JP5563322B2 - Process device with microbubble generator - Google Patents

Process device with microbubble generator Download PDF

Info

Publication number
JP5563322B2
JP5563322B2 JP2010012727A JP2010012727A JP5563322B2 JP 5563322 B2 JP5563322 B2 JP 5563322B2 JP 2010012727 A JP2010012727 A JP 2010012727A JP 2010012727 A JP2010012727 A JP 2010012727A JP 5563322 B2 JP5563322 B2 JP 5563322B2
Authority
JP
Japan
Prior art keywords
liquid
taylor
gap
couette
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010012727A
Other languages
Japanese (ja)
Other versions
JP2011147907A (en
Inventor
丸井智敬
Original Assignee
丸井 智敬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸井 智敬 filed Critical 丸井 智敬
Priority to JP2010012727A priority Critical patent/JP5563322B2/en
Publication of JP2011147907A publication Critical patent/JP2011147907A/en
Application granted granted Critical
Publication of JP5563322B2 publication Critical patent/JP5563322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、テイラー・クエット(Couette-Taylor)[以下「CT」と略記する]反応器、または、STT(Spinning Tube in a Tube)反応器と呼称されるところの、固定外筒内に同軸回転する内筒を配備し、被反応材を外筒内壁と内筒側壁との間の狭い間隙に概一定な流動レートで圧入することで種々のプロセスを実行する装置の改良、すなわち、かかる反応器とマイクロバブルやナノバブルと呼称される微小気泡を発生する装置との組合せによる装置系を提案するものである。
The present invention, [hereinafter abbreviated as "CT"] Taylor Couette (Couette-Taylor) reactor, or, where that is referred to as STT (Spinning Tube in a Tube) reactor, rotate coaxially within the fixed outer cylinder An apparatus for performing various processes by arranging an inner cylinder to be pressed and press-fitting a reaction material into a narrow gap between an inner cylinder inner wall and an inner cylinder side wall at a substantially constant flow rate, that is, such a reactor And a device system combining a device for generating microbubbles called microbubbles and nanobubbles.

その目的は、
1 化学反応の効率をあげること、すなわち、高い効率のプロセスを実現すること。
Its purpose is
1 To increase the efficiency of chemical reaction, that is, to realize a highly efficient process.

2 CT(Couette-Taylor)流れで螺旋状の疑似マイクロ反応流路を形成する狭い間隙を有するCT(Couette-Taylor)反応器の殺菌および・または洗浄作業、とりわけ前記の狭い間隙の殺菌および・または洗浄作業を軽減・効率化すること。   2 CT (Couette-Taylor) sterilization and / or cleaning operation of a CT (Couette-Taylor) reactor having a narrow gap that forms a spiral pseudo-micro reaction channel in a flow, especially the narrow gap sterilization and / or To reduce and increase the efficiency of cleaning work.

3 マイクロサイズ・バブルからナノサイズバブルを抽出および・または生成すること。   3 Extracting and / or generating nano-sized bubbles from micro-sized bubbles.

4 コンタミネーションのない物質流動を形成する装置を利用した細胞培養などのバイオロジカルプロセス装置(バイオプロセス装置)を提供することである。   4. To provide a biological process apparatus (bioprocess apparatus) such as cell culture using an apparatus that forms a material flow without contamination.

CT(Couette-Taylor)反応器、または、STT(Spinning
Tube in a Tube)反応器については特許文献1および特許文献2、あるいは非特許文献1などを参照されたい。
CT (Couette-Taylor) reactor or STT (Spinning
For the tube in a tube reactor, see Patent Document 1 and Patent Document 2, or Non-Patent Document 1.

マイクロバブルやナノバブルと呼称される微小気泡を発生する装置については、本発明者が特許文献3から特許文献8のような改良改善とアプリケーションを提案している。また、産業総合研究所の高橋ら、レオ研究所の千葉ら、は、前記本発明者の提案に先んじて、特許文献9から特許文献25を提案している。これらを補足する資料として、非特許文献2から非特許文献4を参照されたい。   The present inventors have proposed improvements and applications as disclosed in Patent Documents 3 to 8 for devices that generate microbubbles called microbubbles and nanobubbles. Further, Takahashi et al. Of the National Institute of Advanced Industrial Science and Technology and Chiba et al. Of the Leo Research Institute have proposed Patent Documents 9 to 25 prior to the proposal of the present inventor. Refer to Non-Patent Document 2 to Non-Patent Document 4 as materials supplementing these.

一方、細胞培養などのバイオロジカルプロセス装置(バイオプロセス装置)では、コンタミネーション(異物混入)が大きな問題であり、プロセス開始前の殺菌・洗浄、プロセス中の混入の排除などに多大な注意をはらわねばならない。ここにおいて、バイオロジカルプロセスを連続化することは意義がある。   On the other hand, in biological process equipment (bioprocess equipment) such as cell culture, contamination (foreign matter contamination) is a major problem, and great attention has been paid to sterilization and washing before the start of the process and elimination of contamination during the process. I have to. Here, it is significant to continue the biological process.

すなわち、連続フローを形成すれば、ある時間だけに異物混入(コンタミネーション)があっても、その流れによるプロセス部分を排除すればよく、結果的に異物の混入量をきわめて少なくできるからである。連続フローを意識した技術は、特許文献26から特許文献28を参照されたい。   That is, if a continuous flow is formed, even if foreign matter is mixed (contamination) only for a certain period of time, it is only necessary to eliminate the process part due to the flow, and as a result, the amount of mixed foreign matter can be extremely reduced. Refer to Patent Document 26 to Patent Document 28 for the technology conscious of continuous flow.

本発明は、これらの公知技術をふまえ、前記目的1から4に見合う改良改善を提案するものである。
米国特許第6471392号公報 日本国特許第3309093号公報 特願2009−234683号「細胞変化を促進する微小気泡含有組成物、および・・・細胞変化促進方法」 特願2009−243940号「微小気泡含有組成物、および、微小気泡発生器」 特願2009−249900号「液体中に微小気泡を発生させる装置」 特願2009−265832号「液体中に微小気泡を生成して液体を発熱させる装置および方法」 特願2009−282840号「微小気泡を含有する液体組成物で細胞変化を促進する装置、・・・促進する方法」 特願2010−000569号「微小気泡粒径と微小気泡濃度が可変である微小気泡発生装置、・・・設計方法」 特開2009−189307号公報「芽胞細菌の殺菌乃至不活化方法」 特開2009−131770号公報「二酸化炭素ナノバブル水の製造方法」 特開2009−131769号公報「窒素ナノバブル水の製造方法」 特開2009−084258号公報「ナノバブルを含む癌の治療又は予防のための薬剤 」 特開2009−039600号公報「超微細気泡生成装置」 特開2008−259456号公報「魚介類の保存方法」 特開2008−237950号公報「水酸基ラジカルを含む水の製造方法および水酸基ラジカルを含む水」 特開2008−093612号公報「反応活性種を含む水の製造方法および反応活性種を含む水」 特開2008−093611号公報「極微小気泡を含む水の製造方法および極微小気泡を含む水」 特開2008−063258号公報「組織保存液」 特開2007−275089号公報「長期持続型オゾン水、長期持続型オゾン水を利用した環境殺菌・脱臭浄化方法 」 特開2006−223239号公報「酸素ナノバブルを利用した魚介類焙焼有効成分抽出方法およびその抽出方法によって得られた有効成分を添加した魚肉加工品素材」 特開2005−246294号公報「酸素ナノバブル水およびその製造方法」 特開2005−246293号公報「オゾン水およびその製造方法」 特開2005−245817号公報「ナノバブルの製造方法」 特開2005−110552号公報「加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム」 再表2005/030649号公報「微小気泡の圧壊」 特開2009−291097号公報「細胞培養装置」国立大学法人群馬大学・オリンパス 特開平07−075549号公報「生体の細胞培養装置」日立製作所 特開平06−261736号公報「生体の細胞培養装置」宇宙開発事業団・三菱重工業株式会社 Michael A.Gonzalez and James T.Ciszewski, 「High Conversion,Solvent Free,Continuous Synthesis of Imidazolium Ionic Liquids In Spinning Tube−in−Tube Reactors」, Org.Process Res. Dev.,2009,13 1,p64−66 平成17年度 新エネルギー・産業技術総合開発機構委託調査研究 バイオ分野におけるナノバブル水の産業利用に関する調査 成果報告書 38−40「ナノバブル水を利用した生体組織の保存等に関する評価研究」 Hojo Y,et al.“Anti−inflammatory Property of Oxygen Nano−bubbles” Circulation Journal vol.70, supplement I,p276(第70回 日本循環器学会総会・学術集会) 平成17年度 新エネルギー・産業技術総合開発機構委託調査研究 バイオ分野におけるナノバブル水の産業利用に関する調査 成果報告書 40−45「細胞の生理機能に対するナノバブル水の影響評価」
The present invention is based on these known techniques and proposes improvements and improvements that meet the objects 1 to 4 described above.
US Pat. No. 6,471,392 Japanese Patent No. 3309093 Japanese Patent Application No. 2009-234683 “Composition containing microbubbles for promoting cell change, and ... Method for promoting cell change” Japanese Patent Application No. 2009-243940 “Composition of microbubbles and microbubble generator” Japanese Patent Application No. 2009-249900 “Apparatus for generating microbubbles in liquid” Japanese Patent Application No. 2009-265832 “Apparatus and method for generating heat by generating microbubbles in liquid” Japanese Patent Application No. 2009-282840 "A device for promoting cell change with a liquid composition containing microbubbles, ... Method for promoting" Japanese Patent Application No. 2010-000569 “Microbubble generator with variable microbubble diameter and microbubble concentration, design method” JP 2009-189307 A “Sterilization or Inactivation Method of Spore Bacteria” JP 2009-131770 “Method for producing carbon dioxide nanobubble water” JP 2009-131769 A “Method for Producing Nitrogen Nanobubble Water” JP 2009-084258 A "Drug for treatment or prevention of cancer containing nanobubbles" Japanese Unexamined Patent Publication No. 2009-039600 “Ultrafine Bubble Generation Device” JP 2008-259456 A “Method for Preserving Seafood” JP 2008-237950 A “Method for producing water containing hydroxyl radicals and water containing hydroxyl radicals” JP 2008-093612 A "Method for producing water containing reactive active species and water containing reactive active species" JP 2008-093611 A "Method for producing water containing extremely fine bubbles and water containing extremely fine bubbles" JP 2008-063258 A "Tissue preservation solution" JP 2007-275089 A "Long-lasting ozone water, environmental sterilization / deodorizing purification method using long-lasting ozone water" Japanese Patent Application Laid-Open No. 2006-223239 “A method for extracting active ingredients of roasted seafood using oxygen nanobubbles and a processed fish meat material to which active ingredients obtained by the extraction method are added” Japanese Patent Application Laid-Open No. 2005-246294 “Oxygen Nano Bubble Water and Method for Producing the Same” Japanese Patent Application Laid-Open No. 2005-246293 “Ozone water and method for producing the same” JP 2005-245817 A “Method for producing nanobubbles” Japanese Patent Application Laid-Open No. 2005-110552 “Pressurized Multilayer Micro-Ozone Sterilization / Purification / Animal Sterilization System” No. 2005/030649 publication "Crushing of microbubbles" JP 2009-291097 A "Cell culture device" National University Corporation Gunma University Olympus Japanese Patent Application Laid-Open No. 07-075549 “Biological cell culture device” Hitachi, Ltd. Japanese Laid-Open Patent Publication No. 06-261736 “Cell culture device for living organisms” Space Development Corporation, Mitsubishi Heavy Industries, Ltd. Michael A. Gonzalez and James T. Cizewski, “High Conversion, Solvent Free, Continuous Synthesis of Imidazolium Ionic Liquids in Spinning Tube-in-Tube Reactors.” Process Res. Dev. , 2009, 13 1, p64-66 2005 New Energy and Industrial Technology Development Organization Commissioned Research Study Survey on Industrial Use of Nano Bubble Water in Biotechnology Results Report 38-40 “Evaluation Research on Preservation of Living Tissue Using Nano Bubble Water” Hojo Y, et al. “Anti-inflammability Property of Oxygen Nano-bubbles” Circulation Journal vol. 70, supplement I, p276 (The 70th Annual Meeting of the Japanese Circulation Society) 2005 New Energy and Industrial Technology Development Organization Commissioned Research Study on Industrial Use of Nano Bubble Water in Biotechnology Results Report 40-45 “Evaluation of Nano Bubble Water Effects on Cell Physiology”

課題は前述のとおり、下記である(再記)。   As described above, the issues are as follows (reprinted).

1 化学反応の効率をあげること、すなわち、高い効率のプロセスを実現すること。   1 To increase the efficiency of chemical reaction, that is, to realize a highly efficient process.

2 CT(Couette-Taylor)流れで螺旋状の疑似マイクロ反応流路を形成する狭い間隙を有するCT(Couette-Taylor)反応器の殺菌および・または洗浄作業、とりわけ前記の狭い間隙の殺菌および・または洗浄作業を軽減・効率化すること。   2 CT (Couette-Taylor) sterilization and / or cleaning operation of a CT (Couette-Taylor) reactor having a narrow gap that forms a spiral pseudo-micro reaction channel in a flow, especially the narrow gap sterilization and / or To reduce and increase the efficiency of cleaning work.

3 マイクロサイズ・バブルからナノサイズバブルを抽出および・または生成すること。   3 Extracting and / or generating nano-sized bubbles from micro-sized bubbles.

4 コンタミネーションのない物質流動を形成する装置を利用した細胞培養などのバイオロジカルプロセス装置(バイオプロセス装置)を提供することである。   4. To provide a biological process apparatus (bioprocess apparatus) such as cell culture using an apparatus that forms a material flow without contamination.

本発明の基盤となる構成は(請求項1、図1参照)、固定中空外筒、該外筒内壁と概一定な間隙を保ちつつ同軸回転する内筒、該内筒の回転手段、前記間隙の一端に液体を供給する手段C1、および、該間隙の他端から前記の液体を抽出する手段C2、を具備し、 前記内筒が回転中に、前記液体を前記供給手段にて前記間隙に概一定な流動レートで供給することで、該液体が前記間隙のなかで螺旋状のCT(Couette-Taylor)流れパターンを形成して流動されつつ液体に関わるプロセスが実行されるプロセス装置であって、 前記液体供給手段C1が供給する液体を、A1:装置外部の液体、と、B1:前記間隙の他端から前記の液体を抽出する手段C2で抽出された液体、とに切替える手段C21を兼備した、CT(Couette-Taylor)反応器のプロセス装置である。 The structure that forms the basis of the present invention (see claim 1 and FIG. 1) is a fixed hollow outer cylinder, an inner cylinder that rotates coaxially with a substantially constant gap from the inner wall of the outer cylinder, a rotating means for the inner cylinder, and the gap Means C1 for supplying a liquid to one end of the gas and means C2 for extracting the liquid from the other end of the gap, and the liquid is supplied to the gap by the supply means while the inner cylinder is rotating. A process apparatus in which a process related to a liquid is executed while the liquid forms a spiral CT (Couette-Taylor) flow pattern in the gap by being supplied at a substantially constant flow rate. And means C21 for switching the liquid supplied by the liquid supply means C1 between A1: liquid outside the apparatus and B1: liquid extracted by means C2 for extracting the liquid from the other end of the gap. CT (Couette-Taylor) reactor process It is a device.

図1の基盤構成は、循環型のCT(Couette-Taylor)反応器を用いたプロセス装置で、B1を選択した場合に、プロセス対象液体が当該CT(Couette-Taylor)反応器を循環する。よって、晶析プロセスや細胞培養プロセスなどのように、極端な場合数日間といった長時間を要するプロセスに好適である。   1 is a process apparatus using a circulation type CT (Couette-Taylor) reactor. When B1 is selected, the liquid to be processed circulates in the CT (Couette-Taylor) reactor. Therefore, it is suitable for a process that takes a long time such as several days in an extreme case, such as a crystallization process or a cell culture process.

反応装置の間隙を流動する被反応材の流動パターンは、液体に関わる被反応材の供給手段の圧入圧力と、内筒の回転によるせん断力によって誘起されるものであって、被反応材が間隙内を螺旋管状に、かつ、該螺旋管内でも二次旋回流動ベクトルを有する、進行型のテイラー渦(Taylar_Vortex)状の流動パターンである。   The flow pattern of the reaction material flowing in the gap of the reaction apparatus is induced by the press-fitting pressure of the supply means of the reaction material related to the liquid and the shearing force due to the rotation of the inner cylinder. This is a traveling Taylor vortex (Taylar_Vortex) flow pattern having a spiral tube inside and a secondary swirl flow vector in the spiral tube.

この流動が連続型の疑似マイクロ反応流路(間隙のスケールが十分小さいのでマイクロリアクタの流路と概ね同じとしている)を形成するので、コンタミネーションの少ない理想的な細胞培養などバイオロジカルプロセスに好適である。   This flow forms a continuous pseudo-microreaction channel (generally the same as the microreactor channel because the gap scale is sufficiently small), making it suitable for biological processes such as ideal cell culture with low contamination. is there.

さらに本発明は(請求項1、図2参照)、固定中空外筒、該外筒内壁と概一定な間隙を保ちつつ同軸回転する内筒、該内筒の回転手段、前記間隙の一端に液体を供給する手段C1、および、該間隙の他端から前記の液体を抽出する手段C2、を具備し、前記内筒が回転中に、前記液体を前記供給手段にて前記間隙に概一定な流動レートで供給することで、該液体が前記間隙のなかで螺旋状のCT(Couette-Taylor)流れパターンを形成して流動されつつ液体に関わるプロセスが実行されるCT(Couette-Taylor)反応器、および、液体貯留槽MRに貯留された液体中に微小気泡を生成させる微小気泡発生器(マイクロバブルまたはナノバブル発生器)を具備するプロセス装置であって、 前記液体供給手段C1が供給する液体を、A2:装置外部の液体、と、B2:前記液体貯留槽MRに貯留された液体とに切替える手段CM1を兼備した、CT(Couette-Taylor)反応器と微小気泡発生器とを組合せたプロセス装置である。 Further, the present invention (see claim 1 and FIG. 2) includes a fixed hollow outer cylinder, an inner cylinder that rotates coaxially with a substantially constant gap from the inner wall of the outer cylinder, a rotating means for the inner cylinder, and a liquid at one end of the gap. Means C1 and means C2 for extracting the liquid from the other end of the gap, and the liquid is supplied to the gap by the supply means while the inner cylinder is rotating. A CT (Couette-Taylor) reactor in which a process involving the liquid is performed while the liquid flows in a spiral CT (Couette-Taylor) flow pattern in the gap by supplying at a rate; And a process apparatus comprising a microbubble generator (microbubble or nanobubble generator) for generating microbubbles in the liquid stored in the liquid storage tank MR, wherein the liquid supplied by the liquid supply means C1 A2: Liquid outside the device If, B2: were combine means CM1 to switch to the liquid stored in the liquid reservoir MR, a process device that combines the CT (Couette-Taylor) reactor and microbubble generator.

なお図1および図2において、配管を示す線の中途に液体を圧入するための電磁ポンプ・シリンジポンプなどの定量流送手段を介在させてもよい。その定量流送手段の記載は図中では省略した。電磁ポンプは、駆動部にソレノイドを採用して、パルス信号と連動してソレノイドに発生する電磁力でダイアフラムを往復させて液体を吸入・吐出する電磁ポンプ、シリンジポンプは注射器様のシリンダ移動による定量流送手段である。   In FIG. 1 and FIG. 2, fixed flow means such as an electromagnetic pump / syringe pump for pressurizing liquid may be interposed in the middle of the line indicating the pipe. The description of the quantitative flow means is omitted in the figure. The electromagnetic pump employs a solenoid in the drive, and the electromagnetic pump that reciprocates the diaphragm by the electromagnetic force generated in the solenoid in conjunction with the pulse signal. The syringe pump is a fixed amount by moving the syringe like a cylinder. It is a transport means.

マイクロバブルまたはナノバブルをCT(Couette-Taylor)反応器の間隙に導入することで、非特許文献1のような化学プロセスの進行が促進されることが考えられる。   By introducing microbubbles or nanobubbles into the gap of a CT (Couette-Taylor) reactor, it is considered that the progress of the chemical process as in Non-Patent Document 1 is promoted.

また、マイクロバブルは圧壊でラジカルを出すので、ナノバブルをCT(Couette-Taylor)反応器の間隙に導入することで、殺菌および/または洗浄ができ、従来の分解清掃の手間が省け好適である。   Further, since microbubbles generate radicals by crushing, introduction of nanobubbles into the gap of a CT (Couette-Taylor) reactor enables sterilization and / or washing, which is preferable because it eliminates the need for conventional decomposition cleaning.

一方、図3に示すような構成が考えられる。すなわち、固定中空外筒、該外筒の内側面と概一定な間隙を保ちつつ同軸回転する内筒、該内筒の回転手段、前記間隙の一端に被反応材を圧入する供給手段、および、該間隙の他端から反応後材を抽出する抽出手段、を具備し、前記内筒が回転中に、被反応材を前記供給手段にて前記間隙に概一定な流動レートで圧入することで、被反応材が該間隙を流動されつつ物理および/または化学反応を誘起されるフロー系連続反応装置において、前記中空外筒の内側面に電気化学反応の一方の電極E1、前記内筒の外側面に他方の電極E2、該一方および他方の電極それぞれに電気的に接続された外部端子E10、E20、および、前記外部端子間に電圧を印加する手段、を具備し、被反応材が前記間隙を流動中に、前記外部端子を介して一方と他方の電極間に電圧を印加することで該一方と他方の電極に挟まれた同心二重円筒の間のアニュラー状の電気化学セルを形成して被反応材に電気化学反応を誘起させる連続電気化学反応装置である。   On the other hand, a configuration as shown in FIG. 3 is conceivable. That is, a fixed hollow outer cylinder, an inner cylinder that rotates coaxially with an inner surface of the outer cylinder while maintaining a substantially constant gap, a rotating means for the inner cylinder, a supply means for press-fitting a reaction material into one end of the gap, and An extraction means for extracting a post-reaction material from the other end of the gap, and while the inner cylinder is rotating, pressurizing the reaction material into the gap with the supply means at an approximately constant flow rate; In a flow-type continuous reaction apparatus in which a physical and / or chemical reaction is induced while a material to be reacted flows through the gap, one electrode E1 for electrochemical reaction is provided on the inner surface of the hollow outer cylinder, and the outer surface of the inner cylinder The other electrode E2, the external terminals E10 and E20 electrically connected to the one and the other electrodes, respectively, and a means for applying a voltage between the external terminals, and the reaction material has the gap therebetween. During flow, one and the other through the external terminal Continuous electrochemical process that induces an electrochemical reaction in a reaction material by forming an annular electrochemical cell between concentric double cylinders sandwiched between the one and the other electrode by applying a voltage between the two electrodes It is a reactor.

またさらに本発明は、上記の連続電気化学反応装置を組み込んで改良された構成である。 Furthermore, the present invention has an improved structure incorporating the above-described continuous electrochemical reaction apparatus.

すなわち(請求項)、固定中空外筒の内側面に電気化学反応の一方の電極、および、前記同軸回転する内筒の外側面に電気化学反応の他方の電極、および、該一方および他方の電極それぞれに電気的に接続された外部端子、および、前記外部端子間に電圧を印加する手段をさらに具備した、プロセス装置である。 That is, (Claim 1 ), one electrode of electrochemical reaction on the inner surface of the fixed hollow outer cylinder, the other electrode of electrochemical reaction on the outer surface of the coaxially rotating inner cylinder, and the one and the other A process apparatus further comprising an external terminal electrically connected to each electrode and means for applying a voltage between the external terminals.

かかる構成によって、液体に関わるプロセスの被反応材が前記間隙を流動中に、前記外部端子を介して一方と他方の電極間に電圧を印加することで、該一方と他方の電極に挟まれた同心二重円筒の間のアニュラー状の電気化学セルを形成して液体に関わる被反応材に電気化学反応を誘起するものである。   With such a configuration, the reactant in the process related to the liquid is sandwiched between the one and the other electrode by applying a voltage between the one and the other electrode through the external terminal while flowing in the gap. An annular electrochemical cell between concentric double cylinders is formed to induce an electrochemical reaction in a reaction material related to a liquid.

本発明装置は、公知のCT反応装置(STT反応装置)の連続かつ狭小反応場形成という特徴を電気化学反応に応用した技術である。 The apparatus of the present invention is a technique in which the characteristic of continuous and narrow reaction field formation of a known CT reaction apparatus (STT reaction apparatus) is applied to an electrochemical reaction.

従来の電気化学反応装置においては、電極と電極の間に形成される反応場が本発明に対して相対的に広く、反応の空間的均一性が保てないものであった。この欠点は、電極を回転する種々の回転電極の採用や、種々の攪拌手段の採用でなんとか反応場の空間的均一性を向上させ、反応の均一化を図ろうとしているが、均一化は不十分で反応効率は、他の一般的な反応の効率と比較すると高いとはいいがたいものであった。   In the conventional electrochemical reaction apparatus, the reaction field formed between the electrodes is relatively wide with respect to the present invention, and the spatial uniformity of the reaction cannot be maintained. The drawback is that the use of various rotating electrodes that rotate the electrode and various stirring means improve the spatial uniformity of the reaction field and attempt to achieve uniform reaction, but this is not possible. Sufficient and reaction efficiency was not high compared to other common reaction efficiencies.

本発明装置は、CT反応装置の固定外筒内面と回転内筒外面(側面)に対抗電極を配備し、これらの間に電圧を印加することで連続かつ狭小な電気化学反応場を形成せしめるものであって、そのことで、反応の空間的均一性を向上させ、従来にないプロセス効率を得るものである。 In the apparatus of the present invention , a counter electrode is provided on the inner surface of the stationary outer cylinder and the outer surface (side surface) of the rotating inner cylinder of the CT reactor, and a continuous and narrow electrochemical reaction field is formed by applying a voltage between them. This improves the spatial uniformity of the reaction and provides unprecedented process efficiency.

さて次に、CT(Couette-Taylor)反応器における螺旋状のCT(Couette-Taylor)流れの形成であるが、多少なりとも重力の影響がある。そのため、特許文献1や特許文献2に記載されている、横型(横置き)のCT(Couette-Taylor)と、これらを90度転回した縦型(縦置き)のCT(Couette-Taylor)では、流れパターンが多少異なってくる。90度以外の角度で斜行して転回した状態でも同様である。   Next, the formation of a spiral CT (Couette-Taylor) flow in a CT (Couette-Taylor) reactor is somewhat affected by gravity. Therefore, in the horizontal (horizontal) CT (Couette-Taylor) described in Patent Document 1 and Patent Document 2 and the vertical (vertical) CT (Couette-Taylor) obtained by rotating these by 90 degrees, The flow pattern is slightly different. The same applies to a state in which the vehicle is rotated at an angle other than 90 degrees.

これらの横型(横置き)、縦型(縦置き)、斜行した状態(斜め置き)で実用的に有効なポジショニング(置き方)がある。そこで、実用上の改善として、CT(Couette-Taylor)反応器のポジショニング(置き方)を自在に変えることができると便利である。   There are practically effective positioning (placement methods) in these horizontal type (horizontal placement), vertical type (vertical placement), and skewed state (oblique placement). Therefore, as a practical improvement, it is convenient if the positioning of the CT (Couette-Taylor) reactor can be freely changed.

すなわち(請求項3、図4・図5参照)、CT(Couette-Taylor)反応器において、前記固定中空外筒および該外筒内壁と概一定な間隙を保ちつつ同軸回転する内筒との共通の回転軸と、水平面ないしは鉛直線とのなす角度を、自在に変化させる手段ROTをさらに具備するのか好適である。   That is, in the CT (Couette-Taylor) reactor, common to the fixed hollow outer cylinder and the inner cylinder rotating coaxially while maintaining a substantially constant gap with the inner wall of the outer cylinder. It is preferable to further include means ROT for freely changing an angle formed by the rotation axis of the horizontal axis and a horizontal plane or a vertical line.

本発明の装置においては、プロセスが自らのCT(Couette-Taylor)反応器の前記間隙を殺菌および/または洗浄するプロセスであってもよい。   In the apparatus of the present invention, the process may be a process of sterilizing and / or cleaning the gap of its own CT (Couette-Taylor) reactor.

また、産業総合研究所の高橋ら、レオ研究所の千葉ら、による、特許文献9から特許文献25の一部の記載によれば、マイクロバブル発生器が発生したマイクロバブル含有液体に、放電ないしは電解などの電気化学反応をなして、ナノバブルを生成または安定化させる際に、かかる放電ないしは電解などの電気化学反応を本発明装置で実施してもよい。 In addition, according to some descriptions in Patent Document 9 to Patent Document 25 by Takahashi et al. Of the National Institute of Advanced Industrial Science and Technology, Chiba et al. Of the Leo Research Laboratories, the microbubble-containing liquid generated by the microbubble generator is discharged or When an electrochemical reaction such as electrolysis is performed to generate or stabilize nanobubbles, such an electrochemical reaction such as discharge or electrolysis may be performed by the apparatus of the present invention .

すなわち、本発明のプロセス装置にて、プロセスがマイクロバブルを含む液体からナノバブルを生成および/または分離し安定化させるプロセスであってもよい。 In other words, in the process apparatus of the present invention, the process may be a process for generating and / or separating nanobubbles from a liquid containing microbubbles and stabilizing them.

本発明の装置でマイクロ・ナノバブルの導入による化学反応の効率向上などが期待できる。これは、マイクロ・ナノバブル自体が化学反応に対してなす作用に依拠する効果である。 The apparatus of the present invention can be expected to improve the efficiency of chemical reaction by introducing micro / nano bubbles. This is an effect that depends on the action of the micro / nano bubble itself on the chemical reaction.

また、本発明の装置でCT(Couette-Taylor)流れで螺旋状の疑似マイクロ反応流路を形成する狭い間隙を有するCT(Couette-Taylor)反応器の殺菌および・または洗浄が効率よくできる。まず、CM1をB2としてマイクロ・ナノバブルを装置内に流入する。マイクロ・ナノバブルは、その圧壊でラジカルを生成する。かかるラジカルの殺菌および・または洗浄効果で、従来分解清掃によっていた作業なしで十分な殺菌・洗浄がなされ、好適である。このマイクロ・ナノバブルの殺菌・洗浄作用モードの後に、CM1をA2として装置外部より被反応剤を導入して所望のプロセス反応を行うモードとする。このように洗浄・殺菌モードとプロセス反応モードの瞬時の切替えが可能になり好適である。 In addition, the apparatus of the present invention can efficiently sterilize and / or wash a CT (Couette-Taylor) reactor having a narrow gap that forms a spiral pseudo-micro reaction channel with a CT (Couette-Taylor) flow. First, CM1 is set to B2, and micro / nano bubbles flow into the apparatus. Micro-nano bubbles generate radicals by their crushing. This radical sterilization and / or cleaning effect is preferable because it can be sufficiently sterilized and cleaned without the work conventionally performed by disassembly and cleaning. After the micro / nano bubble sterilization / cleaning operation mode, CM1 is set to A2, and a reaction process is introduced from the outside of the apparatus to perform a desired process reaction. Thus, it is possible to instantaneously switch between the cleaning / sterilization mode and the process reaction mode, which is preferable.

また、マイクロバブル発生器と電極付きCT(Couette-Taylor)反応器とを結合した本発明装置で、マイクロサイズ・バブルからナノサイズバブルを抽出および・または生成して、イオン群のなかで懸濁安定化させるプロセスを電極付きCT(Couette-Taylor)反応器で連続的に行える。すなわち、マイクロバブル発生器が、マイクロバブルの原材料供給器で、その後工程のナノサイズバブル抽出および・または生成工程を電極付きCT(Couette-Taylor)反応器が行う、というカスケードプロセスを実現でき好適な態様である。ここにおいて、電極付きCT(Couette-Taylor)反応器で電気化学反応を行うので、液体を導電性化すべく、たとえば当該反応器のポートにて塩などの電解質供給することが必要である。もちろん、塩などの電解質供給する手段は、CT(Couette-Taylor)反応器のポートに限定されず、マイクロバブル発生器の貯留タンクや供給手段C1、切替え手段C21の近傍や配管に配設してもよい。 In addition, the apparatus of the present invention in which a microbubble generator and a CT (Couette-Taylor) reactor with electrodes are combined is used to extract and / or generate nanosized bubbles from microsized bubbles and to suspend them in an ion group. The turbidity stabilization process can be performed continuously in an electrode-equipped CT (Couette-Taylor) reactor. In other words, it is possible to realize a cascade process in which the microbubble generator is a microbubble raw material supplier and the subsequent nano-size bubble extraction and / or generation process is performed by an electroded CT (Couette-Taylor) reactor. It is an aspect. Here, since an electrochemical reaction is performed in a CT (Couette-Taylor) reactor with electrodes, it is necessary to supply an electrolyte such as salt at a port of the reactor, for example, in order to make the liquid conductive. Of course, it means for supplying the electrolyte, such as salt is not limited to a port of CT (Couette-Taylor) reactor, storage tank and the supply means C1 microbubble generator, disposed in the vicinity and pipes switching means C21 May be.

さらに、本発明の請求項3の構成で、安定しにくい螺旋状のCT(Couette-Taylor)流れを、固定中空外筒および同軸回転する内筒との共通の回転軸と水平面ないしは鉛直線とのなす角度を調整することで、容易に安定化できる。このことが効率向上につながる。   Further, in the configuration of the third aspect of the present invention, a spiral CT (Couette-Taylor) flow which is difficult to stabilize is caused by a rotation axis common to the fixed hollow outer cylinder and the inner cylinder rotating coaxially and a horizontal plane or a vertical line. It can be easily stabilized by adjusting the angle formed. This leads to improved efficiency.

以上のように本発明の装置で、自らのCT(Couette-Taylor)反応器の前記間隙を殺菌および/または洗浄する場合や、マイクロバブルを含む液体からナノバブルを生成および/または分離し安定化させる場合などに、操作性・効率等の向上が期待できる。 As described above, with the apparatus of the present invention, when the gap of its own CT (Couette-Taylor) reactor is sterilized and / or washed, nanobubbles are generated and / or separated from a liquid containing microbubbles and stabilized. In some cases, improvement in operability and efficiency can be expected.

また、本発明では螺旋状の疑似マイクロ連続フローを形成するCT(Couette-Taylor)反応器を利用するので、コンタミネーションの少ない理想的な細胞培養などのバイオロジカルプロセスを実現できる。すなわち、連続フローであるので、ある時間だけに異物混入(コンタミネーション)があっても、その流れによるプロセス部分を排除すればよく、結果的に異物の混入量をきわめて少なくできる。
In the present invention, since a CT (Couette-Taylor) reactor that forms a spiral pseudo-micro continuous flow is used, an ideal biological process such as cell culture with less contamination can be realized. In other words, since it is a continuous flow, even if foreign matter is contaminated (contamination) only for a certain period of time, it is sufficient to eliminate the process part due to the flow, and as a result, the amount of foreign matter can be extremely reduced.

本発明の基盤構成を示す模式図であって、液体供給手段C1が供給する液体を、A1:装置外部の液体、と、B1:前記間隙の他端から前記の液体を抽出する手段C2で抽出された液体、とに切替える手段C21を具備した構成を示す。ここでC22は、液体を抽出する手段C2にて、抽出液体を装置外部に出す、と、前記のB1、すなわち、液体供給手段C1の供給液体とする、の切替え手段である。FIG. 2 is a schematic diagram showing the basic configuration of the present invention, in which liquid supplied by the liquid supply means C1 is extracted by A1: liquid outside the apparatus and B1: means C2 for extracting the liquid from the other end of the gap. The structure provided with the means C21 which switches to the made liquid is shown. Here, C22 is a switching means for extracting the extracted liquid to the outside of the apparatus by means C2 for extracting the liquid and setting it as B1, that is, the supply liquid of the liquid supply means C1. 本発明の装置の構成を示す模式図であって、CM1、すなわち液体供給手段C1が供給する液体を、A2:装置外部の液体、と、B2:前記液体貯留槽MRに貯留された液体、とに切替える手段を具備した構成を示す。It is a schematic diagram showing the configuration of the apparatus of the present invention, CM1, that is, the liquid supplied by the liquid supply means C1, A2: liquid outside the apparatus, B2: liquid stored in the liquid storage tank MR, The structure which comprises the means to switch to is shown. 本発明の装置の構成要素である電極付きCT(Couette-Taylor)反応器を示す模式図であって、固定中空外筒の内側面に電気化学反応の一方の電極E1、および、同軸回転する内筒の外側面に電気化学反応の他方の電極E2、および、E1・E2に電気的に接続された外部端子E10・E20、および、前記外部端子間に電圧を印加する手段(図では略)を具備している。FIG. 2 is a schematic view showing a CT (Couette-Taylor) reactor with electrodes, which is a component of the apparatus of the present invention, and one electrode E1 for electrochemical reaction on the inner surface of a fixed hollow outer cylinder, The other electrode E2 of the electrochemical reaction on the outer surface of the cylinder, the external terminals E10 and E20 electrically connected to E1 and E2, and means for applying a voltage between the external terminals (not shown) It has. 本発明の請求項3の構成要素を示す模式図であって、ROT、すなわち、CT(Couette-Taylor)反応器の固定中空外筒および同軸回転する内筒との共通の回転軸(z)と、水平面ないしは鉛直線とのなす角度を、自在に変化させる手段を具備する。ROTは、たとえば図示のようなCT(Couette-Taylor)反応器を把持して回転する機構である。FIG. 4 is a schematic diagram showing components of claim 3 of the present invention, and is a ROT, that is, a rotation axis (z) common to a fixed hollow outer cylinder and a coaxially rotating inner cylinder of a CT (Couette-Taylor) reactor; Means for freely changing the angle between the horizontal plane and the vertical line is provided. The ROT is a mechanism that grips and rotates a CT (Couette-Taylor) reactor as shown, for example. 図4のCT(Couette-Taylor)反応器を把持して回転する機構の説明図である。It is explanatory drawing of the mechanism which hold | grips and rotates CT (Couette-Taylor) reactor of FIG.

1 固定中空外筒
2 1の内壁と概一定な間隙4を保ちつつ同軸回転する内筒
3 2の回転手段
4 1の内壁と2の側壁との間隙
A1 C1が供給する液体を装置外部の液体とする切替えモード
A2 C1が供給する液体を装置外部の液体とする切替えモード
B1 C1が供給する液体を抽出手段C2で抽出された液体とする循環フローの切替えのモード
B2 C1が供給する液体をマイクロバブル発生器の液体貯留槽MRに貯留されたマイクロバブル含有液体とするマイクロバブルを導入する切替えのモード
C1 間隙4の一端に液体を供給する手段
C2 間隙4の他端から前記の液体を抽出する手段
21 液体供給手段C1が供給する液体を、A1:装置外部の液体、と、B1:前記間隙の他端から前記の液体を抽出する手段C2で抽出された液体、とに切替える手段
C22 液体抽出手段C2が抽出する液体を、抽出液体を装置外部に出す、と、B1、すなわち、液体供給手段C1の供給液体とする、とに切替える手段
CM1 液体供給手段C1が供給する液体を、A2:装置外部の液体、と、B2:前記液体貯留槽MRに貯留された液体、とに切替える手段
E1 固定中空外筒1の内側面に配設された凹曲面状電極
E2 回転する内筒2の外側面に配設された凸曲面状電極
E10 E1に電気的に接続された外部端子
E20 E2に電気的に接続された外部端子
M1 液体
M4 気体吸引手段
M10 渦流ポンプ
M11 渦流ポンプの内蔵インペラ
M14 液体吸引手段(の先端部分)
M15 液体吐出手段(の先端部分)
MR 液体貯留槽
ROT 固定中空外筒および同軸回転する内筒との共通の回転軸と、水平面ないしは鉛直線とのなす角度を、自在に変化させる手段。たとえば回転機構。
z 固定中空外筒および同軸回転する内筒との共通の回転軸

DESCRIPTION OF SYMBOLS 1 Fixed hollow outer cylinder 2 The liquid supplied from gap | interval A1 C1 of the inner wall 32 of the inner cylinder 32 rotating coaxially, maintaining the substantially constant gap | interval 4 with the inner wall of 1, and the side wall of 2 The liquid outside an apparatus The switching mode A2 C1 uses the liquid supplied from the outside as the switching mode B1 C1 uses the liquid supplied by the extraction means C2 as the liquid supplied from the extraction mode C2. Switching mode C1 for introducing microbubbles as liquid containing microbubbles stored in the liquid storage tank MR of the bubble generator C1 Means for supplying liquid to one end of the gap 4 Extracting the liquid from the other end of the gap 4 the liquid supplied by means C 21 liquid supply means C1, A1: device outside of the liquid, and, B1: extracted by means C2 for extracting the liquid from the other end of the gap the liquid, The means C22 for switching to the liquid supply means C1 supplies the liquid extracted by the liquid extraction means C2 to B1, that is, the supply liquid for the liquid supply means C1. Means E1 for switching the liquid to A2: liquid outside the apparatus, and B2: liquid stored in the liquid storage tank MR. Recessed curved surface electrode E2 disposed on the inner surface of the fixed hollow outer cylinder 1. External terminal M1 electrically connected to the external terminal E20 E2 electrically connected to the convex curved electrode E10 E1 disposed on the outer surface of the inner cylinder 2 Liquid M4 Gas suction means M10 Eddy current pump M11 Eddy current pump Built-in impeller M14 Liquid suction means (front end)
M15 Liquid discharge means (front end)
MR Liquid storage tank ROT A means for freely changing an angle formed by a rotation axis common to the fixed hollow outer cylinder and the coaxially rotating inner cylinder and a horizontal plane or a vertical line. For example, a rotation mechanism.
z Common rotation axis for fixed hollow outer cylinder and coaxially rotating inner cylinder

Claims (3)

固定中空外筒、該外筒内壁と概一定な間隙を保ちつつ同軸回転する内筒、該内筒の回転手段、
前記間隙の一端に液体を供給する手段C1、および、
該間隙の他端から前記の液体を抽出する手段C2、を具備し、
前記内筒が回転中に、前記液体を前記供給手段にて前記間隙に概一定な流動レートで供給することで、
該液体が前記間隙のなかで螺旋状のテイラー・クエット(Couette-Taylor)流れパターンを形成して流動されつつ液体に関わるプロセスが実行されるテイラー・クエット(Couette-Taylor)反応器、および、
液体貯留槽MRに貯留された液体中に微小気泡を生成させるマイクロバブルまたはナノバブル発生器を具備するプロセス装置であって、
前記液体供給手段C1が供給する液体を、
A2:装置外部の液体、と、
B2:前記液体貯留槽MRに貯留された液体
とに切替える手段CM1を備し、かつ、
前記固定中空外筒の内側面に電気化学反応の一方の電極、および、
前記同軸回転する内筒の外側面に電気化学反応の他方の電極、および、
該一方および他方の電極それぞれに電気的に接続された外部端子、および、
前記外部端子間に電圧を印加する手段を具備し、さらに、
前記液体供給手段C1が供給する液体を、
A1:装置外部の液体、と、
B1:前記間隙の他端から前記の液体を抽出する手段C2で抽出された液体、
とに切替える手段C21を具備すると共に、
前記C2からC21に至る配管に電磁ポンプまたはシリンジポンプを具備したプロセス装置。
A fixed hollow outer cylinder, an inner cylinder that rotates coaxially while maintaining a substantially constant gap with the inner wall of the outer cylinder, means for rotating the inner cylinder,
Means C1 for supplying liquid to one end of the gap; and
Means C2 for extracting the liquid from the other end of the gap,
While the inner cylinder is rotating, supplying the liquid to the gap with the supply means at a substantially constant flow rate,
Taylor Couette the process liquid is involved in spiral Taylor Couette (Couette-Taylor) while being fluidized with a flow pattern liquid among the gap is performed (Couette-Taylor) reactor, and,
A process apparatus comprising a microbubble or nanobubble generator for generating microbubbles in a liquid stored in a liquid storage tank MR,
The liquid supplied by the liquid supply means C1 is
A2: Liquid outside the device,
B2: to immediately Bei means CM1 to switch to the liquid stored in the liquid reservoir MR, and,
One electrode of electrochemical reaction on the inner surface of the fixed hollow outer cylinder, and
The other electrode of the electrochemical reaction on the outer surface of the coaxially rotating inner cylinder, and
An external terminal electrically connected to each of the one and other electrodes; and
Means for applying a voltage between the external terminals, and
The liquid supplied by the liquid supply means C1 is
A1: liquid outside the device,
B1: Liquid extracted by means C2 for extracting the liquid from the other end of the gap,
And means C21 for switching to
A process apparatus comprising an electromagnetic pump or a syringe pump in the pipe from C2 to C21.
請求項1の装置において、C2からC21に至る配管に電解質供給手段が兼備されたプロセス装置。   2. The process apparatus according to claim 1, wherein an electrolyte supply means is provided in the pipe extending from C2 to C21. 請求項1または2の装置のテイラー・クエット(Couette-Taylor)反応器において、
前記固定中空外筒および該外筒内壁と概一定な間隙を保ちつつ同軸回転する内筒との共通の回転軸と、
水平面ないしは鉛直線とのなす角度を、自在に変化させる手段をさらに具備したプロセス装置。
In the Taylor -Taylor reactor of the apparatus of claim 1 or 2,
A rotation axis common to the fixed hollow outer cylinder and the inner cylinder rotating coaxially while maintaining a substantially constant gap with the inner wall of the outer cylinder;
A process apparatus further comprising means for freely changing an angle formed with a horizontal plane or a vertical line.
JP2010012727A 2010-01-25 2010-01-25 Process device with microbubble generator Expired - Fee Related JP5563322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012727A JP5563322B2 (en) 2010-01-25 2010-01-25 Process device with microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012727A JP5563322B2 (en) 2010-01-25 2010-01-25 Process device with microbubble generator

Publications (2)

Publication Number Publication Date
JP2011147907A JP2011147907A (en) 2011-08-04
JP5563322B2 true JP5563322B2 (en) 2014-07-30

Family

ID=44535413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012727A Expired - Fee Related JP5563322B2 (en) 2010-01-25 2010-01-25 Process device with microbubble generator

Country Status (1)

Country Link
JP (1) JP5563322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616729B2 (en) * 2009-09-18 2014-10-29 日本化学工業株式会社 Continuous crystallizer
JP6257636B2 (en) * 2012-11-27 2018-01-10 ラミナー カンパニー,リミテッド Reactor for mixing and production method using the reactor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881305B2 (en) * 1986-08-11 1999-04-12 バクスター、インターナショナル、インコーポレイテッド Blood cell cleaning system and method
JPH06287005A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Production of superfine particle
JPH10180074A (en) * 1996-12-26 1998-07-07 Taniguchi Ink Seizo Kk Mixing device
JP2002126741A (en) * 2000-10-23 2002-05-08 Teruo Kojima Electrolytic apparatus
AUPR391401A0 (en) * 2001-03-22 2001-04-12 Ceramic Fuel Cells Limited Liquid phase reactor
JP4894072B2 (en) * 2007-07-02 2012-03-07 株式会社日立プラントテクノロジー Line cleaning method and apparatus

Also Published As

Publication number Publication date
JP2011147907A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP4035118B2 (en) Biological killing method and apparatus by ballast water transport process system on board
Patil et al. Degradation of methyl parathion using hydrodynamic cavitation: effect of operating parameters and intensification using additives
Yang et al. Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode
EP1461474B1 (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
KR101150740B1 (en) Nanobubble-containing liquid producing apparatus and nanobubble-containing liquid producing method
JP2016221513A (en) Measurable ultra-fine bubble water having oxidizing radical or reducing radical, and ultra-fine bubble solution
JP2005000917A5 (en)
WO2006001293A1 (en) Ultrasonic cleaning method and apparatus
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
CN104671361A (en) Method for removing PPCPs micropollutants in secondary sedimentation tank wastewater
US20220217832A1 (en) Methods for Generating Nanoplasmoid Suspensions
JP5563322B2 (en) Process device with microbubble generator
JP5596276B2 (en) Super fine bubble water
JP2008063648A (en) Apparatus for producing rinse water containing hydrogen peroxide, and method for producing rinse water containing hydrogen peroxide
JP3886378B2 (en) Seawater sterilization method and apparatus
JP7158670B2 (en) Method for controlling particle size of metal nanoparticles, method for producing metal nanoparticles
JP6104962B2 (en) Treatment of water to extend the half-life of ozone
US11071955B1 (en) Nanoplasmoid suspensions and systems and devices for the generation thereof
RU156246U1 (en) DEVICE FOR ELECTROCHEMICAL TREATMENT OF LIQUID MEDIA
JP2013193000A (en) Ballast water treating system and ballast water treating method
JP7163541B2 (en) ultrasonic chemical reactor
JP2016203082A (en) Production method of radical functional fluid, and purification method using radical functional fluid
JP2004066071A (en) Hydrogen reduction water treatment apparatus
JP2008149265A (en) Bioreaction apparatus
KR101235184B1 (en) Hybrid sterilizing system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5563322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5563322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees