JP3616616B2 - Bore pin for cylinder block casting - Google Patents

Bore pin for cylinder block casting Download PDF

Info

Publication number
JP3616616B2
JP3616616B2 JP2002186133A JP2002186133A JP3616616B2 JP 3616616 B2 JP3616616 B2 JP 3616616B2 JP 2002186133 A JP2002186133 A JP 2002186133A JP 2002186133 A JP2002186133 A JP 2002186133A JP 3616616 B2 JP3616616 B2 JP 3616616B2
Authority
JP
Japan
Prior art keywords
bore
coolant
bore pin
cooling
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002186133A
Other languages
Japanese (ja)
Other versions
JP2004025248A (en
Inventor
衛 村上
勝昭 木野
英司 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP2002186133A priority Critical patent/JP3616616B2/en
Publication of JP2004025248A publication Critical patent/JP2004025248A/en
Application granted granted Critical
Publication of JP3616616B2 publication Critical patent/JP3616616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明はシリンダブロック鋳造用ボアピンに関し、特に、シリンダーライナーが存在せず、溶湯材料がそのままシリンダボアとなるライナーレスシリンダブロック鋳造用ボアピンの冷却構造に関する。
【0002】
【従来の技術】
シリンダブロック鋳造用ボアピンは、基端部が金型に固定され、先端側が金型キャビティ内に突出してその周囲に溶湯が鋳ぐるまれてシリンダボアを形成する。そしてボアピンの熱膨張を防ぐ目的やボアピン周囲の溶湯金属を冷却する目的から、ボアピンの内部には冷却液が供給される。
【0003】
特開平6−71405号公報記載のボアピンの冷却構造によれば、基端側が金型に固定されたボアピン本体と、ボアピン本体の基端側から延びボアピン本体に同軸に配置された冷却液配管を備える。冷却液配管は、注入用配管と排出用配管からなり、ボアピン本体の軸方向の途中まで延びている。そしてボアピン本体の先端側には、冷却液配管に連通してそれと一直線に延びる冷却室が形成されている。ボアピン本体の基端側で冷却液を注入用配管から冷却室に導入すると、ボアピンの先端側で冷却が行われる。この冷却液は排出用配管を通過してボアピンの基端側から排出される。
【0004】
【発明が解決しようとする課題】
ボアピンの周囲に鋳ぐるまれた溶湯への冷却を高めるには、冷却室の直径を大きくして、冷却室周囲のボアピンの肉圧を薄くする必要がある。特に、ライナーレスのシリンダブロックを鋳造する場合には、溶湯の素材がそのままシリンダボアとなるため、より一層の冷却が必要となるが、冷却が不十分であると、溶湯金属の抱きつきや焼き付きが生じ、またボア面に鋳巣が発生する。
【0005】
また、単に冷却室の内径を大きくしただけでも、次のような問題が発生する。即ち、冷却室の内径が大きすぎると、その周囲のボアピンの肉厚が薄くなる。ボアピンの周囲に別体のシリンダライナーを嵌合しその周囲に溶湯を鋳ぐるむ鋳造であれば、シリンダライナが溶湯圧を受けるので、肉厚の薄さは極端な問題にはならないが、ライナーレスのシリンダブロックを鋳造する場合には、溶湯圧が直接ボアピンの薄肉部に作用するので、ボアピンの変形や破損の問題が生じる。
【0006】
また冷却室を大きくすることにより、冷却室の下部に冷却液が溜まる一方、冷却室の上部には空気が残留し、均一且つ十分な冷却ができなくなる。例えば、横型鋳造の場合には、シリンダボアの軸線が水平方向に延びているが、シリンダボアの下側のみが冷却液で冷却され、上側には冷却液が面することなく空気のみが残留し、ボアの周方向全体で均一な冷却ができない。
【0007】
更に、冷却室を大きくすれば、冷却室自体の流路断面積が大きくなるので、冷却液の流速が低下し、瞬時の冷却が困難となる。
【0008】
そこで本発明は、鋳造圧力による変形や破損がなく、ボアピンの周方向全体で均一かつ十分な冷却が可能であり、ボア部に鋳巣のないシリンダブロックの鋳造が可能なシリンダブロック鋳造用ボアピンを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、ボアピン本体と、ボアピン本体に配置されその軸方向に延びる冷却液配管を備え、該ボアピン本体の先端側の外周面でシリンダボアを形成し、該ボアピン本体の基端側で冷却液を冷却液配管内に導入しまた冷却液配管から排出して該先端側で冷却を行うシリンダブロック鋳造用ボアピンにおいて、該ボアピン本体は、外周面がシリンダボアを形成すると共に内部に穴部2aを有する外側部材2と、該外側部材2の穴部2aに嵌挿されると共に内部に冷却液配管4が配置された内側部材3とを有し、該内側部材3の外周面には該冷却液配管4に連通する冷却溝6、7、8、9、12、13、14が形成され、該冷却溝6、7、8、9、12、13、14は、ボアピン本体の軸方向に互いに離間して配列された複数の環状溝6、7、8、9と、隣り合う環状溝6、7、8、9どうしを互いに連通するための軸方向溝12、13、14とからなり、該複数の環状溝6、7、8、9のうちの一の該環状溝6は、該ボアピン本体の該先端に相当する該内側部材3の先端に形成され、それぞれの該環状溝6、7、8、9内には、該環状溝6、7、8、9を画成する該内側部材3の外周面から該外側部材に至るまで突出し該ボアピン本体の軸方向に延びる仕切部材15、16、17、18が設けられ、それぞれの該仕切部材15、16、17、18は、該環状溝6、7、8、9の周方向に冷却液が流れる方向における該環状溝6、7、8、9と該軸方向溝12、13、14との接続位置の直下流側に設けられ、該環状溝6、7、8、9内において該環状溝6、7、8、9の周方向に沿って流れる冷却液の流れを規制することを特徴とするシリンダブロック鋳造用ボアピンを提供している。
【0010】
【発明の実施の形態】
本発明のシリンダブロック鋳造用ボアピン1について図1に基づき説明する。ボアピン1は外側部材2と内側部材3からなるボアピン本体と、内側部材3の内部に配置され、ボアピン本体の軸方向に延びる冷却液配管4とを備える。
【0011】
外側部材2は長尺な略円柱形状をなし、その内部には内側部材3を収容するための略円柱形状の有底の穴部2aが形成されている。内側部材3は外側部材2の穴部2aに嵌挿されており、内側部材3の基端側に形成された雄ネジ3aに外側部材2の雌ネジ2bを螺合することにより、外側部材2は内側部材3に固定されている。外側部材2の内周面と内側部材3の外周面の間にはOリング19が装着され、冷却液の漏れを防止している。外側部材2の先端側は金型キャビティ内に突出して配置され、金型キャビティに突出した先端側の外周面および端面がアルミニウム合金などの溶湯金属に直接接触してシリンダボアが形成される。そして先端側はわずかに先細りの抜け勾配形状をなしている。外側部材2の孔部2aに嵌挿される内側部材3の先端部は円柱形状であり、その外周面には後述する冷却溝が形成されている。内側部材3の基端部は金型ダイス5に固定されている。冷却液配管4は、冷却液注入のための内管4aと、内管4aと同心配置された外管4bとによる二重管構造であり、内管4aの外周面と外管4bの内周面との間の空間が冷却液排出通路(図示せず)となる。
【0012】
内側部材3には冷却液配管4を挿入するための冷却液配管用長孔3bが内側部材3を貫通して形成されている。冷却液配管用長孔3bは内側部材3の基端面(図示せず)に開口する。冷却液配管用長孔3bの先端部分は内管4aにより導かれた冷却液の通路の役割をなす。冷却液配管用長孔3bは内管4aと外管4bの外径に合わせてドリル加工等により形成される。
【0013】
内側部材3の先端部の外周面には冷却溝となる第1乃至第4環状溝6、7、8、9が軸方向に互いに離間して形成されている。これらの環状溝は、旋盤加工等により容易に形成できる。冷却液配管用長孔3bと第1環状溝6を連通する注入孔10が内側部材3の半径方向に延びて形成され、第4環状溝9と冷却液排出通路(図示せず)を連通する排出孔11が内側部材3の半径方向に延びて形成されている。更に、図2に示されるように、内側部材3の先端部の外周面には、第1環状溝6と第2環状溝7とを連通する第1連絡溝12、第2環状溝7と第3環状溝8とを連通する第2連絡溝13、第3連絡溝8と第4連絡溝9とを連通する第3連絡溝14が内側部材3の軸方向に延びて形成されている。隣り合う環状溝どうしを互いに連通するための軸方向溝としての第1乃至第3連絡溝12、13、14も冷却溝の一部を構成する。
【0014】
図2に示されるように、第1乃至第4環状溝6,7,8,9には冷却液の流れを規制する為の仕切部材としての第1乃至第4仕切板15、16、17、18が設けられている。第1乃至第4仕切板15、16、17、18はそれぞれの環状溝を分断するように内側部材3の同一直線上にかつ、注入孔10や排出孔11に隣接した位置に設けられている。これら第1乃至第4仕切板15、16、17、18はそれぞれの環状溝に配置されるように内側部材3に溶接により固定されている。
【0015】
以上の構成において、内管4aから冷却液配管長孔3bの先端部に導入された冷却液は注入孔10から第1環状溝6内に導入される。第1環状溝6内に導入された冷却液は注入孔10の近傍に第1仕切板15が存在するために、図2においては上側には流れずにすべて下側に流れる。そして冷却液は第1環状溝6内をほぼ一周して図2における第1仕切板15の上側に至る。第1仕切板15の近傍には第1連絡溝12が位置しているので、冷却液は次に第1連絡溝12を通過して第2環状溝7内に導入される。そして同様にして第2連絡溝13、第3環状溝8、第3連絡溝14、第4環状溝9の順に冷却液が流れ、排出孔11に至り、冷却液排出通路(図示せず)から排出される。型開き後、ダイカスト鋳造したシリンダブロックにはシリンダボアの内周面に切削加工をするとともに、溶射又はメッキなどの表面処理を行う。
【0016】
第1乃至第4環状溝6、7、8、9は外管4bと比較しても外側部材2の先端側の外周面付近に接近して位置しており、且つ複数の環状溝を列状に配置した構成であるので、外側部材2の周囲の溶湯金属を効率的にかつ均一に冷却することができ、特にライナーレスのシリンダブロックの場合には、シリンダボアの鋳巣の発生を大きく抑制できる。また、大きな空間の冷却室ではなく、溝状の冷却通路であるので、冷却液の流速を高く維持することができる。更に、外側部材2の内部の穴部2aには内側部材3が嵌挿されているので、ライナーレスのシリンダブロックの鋳造に際しても内側部材3が外側部材2の変形防止部材として作用することができ、外側部材2の変形や破損を防止できる。
【0017】
本発明によるシリンダブロック鋳造用ボアピンは上述した実施の形態に限定されず、特許請求の範囲に記載した範囲で種々の変形や改良が可能である。例えば、上記実施例においては、別体である仕切板を内側部材に溶接で固定したが、環状溝を穿設加工するときに一部を加工せずに仕切板を内側部材と一体に設けてもよい。また、上記実施例においては、内側部材は金型ダイスに固定されるものとして説明したが、内側部材を駆動手段に連結することにより、ボアピンをシリンダブロックから引抜き可能としてもよい。また、本発明はライナーレスのシリンダブロックの鋳造のみならず、ライナーや繊維成形体をボアピンに嵌挿して溶湯で鋳ぐるむ鋳造にも当然に適用できる。
【0018】
【発明の効果】
本発明によるシリンダブロック鋳造用ボアピンによれば、冷却液の経路を外側部材の外周面に近い位置とすることができ、溶湯金属を効率的に冷却することができ、特にライナーレスのシリンダブロックの場合には、シリンダボアの鋳巣の発生を大きく抑制できる。また、大きな空間の冷却室ではなく、溝状の冷却通路であるので、冷却液の流速を高く維持することができる。更に鋳造時に高圧の溶湯が外側部材の先端側外周面に作用するが、外側部材の内部の穴部には内側部材が嵌挿されているので、ライナーレスのシリンダブロックの鋳造に際しても、内側部材によって外側部材の変形や破損を防止できる。更に、冷却溝は、ボアピン本体の軸方向に互いに離間して配列された複数の環状溝と、隣り合う環状溝どうしを互いに連通するための軸方向溝により形成されているので、環状溝を局部的に集中配置すれば、特に冷却の必要な部分を重点的に冷却できる。また環状溝は複数形成されているので、溝の本数やピッチを変えたり、特定の溝について溝の幅や深さを変えることにより、被冷却部材に対応した冷却の調整が容易となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るシリンダブロック鋳造用ボアピンを示す断面図。
【図2】内側部材の先端部の平面図。
【符号の説明】
1 ボアピン
2 外側部材
2a 穴部
3 内側部材
4 冷却液配管
4a 内管
4b 外管
6 第1環状溝
7 第2環状溝
8 第3環状溝
9 第4環状溝
10 注入孔
11 排出孔
12 第1連絡溝(軸方向溝)
13 第2連絡溝(軸方向溝)
14 第3連絡溝(軸方向溝)
15、16、17、18 仕切板(仕切部材)
[0001]
[Technical field to which the invention belongs]
The present invention relates to a bore block for casting a cylinder block, and more particularly, to a cooling structure for a bore pin for casting a linerless cylinder block in which a cylinder liner is not present and a molten material becomes a cylinder bore as it is.
[0002]
[Prior art]
The cylinder block casting bore pin has a base end fixed to the mold, a distal end projecting into the mold cavity, and molten metal is cast around it to form a cylinder bore. Then, for the purpose of preventing the thermal expansion of the bore pin and the purpose of cooling the molten metal around the bore pin, a coolant is supplied into the bore pin.
[0003]
According to the bore pin cooling structure described in Japanese Patent Application Laid-Open No. 6-71405, a bore pin main body whose base end side is fixed to a mold, and a coolant pipe that extends from the base end side of the bore pin main body and is coaxially disposed on the bore pin main body. Prepare. The coolant pipe is composed of an injection pipe and a discharge pipe, and extends partway along the axial direction of the bore pin body. A cooling chamber communicating with the coolant pipe and extending in a straight line with the coolant pipe is formed on the distal end side of the bore pin main body. When the coolant is introduced from the injection pipe into the cooling chamber on the proximal end side of the bore pin body, cooling is performed on the distal end side of the bore pin. The coolant passes through the discharge pipe and is discharged from the base end side of the bore pin.
[0004]
[Problems to be solved by the invention]
In order to increase the cooling to the molten metal cast around the bore pin, it is necessary to increase the diameter of the cooling chamber and reduce the wall pressure of the bore pin around the cooling chamber. In particular, when casting a linerless cylinder block, since the molten material becomes the cylinder bore as it is, further cooling is required. However, if the cooling is insufficient, the molten metal will be stuck and seized. In addition, a void is generated on the bore surface.
[0005]
Moreover, the following problems occur even if the inside diameter of the cooling chamber is simply increased. That is, if the inside diameter of the cooling chamber is too large, the thickness of the surrounding bore pin becomes thin. If casting is performed by fitting a separate cylinder liner around the bore pin and casting molten metal around it, the cylinder liner is subjected to the molten metal pressure. In the case of casting a cylinder block without a rod, since the molten metal pressure directly acts on the thin portion of the bore pin, there arises a problem of deformation and breakage of the bore pin.
[0006]
Further, by enlarging the cooling chamber, the coolant is accumulated in the lower portion of the cooling chamber, while air remains in the upper portion of the cooling chamber, and uniform and sufficient cooling cannot be performed. For example, in the case of horizontal casting, the axis of the cylinder bore extends in the horizontal direction, but only the lower side of the cylinder bore is cooled by the cooling liquid, and only the air remains on the upper side without facing the cooling liquid. Uniform cooling is not possible in the entire circumferential direction.
[0007]
Furthermore, if the cooling chamber is made larger, the flow passage cross-sectional area of the cooling chamber itself is increased, so that the flow rate of the cooling liquid is lowered and instantaneous cooling becomes difficult.
[0008]
Therefore, the present invention provides a cylinder block casting bore pin that is not deformed or damaged by casting pressure, can be uniformly and sufficiently cooled in the entire circumferential direction of the bore pin, and can cast a cylinder block having no casting hole in the bore portion. The purpose is to provide.
[0009]
[Means for Solving the Problems]
To achieve the above object, the present invention includes a bore pin body, and a coolant pipe arranged in the bore pin body extending in the axial direction to form a cylinder bore in the outer peripheral surface of the distal end side of the bore pin body, the the coolant in the base end side of the bore pins body is introduced into the cooling liquid in the pipe also in the bore pin cylinder block casting for cooling at the tip side and discharged from the coolant pipe, the bore pin body, the outer peripheral surface of the has an outer member 2 having a hole portion 2a inside to form a cylinder bore, an inner member 3 to which the cooling liquid pipe 4 is placed inside with the fitted into the hole 2a of the outer member 2, the Cooling grooves 6, 7, 8, 9, 12, 13, 14 communicating with the coolant pipe 4 are formed on the outer peripheral surface of the inner member 3, and the cooling grooves 6, 7, 8, 9, 12, 13, 14 are each in the axial direction of the bore pins body A plurality of annular grooves 6, 7, 8 and 9 arranged in between consists of the axial grooves 12, 13, 14 Metropolitan for communicating each other to do the adjacent annular grooves 6, 7, 8, 9, the The annular groove 6 of one of the plurality of annular grooves 6, 7, 8, 9 is formed at the tip of the inner member 3 corresponding to the tip of the bore pin body, and each of the annular grooves 6, 7, 8 and 9, partition members 15, 16, which project from the outer peripheral surface of the inner member 3 defining the annular grooves 6, 7, 8, 9 to the outer member and extend in the axial direction of the bore pin main body, 17, 18, and the partition members 15, 16, 17, 18 are respectively connected to the annular grooves 6, 7, 8, in the direction in which the coolant flows in the circumferential direction of the annular grooves 6, 7, 8, 9. 9 and the downstream side of the connecting position of the axial grooves 12, 13, 14 in the annular grooves 6, 7, 8, 9 Te provides a bore pin cylinder block casting, characterized in that to regulate the flow of the coolant flowing along the circumferential direction of the annular grooves 6, 7, 8, 9.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The cylinder block casting bore pin 1 of the present invention will be described with reference to FIG. The bore pin 1 includes a bore pin main body including an outer member 2 and an inner member 3, and a coolant pipe 4 that is disposed inside the inner member 3 and extends in the axial direction of the bore pin main body.
[0011]
The outer member 2 has a long and substantially cylindrical shape, and a substantially cylindrical bottomed hole portion 2a for accommodating the inner member 3 is formed therein. The inner member 3 is fitted into the hole 2 a of the outer member 2, and the outer member 2 is screwed into the male screw 3 a formed on the proximal end side of the inner member 3. Is fixed to the inner member 3. An O-ring 19 is mounted between the inner peripheral surface of the outer member 2 and the outer peripheral surface of the inner member 3 to prevent coolant leakage. The front end side of the outer member 2 is disposed so as to protrude into the mold cavity, and the outer peripheral surface and end surface of the front end side protruding into the mold cavity are in direct contact with a molten metal such as an aluminum alloy to form a cylinder bore. The tip side has a slightly tapered draft shape. The front end portion of the inner member 3 fitted into the hole 2a of the outer member 2 has a columnar shape, and a cooling groove described later is formed on the outer peripheral surface thereof. A base end portion of the inner member 3 is fixed to a die die 5. The coolant pipe 4 has a double pipe structure composed of an inner pipe 4a for injecting coolant and an outer pipe 4b concentrically disposed with the inner pipe 4a, and the outer circumference of the inner pipe 4a and the inner circumference of the outer pipe 4b. A space between the surfaces serves as a coolant discharge passage (not shown).
[0012]
The inner member 3 is formed with a coolant pipe long hole 3 b for inserting the coolant pipe 4 so as to penetrate the inner member 3. The coolant piping long hole 3 b opens in the base end surface (not shown) of the inner member 3. The distal end portion of the coolant piping elongated hole 3b serves as a coolant passage guided by the inner tube 4a. The coolant piping long hole 3b is formed by drilling or the like in accordance with the outer diameters of the inner tube 4a and the outer tube 4b.
[0013]
First to fourth annular grooves 6, 7, 8, 9 serving as cooling grooves are formed on the outer peripheral surface of the front end portion of the inner member 3 so as to be separated from each other in the axial direction. These annular grooves can be easily formed by lathe processing or the like. An injection hole 10 communicating with the coolant hole 3b and the first annular groove 6 is formed extending in the radial direction of the inner member 3, and communicates with the fourth annular groove 9 and a coolant discharge passage (not shown). A discharge hole 11 is formed extending in the radial direction of the inner member 3. Further, as shown in FIG. 2, on the outer peripheral surface of the front end portion of the inner member 3, the first communication groove 12, the second annular groove 7 and the second annular groove 7 communicating with the first annular groove 6 and the second annular groove 7 are provided. A second communication groove 13 communicating with the three annular grooves 8 and a third communication groove 14 communicating with the third communication groove 8 and the fourth communication groove 9 are formed extending in the axial direction of the inner member 3. The 1st thru | or 3rd connection grooves 12, 13, and 14 as an axial direction groove | channel for communicating adjacent annular grooves mutually also comprise a part of cooling groove.
[0014]
As shown in FIG. 2, the first to fourth partition plates 15, 16, 17, as partition members for restricting the flow of the coolant in the first to fourth annular grooves 6, 7, 8, 9, 18 is provided. The first to fourth partition plates 15, 16, 17, and 18 are provided on the same straight line of the inner member 3 and adjacent to the injection hole 10 and the discharge hole 11 so as to divide the respective annular grooves. . These first to fourth partition plates 15, 16, 17, 18 are fixed to the inner member 3 by welding so as to be disposed in the respective annular grooves.
[0015]
In the above configuration, the coolant introduced from the inner tube 4 a to the tip of the coolant piping long hole 3 b is introduced into the first annular groove 6 from the injection hole 10. Since the first partition plate 15 exists in the vicinity of the injection hole 10, the coolant introduced into the first annular groove 6 does not flow upward but flows all downward in FIG. 2. Then, the coolant substantially goes around the inside of the first annular groove 6 and reaches the upper side of the first partition plate 15 in FIG. Since the first communication groove 12 is located in the vicinity of the first partition plate 15, the coolant then passes through the first communication groove 12 and is introduced into the second annular groove 7. Similarly, the coolant flows in the order of the second communication groove 13, the third annular groove 8, the third communication groove 14, and the fourth annular groove 9 to reach the discharge hole 11, and from the coolant discharge passage (not shown). Discharged. After the mold is opened, the die cast cast cylinder block is cut on the inner peripheral surface of the cylinder bore and subjected to surface treatment such as spraying or plating.
[0016]
The first to fourth annular grooves 6, 7, 8, and 9 are located close to the vicinity of the outer peripheral surface on the front end side of the outer member 2 even when compared with the outer tube 4 b, and a plurality of annular grooves are arranged in a row Therefore, the molten metal around the outer member 2 can be efficiently and uniformly cooled, and particularly in the case of a linerless cylinder block, the occurrence of a cast hole in the cylinder bore can be greatly suppressed. . In addition, since the cooling space is not a large space but a groove-like cooling passage, the flow rate of the coolant can be kept high. Furthermore, since the inner member 3 is inserted into the hole 2a inside the outer member 2, the inner member 3 can act as a deformation preventing member for the outer member 2 even when casting a linerless cylinder block. The deformation and breakage of the outer member 2 can be prevented.
[0017]
The cylinder block casting bore pin according to the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made within the scope described in the claims. For example, in the above embodiment, the separate partition plate is fixed to the inner member by welding, but when the annular groove is drilled, the partition plate is provided integrally with the inner member without processing a part thereof. Also good. In the above embodiment, the inner member is fixed to the die, but the bore pin may be pulled out of the cylinder block by connecting the inner member to the driving means. Further, the present invention is naturally applicable not only to casting of a linerless cylinder block but also to casting in which a liner or a fiber molded body is inserted into a bore pin and cast with a molten metal.
[0018]
【The invention's effect】
According to the cylinder block casting bore pin of the present invention, the coolant path can be positioned close to the outer peripheral surface of the outer member, and the molten metal can be efficiently cooled. In this case, it is possible to greatly suppress the occurrence of a cast hole in the cylinder bore. In addition, since the cooling space is not a large space but a groove-like cooling passage, the flow rate of the coolant can be kept high. Further, a high-pressure molten metal acts on the outer peripheral surface of the outer member at the time of casting, but the inner member is inserted into the hole inside the outer member, so that the inner member is also cast when linerless cylinder blocks are cast. Therefore, deformation and breakage of the outer member can be prevented. Furthermore, the cooling groove is formed by a plurality of annular grooves arranged in the axial direction of the bore pin main body so as to be spaced apart from each other and an axial groove for communicating adjacent annular grooves with each other. If they are centrally arranged, it is possible to intensively cool particularly the parts that require cooling. Further, since a plurality of annular grooves are formed, it is easy to adjust the cooling corresponding to the member to be cooled by changing the number and pitch of the grooves or changing the width and depth of the specific groove.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a bore block for casting a cylinder block according to an embodiment of the present invention.
FIG. 2 is a plan view of a distal end portion of an inner member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bore pin 2 Outer member 2a Hole 3 Inner member 4 Coolant piping 4a Inner tube 4b Outer tube 6 1st annular groove 7 2nd annular groove 8 3rd annular groove 9 4th annular groove 10 Injection hole 11 Discharge hole 12 1st Communication groove (axial groove)
13 Second communication groove (axial groove)
14 Third communication groove (Axial groove)
15, 16, 17, 18 Partition plate (partition member)

Claims (1)

ボアピン本体と、
該ボアピン本体に配置されその軸方向に延びる冷却液配管備え、
ボアピン本体の先端側の外周面でシリンダボアを形成し、該ボアピン本体の基端側で冷却液を冷却液配管内に導入しまた冷却液配管から排出して該先端側で冷却を行うシリンダブロック鋳造用ボアピンにおいて、
ボアピン本体は、外周面がシリンダボアを形成すると共に内部に穴部を有する外側部材と、該外側部材の穴部に嵌挿されると共に内部に冷却液配管が配置された内側部材とを有し、該内側部材の外周面には該冷却液配管に連通する冷却溝が形成され、
冷却溝は、ボアピン本体の軸方向に互いに離間して配列された複数の環状溝と、隣り合う環状溝どうしを互いに連通するための軸方向溝とからなり、該複数の環状溝のうちの一の該環状溝は、該ボアピン本体の該先端に相当する該内側部材の先端に形成され、
それぞれの該環状溝内には、該環状溝を画成する該内側部材の外周面から該外側部材に至るまで突出し該ボアピン本体の軸方向に延びる仕切部材が設けられ、
それぞれの該仕切部材は、該環状溝の周方向に冷却液が流れる方向における該環状溝と該軸方向溝との接続位置の直下流側に設けられ、該環状溝内において該環状溝の周方向に沿って流れる冷却液の流れを規制することを特徴とするシリンダブロック鋳造用ボアピン。
Bore pin body ,
And a coolant pipe that extends in the axial direction is disposed in the bore pins body,
The bore pin to form a cylinder bore in the outer peripheral surface of the distal end side of the body, for cooling at the tip side coolant at the proximal end of the bore pins body is discharged from and introduced into the cooling liquid in the pipe also the cooling liquid pipe Te bore pin smell for the cylinder block casting,
The bore pin body, perforated outer member having a bore therein together with an outer peripheral surface to form the cylinder bore, and an inner member to which the cooling liquid pipe disposed therein with the inserted into the hole of the outer member A cooling groove communicating with the coolant pipe is formed on the outer peripheral surface of the inner member ;
The cooling groove has a plurality of annular grooves spaced apart to arranged each other in the axial direction of the bore pin body, Ri Do from the axial grooves to communicate with each other an annular groove each other adjacent, the plurality of annular grooves in the One of the annular grooves is formed at the tip of the inner member corresponding to the tip of the bore pin body,
In each of the annular grooves, a partition member that extends from the outer peripheral surface of the inner member that defines the annular groove to the outer member and extends in the axial direction of the bore pin body is provided.
Each of the partition members is provided immediately downstream of the connection position between the annular groove and the axial groove in the direction in which the coolant flows in the circumferential direction of the annular groove, and the circumference of the annular groove is within the annular groove. A bore block for casting a cylinder block, characterized by regulating a flow of coolant flowing along a direction .
JP2002186133A 2002-06-26 2002-06-26 Bore pin for cylinder block casting Expired - Lifetime JP3616616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186133A JP3616616B2 (en) 2002-06-26 2002-06-26 Bore pin for cylinder block casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186133A JP3616616B2 (en) 2002-06-26 2002-06-26 Bore pin for cylinder block casting

Publications (2)

Publication Number Publication Date
JP2004025248A JP2004025248A (en) 2004-01-29
JP3616616B2 true JP3616616B2 (en) 2005-02-02

Family

ID=31181570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186133A Expired - Lifetime JP3616616B2 (en) 2002-06-26 2002-06-26 Bore pin for cylinder block casting

Country Status (1)

Country Link
JP (1) JP3616616B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445335B2 (en) * 2004-06-21 2010-04-07 本田技研工業株式会社 Mold apparatus and cylinder block manufacturing method
JP2007307593A (en) * 2006-05-19 2007-11-29 Ahresty Corp Cooling structure for metallic mold
JP5332472B2 (en) * 2008-10-02 2013-11-06 日産自動車株式会社 Casting method
JP6453157B2 (en) * 2015-05-15 2019-01-16 本田技研工業株式会社 Bore pin and casting equipment
JP7202227B2 (en) * 2019-03-13 2023-01-11 株式会社Subaru bore pin

Also Published As

Publication number Publication date
JP2004025248A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP6033858B2 (en) Piston for die casting machine
JP5684225B2 (en) Spout sleeve
US20020182281A1 (en) Mold cooling device
US7069885B2 (en) Cylinder head
JP5564789B2 (en) Casting apparatus and casting method
JP3616616B2 (en) Bore pin for cylinder block casting
JP2016193447A (en) Mold spool core and casting mold provided with the same
JP7401907B2 (en) Spool bush for die casting mold
JP2003136193A (en) Bore pin for casting cylinder block
JPH09323149A (en) Structure of pin for hole as cast in die for casting
JP6006839B1 (en) Mold cooling pipe, mold cooling device, mold cooling structure, and mold
JP2014205195A (en) Mold spool core and casting mold equipped with the same
KR100204891B1 (en) Cooling device
JP2010082684A (en) Casting method and casting apparatus
JP3793703B2 (en) Mold cooling system
JP2016007617A (en) Sprue sleeve and casting mold comprising the same
WO2008075491A1 (en) Aluminum die cast product and process for manufacturing the same
WO2013124983A1 (en) Water jacket core
JP2004268067A (en) Plunger tip for pressure casting
CN215657752U (en) Core-pulling spraying device and die-casting die with same
KR100680720B1 (en) Connecting pipe structure of injection tip
US20060153944A1 (en) Injection molding nozzle tip
JP2002346717A (en) Peripheral structure of plunger chip in vacuum die casting device
JP2597248Y2 (en) Injection plunger
US10518319B2 (en) Chill block for die cast machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041105

R150 Certificate of patent or registration of utility model

Ref document number: 3616616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term