JP5561683B2 - Component built-in board - Google Patents

Component built-in board Download PDF

Info

Publication number
JP5561683B2
JP5561683B2 JP2012142820A JP2012142820A JP5561683B2 JP 5561683 B2 JP5561683 B2 JP 5561683B2 JP 2012142820 A JP2012142820 A JP 2012142820A JP 2012142820 A JP2012142820 A JP 2012142820A JP 5561683 B2 JP5561683 B2 JP 5561683B2
Authority
JP
Japan
Prior art keywords
component
substrate
printed wiring
board
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012142820A
Other languages
Japanese (ja)
Other versions
JP2014007324A (en
Inventor
啓貴 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012142820A priority Critical patent/JP5561683B2/en
Publication of JP2014007324A publication Critical patent/JP2014007324A/en
Application granted granted Critical
Publication of JP5561683B2 publication Critical patent/JP5561683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、電子部品が内蔵された部品内蔵基板に関する。   The present invention relates to a component built-in substrate in which an electronic component is built.

半導体部品等の電子部品を内蔵した部品内蔵基板として、例えば下記特許文献1に開示された多層プリント配線板を利用した電子装置が知られている。この電子装置は、プリント配線板間に電子部品を内蔵した多層構造を備え、薄膜化を進めながらも任意の層間隔を確保しつつある程度の屈曲性を有する特性を備えている。   As a component-embedded substrate in which an electronic component such as a semiconductor component is embedded, for example, an electronic device using a multilayer printed wiring board disclosed in Patent Document 1 is known. This electronic device has a multilayer structure in which electronic components are built in between printed wiring boards, and has a characteristic of having a certain degree of flexibility while ensuring an arbitrary layer spacing while progressing in thinning.

特開2007−80857号公報JP 2007-80857 A

しかしながら、上記特許文献1に開示された従来技術の電子装置では、薄膜化を進めるほど各層の配線板の機械的強度や屈曲性に依存する折れや曲がりなどの種々の問題が生じるため、薄膜化に伴う機械的強度と屈曲性の更なる改善が求められている。   However, in the electronic device of the prior art disclosed in Patent Document 1, various problems such as bending and bending depending on the mechanical strength and bendability of each layer of the wiring board occur as the film thickness decreases. Further improvement in mechanical strength and flexibility is required.

この発明は、上述した従来技術による問題点を解消し、機械的強度と屈曲性を向上させた部品内蔵基板を提供することを目的とする。   An object of the present invention is to provide a component-embedded substrate that solves the above-described problems of the prior art and has improved mechanical strength and flexibility.

本発明に係る部品内蔵基板は、樹脂基材に配線パターン及びビアが形成された複数のプリント配線基材を、接着層を介して積層方向に積層すると共に電子部品を内蔵してなる部品内蔵基板であって、前記プリント配線基材及び前記接着層に形成され前記各電子部品の間で前記積層方向及び前記プリント配線基板の面方向に延びる切込み部を有することを特徴とする。   The component-embedded substrate according to the present invention includes a component-embedded substrate in which a plurality of printed wiring substrates each having a wiring pattern and a via formed on a resin substrate are stacked in the stacking direction via an adhesive layer and an electronic component is embedded. And it has a notch which is formed in the printed wiring substrate and the adhesion layer, and extends between the electronic parts in the lamination direction and the surface direction of the printed wiring board.

本発明に係る部品内蔵基板によれば、プリント配線基材及び接着層に形成され各電子部品の間で積層方向及びプリント配線基板の面方向に延びる切込み部を有するので、この切込み部によって部品内蔵基板の屈曲性は向上する。これにより、切込み部近傍のプリント配線基材の一部(以下、屈曲部)とその他の部分との曲げ剛性の違いにより、屈曲による歪を屈曲部がほぼ担い、屈曲部以外の電子部品の配置部分に歪はほとんど発生しない。したがって、電子部品近傍の機械的強度を高く保つことができる。   According to the component-embedded substrate according to the present invention, the cut-in portion is formed in the printed wiring base material and the adhesive layer and extends between the electronic components in the stacking direction and the surface direction of the printed-wiring substrate. The flexibility of the substrate is improved. As a result, due to the difference in bending rigidity between part of the printed wiring board near the notch (hereinafter referred to as the bent portion) and other portions, the bent portion almost bears the distortion caused by bending, and the electronic components other than the bent portion are arranged. Almost no distortion occurs in the part. Therefore, the mechanical strength in the vicinity of the electronic component can be kept high.

本発明の一つの実施形態に係る部品内蔵基板は、切込み部内に充填された弾性部材を備えるようにしても良い。この弾性部材により、部品内蔵基板を屈曲させた後に外力を加えることなく、部品内蔵基板を外力を与える前の平常状態に戻すことができる。   The component built-in substrate according to one embodiment of the present invention may include an elastic member filled in the cut portion. With this elastic member, the component built-in board can be returned to the normal state before the external force is applied without applying an external force after the component built-in board is bent.

本発明の上記実施形態に係る部品内蔵基板において、弾性部材として、シリコーンゴム又はフッ素ゴムを用いることができる。   In the component-embedded substrate according to the embodiment of the present invention, silicone rubber or fluororubber can be used as the elastic member.

本発明によれば、機械的強度と屈曲性を向上させた部品内蔵基板を提供できる。   According to the present invention, it is possible to provide a component-embedded substrate with improved mechanical strength and flexibility.

本発明の第1の実施形態に係る部品内蔵基板の構造を示す上面図である。It is a top view which shows the structure of the component built-in board | substrate which concerns on the 1st Embodiment of this invention. 第1の実施形態に係る部品内蔵基板の構造を示す断面図である。It is sectional drawing which shows the structure of the component built-in board | substrate concerning 1st Embodiment. 第1の実施形態の部品内蔵基板の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the component built-in board | substrate of 1st Embodiment. 第1の実施形態の製造工程における部品内蔵基板を示す断面図である。It is sectional drawing which shows the component built-in board | substrate in the manufacturing process of 1st Embodiment. 本発明の第1の実施形態に係る部品内蔵基板の構造を示す断面図である。It is sectional drawing which shows the structure of the component built-in board | substrate which concerns on the 1st Embodiment of this invention. 第2の実施形態の部品内蔵基板の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the component built-in board | substrate of 2nd Embodiment. 第2の実施形態の製造工程における部品内蔵基板を示す断面図である。It is sectional drawing which shows the component built-in board | substrate in the manufacturing process of 2nd Embodiment. 本発明の第3の実施形態に係る部品内蔵基板の構造を示す断面図である。It is sectional drawing which shows the structure of the component built-in board | substrate concerning the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る部品内蔵基板の構造を示す断面図である。It is sectional drawing which shows the structure of the component built-in board | substrate concerning the 4th Embodiment of this invention. 本発明の第5の実施形態に係る部品内蔵基板の構造を示す断面図である。It is sectional drawing which shows the structure of the component built-in board | substrate concerning the 5th Embodiment of this invention. 本発明の第6の実施形態に係る部品内蔵基板の構造を示す断面図である。It is sectional drawing which shows the structure of the component built-in board | substrate concerning the 6th Embodiment of this invention. 本発明の第7の実施形態に係る部品内蔵基板の構造を示す断面図である。It is sectional drawing which shows the structure of the component built-in board | substrate concerning the 7th Embodiment of this invention.

以下、添付の図面を参照して、この発明の実施の形態に係る部品内蔵基板及びその製造方法を詳細に説明する。   Hereinafter, a component-embedded substrate and a manufacturing method thereof according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[第1の実施形態]
先ず、図1及び図2を参照して、第1の実施形態に係る部品内蔵基板の構成を説明する。図1は本発明の第1の実施形態に係る部品内蔵基板の概略上面図であり、図2は図1のA−A′断面図である。
[First Embodiment]
First, the configuration of the component-embedded substrate according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic top view of a component-embedded substrate according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.

図2に示すように、第1の実施形態に係る部品内蔵基板は、接着層9を介して熱圧着により一括積層された第1プリント配線基材10、第2プリント配線基材20、第3プリント配線基材30、第4プリント配線基材40及び第5プリント配線基材50を有する。接着層9は、例えばエポキシ系やアクリル系の熱硬化性又は熱可塑性接着剤などからなる。   As shown in FIG. 2, the component-embedded substrate according to the first embodiment includes a first printed wiring substrate 10, a second printed wiring substrate 20, and a third layer that are stacked together by thermocompression bonding via an adhesive layer 9. The printed wiring board 30, the fourth printed wiring board 40, and the fifth printed wiring board 50 are included. The adhesive layer 9 is made of, for example, an epoxy-based or acrylic-based thermosetting or thermoplastic adhesive.

また、部品内蔵基板は、第3プリント配線基材30の第3樹脂基材31に形成された開口部39a内に、第2及び第4プリント配線基材20,40に挟まれた状態で内蔵されたICチップ60を有する。更に、部品内蔵基板は、第2及び第3プリント配線基材20,30の第2及び第3樹脂基材21,31に形成された開口部29,39b内に、第1及び第4プリント配線基材10,40に挟まれた状態で内蔵された受動部品70を有する。   Further, the component-embedded substrate is embedded in the opening 39a formed in the third resin base 31 of the third printed wiring base 30 while being sandwiched between the second and fourth printed wiring bases 20 and 40. IC chip 60 is provided. Furthermore, the component-embedded substrate is provided with first and fourth printed wirings in openings 29 and 39b formed in the second and third resin base materials 21 and 31 of the second and third printed wiring base materials 20 and 30, respectively. It has a passive component 70 built in a state sandwiched between the base materials 10 and 40.

第1〜第5プリント配線基材10〜50は、それぞれ第1樹脂基材11、第2樹脂基材21、第3樹脂基材31、第4樹脂基材41及び第5樹脂基材51と、これら第1〜第5樹脂基材11〜51の表面に形成された信号用配線(配線パターン)12,22,32,42,52とを備える。信号用配線12,22,42,52は第1、第2、第4及び第5樹脂基材11,21,41,51の一方の面に形成され、信号用配線32は第3樹脂基材31の両面に形成される。   The first to fifth printed wiring substrates 10 to 50 are respectively a first resin substrate 11, a second resin substrate 21, a third resin substrate 31, a fourth resin substrate 41, and a fifth resin substrate 51. And signal wirings (wiring patterns) 12, 22, 32, 42, 52 formed on the surfaces of the first to fifth resin base materials 11 to 51. The signal wirings 12, 22, 42, 52 are formed on one surface of the first, second, fourth, and fifth resin base materials 11, 21, 41, 51, and the signal wiring 32 is a third resin base material. 31 is formed on both sides.

第1、第2、第4及び第5プリント配線基材10,20,40,50は、片面銅張積層板(片面CCL)に基づき形成され、第3プリント配線基材30は、両面銅張積層板(両面CCL)に基づき形成されている。   The first, second, fourth and fifth printed wiring substrates 10, 20, 40, 50 are formed based on a single-sided copper-clad laminate (single-sided CCL), and the third printed wiring substrate 30 is a double-sided copper-clad It is formed based on a laminated board (double-sided CCL).

第1〜第5樹脂基材11〜51は、それぞれ例えば厚さ25μm程度の樹脂フィルムにより構成されている。ここで、樹脂フィルムとしては、例えばポリイミド、ポリオレフィン、液晶ポリマーなどからなる樹脂フィルムや、熱硬化性のエポキシ樹脂からなる樹脂フィルムなどを用いることができる。信号用配線12〜52は、銅箔などの導電材をパターン形成してなる。   The 1st-5th resin base materials 11-51 are each comprised by the resin film about 25 micrometers thick, for example. Here, as the resin film, for example, a resin film made of polyimide, polyolefin, liquid crystal polymer, or the like, a resin film made of a thermosetting epoxy resin, or the like can be used. The signal wirings 12 to 52 are formed by patterning a conductive material such as copper foil.

以上のような第1〜第5樹脂基材11〜51及び信号用配線12〜52により、部品内蔵基板を薄型化できる。   The component-embedded substrate can be thinned by the first to fifth resin base materials 11 to 51 and the signal wirings 12 to 52 as described above.

また、第1、第2、第4及び第5プリント配線基材10,20,40,50は、それぞれ第1、第2、第4及び第5樹脂基材11,21,41,51に形成されたビアホール内に充填形成された信号用ビア14,24,44,54を有する。信号用ビア14は信号用配線12,22間を電気的に接続し、信号用ビア24は信号用配線22,32間を電気的に接続する。信号用ビア44は信号用配線32,42間を電気的に接続し、信号用ビア54は信号用配線42,52間を電気的に接続する。また、信号用ビア24はICチップ60に電気的に接続され、信号用ビア44は受動部品70に電気的に接続される。なお、第3樹脂基材31の両面に形成された信号用配線32は、第3樹脂基材31のビアホール内にめっきにより構成された信号用ビア(図示略)を介して互いに電気的に接続されている。   The first, second, fourth and fifth printed wiring substrates 10, 20, 40 and 50 are formed on the first, second, fourth and fifth resin substrates 11, 21, 41 and 51, respectively. Signal vias 14, 24, 44, 54 filled in the formed via holes. The signal via 14 electrically connects the signal wirings 12 and 22, and the signal via 24 electrically connects the signal wirings 22 and 32. The signal via 44 electrically connects the signal wirings 32 and 42, and the signal via 54 electrically connects the signal wirings 42 and 52. The signal via 24 is electrically connected to the IC chip 60, and the signal via 44 is electrically connected to the passive component 70. The signal wirings 32 formed on both surfaces of the third resin base 31 are electrically connected to each other via signal vias (not shown) formed by plating in the via holes of the third resin base 31. Has been.

信号用ビア14,24,44,54はビアホール内にそれぞれ充填された導電ペーストからなる。導電ペーストは、例えばニッケル、金、銀、銅、アルミニウム、鉄などから選択される少なくとも1種類の低電気抵抗の金属粒子と、錫、ビスマス、インジウム、鉛などから選択される少なくとも1種類の低融点の金属粒子とを含み、エポキシ、アクリル、ウレタンなどを主成分とするバインダ成分を混合したペーストからなる。   The signal vias 14, 24, 44, and 54 are made of conductive paste filled in the via holes, respectively. The conductive paste is, for example, at least one kind of low electrical resistance metal particles selected from nickel, gold, silver, copper, aluminum, iron and the like, and at least one kind selected from tin, bismuth, indium, lead and the like. And a metal paste having a melting point and a paste in which a binder component mainly composed of epoxy, acrylic, urethane or the like is mixed.

このように構成された導電ペーストは、含有された低融点の金属が200℃以下で溶融し合金を形成することができ、特に銅や銀などとは金属間化合物を形成することができる特性を備える。なお、導電ペーストは、例えば粒子径がナノレベルの金、銀、銅、ニッケル等のフィラーが、上記のようなバインダ成分に混合されたナノペーストで構成することもできる。   The conductive paste thus configured has a characteristic that the contained low melting point metal can be melted at 200 ° C. or less to form an alloy, and in particular, can form an intermetallic compound with copper or silver. Prepare. Note that the conductive paste can also be formed of a nanopaste in which fillers such as gold, silver, copper, and nickel having a nanometer particle size are mixed with the binder component as described above.

その他、導電ペーストは、上記ニッケル等の金属粒子が、上記のようなバインダ成分に混合されたペーストで構成することもできる。この場合、導電ペーストは、金属粒子同士が接触することで電気的接続が行われる特性となる。導電ペーストのビアホールへの充填方法としては、例えば印刷法、スピン塗布工法、スプレー塗布工法、ディスペンス工法、ラミネート工法、及びこれらを併用した工法などを用いることができる。   In addition, the conductive paste can also be composed of a paste in which metal particles such as nickel are mixed with the binder component as described above. In this case, the conductive paste has a characteristic that electrical connection is made when metal particles come into contact with each other. As a method for filling the via hole with the conductive paste, for example, a printing method, a spin coating method, a spray coating method, a dispensing method, a laminating method, and a method using these in combination can be used.

そして、本実施形態は、図1及び図2に示すように、第1〜第3プリント配線基材10〜30を積層方向に切り込んで形成された切込み部81を有する。図1に示すように、切込み部81は、第1〜第3のプリント配線基材10,20,30の面方向に延びるように、たとえば格子状に形成されている。また、切込み部81は、ICチップ60及び受動部品70等の電子部品を避けるように、例えばこれらの間に設けられる。切込み部81は予想される曲げ方向に対応して形成され、曲げた際に生じる圧縮応力が第4及び第5プリント配線基材40,50に負荷される。具体的に、切込み部81は開口部29,39bに対応する位置に設けられ、切込み部81に隣接して接着層9が設けられる。切込み部81は、第1樹脂基材11の上面から第4樹脂基材41の上面まで延びる。   And this embodiment has the notch part 81 formed by notching the 1st-3rd printed wiring base materials 10-30 in the lamination direction, as shown in FIG.1 and FIG.2. As shown in FIG. 1, the cut portions 81 are formed in, for example, a lattice shape so as to extend in the surface direction of the first to third printed wiring substrates 10, 20, and 30. Moreover, the notch part 81 is provided between these, for example so that electronic components, such as IC chip 60 and the passive component 70, may be avoided. The cut portion 81 is formed corresponding to an expected bending direction, and compressive stress generated when bending is applied to the fourth and fifth printed wiring substrates 40 and 50. Specifically, the cut portion 81 is provided at a position corresponding to the openings 29 and 39 b, and the adhesive layer 9 is provided adjacent to the cut portion 81. The cut portion 81 extends from the upper surface of the first resin base material 11 to the upper surface of the fourth resin base material 41.

上記の切込み部81により、部品内蔵基板の屈曲性は向上する。また、切込み部81近傍の第1〜第5プリント配線基材10〜50の一部(以下、屈曲部)とその他の部分との曲げ剛性の違いにより、屈曲による歪を屈曲部がほぼ担い、屈曲部以外の部分に歪はほとんど発生しない。これにより、本実施形態は、ICチップ60及び受動部品70近傍の機械的強度を高く保つことができる。   Due to the above-described cut portion 81, the flexibility of the component-embedded substrate is improved. Also, due to the difference in bending rigidity between the first to fifth printed wiring base materials 10 to 50 in the vicinity of the cut portion 81 (hereinafter, the bent portion) and other portions, the bent portion almost bears the distortion caused by the bending, Almost no distortion occurs in the portion other than the bent portion. Thereby, this embodiment can keep the mechanical strength in the vicinity of the IC chip 60 and the passive component 70 high.

切込み部81は、少なくとも第1〜第5樹脂基材11〜51のいずれか一層と、信号用配線12〜52のいずれか一層を残すように形成されれば良い。また、切込み部81の深さは、部品内蔵基板の全体の厚みの1/2以上が望ましい。   The cut portion 81 may be formed so as to leave at least one of the first to fifth resin base materials 11 to 51 and any one of the signal wirings 12 to 52. In addition, the depth of the cut portion 81 is desirably 1/2 or more of the total thickness of the component-embedded substrate.

次に、図3及び図4を参照して第1の実施形態に係る部品内蔵基板の製造方法について説明する。図3は部品内蔵基板の製造工程を示すフローチャートであり、図4は製造工程における部品内蔵基板を示す断面図である。   Next, a method for manufacturing the component-embedded substrate according to the first embodiment will be described with reference to FIGS. FIG. 3 is a flowchart showing the manufacturing process of the component built-in board, and FIG. 4 is a cross-sectional view showing the component built-in board in the manufacturing process.

先ず、図4(a)に示すように、第1〜第5プリント配線基材10〜50、ICチップ60及び受動部品70を位置決めし、積層する(図3のステップS101)。積層時、例えば真空プレス機を用いて、1kPa以下の減圧雰囲気中にて加熱加圧することで熱圧着させる。熱圧着により、層間の各接着層9や各樹脂基材21,31等の硬化と同時に、ビアホールに充填された導電ペーストの硬化及び合金化が行われる。   First, as shown to Fig.4 (a), the 1st-5th printed wiring base materials 10-50, IC chip 60, and the passive component 70 are positioned and laminated | stacked (step S101 of FIG. 3). At the time of lamination, for example, using a vacuum press, thermocompression bonding is performed by heating and pressing in a reduced pressure atmosphere of 1 kPa or less. By thermocompression bonding, the conductive paste filled in the via hole is cured and alloyed simultaneously with the curing of the adhesive layers 9 between the layers and the resin base materials 21 and 31.

続いて、図4(b)に示すように、レーザにより第1〜第3プリント配線基材10〜30を貫通させることによって切込み部81を形成する(図3のステップS102)。なお、ステップS102においてレーザの代わりにダイシングを用いてもよい。   Then, as shown in FIG.4 (b), the notch part 81 is formed by penetrating the 1st-3rd printed wiring base materials 10-30 with a laser (step S102 of FIG. 3). In step S102, dicing may be used instead of the laser.

[第2の実施形態]
図5は、本発明の第2の実施形態に係る部品内蔵基板の構造を示す断面図である。第2の実施形態に係る部品内蔵基板においては、切込み部81はプリント配線基材の断片を積層することにより、後工程での切り込み作業を施すこと無く形成されている。切込み部81と開口部29,39bの間には、切込み部81に隣接して第2及び第3樹脂基材21,31が設けられている。この点で第2の実施形態は構造的に第1の実施形態と相違する。切込み部81に隣接する第2及び第3樹脂基材21,31は、第1樹脂基材11と第4樹脂基材41との間のスペーサとして機能し、部品内蔵基板の機械的強度を高める。これら構造によって、以下で説明する製造工程にしたがって第2の実施形態は製造可能とされる。なお、第2の実施形態は、第1の実施形態と同様の効果も奏する。
[Second Embodiment]
FIG. 5 is a sectional view showing the structure of a component-embedded substrate according to the second embodiment of the present invention. In the component built-in substrate according to the second embodiment, the cut portion 81 is formed without performing a cut operation in a later process by stacking pieces of the printed wiring base material. The second and third resin base materials 21 and 31 are provided adjacent to the cut portion 81 between the cut portion 81 and the openings 29 and 39b. In this respect, the second embodiment is structurally different from the first embodiment. The 2nd and 3rd resin base materials 21 and 31 adjacent to the notch part 81 function as a spacer between the 1st resin base material 11 and the 4th resin base material 41, and raise the mechanical strength of a component built-in board. . With these structures, the second embodiment can be manufactured according to the manufacturing process described below. Note that the second embodiment also has the same effect as the first embodiment.

次に、図6及び図7を参照して第2の実施形態に係る部品内蔵基板の製造方法について説明する。図6は部品内蔵基板の製造工程を示すフローチャートであり、図7は製造工程における部品内蔵基板を示す断面図である。   Next, a method for manufacturing a component-embedded substrate according to the second embodiment will be described with reference to FIGS. FIG. 6 is a flowchart showing the manufacturing process of the component built-in board, and FIG. 7 is a cross-sectional view showing the component built-in board in the manufacturing process.

先ず、図7(a)に示すように、第1〜第5プリント配線基材10〜50、ICチップ60及び受動部品70の位置決めを行う(図6のステップS201)。このステップS201において、各第1〜第3プリント配線基材10〜30は、断片10A〜10E、20A〜20E、30A〜30Eに切断されている。そして、断片10A〜30A,10B〜30B,10C〜30C,10D〜30D,10E〜30Eは所定の間隔をもって配置され、その間隔が切込み部81となる。なお、断片20B,20Dは開口部29を有する。断片30Cは開口部39aを有し、断片30B,30Dは開口部39bを有する。   First, as shown to Fig.7 (a), the 1st-5th printed wiring base materials 10-50, IC chip 60, and the passive component 70 are positioned (step S201 of FIG. 6). In this step S201, each of the first to third printed wiring substrates 10 to 30 is cut into pieces 10A to 10E, 20A to 20E, and 30A to 30E. The fragments 10A to 30A, 10B to 30B, 10C to 30C, 10D to 30D, and 10E to 30E are arranged with a predetermined interval, and the interval becomes the cut portion 81. The fragments 20B and 20D have an opening 29. The fragment 30C has an opening 39a, and the fragments 30B and 30D have an opening 39b.

次に、図7(b)に示すように積層する(図6のステップS202)。このステップS202においては、第1の実施形態の製造工程のようにダイシングやレーザを用いないので、バリやスミア等が生じない。   Next, lamination is performed as shown in FIG. 7B (step S202 in FIG. 6). In this step S202, since dicing or laser is not used unlike the manufacturing process of the first embodiment, burrs and smears do not occur.

[第3の実施形態]
図8は、本発明の第3の実施形態に係る部品内蔵基板の構造を示す断面図である。第3の実施形態に係る部品内蔵基板は、図8に示すように、切込み部81内に充填された弾性部材82を有する点で第1の実施形態と相違する。弾性部材82としては、耐熱性ゴムが好ましく、その耐熱温度は300℃以上が好ましい。例えば、耐熱性ゴムは、シリコーンゴム又はフッ素ゴム等からなる。弾性部材82は、例えば1〜100MPaの弾性率を有する。
[Third Embodiment]
FIG. 8 is a cross-sectional view showing the structure of a component-embedded substrate according to the third embodiment of the present invention. The component-embedded substrate according to the third embodiment is different from the first embodiment in that it has an elastic member 82 filled in a cut portion 81 as shown in FIG. The elastic member 82 is preferably heat resistant rubber, and the heat resistant temperature is preferably 300 ° C. or higher. For example, the heat resistant rubber is made of silicone rubber or fluoro rubber. The elastic member 82 has an elastic modulus of 1 to 100 MPa, for example.

弾性部材82により、部品内蔵基板を屈曲させた後に外力を加えることなく、部品内蔵基板を、外力を与える前の平常状態に戻すことができる。また、例えば、弾性部材82を常温で硬化する材料により構成すれば、部品内蔵基板の常温時の反りを抑えることができる。なお、第3の実施形態は、第1の実施形態と同様の効果も奏する。   The elastic member 82 can return the component built-in substrate to a normal state before applying the external force without applying an external force after the component built-in substrate is bent. For example, if the elastic member 82 is made of a material that cures at room temperature, warpage of the component-embedded substrate at room temperature can be suppressed. Note that the third embodiment also has the same effect as the first embodiment.

[第4の実施形態]
図9は、本発明の第4の実施形態に係る部品内蔵基板の構造を示す断面図である。第4の実施形態に係る部品内蔵基板は、図9に示すように、図5で示した第2の実施形態の切込み部81内に充填された弾性部材82を有する点で第2の実施形態と相違する。これにより、第4の実施形態は、第2及び第3の実施形態と同様の効果を奏する。
[Fourth Embodiment]
FIG. 9 is a cross-sectional view showing the structure of a component-embedded substrate according to the fourth embodiment of the present invention. As shown in FIG. 9, the component-embedded substrate according to the fourth embodiment is the second embodiment in that it has an elastic member 82 filled in the cut portion 81 of the second embodiment shown in FIG. Is different. Thereby, 4th Embodiment has an effect similar to 2nd and 3rd Embodiment.

[第5の実施形態]
図10は、本発明の第5の実施形態に係る部品内蔵基板の構造を示す断面図である。第5の実施形態に係る部品内蔵基板は、図10に示すように、表裏2種類の切込み部81a、81bを有する点で第1の実施形態と相違する。切込み部81aは、第1、第2プリント配線基材10,20を貫通するように形成され、切込み部81bは、第4、第5プリント配線基材40,50を貫通するように形成される。切込み部81a、81bは、第3プリント配線基材30を介して、積層方向に対向して形成される。なお、切込み部81a,81bは、ICチップ60、受動部品70及び信号用ビア14,24,44,54の間に設けられる。
[Fifth Embodiment]
FIG. 10 is a cross-sectional view showing the structure of a component built-in substrate according to the fifth embodiment of the present invention. The component-embedded substrate according to the fifth embodiment is different from the first embodiment in that it has two types of front and back notches 81a and 81b, as shown in FIG. The cut portion 81a is formed so as to penetrate the first and second printed wiring substrates 10 and 20, and the cut portion 81b is formed so as to penetrate the fourth and fifth printed wiring substrates 40 and 50. . The notches 81a and 81b are formed opposite to each other in the stacking direction via the third printed wiring substrate 30. The notches 81a and 81b are provided between the IC chip 60, the passive component 70, and the signal vias 14, 24, 44, and 54.

上記第1の実施形態は部品内蔵基板の一方向の曲げにのみ対応するものである。これに対して、第5の実施形態は、切込み部81a、81bにより、部品内蔵基板の2方向の曲げに対応することができる。なお、第5の実施形態は、第1の実施形態と同様の効果も奏する。   The first embodiment corresponds to only bending in one direction of the component-embedded substrate. On the other hand, the fifth embodiment can cope with bending in two directions of the component-embedded substrate by the notches 81a and 81b. Note that the fifth embodiment also has the same effect as the first embodiment.

[第6の実施形態]
図11は、本発明の第6の実施形態に係る部品内蔵基板の構造を示す断面図である。第6の実施形態に係る部品内蔵基板は、図11に示すように、第5の実施の形態と同様に、切込み部81a、81bを有する。但し、第6の実施の形態において、切込み部81a、81bは、第1〜第5プリント配線基材10〜50の面方向において異なる位置に形成されている。この点で、第6の実施の形態は第5の実施の形態と異なる。このような第6の実施形態であっても、第5の実施形態と同様の効果を奏する。
[Sixth Embodiment]
FIG. 11 is a cross-sectional view showing the structure of a component-embedded substrate according to the sixth embodiment of the present invention. As shown in FIG. 11, the component-embedded substrate according to the sixth embodiment includes notches 81a and 81b, as in the fifth embodiment. However, in the sixth embodiment, the cut portions 81a and 81b are formed at different positions in the surface direction of the first to fifth printed wiring substrates 10 to 50. In this respect, the sixth embodiment is different from the fifth embodiment. Even in the sixth embodiment, the same effects as in the fifth embodiment can be obtained.

[第7の実施形態]
図12は、本発明の第7の実施形態に係る部品内蔵基板の構造を示す断面図である。第7の実施形態に係る部品内蔵基板は、図12に示すように、第5の実施形態の切込み部81a、81bに、弾性部材82を充填したものである。これにより、第7の実施形態は、第3及び第5の実施形態と同様の効果を奏する。
[Seventh Embodiment]
FIG. 12 is a cross-sectional view showing the structure of a component-embedded substrate according to the seventh embodiment of the present invention. As shown in FIG. 12, the component-embedded substrate according to the seventh embodiment is obtained by filling the cut portions 81a and 81b of the fifth embodiment with an elastic member 82. Thereby, 7th Embodiment has an effect similar to 3rd and 5th Embodiment.

Claims (5)

樹脂基材に配線パターン及びビアが形成された複数のプリント配線基材を、接着材を介して積層方向に積層すると共に電子部品を内蔵してなる部品内蔵基板であって、
前記プリント配線基材及び前記接着材層に形成され前記各電子部品の間で前記積層方向及び前記プリント配線基板の面方向に延びる切込み部を有し、
前記切込み部は、前記複数のプリント配線基材のうちの一部のプリント配線基材を残しつつ、積層方向の少なくとも一方から連続的に前記プリント配線基材を貫通することにより形成されている
ことを特徴とする部品内蔵基板。
A component-embedded substrate in which a plurality of printed wiring substrates, in which a wiring pattern and vias are formed on a resin substrate, are laminated in a laminating direction via an adhesive, and an electronic component is built-in,
Have a notch extending in the plane direction of the stacking direction and the printed circuit board between the printed circuit substrate and the formed in the adhesive layer wherein each of the electronic components,
The cut portion is formed by continuously penetrating the printed wiring substrate from at least one of the stacking directions while leaving a part of the plurality of printed wiring substrates. Component built-in board characterized by
前記切込み部内に充填された弾性部材を備える
ことを特徴とする請求項1記載の部品内蔵基板。
The component built-in board according to claim 1, further comprising an elastic member filled in the cut portion.
前記弾性部材は、耐熱性ゴムである
ことを特徴とする請求項2記載の部品内蔵基板。
The component built-in board according to claim 2, wherein the elastic member is a heat-resistant rubber.
前記弾性部材は、シリコーンゴム又はフッ素ゴムからなる
ことを特徴とする請求項2記載の部品内蔵基板。
The component built-in substrate according to claim 2, wherein the elastic member is made of silicone rubber or fluororubber.
前記切込み部は、前記複数のプリント配線基材の表裏に形成されている
ことを特徴とする請求項1〜4のいずれか1項記載の部品内蔵基板。
5. The component-embedded substrate according to claim 1, wherein the cut portions are formed on the front and back sides of the plurality of printed wiring base materials.
JP2012142820A 2012-06-26 2012-06-26 Component built-in board Active JP5561683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142820A JP5561683B2 (en) 2012-06-26 2012-06-26 Component built-in board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142820A JP5561683B2 (en) 2012-06-26 2012-06-26 Component built-in board

Publications (2)

Publication Number Publication Date
JP2014007324A JP2014007324A (en) 2014-01-16
JP5561683B2 true JP5561683B2 (en) 2014-07-30

Family

ID=50104790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142820A Active JP5561683B2 (en) 2012-06-26 2012-06-26 Component built-in board

Country Status (1)

Country Link
JP (1) JP5561683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657983B (en) * 2014-11-14 2018-12-07 欣兴电子股份有限公司 The production method of wiring board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340794A (en) * 1991-05-17 1992-11-27 Mitsubishi Electric Corp Printed circuit board
WO2007013595A1 (en) * 2005-07-29 2007-02-01 Fujikura Ltd. Bending-type rigid printed wiring board and process for producing the same

Also Published As

Publication number Publication date
JP2014007324A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5526276B1 (en) Component-embedded substrate, manufacturing method thereof, and mounting body
WO2014203603A1 (en) Method for manufacturing multi-layer resin substrate
KR101868680B1 (en) Circuit board, production method of circuit board, and electronic equipment
JP5684958B1 (en) Printed wiring board
JP2014146650A (en) Wiring board and manufacturing method of the same
KR101701380B1 (en) Device embedded flexible printed circuit board and manufacturing method thereof
JP5561683B2 (en) Component built-in board
JP2017028024A (en) Component mounted board, component built-in board, manufacturing method of component mounted board and manufacturing method of component built-in board
JP5836019B2 (en) Component built-in substrate and manufacturing method thereof
JP5221682B2 (en) Printed circuit board and manufacturing method thereof
JP4622449B2 (en) Electronic component built-in substrate and manufacturing method thereof
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
US9907189B2 (en) Multi-layer wiring board and method of manufacturing the same
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP6387226B2 (en) Composite board
JP5920716B2 (en) Manufacturing method of component-embedded substrate
JP5053003B2 (en) Semiconductor device and manufacturing method thereof
JP5055415B2 (en) Multilayer wiring substrate and multilayer wiring board
JP5793372B2 (en) Component built-in substrate and manufacturing method thereof
JP2014116470A (en) Multilayer wiring board and manufacturing method therefor
JP2012191101A (en) Manufacturing method of circuit board
JP2012186279A (en) Laminated print circuit board incorporating electronic component and manufacturing method of the same
JP2012186401A (en) Component built-in substrate
JP2011146588A (en) Wiring board with built-in electronic component and method of manufacturing wiring board with built-in electronic component
JP2013062424A (en) Manufacturing method of semiconductor device and semiconductor device manufactured by the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5561683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250