JP4873690B2 - Method for controlling the outer wall dimensions of boron nitride nanotubes - Google Patents

Method for controlling the outer wall dimensions of boron nitride nanotubes Download PDF

Info

Publication number
JP4873690B2
JP4873690B2 JP2006076541A JP2006076541A JP4873690B2 JP 4873690 B2 JP4873690 B2 JP 4873690B2 JP 2006076541 A JP2006076541 A JP 2006076541A JP 2006076541 A JP2006076541 A JP 2006076541A JP 4873690 B2 JP4873690 B2 JP 4873690B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitride nanotubes
wall
controlling
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006076541A
Other languages
Japanese (ja)
Other versions
JP2007254160A (en
Inventor
義雄 板東
ホワン・チン
デミトリー・ゴルバーグ
敬次 倉嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006076541A priority Critical patent/JP4873690B2/en
Publication of JP2007254160A publication Critical patent/JP2007254160A/en
Application granted granted Critical
Publication of JP4873690B2 publication Critical patent/JP4873690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、機械的性質、熱伝導率、高温における耐酸化性などに優れ、制御された外壁寸法を有する窒化ホウ素ナノチューブ及びその製造方法に関する。   The present invention relates to a boron nitride nanotube having excellent mechanical properties, thermal conductivity, oxidation resistance at high temperature, and the like, and having a controlled outer wall dimension, and a method for producing the same.

窒化ホウ素ナノチューブは、高温における耐酸化性や優れた機械的性質を有している。例えば、非特許文献1に報告されているように、窒化ホウ素ナノチューブは、直径の違いによってバンドギャップエネルギーが変化することが知られている。   Boron nitride nanotubes have high temperature oxidation resistance and excellent mechanical properties. For example, as reported in Non-Patent Document 1, it is known that the band gap energy of boron nitride nanotubes varies depending on the difference in diameter.

一方、カーボンナノチューブのエッチング方法としては、薬品を用いたケミカルエッチング方法(例えば、非特許文献2参照)、電圧を印加し電流を流しながらエッチングすることにより多層カーボンナノチューブの外壁を剥ぎ取る方法(例えば、非特許文献3参照)が報告されている。エッチングの別の方法としては、超臨界水を用いて外壁を剥ぎ取る方法(例えば、非特許文献4,5参照)などが知られている。   On the other hand, as a carbon nanotube etching method, a chemical etching method using a chemical (for example, see Non-Patent Document 2), a method of stripping the outer wall of a multi-walled carbon nanotube by applying a voltage and etching while flowing a current (for example, , See Non-Patent Document 3). As another etching method, a method of stripping the outer wall using supercritical water (for example, see Non-Patent Documents 4 and 5) is known.

K.H.Khoo,他、Phys. Rev.B 69巻、201401頁、2004年K.H.Khoo, et al., Phys. Rev. B 69, 201401, 2004 S.C.Tsang,他、Nature 372巻、159頁、1994年S.C.Tsang, et al., Nature 372, 159, 1994 J.Cumings,他、Nature 406巻、586頁、2000年J. Cummings, et al., Nature 406, 586, 2000 J.Y.Chang,他、Chem. Phys. Lett.363巻、583頁、2002年J.Y.Chang, et al., Chem. Phys. Lett. 363, 583, 2002 J.Y.Chang,他、Appl. Phys. Lett.85巻、2613頁、2004年J.Y.Chang, et al., Appl. Phys. Lett. 85, 2613, 2004

上述したように、窒化ホウ素ナノチューブは、その直径の値によって特性が異なる。したがって、種々の直径を有する窒化ホウ素ナノチューブを自由に得ることができれば、必要な特性を持つ応用製品の開発が可能となるが、現状では、窒化ホウ素ナノチューブの外壁を制御してエッチングする有効な方法が実現されていないという課題がある。   As described above, boron nitride nanotubes have different characteristics depending on their diameter values. Therefore, if boron nitride nanotubes having various diameters can be obtained freely, it is possible to develop application products having the necessary characteristics. However, at present, an effective method for controlling and etching the outer wall of the boron nitride nanotubes There is a problem that is not realized.

本発明は上記課題に鑑み、薬品を用いることで、多層又は単層窒化ホウ素ナノチューブにおいて、制御された外壁寸法を有する窒化ホウ素ナノチューブ及びその製造方法を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide a boron nitride nanotube having a controlled outer wall dimension in a multilayer or single-layer boron nitride nanotube by using a chemical and a method for producing the same.

上記目的を達成するため、本発明の制御された外壁寸法を有する窒化ホウ素ナノチューブは、多層又は単層からなる窒化ホウ素ナノチューブにおいて、窒化ホウ素ナノチューブの外壁の寸法が制御されて形成されていることを特徴とする。
本発明の制御された外壁寸法を有する窒化ホウ素ナノチューブの製造方法は、多層からなる窒化ホウ素ナノチューブを水及び有機溶媒からなる混合溶媒中に添加し、超音波処理して分散液とする工程と、分散液を圧力容器中で加熱する工程と、を備え、窒化ホウ素ナノチューブの外壁寸法を、分散液の加熱によるエッチングで制御することを特徴とする。
上記構成において、有機溶媒は、好ましくは、ジメチルスルホキシド、スルホラン、ジメチルスルホンの何れか又はこれらの混合有機溶媒である。加熱温度は170〜200℃の範囲であれば好ましい。
In order to achieve the above object, the boron nitride nanotubes having a controlled outer wall size according to the present invention are formed by controlling the outer wall size of the boron nitride nanotubes in a multi-layer or single-layer boron nitride nanotube. Features.
The method for producing a boron nitride nanotube having a controlled outer wall size according to the present invention includes adding a boron nitride nanotube composed of multiple layers to a mixed solvent composed of water and an organic solvent, and sonicating it into a dispersion. Heating the dispersion in a pressure vessel, and controlling the outer wall size of the boron nitride nanotubes by etching by heating the dispersion.
In the above configuration, the organic solvent is preferably dimethyl sulfoxide, sulfolane, dimethyl sulfone, or a mixed organic solvent thereof. The heating temperature is preferably in the range of 170 to 200 ° C.

上記構成によれば、多層窒化ホウ素ナノチューブの外壁を精度良く化学エッチングすることができる。したがって、この方法によれば、外壁の寸法が制御された多層又は単層窒化ホウ素ナノチューブを得ることができる。   According to the above configuration, the outer wall of the multi-layer boron nitride nanotube can be chemically etched with high accuracy. Therefore, according to this method, it is possible to obtain multi-layer or single-layer boron nitride nanotubes whose outer wall dimensions are controlled.

本発明によれば、熱的、化学的に安定な多層からなる窒化ホウ素ナノチューブにおいて、その外壁を、化学薬品によりエッチングすることができ、外壁の寸法を精度良く制御した窒化ホウ素ナノチューブを提供することができる。   According to the present invention, it is possible to provide a boron nitride nanotube in which the outer wall of a boron nitride nanotube comprising a thermally and chemically stable multilayer can be etched with a chemical, and the dimensions of the outer wall are accurately controlled. Can do.

本発明に用いるエッチング前の窒化ホウ素ナノチューブは、窒化ホウ素からなるチューブ状構造を有しており、六角網目の面がチューブ軸に平行に管を形成し、多重管、すなわち、多層構造を呈している。この窒化ホウ素ナノチューブの平均直径は、0.4nm〜1μmである。   The pre-etched boron nitride nanotubes used in the present invention have a tube-like structure made of boron nitride, the hexagonal mesh surface forms a tube parallel to the tube axis, and exhibits a multiple tube, that is, a multilayer structure. Yes. The average diameter of the boron nitride nanotube is 0.4 nm to 1 μm.

上記の多層窒化ホウ素ナノチューブは、アーク放電法、レーザー加熱法、化学的気相成長法を用いて製造することができる。別の方法としては、ホウ化ニッケルを触媒として使用し、ボラジンを原料とする製造方法も知られている。さらに、カーボンナノチューブを鋳型として利用して、酸化ホウ素と窒素を反応させて製造する方法も提案されている。本発明に使用する多層窒化ホウ素ナノチューブは、何れの製造方法で製造してもよく、特に上記の製造方法には限定されない。   The multi-layer boron nitride nanotubes can be manufactured using an arc discharge method, a laser heating method, or a chemical vapor deposition method. As another method, a production method using nickel boride as a catalyst and using borazine as a raw material is also known. Furthermore, a method of manufacturing by reacting boron oxide and nitrogen using a carbon nanotube as a template has been proposed. The multi-layer boron nitride nanotube used in the present invention may be manufactured by any manufacturing method, and is not particularly limited to the above manufacturing method.

本発明の制御された外壁寸法を有する多層又は単層からなる窒化ホウ素ナノチューブは、窒化ホウ素ナノチューブを薬品で処理することによって、窒化ホウ素ナノチューブの外壁をはがしてエッチングする方法により製造することができる。本発明においては、上記外壁寸法は、窒化ホウ素ナノチューブの最外側の管の外径、つまり、窒化ホウ素ナノチューブの管断面における直径と定義する。
最初に、多層からなる窒化ホウ素ナノチューブを水及び有機溶媒からなる混合溶媒中に添加し、超音波処理して分散液とする工程と、分散液を圧力容器中で加熱する工程と、により、窒化ホウ素ナノチューブの外壁寸法を、分散液の加熱によるエッチングで制御することができる。
The multi-layered or single-walled boron nitride nanotubes having a controlled outer wall size of the present invention can be manufactured by a method of peeling and etching the outer walls of the boron nitride nanotubes by treating the boron nitride nanotubes with a chemical. In the present invention, the outer wall dimension is defined as the outer diameter of the outermost tube of the boron nitride nanotube, that is, the diameter of the boron nitride nanotube in the tube cross section.
First, boron nitride nanotubes composed of multiple layers are added to a mixed solvent composed of water and an organic solvent, and subjected to sonication to form a dispersion, and nitriding is performed by heating the dispersion in a pressure vessel. The outer wall dimension of the boron nanotube can be controlled by etching by heating the dispersion.

上記の混合溶媒としては、少量の水を含有する有機溶媒を用いることができる。有機溶媒としては、極性有機溶媒を用いることができる。このような極性有機溶媒としては、ジメチルスルホキシド、スルホラン、ジメチルスルホンなどがある。上記有機溶媒は、その何れかの単体、又は、これらの有機溶媒を組み合わせた混合有機溶媒でもよい。   As the mixed solvent, an organic solvent containing a small amount of water can be used. A polar organic solvent can be used as the organic solvent. Such polar organic solvents include dimethyl sulfoxide, sulfolane, dimethyl sulfone and the like. The organic solvent may be any one of these organic solvents or a mixed organic solvent obtained by combining these organic solvents.

上記の加熱工程は、圧力容器中で行なうことができる。この圧力容器の加熱温度は170〜200℃が好ましい。加熱温度が170℃未満では、加水分解速度、すなわち、エッチング速度が遅くなり好ましくない。逆に、加熱温度が200℃以上では有機溶媒の分解等が起こり好ましくない。   The heating step can be performed in a pressure vessel. The heating temperature of the pressure vessel is preferably 170 to 200 ° C. When the heating temperature is less than 170 ° C., the hydrolysis rate, that is, the etching rate becomes slow, which is not preferable. Conversely, when the heating temperature is 200 ° C. or higher, decomposition of the organic solvent or the like occurs, which is not preferable.

上記の操作を施すことにより、多層窒化ホウ素ナノチューブは、その最外層から加水分解を受けて、多層窒化ホウ素ナノチューブの外壁がエッチングされることによりその直径が加熱時間とともに細くなっていく。したがって、この加熱時間を制御することにより、多層窒化ホウ素ナノチューブを、所望の直径にエッチングすることができる。
これにより、本発明のエッチング方法によれば、外壁の寸法として、その厚さが制御されて形成された多層又は単層窒化ホウ素ナノチューブを得ることができる。
By performing the above operation, the multi-layer boron nitride nanotubes are hydrolyzed from the outermost layer, and the outer walls of the multi-layer boron nitride nanotubes are etched, so that the diameter of the multi-layer boron nitride nanotubes decreases with the heating time. Therefore, by controlling this heating time, the multi-layered boron nitride nanotube can be etched to a desired diameter.
As a result, according to the etching method of the present invention, it is possible to obtain multi-layer or single-walled boron nitride nanotubes formed by controlling the thickness of the outer wall as a dimension.

以下、実施例によって本発明をさらに詳細に説明する。
最初に、既知の製造方法により、多層窒化ホウ素ナノチューブを製造した。具体的には、ホウ素粉末2g、酸化鉄(II)(FeO)粉末1g及び酸化マグネシウム粉末1gの
混合物を窒化ホウ素製の坩堝に入れ、この坩堝を縦型高周波誘導加熱炉の中に設置し、1500℃に加熱した。この温度に保ったまま、アンモニアガスを流しつつ、2時間加熱を続けて、多層窒化ホウ素ナノチューブを製造した。生成した多層窒化ホウ素ナノチューブの直径は、20〜100nmであった。
Hereinafter, the present invention will be described in more detail with reference to examples.
First, multi-layer boron nitride nanotubes were manufactured by a known manufacturing method. Specifically, a mixture of 2 g of boron powder, 1 g of iron oxide (II) (FeO) powder and 1 g of magnesium oxide powder was placed in a boron nitride crucible, and this crucible was placed in a vertical high frequency induction heating furnace. Heated to 1500 ° C. While maintaining this temperature, heating was continued for 2 hours while flowing ammonia gas to produce multi-layered boron nitride nanotubes. The diameter of the produced multi-layer boron nitride nanotube was 20 to 100 nm.

次に、上記のようにした製造した多層窒化ホウ素ナノチューブ10mgを水1cm、ジメチルスルホキシド40cmの混合溶媒中に入れて、30分間超音波処理を施し、分散液とした。その後、この分散液をテフロン(登録商標)で内張りした容量60cmのステンレススチール製のオートクレーブに入れ、180℃で6時間加熱した。加熱後の生成物を、アセトンと脱イオン水で5回洗浄した。 Next, the multilayer boron nitride nanotubes 10mg water 1 cm 3 was prepared with as described above, placed in a mixed solvent of dimethyl sulfoxide 40 cm 3, sonicated for 30 minutes to obtain a dispersion. Thereafter, this dispersion was placed in a 60 cm 3 stainless steel autoclave lined with Teflon (registered trademark) and heated at 180 ° C. for 6 hours. The heated product was washed 5 times with acetone and deionized water.

加熱時間を24時間とした以外は、実施例1と同様にして、多層窒化ホウ素ナノチューブをエッチングし、加熱後の生成物をアセトンと脱イオン水で5回洗浄した。   The multi-layer boron nitride nanotubes were etched in the same manner as in Example 1 except that the heating time was 24 hours, and the heated product was washed 5 times with acetone and deionized water.

図1は、実施例1の180℃で6時間エッチング処理した多層窒化ホウ素ナノチューブの透過型電子顕微鏡像を示す図である。図1の矢印で示すように、多層窒化ホウ素ナノチューブの外側のチューブ壁がエッチングにより剥がされていることが観察された。さらに、この多層窒化ホウ素ナノチューブの直径は56nmであり、チューブ壁の厚さは20nmであることが判明した。   FIG. 1 is a transmission electron microscope image of the multi-layer boron nitride nanotubes of Example 1 etched at 180 ° C. for 6 hours. As indicated by the arrows in FIG. 1, it was observed that the outer tube walls of the multi-layer boron nitride nanotubes were peeled off by etching. Furthermore, the diameter of the multi-layer boron nitride nanotube was found to be 56 nm, and the tube wall thickness was found to be 20 nm.

図2は、実施例2の180℃で24時間エッチング処理した多層窒化ホウ素ナノチューブの透過型電子顕微鏡像を示す図である。図2から明らかなように、実施例2では実施例1の6時間よりも長い24時間のエッチングを行ったので、実施例1の場合と比較すると、細い突き出した部分のチューブ壁の厚さが2nmと薄くなったことを確認できた。   2 is a transmission electron microscope image of the multi-layered boron nitride nanotubes etched at 180 ° C. for 24 hours in Example 2. FIG. As is clear from FIG. 2, in Example 2, the etching was performed for 24 hours, which was longer than 6 hours in Example 1, so that compared with Example 1, the thickness of the tube wall at the narrow protruding portion was smaller. It was confirmed that the thickness was as thin as 2 nm.

図3は、エッチング前後の多層窒化ホウ素ナノチューブの赤外線吸収スペクトルを示す図である。図において、横軸は波数(cm−1)を、縦軸は吸光度(任意目盛)を示している。「点線」で示すデータがエッチング前の多層窒化ホウ素ナノチューブの赤外線吸収スペクトルであり、「実線」で示すデータはエッチング後、即ち、実施例の多層窒化ホウ素ナノチューブの赤外線吸収スペクトルである。
図3から明らかなように、多層窒化ホウ素ナノチューブの赤外線吸収スペクトルにおいては、水及びジメチルスルホキシド中で加水分解反応が生じたので、図中の矢印(↓)で示す波数において、S=O(1060cm−1)、S−C(619cm−1)、C−H(3184cm−1)、N−H(3428cm−1)、B−OH(1132cm−1)の吸収が新たに出現した。これは、実施例の多層窒化ホウ素ナノチューブの外壁が加水分解を受けると同時に、ジメチルスルホキシドが窒化ホウ素ナノチューブの壁と化学結合したことを示している。
FIG. 3 is a diagram showing infrared absorption spectra of multi-layer boron nitride nanotubes before and after etching. In the figure, the horizontal axis represents the wave number (cm −1 ), and the vertical axis represents the absorbance (arbitrary scale). The data indicated by “dotted line” is the infrared absorption spectrum of the multilayer boron nitride nanotube before etching, and the data indicated by “solid line” is the infrared absorption spectrum of the multilayer boron nitride nanotube of Example after etching.
As is clear from FIG. 3, in the infrared absorption spectrum of the multi-layer boron nitride nanotube, hydrolysis reaction occurred in water and dimethyl sulfoxide. Therefore, at the wave number indicated by the arrow (↓) in the figure, S = O (1060 cm −1 ), S—C (619 cm −1 ), C—H (3184 cm −1 ), N—H (3428 cm −1 ), and B—OH (1132 cm −1 ) newly appeared. This indicates that dimethyl sulfoxide was chemically bonded to the walls of the boron nitride nanotubes at the same time that the outer wall of the multilayer boron nitride nanotubes of the example was subjected to hydrolysis.

本発明により、多層からなる窒化ホウ素ナノチューブのエッチングが可能となったので、所望の直径を持つ窒化ホウ素ナノチューブが形成できるようになった。その結果、今後、所望の特性を有する材料への展開が可能となる。   According to the present invention, it becomes possible to etch a boron nitride nanotube having a multi-layer structure, so that a boron nitride nanotube having a desired diameter can be formed. As a result, it will be possible to develop materials having desired characteristics in the future.

実施例1の180℃で6時間エッチング処理した多層窒化ホウ素ナノチューブの透過型電子顕微鏡像を示す図である。2 is a transmission electron microscopic image of multi-layer boron nitride nanotubes etched at 180 ° C. for 6 hours in Example 1. FIG. 実施例2の180℃で24時間エッチング処理した多層窒化ホウ素ナノチューブの透過型電子顕微鏡像を示す図である。4 is a view showing a transmission electron microscope image of multi-layer boron nitride nanotubes etched at 180 ° C. for 24 hours in Example 2. FIG. エッチング前後の多層窒化ホウ素ナノチューブの赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the multilayer boron nitride nanotube before and behind an etching.

Claims (3)

多層からなる窒化ホウ素ナノチューブを水及び有機溶媒からなる混合溶媒中に添加し、超音波処理して分散液とする工程と、Adding a boron nitride nanotube composed of multiple layers into a mixed solvent composed of water and an organic solvent, and sonicating it into a dispersion;
上記分散液を圧力容器中で加熱する工程と、を備え、Heating the dispersion in a pressure vessel, and
上記窒化ホウ素ナノチューブの外壁寸法を、上記分散液の加熱によるエッチングで制御する、窒化ホウ素ナノチューブの外壁寸法を制御する方法。A method for controlling an outer wall dimension of a boron nitride nanotube, wherein the outer wall dimension of the boron nitride nanotube is controlled by etching by heating the dispersion.
前記有機溶媒は、ジメチルスルホキシド、スルホラン、ジメチルスルホンの何れか又はこれらの混合有機溶媒である、請求項1に記載の窒化ホウ素ナノチューブの外壁寸法を制御する方法。The method for controlling the outer wall size of a boron nitride nanotube according to claim 1, wherein the organic solvent is dimethyl sulfoxide, sulfolane, dimethyl sulfone, or a mixed organic solvent thereof. 前記分散液の加熱温度が170〜200℃の範囲である、請求項1に記載の窒化ホウ素ナノチューブの外壁寸法を制御する方法。The method for controlling the outer wall dimensions of boron nitride nanotubes according to claim 1, wherein the heating temperature of the dispersion is in the range of 170 to 200 ° C.
JP2006076541A 2006-03-20 2006-03-20 Method for controlling the outer wall dimensions of boron nitride nanotubes Expired - Fee Related JP4873690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076541A JP4873690B2 (en) 2006-03-20 2006-03-20 Method for controlling the outer wall dimensions of boron nitride nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076541A JP4873690B2 (en) 2006-03-20 2006-03-20 Method for controlling the outer wall dimensions of boron nitride nanotubes

Publications (2)

Publication Number Publication Date
JP2007254160A JP2007254160A (en) 2007-10-04
JP4873690B2 true JP4873690B2 (en) 2012-02-08

Family

ID=38628786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076541A Expired - Fee Related JP4873690B2 (en) 2006-03-20 2006-03-20 Method for controlling the outer wall dimensions of boron nitride nanotubes

Country Status (1)

Country Link
JP (1) JP4873690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565694B2 (en) * 2010-08-09 2014-08-06 独立行政法人物質・材料研究機構 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310404A (en) * 1992-05-07 1993-11-22 Tokuyama Soda Co Ltd Boron nitride precursor and production of boron nitride
JPH0761865A (en) * 1993-08-23 1995-03-07 Shin Etsu Chem Co Ltd Thermally decomposed boron nitride product and its production
JP2002097004A (en) * 2000-09-21 2002-04-02 National Institute For Materials Science Method for manufacturing boron nitride nanotube by using oxide catalyst
JP4854125B2 (en) * 2001-02-28 2012-01-18 株式会社アルバック Carbon nanotube and processing method for obtaining the carbon nanotube
JP3844455B2 (en) * 2002-06-28 2006-11-15 電気化学工業株式会社 Hexagonal boron nitride powder, method for producing the same, application
JP3834640B2 (en) * 2003-01-29 2006-10-18 独立行政法人物質・材料研究機構 Method for producing boron nitride nanotubes
KR20060133099A (en) * 2004-04-13 2006-12-22 지벡스 코포레이션 Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials

Also Published As

Publication number Publication date
JP2007254160A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Kim et al. Scalable manufacturing of boron nitride nanotubes and their assemblies: a review
JP2009143800A (en) Method for producing graphene shell and graphene shell
JP2009107921A (en) Graphene sheet and method of producing the same
Shashurin et al. Synthesis of 2D materials in arc plasmas
JP7115748B2 (en) Processes, reactors and systems for fabrication of self-supporting two-dimensional nanostructures using plasma technology
JP6538415B2 (en) Method of oxidizing carbon material, graphene oxide and composition
JP2011068501A (en) Reused substrate for producing carbon nanotube, substrate for producing carbon nanotube, and method for manufacturing the substrate
Kostogrud et al. Influence of Gas Mixture and Temperature on AP‐CVD Synthesis of Graphene on Copper Foil
Alexandrescu et al. Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis
Tony et al. Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperature
KR102406714B1 (en) Systems and Methods for Synthesis of Graphene Quantum Dots
Sun et al. Strategies for scalable gas-phase preparation of free-standing graphene
Sun et al. Recent advances in the synthesis of MXene quantum dots
JP4873690B2 (en) Method for controlling the outer wall dimensions of boron nitride nanotubes
JP6917454B2 (en) Improved synthesis of graphene oxide
Muhl et al. Transparent conductive carbon nanotube films
JP2005343726A (en) Manufacturing method of carbon nanotube and modified carbon nanotube
JP6592766B2 (en) Graphene-coated aluminum nitride filler, production method thereof, electronic material, resin composite, and hydrophobic treatment method
JP3985044B2 (en) Single crystal silicon nanotube and method for producing the same
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP2014185072A (en) Method of producing recycled base material for carbon nano-tube production
JP2007223896A (en) Zinc sulfide/silicon core/shell nanowire and method for producing the same
Xu et al. Several features of the iron-included onion-like fullerenes
KR101092860B1 (en) Method For Separating Metallic Carbon Nanotubes By Using Microwave
JP5870604B2 (en) Method for producing single-walled carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees