JP5564789B2 - Casting apparatus and casting method - Google Patents

Casting apparatus and casting method Download PDF

Info

Publication number
JP5564789B2
JP5564789B2 JP2008333887A JP2008333887A JP5564789B2 JP 5564789 B2 JP5564789 B2 JP 5564789B2 JP 2008333887 A JP2008333887 A JP 2008333887A JP 2008333887 A JP2008333887 A JP 2008333887A JP 5564789 B2 JP5564789 B2 JP 5564789B2
Authority
JP
Japan
Prior art keywords
cooling medium
spiral
casting
medium passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008333887A
Other languages
Japanese (ja)
Other versions
JP2010155254A (en
Inventor
政巳 田代
克也 浦山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008333887A priority Critical patent/JP5564789B2/en
Publication of JP2010155254A publication Critical patent/JP2010155254A/en
Application granted granted Critical
Publication of JP5564789B2 publication Critical patent/JP5564789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明は、鋳造型内に鋳抜きピンを配置した状態で鋳造型のキャビティに溶湯を供給して鋳造を行う鋳造装置及び鋳造方法に関する。   The present invention relates to a casting apparatus and a casting method for performing casting by supplying a molten metal to a cavity of a casting mold in a state where a core pin is disposed in the casting mold.

従来、鋳抜きピンを用いて鋳造を行う際に、その冷却構造として鋳抜きピンを二重管構造とし、内部管内に冷却水を供給する一方、この供給した冷却水を、内部管と外部管との間の環状溝を有する排出通路を通して外部に排出するものが知られている(下記特許文献1参照)
特許第3616616号公報
Conventionally, when casting using a cast pin, the cast pin has a double pipe structure as its cooling structure, and the cooling water is supplied into the internal pipe, and the supplied cooling water is supplied to the internal pipe and the external pipe. What discharges outside through a discharge passage having an annular groove between the two is known (see Patent Document 1 below).
Japanese Patent No. 3616616

ところで、上記した従来のものは、内部管と外部管との間の冷却水通路として、軸方向に互いに離間した複数の環状溝を設け、これら複数の環状溝相互を軸方向に伸びる連絡溝によって互いに連通させている。このため、環状溝に入り込んだ冷却水が連絡溝を経て隣接する環状溝に流出するまでの流れがスムーズになされず、環状溝内に冷却水の淀みが発生する恐れがあって、鋳抜きピン外周の表面温度が不均一になるという問題がある。   By the way, the above-mentioned conventional one is provided with a plurality of annular grooves spaced apart from each other in the axial direction as a cooling water passage between the inner pipe and the outer pipe, and a plurality of annular grooves extending in the axial direction. Communicate with each other. For this reason, the flow until the cooling water that has entered the annular groove flows out to the adjacent annular groove through the communication groove is not smooth, and there is a risk that the cooling water stagnates in the annular groove. There is a problem that the surface temperature of the outer periphery becomes uneven.

そこで、本発明は、冷却媒体の流れの淀みを抑えて鋳抜きピンの表面温度を均一化することを目的としている。   Accordingly, an object of the present invention is to make the surface temperature of the core pin uniform by suppressing the stagnation of the flow of the cooling medium.

本発明は、中空構造の鋳抜きピン内に冷却管を挿入配置し、冷却管の外周面に対向する鋳抜きピンの内周面に、冷却媒体が流れる螺旋状の冷却媒体通路となる螺旋溝を設け、螺旋状の冷却媒体通路の一端部を、冷却管の内部に形成した内部冷却媒体通路の先端部に接続し、この内部冷却媒体通路の基端部と、螺旋状の冷却媒体通路の他端部とのいずれか一方を冷却媒体の入口部とする一方、いずれか他方を冷却媒体の出口部とし、前記螺旋溝は、該螺旋溝を構成する前記螺旋状の冷却媒体通路の前記一端部又は前記他端部のいずれか下流側に位置する側ほど溝の深さが深く形成されることにより前記キャビティに近接していることを特徴とする。 The present invention relates to a spiral groove serving as a spiral cooling medium passage in which a cooling pipe is inserted and disposed in a hollow casting pin and a cooling medium flows on the inner circumferential surface of the casting pin facing the outer circumferential surface of the cooling pipe. And connecting one end of the spiral cooling medium passage to the distal end of the internal cooling medium passage formed inside the cooling pipe, and the base end of the internal cooling medium passage and the spiral cooling medium passage. One of the other end portions is used as an inlet portion for the cooling medium, and the other is used as an outlet portion for the cooling medium , and the spiral groove is the spiral cooling medium passage that forms the spiral groove. It characterized that you have to close the cavity by one end or side as the depth of the groove located on either downstream side of the other end portion is deeply formed.

本発明によれば、冷却媒体は螺旋状に形成した冷却媒体通路をスムーズに流れるので、冷却媒体の淀みの発生を抑制して、鋳抜きピンの表面温度を均一化することができる。その際、螺旋状の冷却媒体通路は、鋳抜きピンの内周面に形成した螺旋溝によって構成しているので、鋳抜きピンの外周側に位置するキャビティにより近接した位置となり、該キャビティに供給される溶湯に対する冷却効果を高めることができる。   According to the present invention, since the cooling medium smoothly flows through the cooling medium passage formed in a spiral shape, the occurrence of stagnation of the cooling medium can be suppressed, and the surface temperature of the core pin can be made uniform. At that time, since the spiral cooling medium passage is constituted by a spiral groove formed on the inner peripheral surface of the core pin, the spiral coolant passage is located closer to the cavity located on the outer peripheral side of the core pin and is supplied to the cavity. The cooling effect on the molten metal can be enhanced.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示す鋳抜きピン1及び該鋳抜きピン1に一体化させた冷却管3を示す正面図で、図2に示す自動車用V型エンジンのアルミ合金製のライナレスシリンダブロック(以下単にシリンダブロックとする)5のシリンダボア7を鋳造によって成形するためのものである。   FIG. 1 is a front view showing a core pin 1 showing an embodiment of the present invention and a cooling pipe 3 integrated with the core pin 1, and is made of an aluminum alloy of the automobile V-type engine shown in FIG. A cylinder bore 7 of a linerless cylinder block (hereinafter simply referred to as a cylinder block) 5 is formed by casting.

すなわち、上記した鋳抜きピン1のボア成形部9を、鋳造型である図示しない金型本体に対し、図2におけるシリンダボア7内に対応する領域11に挿入セットした状態で、鋳抜きピン1と上記金型本体との間に形成されるキャビティに溶湯を供給することで、シリンダボア7を成形する。   That is, in the state where the above-described bore forming portion 9 of the core pin 1 is inserted and set in a region 11 corresponding to the inside of the cylinder bore 7 in FIG. The cylinder bore 7 is formed by supplying molten metal to a cavity formed between the mold body.

鋳抜きピン1は、図3(a)にその単体の断面図として示すように、有底の中空円筒形状を呈している。この鋳抜きピン1は、図3(a)中で右側の開口部13の内周面に雌ねじ部15を形成してあり、この雌ねじ部15に、前記した冷却管3の基端側の外周面に形成してある雄ねじ部17を螺合締結することで、図1のように冷却管3と一体化する。   The core pin 1 has a bottomed hollow cylindrical shape as shown in FIG. The cast pin 1 has a female screw portion 15 formed on the inner peripheral surface of the right-side opening 13 in FIG. 3A, and the outer periphery of the cooling tube 3 on the proximal end side. By screwing and fastening the male screw portion 17 formed on the surface, it is integrated with the cooling pipe 3 as shown in FIG.

冷却管3に形成した雄ねじ部17のさらに端部側にはフランジ部19を形成してあり、図1のように冷却管3の先端側の円柱部21を鋳抜きピン1内に挿入して一体化した状態で、フランジ部19の雄ねじ部17側の端面に設けてあるシール材となるOリング23が、鋳抜きピン1の端面26に押し付けられた状態となる。また、図1の状態では、冷却管3の先端面25は、鋳抜きピン1の底面27に対し隙間29を介して離間した状態としてある。   A flange portion 19 is formed on the further end side of the male screw portion 17 formed on the cooling pipe 3, and the cylindrical portion 21 on the tip side of the cooling pipe 3 is inserted into the core pin 1 as shown in FIG. In an integrated state, the O-ring 23 serving as a sealing material provided on the end surface of the flange portion 19 on the male screw portion 17 side is pressed against the end surface 26 of the core pin 1. Further, in the state of FIG. 1, the tip surface 25 of the cooling pipe 3 is in a state of being separated from the bottom surface 27 of the core pin 1 through a gap 29.

上記した冷却管3は、図3(b)に示すように全体として円柱形状を呈し、中心部に軸方向に沿って貫通する貫通孔3aを備え、この貫通孔3a内に細管30を挿入している。細管30の内部は、内部冷却媒体通路としての内部冷却水通路31を構成しており、この細管30の両端は冷却管3の両端から僅かに突出している。内部冷却水通路31のフランジ19側の端部が冷却媒体である冷却水の入口部としての流入口31aで、フランジ19と反対の先端側が冷却水の流出口31bであり、この流出口31bが前記図1に示してある隙間29に開口している。したがって、流入口31aから供給した冷却水は、内部冷却水通路31を通り、流出口31bを経て隙間29内に流出することになる。   The cooling pipe 3 described above has a cylindrical shape as a whole as shown in FIG. 3B, and has a through hole 3a penetrating along the axial direction in the center, and a thin tube 30 is inserted into the through hole 3a. ing. The inside of the thin tube 30 constitutes an internal cooling water passage 31 as an internal cooling medium passage, and both ends of the thin tube 30 slightly protrude from both ends of the cooling tube 3. The end of the internal cooling water passage 31 on the flange 19 side is an inflow port 31a as an inlet portion of cooling water that is a cooling medium, and the tip end side opposite to the flange 19 is an outflow port 31b of the cooling water. It opens to the gap 29 shown in FIG. Therefore, the cooling water supplied from the inflow port 31a passes through the internal cooling water passage 31 and flows out into the gap 29 through the outflow port 31b.

また、細管30の長手方向一部の外周部には固定具となるゴムパッキンなどからなる弾性体37を取り付けてある。この弾性体37の貫通孔3aに挿入していない状態(自然状態)での外径は、貫通孔3aの内径よりも僅かに大きく形成してある。このため、細管30を貫通孔3a内に弾性体37とともに図3(b)に示す位置まで挿入した状態で、弾性体37は貫通孔3aの内壁に押されて圧縮変形し、貫通孔3a内にて固定されることになる。この固定態で細管30と貫通孔3aの内壁との間には隙間32が形成される。   Further, an elastic body 37 made of rubber packing or the like serving as a fixture is attached to a part of the outer periphery of the thin tube 30 in the longitudinal direction. The outer diameter of the elastic body 37 when not inserted into the through hole 3a (natural state) is slightly larger than the inner diameter of the through hole 3a. Therefore, in a state where the thin tube 30 is inserted into the through hole 3a together with the elastic body 37 to the position shown in FIG. 3 (b), the elastic body 37 is pressed against the inner wall of the through hole 3a and is compressed and deformed. It will be fixed at. In this fixed state, a gap 32 is formed between the narrow tube 30 and the inner wall of the through hole 3a.

上記固定状態での弾性体37は冷却管3の円柱部21の長手方向ほぼ中央部に位置している。そして、この弾性体37によって、前記した隙間32が図3(b)中で左右2つに分離され、そのうち流入口31a側の隙間32が排水通路32aとなる。   The elastic body 37 in the fixed state is located substantially at the center in the longitudinal direction of the cylindrical portion 21 of the cooling pipe 3. The elastic body 37 separates the gap 32 described above into two on the left and right sides in FIG. 3B, and the gap 32 on the inlet 31a side becomes the drainage passage 32a.

なお、細管30を貫通孔3a内にて固定する手段としては、上記の弾性体37に限ることはない。例えば、細管30の上記弾性体37を設けた部位に対応する外周部に雄ねじを形成し、この雄ねじを貫通孔3aの内面に形成した雌ねじに螺合締結するようにしてもよい。また、弾性体37や雄ねじを形成する位置よりも先端側(図3(b)中で左側)の貫通孔3aの内径を、排水通路32aとなる側の内径よりも小さくすることで、細管30を図3(b)中で右側から貫通孔3aに挿入したときに、弾性体37や雄ねじ部が上記小さくした内径部分の端部に当接してストッパの役目を果たし、これにより細管30の貫通孔3aへの取り付け作業が容易となる。   The means for fixing the thin tube 30 in the through hole 3a is not limited to the elastic body 37 described above. For example, a male screw may be formed on the outer peripheral portion corresponding to the portion where the elastic body 37 of the thin tube 30 is provided, and this male screw may be screwed and fastened to a female screw formed on the inner surface of the through hole 3a. Further, the inner diameter of the through-hole 3a on the tip side (left side in FIG. 3B) from the position where the elastic body 37 and the male screw are formed is made smaller than the inner diameter on the side that becomes the drainage passage 32a, so that the capillary 30 3B is inserted into the through hole 3a from the right side in FIG. 3B, the elastic body 37 and the male screw portion abut against the end of the reduced inner diameter portion to serve as a stopper, thereby penetrating the thin tube 30. The attachment work to the hole 3a becomes easy.

一方、鋳抜きピン1は、冷却管3の円柱部21の外周面に対向する内周面に、螺旋状の螺旋溝33を形成してあり、この螺旋溝33と円柱部21の外周面との間に形成される空間が、冷却水が流れる螺旋状の冷却媒体通路としての螺旋状冷却水通路35となる。   On the other hand, the cast pin 1 has a spiral spiral groove 33 formed on the inner peripheral surface thereof facing the outer peripheral surface of the cylindrical portion 21 of the cooling pipe 3, and the spiral groove 33 and the outer peripheral surface of the cylindrical portion 21. A space formed between them becomes a spiral cooling water passage 35 as a spiral cooling medium passage through which the cooling water flows.

螺旋状冷却水通路35の図1中で左側の一端部は、冷却管3の先端面25と鋳抜きピン1の底面27との隙間29に連通し、螺旋状冷却水通路35の図1中で右側の他端部は、冷却管3の半径方向に向けて形成してある排水通路3bを通して前記した排水通路32aに連通している。   The left end of the spiral cooling water passage 35 in FIG. 1 communicates with a gap 29 between the tip surface 25 of the cooling pipe 3 and the bottom surface 27 of the core pin 1, and the spiral cooling water passage 35 in FIG. The other end on the right side communicates with the drainage passage 32a through the drainage passage 3b formed in the radial direction of the cooling pipe 3.

したがって、ここでは、螺旋状冷却水通路35の一端部を、冷却管3の内部冷却水通路31の先端部に隙間29を通して接続してあり、内部冷却水通路31の基端部を冷却水の入口部(流入口31a)とする一方、螺旋状冷却水通路35の他端部を冷却水の出口部(排水通路3b,32a)としている。   Therefore, here, one end portion of the spiral cooling water passage 35 is connected to the distal end portion of the internal cooling water passage 31 of the cooling pipe 3 through the gap 29, and the base end portion of the internal cooling water passage 31 is connected to the cooling water. On the other hand, the other end of the spiral cooling water passage 35 is used as the cooling water outlet (drainage passages 3b and 32a).

次に、作用を説明する。図示しない金型本体に対し、図1に示す冷却管3が一体化した鋳抜きピン1を、図2に示すシリンダブロック5のシリンダボア7内に対応する領域11に挿入セットした状態で、該鋳抜きピン1と金型本体との間に形成されるキャビティに溶湯を供給することで、シリンダボア7(シリンダブロック5)を鋳造成形する。   Next, the operation will be described. A cast pin 1 in which the cooling pipe 3 shown in FIG. 1 is integrated with a mold body (not shown) is inserted and set in a region 11 corresponding to the cylinder bore 7 of the cylinder block 5 shown in FIG. The cylinder bore 7 (cylinder block 5) is cast-molded by supplying molten metal to a cavity formed between the punch pin 1 and the mold body.

この際、本実施形態では、図示しない冷却水供給装置から冷却水を、配管を通して図1の矢印Wで示すように冷却管3の内部冷却水通路31に流入口31aから供給する。内部冷却水通路31に供給した冷却水は、流出口31bから隙間29に流出した後、螺旋状冷却水通路35を、冷却管3の円柱部21の周囲を旋回するようにしてスムーズに流れていく。   At this time, in the present embodiment, cooling water is supplied from a cooling water supply device (not shown) to the internal cooling water passage 31 of the cooling pipe 3 from the inlet 31a as shown by an arrow W in FIG. The cooling water supplied to the internal cooling water passage 31 flows smoothly through the spiral cooling water passage 35 around the cylindrical portion 21 of the cooling pipe 3 after flowing into the gap 29 from the outlet 31b. Go.

このように、螺旋状冷却水通路35を流れる冷却水によって鋳抜きピン1を冷却するが、その際本実施形態では、冷却水が螺旋状に流れているので、冷却水は淀みの発生を抑制しつつスムーズに流れることになる。その結果、鋳抜きピン1の表面温度が均一化し、鋳造時の焼き付きや製品の抜け抵抗を軽減できるとともに、湯回り不良も抑制でき、高品質な鋳造品を得ることができる。   Thus, the core pin 1 is cooled by the cooling water flowing through the helical cooling water passage 35. At this time, in this embodiment, since the cooling water flows in a spiral shape, the cooling water suppresses the occurrence of stagnation. However, it will flow smoothly. As a result, the surface temperature of the core pin 1 is made uniform, seizure during casting and resistance to product pull-out can be reduced, and poor hot water can be suppressed, and a high-quality cast product can be obtained.

上記螺旋状冷却水通路35を流れて冷却に供した冷却水は、その下流側の端部から排水通路3b,32aを経て外部に排出される。   Cooling water that has flowed through the spiral cooling water passage 35 and used for cooling is discharged from the downstream end through the drain passages 3b and 32a.

また、本実施形態では、鋳抜きピン1の内周面に螺旋溝33を形成することで螺旋状冷却水通路35としている。このため、本実施形態では、冷却管3の外周面に螺旋状溝を形成することで螺旋状冷却水通路とする場合に比較して、螺旋状冷却水通路35を溶湯が供給されるキャビティにより近付けることができ、キャビティ内の溶湯に対する冷却効果を高めることができ、成型品に対する冷却時間の短縮化、ひいては鋳造時間の短縮化を図ることができる。   In the present embodiment, the spiral cooling water passage 35 is formed by forming the spiral groove 33 on the inner peripheral surface of the core pin 1. For this reason, in the present embodiment, the spiral cooling water passage 35 is formed by the cavity to which the molten metal is supplied, as compared with the case where the spiral cooling water passage is formed by forming a spiral groove on the outer peripheral surface of the cooling pipe 3. The cooling effect on the molten metal in the cavity can be increased, the cooling time for the molded product can be shortened, and the casting time can be shortened.

また、鋳抜きピン1の内周面に螺旋溝33を形成することで、軸方向の溝相互間にはねじ状の凸部が連続して形成されることになるので、この凸部がリブの役目を果たして円筒形状の鋳抜きピン1の強度確保に寄与することができる。   In addition, by forming the spiral groove 33 on the inner peripheral surface of the core pin 1, screw-like convex portions are continuously formed between the axial grooves. It is possible to contribute to securing the strength of the cylindrical cored pin 1 by fulfilling this role.

また、螺旋状冷却水通路35を流れる冷却水は、溶湯の熱を受けることで下流側にいくに従って徐々に温度上昇するので、下流側ほどキャビティ内の溶湯に対する冷却効果が低下する傾向にある。このため、螺旋状冷却水通路35の下流側ほど、螺旋溝33をより深く形成してキャビティにより近付けることで、螺旋状冷却水通路35の下流側ほど冷却効果を高めることができ、鋳抜きピンの表面温度を均一化することができる。 Further, the cooling water flowing through the spiral cooling water passage 35 gradually increases in temperature as it goes downstream by receiving the heat of the molten metal, so that the cooling effect on the molten metal in the cavity tends to decrease toward the downstream side. For this reason, by forming the spiral groove 33 deeper toward the downstream side of the spiral cooling water passage 35 and approaching the cavity, the cooling effect can be enhanced toward the downstream side of the spiral cooling water passage 35. it is possible to equalize the surface temperature of the.

また、鋳抜きピン1は、抜き勾配により先端側ほど先細となっているので、この先端側に対応するシリンダボア7の肉厚が基端側に比較して厚くなる傾向にある。このため、鋳抜きピン1の先端側ほど、螺旋状冷却水通路35の通路面積を大きくすることで、先端側に流れる冷却水の量が多くなり、もって厚肉部に対する冷却効果を高めることができ、鋳抜きピンの表面温度を均一化することができる。 Moreover, since the casting pin 1 is tapered toward the distal end side due to the draft, the thickness of the cylinder bore 7 corresponding to the distal end side tends to be thicker than that on the proximal end side. For this reason, by increasing the passage area of the spiral cooling water passage 35 toward the front end side of the cast pin 1, the amount of cooling water flowing to the front end side is increased, thereby increasing the cooling effect on the thick portion. can, the surface temperature of the core pin can uniformly collapse into Rukoto a.

このような厚肉部に対する冷却効果は、抜き勾配により先細となる鋳抜きピン1の先端側ほど、螺旋状冷却水通路35の軸方向の間隔を狭くすることで、この先端側に流れる冷却水の量が多くなるので、上記と同様にして達成できる。   The cooling effect for such a thick portion is that the cooling water flowing to the tip side is reduced by narrowing the interval in the axial direction of the spiral cooling water passage 35 toward the tip side of the cast pin 1 that is tapered by the draft. Can be achieved in the same manner as described above.

なお、前記した実施形態では、冷却水を冷却管3の内部冷却水通路31から冷却水を供給するようにしたが、この内部冷却水通路31を排水側として、排水通路32a側から螺旋状冷却水通路35に冷却水を供給するようにしてもよい。   In the above-described embodiment, the cooling water is supplied from the internal cooling water passage 31 of the cooling pipe 3. However, the internal cooling water passage 31 is used as a drainage side, and the spiral cooling is performed from the drainage passage 32a side. Cooling water may be supplied to the water passage 35.

本発明の一実施形態を示す冷却管と一体化した鋳抜きピンの正面図である。It is a front view of the core pin integrated with the cooling pipe which shows one Embodiment of this invention. 図1の鋳抜きピンにより成形するシリンダボアを備える自動車用V型エンジンのアルミ合金製のライナレスシリンダブロックの断面図である。It is sectional drawing of the linerless cylinder block made from the aluminum alloy of the V-type engine for motor vehicles provided with the cylinder bore shape | molded by the cast pin of FIG. (a)は図1の鋳抜きピンの断面図、(b)は図1の冷却管の断面図である。(A) is sectional drawing of the core pin of FIG. 1, (b) is sectional drawing of the cooling pipe of FIG.

符号の説明Explanation of symbols

1 鋳抜きピン
3 冷却管
3b,32a 排水通路(冷却媒体の出口部)
31a 流入口(冷却媒体の入口部)
31 冷却管の内部冷却水通路(内部冷却媒体通路)
33 螺旋溝
35 螺旋状冷却水通路(螺旋状の冷却媒体通路)
1 Casting pin 3 Cooling pipe 3b, 32a Drainage passage (cooling medium outlet)
31a Inlet (cooling medium inlet)
31 Internal cooling water passage of cooling pipe (internal cooling medium passage)
33 Spiral groove 35 Spiral cooling water passage (spiral cooling medium passage)

Claims (4)

造型内に鋳抜きピンを配置した状態で前記鋳造型の前記鋳抜きピンとの間のキャビティに溶湯を供給して鋳造を行う鋳造装置において、前記鋳抜きピンを中空構造としてこの中空内に冷却管を挿入配置し、前記冷却管の外周面に対向する前記鋳抜きピンの内周面に、冷却媒体が流れる螺旋状の冷却媒体通路となる螺旋溝を設け、前記螺旋状の冷却媒体通路の一端部を、前記冷却管の内部に形成した内部冷却媒体通路の先端部に接続し、この内部冷却媒体通路の基端部と、前記螺旋状の冷却媒体通路の他端部とのいずれか一方を冷却媒体の入口部とする一方、いずれか他方を冷却媒体の出口部とし、
前記螺旋溝は、該螺旋溝を構成する前記螺旋状の冷却媒体通路の前記一端部又は前記他端部のいずれか下流側に位置する側ほど溝の深さが深く形成されることにより前記キャビティに近接していることを特徴とする鋳造装置。
In casting apparatus which performs casting by supplying molten metal to the cavity between the core pin of the casting mold in the state in which the pin punching cast into the molding cast, cooled to the hollow of the core pin as a hollow structure A pipe is inserted and arranged, and a spiral groove serving as a spiral cooling medium passage through which a cooling medium flows is provided on the inner peripheral surface of the core pin facing the outer peripheral surface of the cooling pipe, and the spiral cooling medium passage One end portion is connected to a distal end portion of an internal cooling medium passage formed inside the cooling pipe, and either one of a base end portion of the internal cooling medium passage and the other end portion of the spiral cooling medium passage Is the inlet of the cooling medium, one of the other is the outlet of the cooling medium,
The spiral groove is formed such that the depth of the groove is deeper toward the downstream side of the one end portion or the other end portion of the spiral cooling medium passage constituting the spiral groove. A casting apparatus characterized by being close to
抜き勾配により先細となる前記鋳抜きピンの先端側ほど、前記螺旋状の冷却媒体通路の通路面積を大きくしたことを特徴とする請求項1に記載の鋳造装置。   The casting apparatus according to claim 1, wherein a passage area of the spiral cooling medium passage is increased toward a tip end side of the casting pin that is tapered due to a draft. 抜き勾配により先細となる前記鋳抜きピンの先端側ほど、前記螺旋状の冷却媒体通路の間隔を狭くしたことを特徴とする請求項1又は請求項2に記載の鋳造装置。   3. The casting apparatus according to claim 1, wherein an interval between the spiral cooling medium passages is narrower toward a tip end side of the casting pin that is tapered due to a draft. 4. 鋳造型内に鋳抜きピンを配置した状態で前記鋳造型の前記鋳抜きピンとの間のキャビティに溶湯を供給して鋳造を行う鋳造方法において、
前記鋳抜きピンを中空構造としてこの中空内に冷却管を挿入配置し、前記冷却管の外周面に対向する前記鋳抜きピンの内周面に形成した螺旋溝であって、該螺旋溝による螺旋状の冷却媒体通路の一端部又は他端部のいずれか下流側に位置する側ほど溝の深さが深く形成された螺旋溝による螺旋状の冷却媒体通路の前記一端部と、前記冷却管の内部に形成した内部冷却媒体通路の先端部とを接続し、この内部冷却媒体通路の基端部と前記螺旋状の冷却媒体通路の他端部とのいずれか一方から冷却媒体を供給し、この供給した冷却媒体を、前記螺旋状の冷却媒体通路の一端部と前記内部冷却媒体通路の先端部との接続部分を通して、前記内部冷却媒体通路の基端部と前記螺旋状の冷却媒体通路の他端部とのいずれか他方から外部に排出することを特徴とする鋳造方法
In a casting method for performing casting by supplying molten metal to a cavity between the casting pins of the casting mold in a state where the casting pins are arranged in the casting mold,
A spiral groove formed on the inner peripheral surface of the core pin opposite to the outer peripheral surface of the cooling pipe, the spiral tube being formed by inserting and arranging a cooling pipe in the hollow with the hollow pin structure, The one end of the helical cooling medium passage formed by a spiral groove having a deeper groove depth toward the downstream side of one end or the other end of the cooling medium passage, and the cooling pipe The tip of the internal cooling medium passage formed inside is connected, and the cooling medium is supplied from either the base end of the internal cooling medium passage or the other end of the spiral cooling medium passage. The supplied cooling medium is passed through a connecting portion between one end of the spiral cooling medium passage and the tip of the internal cooling medium passage, and the other end of the inner cooling medium passage and the spiral cooling medium passage. To discharge to the outside from either one of the ends Casting method according to symptoms.
JP2008333887A 2008-12-26 2008-12-26 Casting apparatus and casting method Active JP5564789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333887A JP5564789B2 (en) 2008-12-26 2008-12-26 Casting apparatus and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333887A JP5564789B2 (en) 2008-12-26 2008-12-26 Casting apparatus and casting method

Publications (2)

Publication Number Publication Date
JP2010155254A JP2010155254A (en) 2010-07-15
JP5564789B2 true JP5564789B2 (en) 2014-08-06

Family

ID=42573551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333887A Active JP5564789B2 (en) 2008-12-26 2008-12-26 Casting apparatus and casting method

Country Status (1)

Country Link
JP (1) JP5564789B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104827009B (en) * 2015-05-11 2017-02-01 江西昌河汽车有限责任公司 Cooling method suitable for cylindrical mold
CN107735194B (en) * 2015-06-25 2020-10-20 日产自动车株式会社 Casting device and casting method
CN105903908A (en) * 2016-06-30 2016-08-31 湖南江滨机器(集团)有限责任公司 Method and device for fixing salt core for piston casting
CN106392014B (en) * 2016-09-27 2020-06-09 惠州市威盛工业有限公司 Manufacturing process and structure of spiral water channel sand core mold of water-cooled motor shell of new energy automobile
CN107457384A (en) * 2017-09-28 2017-12-12 天津市发利汽车压铸件厂 Die casting and die casting equipment
JP2019181558A (en) * 2018-04-13 2019-10-24 Cラボラトリ株式会社 Mold temperature regulating mechanism, and mold temperature regulating device
CN110142390B (en) * 2019-05-29 2024-03-15 惠州古川科技有限公司 Spiral water channel mold structure and processing method thereof
CN110142391B (en) * 2019-05-29 2024-03-15 惠州古川科技有限公司 Straight water channel mold structure and processing method thereof
CN114453569B (en) * 2021-12-31 2023-11-10 江苏润孚机械轧辊制造有限公司 Low-temperature casting equipment for roller processing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170935B2 (en) * 1993-03-16 2001-05-28 日産自動車株式会社 Local cooling structure of casting mold
JP4028112B2 (en) * 1998-12-08 2007-12-26 本田技研工業株式会社 Mold cooling method and apparatus
JP4771444B2 (en) * 2001-06-05 2011-09-14 株式会社ダイナモ Mold cooling system
JP2003136193A (en) * 2001-10-24 2003-05-14 Ryobi Ltd Bore pin for casting cylinder block
JP3981832B2 (en) * 2003-06-25 2007-09-26 トヨタ自動車株式会社 Cylinder block casting method

Also Published As

Publication number Publication date
JP2010155254A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5564789B2 (en) Casting apparatus and casting method
WO2008094649A3 (en) Blow mold design
JP5297440B2 (en) Mold cooling pipe
JP2007077852A (en) Cylinder block
JPH09323149A (en) Structure of pin for hole as cast in die for casting
ES2828499T3 (en) Piston for Die Casting Machine
JP5281345B2 (en) Closed deck type cylinder block
JPH0985414A (en) Cooling structure of metallic mold for casting
JP5488042B2 (en) Forging die
JP2010082684A (en) Casting method and casting apparatus
JP6006839B1 (en) Mold cooling pipe, mold cooling device, mold cooling structure, and mold
ES2356405T3 (en) MANUFACTURING PROCEDURE OF A MOTOR CYLINDER BODY.
KR101083436B1 (en) A cooler of plunger for die casting
JP3616616B2 (en) Bore pin for cylinder block casting
JP2010164006A (en) Cooling structure for cylinder block
KR200484963Y1 (en) Cooler for diecasting
JP4241075B2 (en) Mold and mold cooling method
WO2013124983A1 (en) Water jacket core
JP6232096B2 (en) Casting port bush and casting mold having the same
ITUB20153867A1 (en) JUNCTION FOR TUBES OF A MOTOR VEHICLE
US11905863B2 (en) Media channel assembly for an internal combustion engine, internal combustion engine having a media channel assembly, motor vehicle having an internal combustion engine and method for producing a media channel assembly
JP6413755B2 (en) Water jacket spacer
TWI525272B (en) Transmission module with a cooling device
JP4548351B2 (en) Oil cooler mounting structure
RU111265U1 (en) WATER HEATING RADIATOR SECTION AND EXTENSION BUTTER WITH EXTENSION FOR IT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R151 Written notification of patent or utility model registration

Ref document number: 5564789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151