JP5563542B2 - Aluminate compound phosphor - Google Patents

Aluminate compound phosphor Download PDF

Info

Publication number
JP5563542B2
JP5563542B2 JP2011246358A JP2011246358A JP5563542B2 JP 5563542 B2 JP5563542 B2 JP 5563542B2 JP 2011246358 A JP2011246358 A JP 2011246358A JP 2011246358 A JP2011246358 A JP 2011246358A JP 5563542 B2 JP5563542 B2 JP 5563542B2
Authority
JP
Japan
Prior art keywords
phosphor
light
present
aluminate compound
compound phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011246358A
Other languages
Japanese (ja)
Other versions
JP2013040318A (en
Inventor
黄冠維
朱政屹
劉如熹
陳松昇
沈士超
呂格維
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unity Opto Technology Co Ltd
Original Assignee
Unity Opto Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unity Opto Technology Co Ltd filed Critical Unity Opto Technology Co Ltd
Publication of JP2013040318A publication Critical patent/JP2013040318A/en
Application granted granted Critical
Publication of JP5563542B2 publication Critical patent/JP5563542B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/77064Aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、蛍光体材料の配合式に関し、特に光学性質の改善を可能にするため、Si/O元素を一部のAl/F元素に取り代わるアルミン酸塩化合物蛍光体の配合式に関する。チップの波長は、200〜400nmの紫外光によって励起されるほか、Si/O元素を一部のAl/F元素に取り代わり、微調整を行い、蛍光体に含めるランタン系金属原子価の存在比率を改変することにより、発光性質を制御できるため、応用の潜在力と学術価値を有する。
The present invention relates to a formulation type of the phosphor material, in particular to allow for improved optical properties, concerns the formulation type of aluminate compounds phosphor replaces take Si / O elements in a part of the Al / F elements. The wavelength of the chip is excited by ultraviolet light of 200 to 400 nm, the Si / O element is replaced with some Al / F elements, fine adjustment is performed, and the abundance ratio of the lanthanum metal valence included in the phosphor The light emission properties can be controlled by modifying, so it has potential for application and academic value.

文明の進展及び省エネ、カーボン排出減量などの環境保護意識に従い、世界各国とも発光ダイオード(Light Emitting Diode, LED)が従来の光源に取り代わりつつある。発光ダイオードの体積が小さい、消費電力が低い(白熱灯球の1/10、蛍光灯管の1/2)、寿命が長い、発光効率が極めて良い、稼動反応速度が速いなどの長所を備え、従来の光源が克服難しい問題を解決できる。よって、すでに交通信号灯、自動車のライト、表示装置などの素子に使用されている。さらに、現在で推進中の環境保護意識概念に符合していることから、21世紀の「緑の照明光源」と称賛されている。   In accordance with the progress of civilization and environmental protection awareness such as energy saving and carbon emission reduction, light emitting diodes (LEDs) are being replaced by conventional light sources in all countries of the world. Features such as small volume of light emitting diode, low power consumption (1/10 of incandescent lamp bulb, 1/2 of fluorescent lamp tube), long life, extremely good luminous efficiency, fast operating reaction speed, etc. The conventional light source can solve problems that are difficult to overcome. Therefore, it is already used for elements such as traffic signal lights, automobile lights, and display devices. Furthermore, it is praised as a “green lighting source” in the 21st century because it matches the concept of environmental awareness that is currently being promoted.

Chemistry of material誌(Chemistry Materials, dx.doi.org/10.1021/cm103495j)Duanら、2011年Chemistry of material (Chemistry Materials, dx.doi.org/10.1021/cm103495j) Duan et al., 2011 Cement and Concrete Research誌(Cement Concrete Res, 1997, 27, 1439−1449)Yuら、1997年Cement and Concrete Research (Cement Concrete Res, 1997, 27, 1439-1449) Yu et al., 1997

日亜化学工業株式会社(以下は、日亜という)は1996年、青色LEDによって、セリウム添加イットリウムアルミニウムガーネット(Cerium−doped yttrium aluminum garnet;YAG:Ce)蛍光体を励起して黄色の蛍光を発生させ、青色光と混合した後、冷色白光を発生する。これが世界初めの白色LEDである。しかし、この種の白色光は、赤色を欠けるため、演色性が低いほか、その特許は、日亜に限られている。白色LEDは、全スペクトル帯域発光でなければ、高い演色性と理想な色温度を実現することはできない。しかし、青色LEDにYAGと、赤色蛍光体との組合せ方式のほか、青色LEDに緑色と青色蛍光体との組合せ方式、またはUV−LEDに青、緑、赤3色の蛍光体との組合せによる白色光がある。そのうち、理想な色温度(暖色の白光)を発光させるには、UV−LEDと3色の蛍光体との組合せ方式がより良い発光効率が得られる。よって、紫外光に励起されやすい、青色、緑色、赤色蛍光体を開発することは、現在の重要な研究課題である。   Nichia Chemical Co., Ltd. (hereinafter referred to as Nichia) generated yellow fluorescence by exciting a cerium-doped yttrium aluminum garnet (YAG: Ce) phosphor with a blue LED in 1996 And cold white light is generated after mixing with blue light. This is the world's first white LED. However, this type of white light lacks red color and therefore has low color rendering properties, and its patent is limited to Nichia. A white LED cannot achieve high color rendering and an ideal color temperature unless it emits light in the entire spectrum band. However, in addition to the combination method of YAG and red phosphor for blue LED, the combination method of green and blue phosphor for blue LED or the combination of blue, green and red phosphor for UV-LED There is white light. Of these, in order to emit an ideal color temperature (warm white light), a combination of a UV-LED and three color phosphors can provide better luminous efficiency. Therefore, the development of blue, green, and red phosphors that are easily excited by ultraviolet light is a current important research subject.

現時点、蛍光体に関する研究は、新しいホスト格子の開発のほか、ホスト格子に他の元素をドープして、従来のホスト格子に取り代わり、発光性を改善することは、良く見かける研究方向である。一例として、Duanらは2011年に、Chemistry of material誌(Chemistry Materials, dx.doi.org/10.1021/cm103495j)において、Re2Si46C (RE=Lu, Y, Gd)シリーズ蛍光体の研究を発表し、すなわち、RE/Cを従来MRESi47に含まれるM/N (M=Ba, Sr, Ca)をC元素の共有結合性と、より剛性を持つ結合特性を利用し、ホスト格子の安定性改善も現時点の主な研究目標である。 At the present time, research on phosphors is not only the development of a new host lattice, but also the addition of other elements to the host lattice to replace the conventional host lattice and improve the light emission is a common research direction. As an example, Duan et al. In 2011 in Chemistry of materials (Chemistry Materials, dx.doi.org/10.1021/cm103495j), Re 2 Si 4 N 6 C (RE = Lu, Y, Gd) series fluorescence. Announcement of research on the body, that is, RE / C uses M / Si (M = Ba, Sr, Ca) that is included in conventional MRESi 4 N 7 and uses C element covalent bond and more rigid bond characteristics However, improving the stability of the host lattice is also the current main research goal.

Yuらは、1997年、Cement and Concrete Research誌(Cement Concrete Res, 1997, 27, 1439−1449)において、Ca12Al14322の調製方法と単結晶構造を発表し、その構造は、[AlO4]の四面体構成であり、単位格子は正方晶系に属し、空間群はI43dである。四面体の間は、酸素原子をブリッジングとし、酸素原子と6つの酸素と一つのフッ素原子配位、合計7配位である。さらに、構造を形成するの欠け格子は、フッ素原子によって補う。この結晶質は、C12A7の構造に比べ、より安定性を有し、蛍光体に適している。

Yu et al., 1997, published a method and a single crystal structure of Ca 12 Al 14 O 32 F 2 in Cement and Concrete Research (Cement Concrete Res, 1997, 27, 1439-1449). [AlO 4 ] has a tetrahedral structure, the unit cell belongs to the tetragonal system, and the space group is I43d. Between tetrahedrons, oxygen atoms are bridged, and oxygen atoms, six oxygens, and one fluorine atom coordination, a total of seven coordinations. Furthermore, the missing lattice that forms the structure is supplemented by fluorine atoms. This crystalline material is more stable than the structure of C12A7 and is suitable for a phosphor.

本発明の一目的は、より安定性を有する蛍光体を提供する。   An object of the present invention is to provide a more stable phosphor.

本発明の次の目的は、演色性を向上できる蛍光体を提供する。   The next object of the present invention is to provide a phosphor capable of improving the color rendering.

本発明のもう一つの目的は、生産プロセスの簡素化及び原価を低減できる蛍光体を提供する。   Another object of the present invention is to provide a phosphor capable of simplifying the production process and reducing the cost.

前述目的を達成するため、本発明のアルミン酸塩化合物蛍光体は、焼結温度Tと焼結圧力Pの条件において、固相反応によって合成される。その化学式は、CaaSrbBacAldSiefghである。そのうち、10≦a+b+c+h≦12(0≦a<12;0≦b<12;0≦c<12;0<h≦1)、12<d+e≦14(12≦d<14;0<e≦2)、30≦f≦34;、0<g≦2,Rは、ランタン系金属の元素であり、蛍光体の発光主体である。そのうち、この固相反応法に使用する焼結温度Tは、1000〜1400℃であり、焼結圧力Yは、0.1〜0.9MPaである。本発明の蛍光体は、波長が200〜400nmの発光ダイオードによって、励起することができ、かつ出射の波長は、400−700nmである。そのうち、ランタン系金属Rは、Ce、Eu、Pr、Nd、Sm、Tb、Er、Yb、Dyのいずれかである、様々な領域において発光できる。本発明の蛍光体は、Si/Oを一部のAl/Fに取り代わり、微調整を行い、発光中心の配位環境の改変により、ランタン系金属が結晶格子におけるそれぞれの価数の存在比率を調節し、光学性質を制御する。その発光領域は青色光、緑色光と赤色光を同時にカーバーし、UV−LEDと組合せて、白色光を合成し、演色性を向上できるほか、少ない種類の粉体を使用するため、生産プロセスを簡素化すると共に、コストを低減でき、応用の潜在力と学術価値を有する。 In order to achieve the above-mentioned object, the aluminate compound phosphor of the present invention is synthesized by a solid phase reaction under the conditions of a sintering temperature T and a sintering pressure P. Its chemical formula is Ca a Sr b Ba c Al d Si e O f F g R h. Among them, 10 ≦ a + b + c + h ≦ 12 (0 ≦ a <12; 0 ≦ b <12; 0 ≦ c <12; 0 <h ≦ 1), 12 <d + e ≦ 14 (12 ≦ d <14; 0 <e ≦ 2) ), 30 ≦ f ≦ 34; 0 <g ≦ 2, R is an element of a lanthanum-based metal and is a light emitting main body of the phosphor. Among them, the sintering temperature T used in this solid phase reaction method is 1000 to 1400 ° C., and the sintering pressure Y is 0.1 to 0.9 MPa. The phosphor of the present invention can be excited by a light emitting diode having a wavelength of 200 to 400 nm, and the emission wavelength is 400 to 700 nm. Among them, the lanthanum metal R can emit light in various regions which are any one of Ce, Eu, Pr, Nd, Sm, Tb, Er, Yb, and Dy. In the phosphor of the present invention, Si / O is replaced with a part of Al / F, fine adjustment is performed, and the abundance ratio of each valence in the crystal lattice of the lanthanum-based metal is changed by modifying the coordination environment of the emission center. Adjust the optical properties. Its light emitting area covers blue light, green light and red light at the same time, and combines with UV-LED to synthesize white light and improve color rendering. Simplify, reduce costs, and have application potential and academic value.

本発明の好ましい実施例(A)〜(E)のX線粉末のスペクトル図である。It is a spectrum figure of the X-ray powder of preferable Example (A)-(E) of this invention. 本発明の好ましい実施例(A)〜(E)の出射光スペクトル図である。It is an emitted light spectrum figure of preferable Example (A)-(E) of this invention. 本発明の好ましい実施例(A)〜(E)の励起光スペクトル図(その1)である。It is the excitation light spectrum figure (the 1) of preferable Example (A)-(E) of this invention. 本発明の好ましい実施例(A)〜(E)の励起光スペクトル図(その2)である。It is the excitation light spectrum figure (the 2) of preferable Example (A)-(E) of this invention. 本発明の好ましい実施例(A)〜(E)の色度座標図である。It is a chromaticity coordinate diagram of preferred embodiments (A) to (E) of the present invention.

本発明の内容のさらなる理解を図るため、以下にて図面と合わせて説明する。   In order to further understand the contents of the present invention, the following description will be made with reference to the drawings.

本発明のアルミン酸塩化合物蛍光体は、固相反応法によって調製される。焼結温度Tは1000〜1400℃であり、焼結圧力Pは、0.1〜0.9 MPaである。化学式CaaSrbBacAldSiefghで表すことができる。そのうち、10≦a+b+c+h≦12 ( 0≦a<12;0≦b<12;0≦c<12;0<h≦1 )、12<d+e≦14 ( 12≦d<14;0<e≦2 )、30≦f≦34;、0<g≦2。そのうち、Rはランタン系金属元素Ce、Eu、Pr、Nd、Sm、Tb、Er、Yb、Dyのいずれかである。本発明の好ましい実施例(A) 〜(E)はCa11.9Al14-xSix32+X2-x:Eu0.1 (x=0.1、0.2、0.3、0.5、0.6)サンプルであり、配合方法は、下表に示す。 The aluminate compound phosphor of the present invention is prepared by a solid phase reaction method. The sintering temperature T is 1000-1400 ° C., and the sintering pressure P is 0.1-0.9 MPa. It can be represented by the chemical formula Ca a Sr b Ba c Al d Si e O f F g R h. Among them, 10 ≦ a + b + c + h ≦ 12 (0 ≦ a <12; 0 ≦ b <12; 0 ≦ c <12; 0 <h ≦ 1), 12 <d + e ≦ 14 (12 ≦ d <14; 0 <e ≦ 2) ), 30 ≦ f ≦ 34; 0 <g ≦ 2. Among them, R is any one of the lanthanum-based metal elements Ce, Eu, Pr, Nd, Sm, Tb, Er, Yb, and Dy. Preferred embodiments (A) to (E) of the present invention are Ca 11.9 Al 14 -x Si x O 32 + X F 2-x : Eu 0.1 (x = 0.1, 0.2, 0.3, 0. 5, 0.6) Sample, and the blending method is shown in the table below.

図1、本発明の好ましい実施例(A)〜(E)のX線粉末回折スペクトル図を参照する。本発明の好ましい実施例(A) 〜(E)に基づいて調製されたCa11.9Al14-xSix32+X2-x:Eu0.1(x=0.1、0.2、0.3、0.5、0.6)サンプルをX線粉末回折スペクトル図によって、結晶相の純度を鑑定したところ、本発明によって、合成された蛍光体が純相(pure phase)であることを観察できる。 Referring to FIG. 1, X-ray powder diffraction spectrum diagrams of preferred embodiments (A) to (E) of the present invention. Ca 11.9 Al 14-x Si x O 32 + X F 2-x prepared according to the preferred embodiments (A) to (E) of the present invention: Eu 0.1 (x = 0.1, 0.2, 0) .3, 0.5, 0.6) When the purity of the crystal phase of the sample was identified by an X-ray powder diffraction spectrum diagram, it was confirmed that the phosphor synthesized according to the present invention was a pure phase. Observe.

図3A、3B、本発明の好ましい実施例(A) 〜(E)の発光すベクトル図その1、その2である。本発明の好ましい実施例(A) 〜(E)によって調製されたCa11.9Al14-xSix32+X2-x:Eu0.1(x=0.1、0.2、0.3、0.5、0.6)サンプルは、波長が200〜400nmの発光ダイオードによって励起される。特に、Si/O量の増加に従い、波長が250nmおよび325nm付近の光スペクトルの励起効果がより顕著的である。 FIGS. 3A and 3B are vector diagrams Nos. 1 and 2 of light emission of preferred embodiments (A) to (E) of the present invention. Ca 11.9 Al 14 -x Si x O 32 + x F 2 -x : Eu 0.1 (x = 0.1, 0.2, 0.3) prepared according to the preferred embodiments (A) to (E) of the present invention. 0.5, 0.6) The sample is excited by a light emitting diode with a wavelength of 200-400 nm. In particular, as the amount of Si / O increases, the excitation effect of the optical spectrum with wavelengths of around 250 nm and 325 nm is more remarkable.

図2および4、本発明の好ましい実施例(A) 〜(E)の出射スペクトル図と色度座標図を参照する。図に示すように、本発明の好ましい実施例(A) 〜(E)によって、調製されたCa11.9Al14-xSix32+X2-x:Eu0.1(x=0.1、0.2、0.3、0.5、0.6)サンプルの出射波長は、400〜700nmであり、かつSi/Oを一部のAl/Fに取り代わる量の改変に従い、Eu2+/Eu3+比例の構造微調整を行うことによって、青緑光と赤色光領域の光出射強度を調節し、Si/Oの微量増に対して、Al/Fが相対的に減少し、青緑光の強度が大幅な増を示すと共に、赤色光の強度が相対に減少される。引き続き、出射スペクトルの数値を国際照明委員会が制定した色度座標図に従って、公式換算した各蛍光体の色度座標を、それぞれ座標図に表す。本発明の好ましい実施例によって、合成されたCa11.9Al14-xSix32+X2-x:Eu0.1は、x値の上昇に従い、出射光を赤色光領域から青色光領域に調節することができる。 2 and 4, reference is made to the emission spectrum diagrams and chromaticity coordinate diagrams of preferred embodiments (A) to (E) of the present invention. As shown in the figure, Ca 11.9 Al 14 -x Si x O 32 + X F 2-x : Eu 0.1 (x = 0.1, prepared according to the preferred embodiments (A) to (E) of the present invention. 0.2, 0.3, 0.5, 0.6) The emission wavelength of the sample is 400 to 700 nm, and according to the modification of the amount that replaces Si / O with some Al / F, Eu 2+ / Eu 3 + proportional structural fine adjustment to adjust the light emission intensity of blue-green light and red light region, Al / F decreases relatively with a slight increase of Si / O, blue-green light The intensity of the red light is significantly increased, and the intensity of the red light is relatively decreased. Subsequently, the chromaticity coordinates of the respective phosphors, which are officially converted according to the chromaticity coordinate diagram established by the International Commission on Illumination, are shown in the coordinate diagrams. According to a preferred embodiment of the present invention, synthesized Ca 11.9 Al 14 -x Si x O 32 + X F 2-x : Eu 0.1 adjusts the emitted light from the red light region to the blue light region as the x value increases. can do.

よって、本発明の蛍光体は、Si/Oを一部のAl/Fに取り替え、構造の微調整を行い、光出射中心の配位環境の改変によって、ランタン系金属が結晶格子におけるそれぞれの価数の存在比率を調節することによって、光学性質を制御する。その光出射領域は、青緑光と赤色光を同時にカーバーし、UV−LEDと組み合わせて、白色光を合成した場合、演色性を向上できる。本好ましい実施例のアルミン酸塩化合物蛍光体Ca11.9Al14-xSix32+X2-x:Eu0.1の使用原料は、CaCO3、Al23、SiO2、CaF2、Eu23を含み、化学式に従い、所定の原料を乳鉢に入れ、均一に混合し、すりつぶした後、温度1250℃、水素(5%)−窒素(95%)の雰囲気において、6時間を焼結した後、製品が得られる。製造プロセスが簡単であり、大量生産に向き、少ない種類の粉体を使用することは、生産プロセスの簡素化並びにコスト低減できるほか、応用の潜在力と学術価値を有する。 Therefore, in the phosphor of the present invention, Si / O is replaced with a part of Al / F, the structure is finely adjusted, and the coordination environment of the light emission center is changed, so that the lanthanum metal in each crystal lattice has a different valence. The optical properties are controlled by adjusting the abundance ratio of the numbers. In the light emission region, when blue light and red light are simultaneously covered and combined with UV-LED, white light is synthesized, color rendering can be improved. The aluminate compound phosphor Ca 11.9 Al 14-x Si x O 32 + X F 2-x : Eu 0.1 used in this preferred embodiment is made of CaCO 3 , Al 2 O 3 , SiO 2 , CaF 2 , Eu. According to the chemical formula, containing 2 O 3 , put the specified raw material in a mortar, mix uniformly, grind, then sinter for 6 hours in the atmosphere of temperature 1250 ° C, hydrogen (5%)-nitrogen (95%) After that, the product is obtained. The simple manufacturing process, suitable for mass production, and the use of a small number of powders can simplify the production process and reduce costs, and have application potential and academic value.

以上に説明された各実施例は、本発明の好ましい実施例に過ぎず、本発明の特許請求範囲を制限するものではない。本発明の精神を逸脱されない範囲による修飾または変更は、本発明の特許請求範囲に含める。   Each embodiment described above is only a preferred embodiment of the present invention, and does not limit the scope of claims of the present invention. Modifications or alterations without departing from the spirit of the present invention are included in the claims of the present invention.

Claims (5)

固相反応によって合成され、その化学式は、CaaSrbBacAldSiefghであり、そのうち、a+b+c+h=12、d+e=14、0≦a<12、0≦b<12、0≦c<12、0<h≦1、12≦d<14、0<e≦2、32.1≦f≦32.6、1.4≦g≦1.9、Rは、ランタン系金属の元素であり、蛍光体の発光主体であることを特徴とする、アルミン酸塩化合物蛍光体。







Is synthesized by solid-phase reaction, its chemical formula is Ca a Sr b Ba c Al d Si e O f F g R h, of which, a + b + c + h = 12, d + e = 14, 0 ≦ a <12,0 ≦ b < 12, 0 ≦ c <12, 0 <h ≦ 1, 12 ≦ d <14, 0 <e ≦ 2, 32.1 ≦ f ≦ 32.6, 1.4 ≦ g ≦ 1.9, R is lanthanum An aluminate compound phosphor characterized in that it is an element of a metallic metal and is the main light emitting body of the phosphor.







前記固相反応法の焼結温度Tは、1000〜1400℃であることを特徴とする、請求項1記載のアルミン酸塩化合物蛍光体。     The aluminate compound phosphor according to claim 1, wherein a sintering temperature T of the solid phase reaction method is 1000 to 1400 ° C. 前記固相反応法の焼結圧力Pは、0.1〜0.9MPaであることを特徴とする、請求項1記載のアルミン酸塩化合物蛍光体。     The aluminate compound phosphor according to claim 1, wherein a sintering pressure P of the solid phase reaction method is 0.1 to 0.9 MPa. 前記蛍光体は、波長が200〜400nmの発光ダイオードによって励起されることを特徴とする、請求項1記載のアルミン酸塩化合物蛍光体。     The aluminate compound phosphor according to claim 1, wherein the phosphor is excited by a light emitting diode having a wavelength of 200 to 400 nm. 前記蛍光体の出射波長は、400〜700nmであることを特徴とする、請求項1記載のアルミン酸塩化合物蛍光体。     2. The aluminate compound phosphor according to claim 1, wherein an emission wavelength of the phosphor is 400 to 700 nm.
JP2011246358A 2011-08-12 2011-11-10 Aluminate compound phosphor Expired - Fee Related JP5563542B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100128906 2011-08-12
TW100128906A TWI432555B (en) 2011-08-12 2011-08-12 Aluminate phosphor

Publications (2)

Publication Number Publication Date
JP2013040318A JP2013040318A (en) 2013-02-28
JP5563542B2 true JP5563542B2 (en) 2014-07-30

Family

ID=47640079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246358A Expired - Fee Related JP5563542B2 (en) 2011-08-12 2011-11-10 Aluminate compound phosphor

Country Status (4)

Country Link
JP (1) JP5563542B2 (en)
KR (1) KR101331302B1 (en)
CN (1) CN102925145A (en)
TW (1) TWI432555B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119888B (en) * 2014-08-06 2016-08-24 广西师范学院 A kind of europium doped with fluorine aluminate substrate fluorescent powder and preparation method thereof
CN107987828A (en) * 2017-12-29 2018-05-04 河北工业大学 A kind of mayenite structure fluorescent powder of LED white light emissions
CN112225450B (en) * 2020-09-23 2022-10-28 中国计量大学 Lanthanide-doped wide-color-gamut fluorescent glass and preparation method thereof
CN115491196B (en) * 2022-11-21 2023-03-24 四川世纪和光科技发展有限公司 Red light fluorescent composition, red light fluorescent film and red light LED light source

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7504440A (en) * 1975-04-15 1976-10-19 Philips Nv LUMINESCENT SCREEN.
NL7903102A (en) * 1979-04-20 1980-10-22 Philips Nv LUMINESCENT FABRIC WITH NATURAL ALKALINE SILICATE ALUMINATE GRID.
CA2460814C (en) * 2001-09-26 2014-08-12 Doxa Aktiebolag Powdered material and ceramic material manufactured therefrom
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
CN101208407A (en) * 2005-04-20 2008-06-25 易特斯股份公司 Novel materials used for emitting light
MX2007012960A (en) * 2005-04-20 2008-03-24 Etech Ag Novel materials used for emitting light.
JP4931176B2 (en) * 2005-09-14 2012-05-16 株式会社アルバック Phosphor, method for manufacturing the same, and light emitting device
JP2010506006A (en) * 2006-10-03 2010-02-25 ライトスケイプ マテリアルズ,インク. Metal silicate halide phosphor and LED lighting device using the same
TWI359857B (en) * 2006-12-25 2012-03-11 Ind Tech Res Inst White light illumination device
TW201005075A (en) * 2008-07-24 2010-02-01 Univ Nat Chiao Tung White-emitting phosphors and lighting apparatus thereof
KR20100070731A (en) 2008-12-18 2010-06-28 삼성전자주식회사 Halosilicate phosphors and white light emitting devices including same
KR101098006B1 (en) * 2009-09-29 2011-12-23 한국화학연구원 The phosphor based on (halo-)silicate and manufacturing method for the same
CN101857361A (en) * 2010-01-19 2010-10-13 华东理工大学 Europium-doped oxyfluoride aluminosilicate luminous glass and preparation method thereof

Also Published As

Publication number Publication date
TW201307530A (en) 2013-02-16
KR101331302B1 (en) 2013-11-20
TWI432555B (en) 2014-04-01
CN102925145A (en) 2013-02-13
JP2013040318A (en) 2013-02-28
KR20130018094A (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP6758291B2 (en) Fluorescent composition and its illumination device
CN101880528B (en) Single-matrix white fluorescent powder, manufacturing method thereof and light emitting device manufactured thereby
CN106047341A (en) Rare earth doped fluorescent powder and synthetic method thereof and application of fluorescent powder in LED devices
CN101307228B (en) Chlorine-aluminosilicate fluorescent powder and method for preparing same
JP5563542B2 (en) Aluminate compound phosphor
Shen et al. Luminous characteristics and thermal stability of BaMgAl10O17: Eu2+ phosphor for white light-emitting diodes
CN101899304B (en) Europium-doped SrAlSi oxynitride composite fluorescent powder and preparation method thereof
Gokhe et al. Synthesis and fluorescence properties of Ca 2 SiO 4: Dy 3+ phosphor for solid state lighting application
CN107652973B (en) White light LEDs Mn ion doping garnet structure red illuminating material and its preparation method and application
CN107163943B (en) Spectrum-adjustable fluorescent powder suitable for near ultraviolet excitation and preparation method thereof
TWI326704B (en) A phosphor and method for making the same
CN111138191B (en) Eu (Eu)3+Ion activated tantalate fluorescent ceramic and synthesis method and application thereof
KR101510124B1 (en) BLUISH GREEN EMITTING PHOSPHORS FOR HIGH COLOR RENDERING AND HIGH EFFICIENT WHITE LEDs AND LEDs USING THE SAME
CN113999671A (en) Fluorescent powder for lighting display white light LED and preparation and application thereof
CN109294583B (en) Cerium ion doped barium gadolinium titanate blue fluorescent powder for white light LED and preparation method thereof
CN104804742B (en) Red fluorescent powder for white light LED and preparation method thereof
US9765258B2 (en) Compound of phosphor and the manufacturing method thereof
CN103013514A (en) Green phosphor activated by cerium ions
TWI445804B (en) Tungstate phosphor, method for producing the same and uses thereof
TWI443179B (en) A novel aluminate phosphor
CN106590652A (en) Tantalate-based blue fluorescent powder, preparation method and application thereof
CN111088048B (en) Eu (Eu)3+Doped fluorotantalate fluorescent ceramic and synthetic method and application thereof
CN109929554B (en) Boron phosphate green fluorescent powder and preparation method and application thereof
CN102433116B (en) Calcium-zirconium aluminoborate blue fluorescent powder and preparation method thereof
KR102662497B1 (en) Phosphor compositions and lighting devices thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140612

R150 Certificate of patent or registration of utility model

Ref document number: 5563542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees