniformly disperse the BN fine powder in the silicone rubber composition, or the viscosity of the composition increases. Inconveniences such as deterioration of sheet formability occur.
[0017]
(C) Ingredients:
The component (c) crosslinking agent is appropriately selected depending on the crosslinking reaction mechanism of the component (a) organopolysiloxane.
When the crosslinking is a radical reaction, an organic peroxide is used. Specifically, benzoyl peroxide, monochlorobenzoyl peroxide, 2,4, dichlorobenzoyl peroxide, o-methylbenzoyl peroxide, p-methylbenzoyl peroxide , Di (t-butyl) perbenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butyl) peroxyhexane, di (t-butyl) peroxide and the like.
The organic peroxide is preferably added in an amount of 0.1 to 10 parts by weight, particularly 0.2 to 5 parts by weight, based on 100 parts by weight of the organopolysiloxane (a).
[0018]
When the crosslinking is an addition reaction, an organohydrogensiloxane containing two or more hydrogen atoms directly bonded to a silicon atom and an effective amount (catalytic amount) of a platinum group element (preferably platinum) or a compound thereof as a catalyst Is used. In this case, it is necessary that the organopolysiloxane of component (a) contains two or more alkenyl groups in one molecule. However, as described above, BN fine powder subjected to surface modification with aminosilane is not preferable as the component (b) because it may act as a catalyst poison in such a curing mechanism and cause poor curing. The organohydrodiene polysiloxane is preferably blended in such an amount that the hydrogen atom directly connected to the hydrogen atom is 0.5 to 5 times, particularly 0.7 to 3.0 times the alkenyl group of the component (a).
[0019]
Furthermore, when the crosslinking is a condensation reaction, a hydrolyzable silane or siloxane containing 2 or more, preferably 3 or more hydrolyzable groups such as an alkoxy group, an acetoxy group or an oxime group is used as a crosslinking agent. Is done. This amount is 1 to 20 parts by weight, particularly 2 to 10 parts by weight per 100 parts by weight of component (a). Moreover, it is preferable to use organometallic compounds, such as Sn, Ti, Fe, Co, as a catalyst. In this case, it is necessary that both ends of the molecular chain of the organopolysiloxane of component (a) are blocked with hydroxyl groups.
The blending amount of the component (c) crosslinking agent can be appropriately adjusted according to the type and blending ratio of the other components, but is generally 0.1 to 5% by weight of the total composition.
[0020]
In the silicone rubber composition of the present invention, in addition to the essential components described above, if necessary, for example, silica fine powder as a reinforcing filler, silanol group-containing low molecular weight siloxane as a dispersant, cyclic siloxane, silanol Group-containing silane, alkoxy group-containing silane, platinum compound, palladium compound as flame retardant aid, iron oxide, cerium oxide, octyl oxide, organic solvent for dilution, pigment for coloring, crosslinking reaction In this case, acetylene alcohol, triazole, vinyl group-containing cyclic siloxane and the like as a curing inhibitor can be blended. Moreover, the glass fiber cloth used as the frame | skeleton of a sheet | seat at the time of the below-mentioned shaping | molding can also be contained.
[0021]
[Insulated heat dissipation sheet]
The insulating heat-radiating sheet of the present invention comprises a silicone rubber composition containing the above three components (a), (b), and (c) as essential components, a planetary mixer, a gate mixer, a Shinagawa mixer, a Banbury mixer, three It can be obtained by uniformly mixing using general-purpose equipment such as a roll and a kneader, and forming into a sheet by a conventionally known forming method such as a doctor blade, a calender roll, and extrusion molding, followed by vulcanization.
It is optional to provide the insulating heat-radiating sheet thus obtained with a pressure-sensitive adhesive and release paper for adhesion to the heat-generating electronic component.
As described above, it is possible to obtain an insulating heat radiating sheet that has good heat dissipation and does not generate hygroscopic conductivity even when humidity is high.
[0022]
【Example】
Reference example 1
2 parts by weight of γ-glycidoxypropyltrimethoxysilane (KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved in 30 parts by weight of methanol, and 100 parts by weight of water and 10 parts by weight of 60% acetic acid aqueous solution are sequentially added for 1 hour. A silane solution was prepared by applying ultrasonic vibration. Next, the silane solution and 100 parts by weight of BN fine powder (KBN (h) -10, manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 10 μm are mixed for 1 hour with a planetary mixer, and then are heated at 110 ° C. in vacuum. BN fine powder which was dried for a time and surface-modified was obtained.
[0023]
Next, 99.85 mol% of dimethylsiloxane units, 0.15 mol% of methylvinylsiloxane units and 100 parts by weight of organopolysiloxane having an average polymerization degree of about 8000, 175 parts by weight of BN fine powder subjected to the above surface modification treatment, and 2 as a crosslinking agent , 5-dimethyl-2,5-bis (t-butyl) peroxyhexane (1.5 parts by weight) was dispersed in 300 parts by weight of toluene and mixed with a planetary mixer for 3 hours to prepare a silicone rubber composition. This composition was coated on both sides of a 0.05 mm thick glass fiber cloth with a doctor blade to a thickness of 0.25 mm, dried at 80 ° C. for 20 minutes, and then at a temperature of 170 ° C. and a pressure of 100 kg / cm 2 for 10 minutes. An insulating heat radiating sheet was obtained by performing press heat vulcanization. Next, it was subjected to secondary vulcanization at 200 ° C. for 4 hours, and then the thermal resistance was measured using a TO-3 type transistor. Immediately after the sheet is sandwiched between an aluminum plate and a TO-3 type transistor and attached with a torque of 5 kgf · cm using M3 screws, the temperature is 40 ° C. and the relative humidity is 95% for 4 hours. The electrical resistance of was measured.
[0024]
Example 1
A silane solution was prepared by dissolving 2 parts by weight of aminopropyltrimethoxysilane (KBM903 manufactured by Shin-Etsu Chemical Co., Ltd.) in 100 parts by weight of water and applying ultrasonic vibration for 1 hour. Hereinafter, the insulating heat-radiating sheet was prototyped and the characteristics were evaluated in the same manner as in Reference Example 1 except that the surface modification treatment of BN fine powder was performed with this silane solution.
[0025]
Comparative Example 1
The insulating heat radiation sheet was prototyped and evaluated for characteristics in the same manner as in Reference Example 1 except that BN fine powder not subjected to surface modification treatment was used as the BN fine powder.
Comparative Example 2
Trial production and characteristic evaluation were performed in the same manner as in Example 1 except that vinyl trismethoxyethoxysilane (KBC1003 manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a surface treatment agent for BN fine powder (no catalyst was used).
Comparative Example 3
As in Comparative Example 1, BN fine powder not subjected to surface treatment was used, and 3 parts by weight of zinc stearate was blended with the silicone rubber composition at the time of mixing with the planetary mixer. .
The above results are shown together in Table 1.
[0026]
[Table 1]
Figure 0004070345
As shown in Table 1, the heat dissipating insulating sheet of Example 1 of the present invention has low thermal resistance and excellent heat dissipation, and at the same time the electric resistance after moisture absorption is large and excellent in insulating properties. On the other hand, the sheets of Comparative Examples 1 and 2 have a small electrical resistance after moisture absorption and a large risk of moisture absorption conduction, and the sheet of Comparative Example 3 has a large thermal resistance and poor heat dissipation.
[0027]
【The invention's effect】
The insulating heat-dissipating sheet made of the heat-conductive silicone composition containing the heat-conductive BN fine powder of the present invention has good heat-dissipation properties and has high electrical insulation after moisture absorption, preventing moisture-absorbing conductivity even when the humidity is high. can do.

Claims (4)

アミノ基及びメルカプト基から選ばれる基を含有する有機基を有するシランカップリング剤で表面改質処理を行った熱伝導性窒化ほう素微粉末。  A thermally conductive boron nitride fine powder subjected to surface modification treatment with a silane coupling agent having an organic group containing a group selected from an amino group and a mercapto group. 前記のシランカップリング剤が、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン、N−(β−アミノエチル)γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)γ−アミノプロピルメチルジメトキシシラン、およびメルカプトプロピルトリメトキシシランから選ばれる、請求項1に記載の熱伝導性窒化ほう素微粉末。  The silane coupling agent is aminopropyltrimethoxysilane, aminopropyltriethoxysilane, N- (β-aminoethyl) γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) γ-aminopropyltriethoxy. The thermally conductive boron nitride fine powder according to claim 1, selected from silane, N- (β-aminoethyl) γ-aminopropylmethyldimethoxysilane, and mercaptopropyltrimethoxysilane. (イ)下記平均組成式(1)を有するオルガノポリシロキサン 100重量部、
aSiO(4-a)/2 (1)
(Rは一価炭化水素基、aは1.85〜2.10の正数)
(ロ)請求項1又は2に記載の窒化ほう素微粉末 30〜500重量部、及び
(ハ)架橋剤
を含有する熱伝導性シリコーンゴム組成物。
(I) 100 parts by weight of an organopolysiloxane having the following average composition formula (1):
R a SiO (4-a) / 2 (1)
(R is a monovalent hydrocarbon group, a is a positive number from 1.85 to 2.10)
(B) A thermally conductive silicone rubber composition containing 30 to 500 parts by weight of boron nitride fine powder according to claim 1 or 2, and (c) a crosslinking agent.
請求項3に記載の組成物を硬化して得られる絶縁放熱シート。  An insulating heat radiation sheet obtained by curing the composition according to claim 3.
JP03573699A 1999-02-15 1999-02-15 Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet Expired - Fee Related JP4070345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03573699A JP4070345B2 (en) 1999-02-15 1999-02-15 Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03573699A JP4070345B2 (en) 1999-02-15 1999-02-15 Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet

Publications (2)

Publication Number Publication Date
JP2000233907A JP2000233907A (en) 2000-08-29
JP4070345B2 true JP4070345B2 (en) 2008-04-02

Family

ID=12450124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03573699A Expired - Fee Related JP4070345B2 (en) 1999-02-15 1999-02-15 Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet

Country Status (1)

Country Link
JP (1) JP4070345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006310A1 (en) 2019-07-11 2021-01-14 昭和電工株式会社 Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338927A (en) * 2001-05-18 2002-11-27 Sekisui Chem Co Ltd Thermocomductive pressure-sensitive adhesive agent and thermocomductive pressure-sensitive adhesive sheet
JP4575310B2 (en) * 2006-02-15 2010-11-04 電気化学工業株式会社 Boron nitride slurry and release agent
US8258346B2 (en) * 2009-05-13 2012-09-04 E I Du Pont De Nemours And Company Surface modified hexagonal boron nitride particles
JP5565694B2 (en) * 2010-08-09 2014-08-06 独立行政法人物質・材料研究機構 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative
JP5867426B2 (en) * 2013-02-28 2016-02-24 信越化学工業株式会社 Method for producing boron nitride powder
KR101889194B1 (en) * 2016-12-22 2018-08-16 주식회사 포스코 Heat-releasing sheet and preparing method for the same
CN108641373A (en) * 2018-05-16 2018-10-12 浙江禾为新材料科技有限公司 A kind of high band heat conduction suction wave insulating materials
JP6664640B1 (en) * 2018-12-18 2020-03-25 ニホンハンダ株式会社 Method for producing conductive filler, conductive filler, conductive addition reaction-curable silicone elastomer composition, and semiconductor device
US20220095486A1 (en) * 2019-01-03 2022-03-24 Amogreentech Co., Ltd. Method for manufacturing heat dissipation sheet
KR102465161B1 (en) * 2019-11-06 2022-11-09 주식회사 아모그린텍 Heat radiation sheet, method for manufacturing thereof, and electronic device comprising the same
CN111378284A (en) * 2020-04-20 2020-07-07 苏州天脉导热科技股份有限公司 Low-dielectric-constant heat-conducting silica gel sheet and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006310A1 (en) 2019-07-11 2021-01-14 昭和電工株式会社 Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles

Also Published As

Publication number Publication date
JP2000233907A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
US6054520A (en) Heat conductive BN filler and electrically insulating/heat dissipating sheet
JP6234617B2 (en) Flexible Peltier device and temperature control device
JP4070345B2 (en) Thermally conductive boron nitride fine powder, thermally conductive silicone composition containing the fine powder, and insulating heat dissipation sheet
JP5761111B2 (en) Insulating heat dissipation sheet and method for granulating boron nitride
JP2000256558A (en) Thermoconductive silicone rubber composition and its production
JP5103364B2 (en) Manufacturing method of heat conductive sheet
JPH0748560A (en) Coating composition
JP2018053237A (en) Silicone rubber-based curable composition and molded body
JP2004168920A (en) Thermally conductive silicone elastomer composition
JP2590654B2 (en) Method for producing thermally conductive silicone rubber composition
JP3078155B2 (en) Heat resistant heat conductive thermocompression bonding sheet
JP3127093B2 (en) Thermally conductive silicone rubber composition
JPS61228062A (en) Elame-retardant silicone rubber composition
JP2697523B2 (en) Oil-bleed silicone rubber composition and cured product thereof
JPH07215705A (en) Boron nitride powder for adding to silicone rubber and silicone rubber product
JP3275624B2 (en) Silicone rubber composition and molding method thereof
JP3232226B2 (en) Curable silicone rubber composition, cured product thereof, and resin-sealed semiconductor device sealed thereby
JP3446703B2 (en) Manufacturing method of insulating heat dissipation sheet and insulation heat dissipation sheet
JPH10245487A (en) Silicon rubber composition for high-voltage electrical insulating material and its production
JP3010982B2 (en) Insulation heat dissipation sheet
JPH11103085A (en) Solar battery, its manufacture and solar battery unit
JP4678171B2 (en) Primer composition
JP3407269B2 (en) Thermally conductive silicone rubber composition
JPH11158377A (en) Silicone rubber composition and fixing roll
JP2853464B2 (en) Method for producing oil-bleed silicone rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Ref document number: 4070345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees