JP5561164B2 - Optical member for photomask and method for manufacturing the same - Google Patents

Optical member for photomask and method for manufacturing the same Download PDF

Info

Publication number
JP5561164B2
JP5561164B2 JP2010521732A JP2010521732A JP5561164B2 JP 5561164 B2 JP5561164 B2 JP 5561164B2 JP 2010521732 A JP2010521732 A JP 2010521732A JP 2010521732 A JP2010521732 A JP 2010521732A JP 5561164 B2 JP5561164 B2 JP 5561164B2
Authority
JP
Japan
Prior art keywords
optical member
photomask
quartz glass
tio
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010521732A
Other languages
Japanese (ja)
Other versions
JPWO2010010915A1 (en
Inventor
俊雄 吉成
美菜子 安住
幸泰 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010521732A priority Critical patent/JP5561164B2/en
Publication of JPWO2010010915A1 publication Critical patent/JPWO2010010915A1/en
Application granted granted Critical
Publication of JP5561164B2 publication Critical patent/JP5561164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

本発明は、液晶パネル等のフラットパネルディスプレイ(以下、FPDと呼ぶ)を製造する際に用いるフォトマスク基板及びその製造方法に関するものである。   The present invention relates to a photomask substrate used when manufacturing a flat panel display (hereinafter referred to as FPD) such as a liquid crystal panel, and a manufacturing method thereof.

FPDは、ガラス基板の表面にFPDの要素を高精度に形成する工程を経て製造される。この工程ではフォトリソグラフィー技術が用いられる。即ち、平面性が優れた平板状の透明基板の表面に高精度にマスクパターンが形成されたフォトマスクを露光光で照明し、そのマスクパターンの像を、予めフォトレジストが塗布されたガラス基板上に結像させた後、現像することで、ガラス基板表面にレジストパターンを形成する。   The FPD is manufactured through a process of forming FPD elements with high accuracy on the surface of a glass substrate. In this step, a photolithography technique is used. That is, a photomask having a mask pattern formed with high precision on the surface of a flat transparent substrate having excellent flatness is illuminated with exposure light, and an image of the mask pattern is displayed on a glass substrate on which a photoresist has been applied in advance. After the image is formed, a resist pattern is formed on the surface of the glass substrate by developing.

ところで、FPDの画面サイズの大型化と生産の効率化のために、FPD用ガラス基板は年々大型化が進み、これに伴って、その生産に用いるためのフォトマスクの大型化も進んでいる。近い将来、ガラス基板は、2200mm×2500mmという極めて大きなサイズとなり、これに伴って、このガラス基板にマスクパターンを露光するために用いるフォトマスクは、対角線の長さが1470mmを超えるサイズのもの、例えば、1220mm×1400mm、厚さは13mmという極めて大きいものとなる。しかし、大型化はこれに留まらず、更に大きなガラス基板とフォトマスクが要求されている。   By the way, in order to increase the screen size of FPD and increase the efficiency of production, the glass substrate for FPD has been increasing year by year, and along with this, the size of photomasks used for production has also been increasing. In the near future, the glass substrate will be an extremely large size of 2200 mm × 2500 mm, and accordingly, the photomask used to expose the mask pattern on the glass substrate has a diagonal length exceeding 1470 mm, for example, 1220 mm × 1400 mm and the thickness is 13 mm, which is extremely large. However, the increase in size is not limited to this, and a larger glass substrate and a photomask are required.

フォトマスクに形成されたパターンを基板に露光する際には、フォトマスクを水平に保持した状態で露光を行う。このようなフォトマスクに使用される材料としては、石英ガラスが知られている。石英ガラスの線熱膨張係数は5×10−7/℃であり、熱による変形は比較的少ない材料であるが、露光に際し照射される紫外線等の影響により体積変化が起こると、FPD基板に形成されるパターンの精度が低下するため、熱膨張が極めて少ない材料を使用することが望まれる。また、例えば、露光の際に波長が365nm程度の紫外線を使用することがあるが、このような短波長で高い透過率を有することが望まれている。When the pattern formed on the photomask is exposed on the substrate, the exposure is performed with the photomask held horizontally. Quartz glass is known as a material used for such a photomask. Quartz glass has a linear thermal expansion coefficient of 5 × 10 −7 / ° C., and is a material that is relatively less deformed by heat. However, when a volume change occurs due to the influence of ultraviolet rays or the like irradiated during exposure, it forms on the FPD substrate. Therefore, it is desirable to use a material that has very little thermal expansion. In addition, for example, ultraviolet rays having a wavelength of about 365 nm may be used at the time of exposure, and it is desired to have a high transmittance at such a short wavelength.

室温付近での熱膨張が極めて少ない材料として、石英ガラスにチタニア(TiO)を7.5重量%ほど添加した材料が知られている。線熱膨張係数は添加されるチタニアの量に依存し、7.5重量%とすることにより、線熱膨張係数がほぼゼロとなっている。しかし、7.5重量%付近の組成では、波長365nm付近での透過率は、90%未満であり、十分な透過率とはいえない。このような材料は、低膨張という特性を生かし、高精度が要求されるEUV用の反射型フォトマスクの材料として使用することが提案されている。As a material having very little thermal expansion near room temperature, a material in which about 7.5% by weight of titania (TiO 2 ) is added to quartz glass is known. The linear thermal expansion coefficient depends on the amount of titania added, and the linear thermal expansion coefficient is almost zero by setting it to 7.5% by weight. However, in the case of a composition near 7.5% by weight, the transmittance near a wavelength of 365 nm is less than 90%, which is not a sufficient transmittance. It has been proposed that such a material is used as a material for a reflective photomask for EUV, which takes advantage of the property of low expansion and requires high accuracy.

特開2007−182367JP2007-182367

本発明は、波長365nm付近でも実用上十分な透過率を有し、かつ石英ガラスより熱膨張しにくいフォトマスク用基板及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a photomask substrate having a practically sufficient transmittance even in the vicinity of a wavelength of 365 nm and less likely to thermally expand than quartz glass, and a method for manufacturing the same.

本発明の第1の態様に従えば、合成石英ガラスにTiOを添加した光学部材であって、前記TiOの組成が3.0〜6.5重量%であり、波長365nmでの透過率が90%以上であり、20℃〜80℃での線熱膨張係数が2.5×10 −7 /℃以下であり、不純物として、Alを0.1wt・ppm以下、Cuを0.05wt・ppm以下、Feを0.1wt・ppm以下、Naを0.05wt・ppm以下、及びKを0.05wt・ppm以下で含むフォトマスク用光学部材が提供される。 According to the first aspect of the present invention, an optical member in which TiO 2 is added to synthetic quartz glass, the composition of the TiO 2 is 3.0 to 6.5% by weight, and the transmittance at a wavelength of 365 nm. 0.05wt There Ri der 90% or more, the linear thermal expansion coefficient at 20 ° C. to 80 ° C. is 2.5 × 10 -7 / ℃ less, as impurities, Al and 0.1 wt · ppm or less, the Cu An optical member for a photomask is provided that includes ppm or less, Fe of 0.1 wt · ppm or less, Na of 0.05 wt · ppm or less, and K of 0.05 wt · ppm or less .

本発明の第2の態様に従えば、第1の態様のフォトマスク用光学部材の製造方法であって、フォトマスク用光学部材の製造方法であって、原料ガスを混合することにより、TiOを含有する石英ガラスインゴットを合成する合成工程と、前記石英ガラスインゴットを、所定の温度に保持した状態で加圧することにより平板状の所定形状に成形する成形工程と、前記成形工程の後に、酸化雰囲気中で加熱することにより前記石英ガラスに含有されるチタンを酸化する酸化処理工程と、を含むフォトマスク用光学部材の製造方法が提供される。 According to a second aspect of the present invention , there is provided a method for manufacturing a photomask optical member according to the first aspect, which is a method for manufacturing a photomask optical member, wherein TiO 2 is mixed by mixing raw material gases. A synthesis step of synthesizing a quartz glass ingot containing, a molding step of forming the quartz glass ingot into a predetermined plate shape by pressurizing the quartz glass ingot while maintaining a predetermined temperature, and an oxidation after the molding step There is provided a method for producing an optical member for a photomask, comprising an oxidation treatment step of oxidizing titanium contained in the quartz glass by heating in an atmosphere.

本発明によれば、石英ガラスに3.0〜6.5重量%のチタニアを添加することにより、波長365nmでの透過率が90%以上のような実用上十分な透過率を有するフォトマスク基板材料が実現される。   According to the present invention, a photomask substrate having a practically sufficient transmittance such that the transmittance at a wavelength of 365 nm is 90% or more by adding 3.0 to 6.5 wt% titania to quartz glass. Material is realized.

は、実施の形態1の透過率と線熱膨張係数とTiO濃度との関係を示す図である。Is a diagram illustrating the relationship between the transmittance and the linear thermal expansion coefficient and TiO 2 concentration of the first embodiment. は、実施の形態2のフォトマスクの製造工程を示すフローチャートである。These are the flowcharts which show the manufacturing process of the photomask of Embodiment 2. FIG.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

[実施形態1]
本発明の光学部材の実施形態について説明する。この実施形態の光学部材は、合成石英ガラス(SiO)にTiOが3.0〜6.5重量%添加されてなる光学部材であり、任意の形状をとり得る。光学部材には、TiOとSiO以外の物質を含まないほうが望ましい。例えば、Al、Cu、Fe、Na、Kなどの元素を不純物として含む場合であっても、例えば、Alが0.1wt・ppm以下、Cuが0.05wt・ppm以下、Feが0.1wt・ppm以下、Naが0.05wt・ppm以下、及びKが0.05wt・ppm以下であることが好ましい。
[Embodiment 1]
An embodiment of the optical member of the present invention will be described. The optical member of this embodiment is an optical member obtained by adding 3.0 to 6.5% by weight of TiO 2 to synthetic quartz glass (SiO 2 ), and can take any shape. It is desirable that the optical member does not contain any substance other than TiO 2 and SiO 2 . For example, even when elements such as Al, Cu, Fe, Na, and K are included as impurities, for example, Al is 0.1 wt.ppm or less, Cu is 0.05 wt.ppm or less, and Fe is 0.1 wt. Preferably, ppm or less, Na is 0.05 wt · ppm or less, and K is 0.05 wt · ppm or less.

本実施形態の光学部材の作成方法について説明する。最初に、合成炉にてSiO微粒子とTi0微粒子の混合物からなる堆積中間物(スート体)を調製する。スート体は微粒子の集合体であり、この集合体を電気加熱炉等でガラス化温度以上に加熱することにより透明化させる方法を使用することができる。A method for creating the optical member of this embodiment will be described. First, prepare a synthetic furnace deposits intermediate comprising a mixture of SiO 2 particles and Ti0 2 nanoparticle (soot body). The soot body is an aggregate of fine particles, and a method of making the aggregate transparent by heating the aggregate to a vitrification temperature or higher in an electric heating furnace or the like can be used.

本実施形態の堆積中間物を得るには、1つの合成炉中で、SiO微粒子とTi0微粒子を同時に合成し、混合することにより混合物のスート体を作成し、このスート体を透明化することにより合成することができる。この場合、1つの合成炉には、SiO微粒子を合成する第1のバーナとTi0微粒子を合成するために第2のバーナを備えた合成炉を使用することができる。SiO微粒子を合成する第1のバーナは、四塩化珪素(SiCl)、四フッ化珪素(SiF)、シラン(SiH)等のケイ素化合物を含有する原料ガスと、支燃性ガス(酸素ガス)及び可燃性ガス(水素ガス)等の燃焼ガスと、不活性ガスとを噴出させ、火炎中においてケイ素化合物を加水分解することによりSiOガラス微粒子を生成させる。また、第2のバーナは四塩化チタン(TiCl4)等のチタン化合物を含有する原料ガスと、支燃性ガス(酸素ガス)及び可燃性ガス(水素ガス)等の燃焼ガスと、不活性ガスとを噴出させ、火炎中においてチタン化合物を加水分解することによりTiOガラス微粒子を生成させる。To obtain a deposit intermediate of the present embodiment, in one synthetic furnace, to synthesize fine particles of SiO 2 and Ti0 2 particles simultaneously, it creates a soot body of a mixture by mixing, clearing the soot body Can be synthesized. In this case, the one synthetic furnace, it is possible to use synthetic furnace having a second burner for synthesizing the first burner and the Ti0 2 particles to synthesize SiO 2 particles. The first burner for synthesizing the SiO 2 fine particles includes a source gas containing a silicon compound such as silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 ), silane (SiH 4 ), and a combustion-supporting gas ( Oxygen gas) and combustible gas (hydrogen gas) or the like and an inert gas are ejected, and a silicon compound is hydrolyzed in a flame to generate SiO 2 glass fine particles. The second burner is composed of a raw material gas containing a titanium compound such as titanium tetrachloride (TiCl 4 ), a combustion gas such as a combustion-supporting gas (oxygen gas) and a combustible gas (hydrogen gas), and an inert gas. And TiO 2 glass fine particles are generated by hydrolyzing the titanium compound in the flame.

第1のバーナにより生成されたSiOガラス微粒子と第2のバーナにより生成されたTiOガラス微粒子は、二つのバーナの斜め上方に設けられた堆積用のターゲットに堆積する。第1のバーナと第2のバーナを同時に燃焼させることにより、ターゲットにSiOガラス微粒子とTiOガラス微粒子の混合物を堆積させる。組成中のTiOの量は、第1のバーナにより生成されたSiOと第2バーナにより生成されたTiOの量比を変化させることにより変更できる。例えば、バーナに導入する原料ガスの流量を制御することにより変更することが出来る。The SiO 2 glass fine particles generated by the first burner and the TiO 2 glass fine particles generated by the second burner are deposited on a deposition target provided obliquely above the two burners. By burning the first burner and the second burner simultaneously, a mixture of SiO 2 glass particles and TiO 2 glass particles is deposited on the target. The amount of TiO 2 in the composition can be changed by changing the amount ratio of SiO 2 produced by the first burner and TiO 2 produced by the second burner. For example, it can be changed by controlling the flow rate of the raw material gas introduced into the burner.

このようにして作成した混合物のスート体は不透明であるため、1300℃以上に加熱することにより透明化する。透明化されたサンプルを直径約16mm厚さ10mmのサイズに切り出し、サンプルの表面を研磨し次に洗浄することにより測定用サンプルを準備した。透過率の測定は、Varian社製の紫外・可視・近赤外分光光度計Cary5を使用し、365nm(i線)での透過率を測定した。   Since the soot body of the mixture thus prepared is opaque, it becomes transparent by heating to 1300 ° C. or higher. A sample for measurement was prepared by cutting the transparent sample into a size of about 16 mm in diameter and 10 mm in thickness, polishing the surface of the sample, and then washing it. The transmittance was measured by using a Varian ultraviolet / visible / near infrared spectrophotometer Cary5 and measuring the transmittance at 365 nm (i-line).

TiOの濃度と波長365nmでの透過率の関係を図1に表す。図1は、合成石英ガラスに添加したTiOの濃度と線熱膨張係数の関係およびTiOの濃度と波長365nmでの透過率の関係を表している。なお、各サンプルの組成は蛍光X線分析装置を用いて調査し、組成のTiOの濃度を図1の横軸とした。TiOの濃度は0.5から9.5重量%までの5種類とし、参考例としてTiOを添加しない合成石英ガラスの透過率も記載されている。TiOを添加しない合成石英ガラスの透過率は92.9%であった。TiO濃度の増加とともに透過率は低下し、7.5重量%では、89.0%まで低下した。図1に示される透過率の値は、厚さ10mmのサンプルの反射率を含んだ値となっている。i線(波長365nm)を露光光として使用する透過型のフォトマスクに使用する基板としては、高精細で高コントラストなパターンを露光するために、90%以上の透過率が確保されていることが望ましい。図1に示されたTiO濃度と透過率と関係より、透過率90%以上を確保できるTiO濃度としては、6.5重量%以下の範囲が好ましい。The relationship between the concentration of TiO 2 and the transmittance at a wavelength of 365 nm is shown in FIG. FIG. 1 shows the relationship between the concentration of TiO 2 added to the synthetic quartz glass and the linear thermal expansion coefficient, and the relationship between the concentration of TiO 2 and the transmittance at a wavelength of 365 nm. The composition of each sample was investigated using a fluorescent X-ray analyzer, and the TiO 2 concentration of the composition was plotted on the horizontal axis in FIG. There are five types of TiO 2 concentrations from 0.5 to 9.5% by weight, and the transmittance of synthetic quartz glass not containing TiO 2 is also described as a reference example. The transmittance of the synthetic quartz glass not added with TiO 2 was 92.9%. The transmittance decreased with increasing TiO 2 concentration, and decreased to 89.0% at 7.5% by weight. The transmittance value shown in FIG. 1 is a value including the reflectance of a sample having a thickness of 10 mm. As a substrate used for a transmissive photomask that uses i-line (wavelength 365 nm) as exposure light, a transmittance of 90% or more is ensured in order to expose a high-definition and high-contrast pattern. desirable. The relationship between TiO 2 concentration and the transmittance shown in FIG. 1, the TiO 2 concentration that ensures transmittance of 90% or more, preferably in the range of 6.5 wt% or less.

また、FPDのパターン露光に使用するフォトマスクではマスクのサイズも大型化するため、フォトマスクが熱膨張することによる露光されたパターンの位置ずれの影響が無視できない。このため、使用する温度環境での熱膨張係数が小さな材料が好ましい。また、線熱膨張係数の測定は、室温の試料長さLとその温度変化量ΔLから、長さの変化率ΔL/L(線膨張率と呼称)を定義した。この線膨張率(ΔL/L)温度曲線をレーザ干渉法により測定し、下記式(1)により線熱膨張係数αを求めた。
α=(1/L)・(dL/dT) ・・・(1)
TiOが3.0重量%での線熱膨張係数は2.5×10−7/℃となり、これはTiOを添加しない石英ガラスの1/2の値なので、同じ温度環境で使用した場合に位置あわせ精度が2倍向上することが期待できる。また、同じ位置合わせ精度を維持したままサイズ(長さ)を2倍とすることも可能である。
In addition, since the size of the mask is increased in the photomask used for FPD pattern exposure, the influence of the positional deviation of the exposed pattern due to thermal expansion of the photomask cannot be ignored. For this reason, the material with a small thermal expansion coefficient in the temperature environment to be used is preferable. The linear thermal expansion coefficient was measured by defining the length change rate ΔL / L 0 (referred to as the linear expansion coefficient) from the sample length L 0 at room temperature and the temperature change ΔL. This linear expansion coefficient (ΔL / L 0 ) temperature curve was measured by the laser interferometry, and the linear thermal expansion coefficient α was determined by the following formula (1).
α = (1 / L o ) · (dL / dT) ... (1)
When TiO 2 is 3.0% by weight, the linear thermal expansion coefficient is 2.5 × 10 −7 / ° C., which is half the value of quartz glass without adding TiO 2 , so when used in the same temperature environment In addition, it can be expected that the alignment accuracy is improved twice. It is also possible to double the size (length) while maintaining the same alignment accuracy.

このように、透過率が90%以上で、線熱膨張係数が2.5×10−7/℃以下となるTiO濃度は、3.0〜6.5重量%であることがわかる。この範囲内においても、TiOが3.0〜5.0重量%であれば透過率が一層高く、TiOが5.0〜6.5重量%であれば線熱膨張係数が一層低くなる。従来、TiOを添加した石英ガラスは、波長365nm以下で、透過で使用する光学部材としては、透過率が確保できないため使用できないと考えられていたが、上記のように、3.0〜6.5重量%というTiO濃度範囲において実用上十分な透過率を確保しつつ従来の石英ガラスの1/2以下に熱膨張を抑えることができることが実験を通じて見出された。Thus, it can be seen that the TiO 2 concentration at which the transmittance is 90% or more and the linear thermal expansion coefficient is 2.5 × 10 −7 / ° C. or less is 3.0 to 6.5 wt%. Even within this range, if TiO 2 is 3.0 to 5.0% by weight, the transmittance is higher, and if TiO 2 is 5.0 to 6.5% by weight, the linear thermal expansion coefficient is even lower. . Conventionally, quartz glass to which TiO 2 was added was considered to be unable to be used as an optical member used for transmission at a wavelength of 365 nm or less because the transmittance cannot be secured, but as described above, 3.0 to 6 It has been found through experiments that thermal expansion can be suppressed to ½ or less of conventional quartz glass while ensuring a practically sufficient transmittance in a TiO 2 concentration range of 0.5 wt%.

また、TiOを添加した石英ガラスでは、構成するチタン元素の中でTi3+の含有量が多いほど吸収が多いことが知られており、TiO濃度が6.5重量%付近の組成でも、Ti3+の含有量を低減することにより内部吸収を減少させ、透過率を向上させることが期待できる。しかし、TiO濃度の増加と共に吸収端の波長が長波長側にシフトしていく傾向があることが知られており、例えば300nm〜400nmの波長で使用する場合には、TiO濃度やTi3+の含有量のばらつきにより、急激に透過率が低下する恐れがある。このような理由でも、波長365nmで安定して十分な透過率を有するフォトマスク用光学部材を提供するためには、TiO濃度を6.5重量%以下とすることが好ましい。In addition, it is known that in the quartz glass to which TiO 2 is added, the larger the content of Ti 3+ in the constituent titanium element, the more the absorption, and even in the composition where the TiO 2 concentration is around 6.5% by weight, It can be expected that the internal absorption is reduced and the transmittance is improved by reducing the content of Ti 3+ . However, it is known that the wavelength of the absorption edge tends to shift to the longer wavelength side as the TiO 2 concentration increases. For example, when used at a wavelength of 300 nm to 400 nm, the TiO 2 concentration or Ti 3+ There is a risk that the transmittance is rapidly lowered due to variation in the content of. For this reason as well, in order to provide an optical member for a photomask having a stable and sufficient transmittance at a wavelength of 365 nm, the TiO 2 concentration is preferably set to 6.5% by weight or less.

[実施形態2]
この実施形態では実施形態1で説明したフォトマスク用光学部材の製造方法を改良した方法について説明する。前述のように、TiOを含有することにより膨張係数が小さくなった石英ガラスをフォトマスク用の光学部材として使用する際には、TiOによる内部吸収が少ないことが好ましい。内部吸収が多い素材をフォトマスク用の光学部材として用いた場合には、吸収された露光光によるフォトマスクの温度上昇の発生や、フォトマスクの透過率低下によってウエハへ照射される露光光の低下を防ぐために光源側の露光光のパワーを増加させるなどの対策が必要とされるため、TiOを含有しない石英ガラスに比べて、できるだけ内部吸収の増加が少ない素材が望まれる。本発明者は、実施の形態1で説明したように、TiOの含有量を3.0〜6.5重量%の範囲内にすることによって十分な透過率を確保しつつ熱膨張を抑制することができた。本発明者はさらに研究を重ねて、高い透過率を有するフォトマスク用光学部材を製造することができる方法を見出した。
[Embodiment 2]
In this embodiment, a method obtained by improving the photomask optical member manufacturing method described in the first embodiment will be described. As described above, when quartz glass having a small expansion coefficient by containing TiO 2 is used as an optical member for a photomask, it is preferable that internal absorption by TiO 2 is small. When a material with high internal absorption is used as an optical member for a photomask, the exposure light irradiated onto the wafer decreases due to the occurrence of a photomask temperature increase due to the absorbed exposure light or a decrease in the transmittance of the photomask. In order to prevent this, measures such as increasing the power of the exposure light on the light source side are required. Therefore, a material with as little increase in internal absorption as possible is desired as compared with quartz glass not containing TiO 2 . As described in the first embodiment, the present inventor suppresses thermal expansion while ensuring sufficient transmittance by setting the content of TiO 2 within the range of 3.0 to 6.5% by weight. I was able to. The inventor conducted further research and found a method capable of producing an optical member for a photomask having high transmittance.

TiOを含有する石英ガラスでは、構成するチタン元素の中でTi3+の含有量が多いほど吸収が多いことが知られており、酸化することによりTi3+をTi4+に変化させることにより吸収を低減することができる。このような酸化は、例えば、大気などの酸化雰囲気中で1000℃程度の温度でアニールすることにより酸化することができる。また、Ti3+による吸収は波長420nm付近での透過率を測定することにより精度良く求めることが出来る。Quartz glass containing TiO 2 is known to absorb more as the content of Ti 3+ in the constituent titanium elements increases, and absorption is achieved by changing Ti 3+ to Ti 4+ by oxidation. Can be reduced. Such oxidation can be performed by annealing at a temperature of about 1000 ° C. in an oxidizing atmosphere such as air. Further, absorption by Ti 3+ can be obtained with high accuracy by measuring the transmittance in the vicinity of a wavelength of 420 nm.

実施の形態1で作成した低膨張の光学部材は、対角線の寸法が1470mmを超える大型のフォトマスクに使用することにより低膨張の効果を発揮しやすい。なぜなら、大型のフォトマスクほど、熱膨張による伸縮長(膨張量)が大きいからである。FPD用のパターンの投影に使用されるフォトマスクでは、例えば、1220mm×1400mmで厚さが13mmで重量が数十kgを超える大型のフォトマスクが実用化されており、このようなサイズのフォトマスクの基板として使用することにより低膨張の効果が発揮されやすい。   The low-expansion optical member created in Embodiment 1 is likely to exert a low-expansion effect when used for a large photomask having a diagonal dimension exceeding 1470 mm. This is because a larger photomask has a larger expansion / contraction length (expansion amount) due to thermal expansion. As a photomask used for projecting a pattern for FPD, for example, a large-sized photomask having a size of 1220 mm × 1400 mm, a thickness of 13 mm, and a weight exceeding several tens of kg has been put into practical use. When used as a substrate, the effect of low expansion is easily exhibited.

通常、このようなサイズのフォトマスク用基板は、次のような工程で製造される。まず、TiOを含有する石英ガラスを合成により作成する。例えば、SiO微粒子とTiO微粒子の混合物を合成炉中で作成し、得られた混合物を電気加熱炉中でガラス化温度以上に加熱することによりフォトマスク基板のインゴットを得る。この合成工程で得られたインゴットは、堆積用のターゲット上に原料を噴出させるバーナから噴出させながら得られる。これを平板形状のフォトマスク基板とするためには、インゴットの上面が平坦になるように切断し、これをカーボン製のモールド内に収容し、不活性ガス雰囲気中で加熱しながら加圧することにより変形させ、平板形状の石英ガラスを成形する。このように成形された石英ガラスは、冷却後に所定の形状に研削し表面を研磨することにより、フォトマスク用の石英ガラス基板を得る。フォトマスクとして使用するためには、さらにマスクとして使用する1つの面にCrからなる遮光膜を成膜し、この遮光膜を部分的に除去することにより投影すべきパターンを形成しフォトマスクが完成する。Usually, a photomask substrate having such a size is manufactured by the following process. First, quartz glass containing TiO 2 is prepared by synthesis. For example, a mixture of SiO 2 fine particles and TiO 2 fine particles is prepared in a synthesis furnace, and the resulting mixture is heated to a temperature equal to or higher than the vitrification temperature in an electric heating furnace to obtain an ingot of a photomask substrate. The ingot obtained in this synthesis step is obtained while being ejected from a burner that ejects a raw material onto a deposition target. In order to make this a flat photomask substrate, the ingot is cut so that the upper surface is flat, accommodated in a carbon mold, and pressurized while heating in an inert gas atmosphere. The flat quartz glass is formed by deforming. The quartz glass thus formed is ground into a predetermined shape after cooling and the surface is polished to obtain a quartz glass substrate for a photomask. In order to use as a photomask, a light shielding film made of Cr is further formed on one surface used as a mask, and the light masking film is partially removed to form a pattern to be projected, thereby completing the photomask. To do.

実施形態2のフォトマスク用光学部材の製造方法を図2を参照しながら説明する。まず、所定の濃度のTiOを含有する石英ガラスを合成する(S1:合成工程)。TiOは、実施形態1の結果より、石英ガラス中に3.0〜6.5重量%で含むことが好ましい。この合成工程では、スート法または直接法のいずれの方法も使用できる。例えば、多重管バーナから、ケイ素化合物の原料ガス、チタン化合物の原料ガス、支燃性ガス、燃焼ガスを含むガスを噴出させ、火炎中で反応を行い、回転させているターゲット上にガラス微粒子を堆積かつ溶融させる合成方法が使用できる。ケイ素酸化物の原料ガスとしてはSiCl、SiF、SiH等が、チタン化合物の原料ガスとしてはTiCl等が、支燃性ガスとしては酸素等が、燃焼ガスとしては水素等がそれぞれ使用できる。TiO濃度の調整は、ケイ素酸化物の原料ガス(SiCl、SiF、SiH等)とチタン化合物の原料ガス(TiCl等)の混合比を調整することにより可能である。この他に、特開平10−279319号公報や特開平11−292551号公報に開示された合成方法を採用することも可能である。スート法を使用する場合には、さらに透明化することにより石英ガラスのインゴットを得(S2:透明化工程)、このインゴットから1枚のフォトマスク基板を作成するために必要な量の石英ガラスを切り出す。A method for manufacturing the photomask optical member of Embodiment 2 will be described with reference to FIG. First, quartz glass containing a predetermined concentration of TiO 2 is synthesized (S1: synthesis step). From the result of Embodiment 1, TiO 2 is preferably contained in the silica glass at 3.0 to 6.5% by weight. In this synthesis step, either a soot method or a direct method can be used. For example, silicon compound source gas, titanium compound source gas, combustion-supporting gas, and gas containing combustion gas are ejected from a multi-tube burner, reaction is performed in a flame, and glass particles are placed on a rotating target. Synthetic methods that deposit and melt can be used. SiCl 4 , SiF 4 , SiH 4, etc. are used as the raw material gas for silicon oxide, TiCl 4 is used as the raw material gas for the titanium compound, oxygen is used as the combustion-supporting gas, and hydrogen is used as the combustion gas. it can. The TiO 2 concentration can be adjusted by adjusting the mixing ratio of the silicon oxide source gas (SiCl 4 , SiF 4 , SiH 4, etc.) and the titanium compound source gas (TiCl 4, etc.). In addition, it is also possible to employ the synthesis method disclosed in JP-A-10-279319 and JP-A-11-292551. In the case of using the soot method, a quartz glass ingot is obtained by further making it transparent (S2: transparency process), and an amount of quartz glass necessary for producing one photomask substrate from this ingot is obtained. cut.

次に、切り出した石英ガラスを加熱加圧成形により平板状にする(S3:成形工程)。成形工程では、直方体形状のカーボン製のモールドを用意し、モールド内の空間に石英ガラスを収容し、窒素ガス雰囲気で1600℃付近まで加熱し、この温度を保ったまま所定の圧力を与えることにより平板形状に成形し、室温まで冷却する。成形後の石英ガラスの表面は付着物と高温で反応した部分や気泡等が生じる場合があるため、成形工程後は、フォトマスクとして使用する大きさに各面を研削する(S4:研削工程)。研削工程では、石英ガラスの厚さを20mm以下とすることが好ましい。   Next, the cut-out quartz glass is formed into a flat plate shape by heating and pressing (S3: forming step). In the molding process, a rectangular carbon-shaped mold is prepared, quartz glass is accommodated in the space in the mold, heated to near 1600 ° C. in a nitrogen gas atmosphere, and given pressure is maintained while maintaining this temperature. Mold into a flat plate shape and cool to room temperature. Since the surface of the quartz glass after molding may have a portion that reacts with the deposits at a high temperature or bubbles, etc., each surface is ground to a size to be used as a photomask after the molding process (S4: grinding process). . In the grinding process, the thickness of the quartz glass is preferably 20 mm or less.

研削工程に続いて、平板状石英ガラスの透過率を測定する(S5:透過率検査工程)。正確に透過率を測定するためには測定する部分の表面を研磨面とする必要があるが、例えば平板の角部付近のみを研磨し、この部分の透過率を測定してもよい。また、成形後の同じ石英ガラス塊から切り出したテストピースを作成し、このテストピースの透過率の測定で代用しても良い。透過率の測定はVarian社のCary5などを使用することが出来る。測定する波長は、フォトマスクを露光装置で使用する際の露光光の波長である365nmあるいは420nm付近が好ましい。波長420nm付近ではTi3+による吸収が顕著なため、Ti3+による吸収の影響を反映した精度良い測定が期待できる。Following the grinding step, the transmittance of the flat quartz glass is measured (S5: transmittance inspection step). In order to accurately measure the transmittance, the surface of the portion to be measured needs to be a polished surface. For example, only the vicinity of the corner of a flat plate may be polished and the transmittance of this portion measured. Alternatively, a test piece cut out from the same quartz glass lump after molding may be created, and the measurement of the transmittance of this test piece may be used instead. The transmittance can be measured using Cary 5 of Varian. The wavelength to be measured is preferably around 365 nm or 420 nm, which is the wavelength of exposure light when the photomask is used in an exposure apparatus. Since the absorption by Ti 3+ is remarkable in the vicinity of the wavelength of 420 nm, it is possible to expect an accurate measurement reflecting the influence of absorption by Ti 3+ .

このようにして測定された透過率の値をもとに、次工程であるアニール工程の条件(温度、酸化ガス圧力、アニール時間など)を選択する。特に、製造工程の管理や生産性の観点では、アニール時間がなるべく短い時間で十分な酸化ができることが好ましい。透過率、アニール工程の条件については、予備実験を行うことにより、酸化に必要なアニール条件を求めておき、測定した透過率から条件を選択することが出来る。予備実験では、例えば、TiO濃度を変数とした複数のサンプルを用意し(例えば、石英ガラス中、3.0〜6.5重量%の範囲より選択した複数のサンプル)、アニール条件(温度、時間、酸化ガス圧力)を変数としたアニール実験を行い、アニール前後に透過率、Ti3+濃度などを測定することが好ましい。なお、Ti3+濃度はESR(Electron Spin Resonance)により測定することが出来る。Based on the transmittance value thus measured, the conditions (temperature, oxidizing gas pressure, annealing time, etc.) for the next annealing process are selected. In particular, from the viewpoint of manufacturing process management and productivity, it is preferable that sufficient oxidation can be performed in as short an annealing time as possible. Regarding the conditions of the transmittance and the annealing step, it is possible to obtain the annealing conditions necessary for the oxidation by conducting a preliminary experiment and select the conditions from the measured transmittance. In the preliminary experiment, for example, a plurality of samples with the TiO 2 concentration as a variable is prepared (for example, a plurality of samples selected from the range of 3.0 to 6.5% by weight in quartz glass), and annealing conditions (temperature, It is preferable to conduct an annealing experiment using time and oxidizing gas pressure as variables and measure the transmittance, Ti 3+ concentration, etc. before and after annealing. The Ti 3+ concentration can be measured by ESR (Electron Spin Resonance).

上記の方法では透過率検査工程を行った後にアニール工程の条件を決定する手順としたが、規定のアニール条件を設定しておき、測定された透過率が予め決められた範囲であった場合には、規定のアニール条件で処理することにしても良い。さらに、合成工程で得られる石英ガラスインゴットの特性が安定している場合には、透過率検査を行わずに、規定のアニール条件で次工程のアニールを行うことも出来る。   In the above method, the procedure for determining the conditions of the annealing process after performing the transmittance inspection process is set, but when the prescribed annealing conditions are set and the measured transmittance is within a predetermined range, May be processed under prescribed annealing conditions. Further, when the characteristics of the quartz glass ingot obtained in the synthesis step are stable, the next step annealing can be performed under the prescribed annealing conditions without performing the transmittance inspection.

次にTi3+を酸化し内部吸収を低減するために酸化処理を行う(S6:アニール工程)。耐熱炉中に平板状の石英ガラスを収容し、酸化ガス(例えば大気)を導入しながら加熱する。アニール工程では、平板状の石英ガラスの内部にあるTi3+まで十分に酸化するために、全体が効率よく酸化されることが好ましい。実施の形態2では、アニール工程の前に、フォトマスクとして使用する厚さと同じ厚さの平板状に加工する研削工程を行っているため、効率よく短時間で酸化を行うことが出来る。また、平板状の石英ガラスの露光光が透過する2つの面が共に効率よく酸化されるためには、2つの面が共に酸化ガスと十分接触するように配置した状態で加熱することが好ましい。このために、アニール工程で平板状の石英ガラスを支持する支持部材がなるべく接触しないことが好ましい。例えば、平板の面が鉛直方向となるように配置し、周囲の端面を支持部材で接触して支持してもよい。なお、アニール工程では石英ガラスの変形を防ぐためにも1200℃以下の温度とすることが好ましい。アニール工程終了後に室温まで冷却した後に、再び透過率測定を行い、酸化の効果を確認してもよい。Next, oxidation treatment is performed to oxidize Ti 3+ and reduce internal absorption (S6: annealing step). A flat quartz glass is accommodated in a heat-resistant furnace and heated while introducing an oxidizing gas (for example, air). In the annealing step, it is preferable that the whole is efficiently oxidized in order to sufficiently oxidize Ti 3+ inside the flat quartz glass. In Embodiment 2, since the grinding process for processing into a flat plate having the same thickness as that used as the photomask is performed before the annealing process, the oxidation can be efficiently performed in a short time. In order to efficiently oxidize the two surfaces of the flat quartz glass through which the exposure light passes, it is preferable to heat the two surfaces so that both surfaces are in sufficient contact with the oxidizing gas. For this reason, it is preferable that the support member supporting the flat quartz glass in the annealing step is not in contact as much as possible. For example, it may be arranged so that the surface of the flat plate is in the vertical direction, and the peripheral end surface may be contacted and supported by the support member. In the annealing step, it is preferable to set the temperature to 1200 ° C. or lower in order to prevent deformation of the quartz glass. After cooling to room temperature after the annealing step, the transmittance may be measured again to confirm the effect of oxidation.

アニール工程が終了したら、コロイダルシリカ等の研磨剤を用いて研磨工程を行い(S7)、フォトマスク用の石英ガラス基板が完成する。従来の石英ガラスの製造工程では、合成工程と研削工程の間に、ひずみを除去するためのアニール工程を行うことがあったが、インゴットの形状では数百mm以上の厚みがあるため、酸化雰囲気中で加熱することにより酸化させた場合でも、内部のTi3+までを十分に酸化させるためには、さらに長時間の酸化が必要になってしまう。酸化が不十分な場合には、Ti3+による吸収により十分な透過率が得られないおそれがある。実施の形態2では、酸化処理のアニール工程を成形工程後に行うことにより、比較的短時間で効率的に内部まで酸化することができるため、光透過率のフォトマスク用の光学部材を比較的短時間で製造することができる。また、成形工程後に表面の不要部分を削除する研削工程の後に酸化処理のためのアニール工程を行うことが更に好ましい。When the annealing step is completed, a polishing step is performed using an abrasive such as colloidal silica (S7), and a quartz glass substrate for a photomask is completed. In the conventional quartz glass manufacturing process, an annealing process for removing strain may be performed between the synthesis process and the grinding process, but the ingot shape has a thickness of several hundred mm or more. Even when oxidized by heating in the inside, in order to sufficiently oxidize even Ti 3+ inside, further oxidation for a longer time is required. If the oxidation is insufficient, sufficient transmittance may not be obtained due to absorption by Ti 3+ . In the second embodiment, since the oxidation annealing process is performed after the molding process, the inside can be efficiently oxidized in a relatively short time. Therefore, the optical member for the photomask having a light transmittance is relatively short. Can be manufactured in time. Further, it is more preferable to perform an annealing process for oxidation treatment after a grinding process for removing unnecessary portions on the surface after the molding process.

本発明は、波長300nm以上の紫外線を透過させる透過型フォトマスク用光学部材、特に、対角線の寸法が1470mmを超えるような大型のフォトマスク用光学部材に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a transmissive photomask optical member that transmits ultraviolet light having a wavelength of 300 nm or more, and particularly for a large photomask optical member having a diagonal dimension exceeding 1470 mm.

Claims (8)

合成石英ガラスにTiOを添加した光学部材であって、
前記TiOの組成が3.0〜6.5重量%であり、
波長365nmでの透過率が90%以上であり、
20℃〜80℃での線熱膨張係数が2.5×10 −7 /℃以下であり、
不純物として、Alを0.1wt・ppm以下、Cuを0.05wt・ppm以下、Feを0.1wt・ppm以下、Naを0.05wt・ppm以下、及びKを0.05wt・ppm以下で含むフォトマスク用光学部材。
An optical member obtained by adding TiO 2 to synthetic quartz glass,
The composition of the TiO 2 is 3.0 to 6.5% by weight,
Ri der transmittance at a wavelength of 365nm is 90% or more,
The linear thermal expansion coefficient at 20 ° C. to 80 ° C. is 2.5 × 10 −7 / ° C. or less,
Impurities include Al of 0.1 wt.ppm or less, Cu of 0.05 wt.ppm or less, Fe of 0.1 wt.ppm or less, Na of 0.05 wt.ppm or less, and K of 0.05 wt.ppm or less. Optical member for photomask.
請求項1に記載のフォトマスク用光学部材の製造方法であって、  It is a manufacturing method of the optical member for photomasks according to claim 1,
原料ガスを混合することにより、TiO  By mixing the source gas, TiO 2 を含有する石英ガラスインゴットを合成する合成工程と、A synthesis step of synthesizing a quartz glass ingot containing
前記石英ガラスインゴットを、所定の温度に保持した状態で加圧することにより平板状の所定形状に成形する成形工程と、  A molding step of forming the quartz glass ingot into a predetermined shape in a flat plate shape by pressurizing the ingot while maintaining a predetermined temperature;
前記成形工程の後に、酸化雰囲気中で加熱することにより前記石英ガラスに含有されるチタンを酸化する酸化処理工程と、を含むフォトマスク用光学部材の製造方法。  The manufacturing method of the optical member for photomasks including the oxidation process process of oxidizing the titanium contained in the said quartz glass by heating in an oxidizing atmosphere after the said formation process.
前記石英ガラスインゴットが、TiO  The quartz glass ingot is made of TiO. 2 を3.0〜6.5重量%含有する請求項2に記載のフォトマスク用光学部材の製造方法。The manufacturing method of the optical member for photomasks of Claim 2 containing 3.0 to 6.5 weight%. 前記酸化処理工程は、厚さが20mm以内の平板状の石英ガラスをアニールすることである請求項2または3に記載のフォトマスク用光学部材の製造方法。  4. The method for producing an optical member for a photomask according to claim 2, wherein the oxidation treatment step is annealing a flat quartz glass having a thickness of 20 mm or less. 前記合成工程と前記酸化処理工程との間に、透過率検査工程をさらに含み、前記透過率検査工程により測定された透過率に基づいて、前記酸化処理工程の温度、時間及び酸化雰囲気のガス圧力のいずれかを決定する請求項2〜4のいずれか一項に記載のフォトマスク用光学部材の製造方法。  Further comprising a transmittance inspection step between the synthesis step and the oxidation treatment step, and based on the transmittance measured by the transmittance inspection step, the temperature, time and gas pressure of the oxidation atmosphere of the oxidation treatment step The method for producing a photomask optical member according to any one of claims 2 to 4, wherein any one of the above is determined. 前記成形工程の後に平板状の石英ガラスの表面を除去する研削工程をさらに含み、前記研削工程の後に前記酸化処理工程を行う請求項2〜5のいずれか一項に記載のフォトマスク用光学部材の製造方法。  The optical member for a photomask according to any one of claims 2 to 5, further comprising a grinding step of removing a surface of the flat quartz glass after the forming step, and performing the oxidation treatment step after the grinding step. Manufacturing method. 前記酸化処理工程の後に、フォトマスクとして使用する際に光が透過する面を研磨する研磨工程を更に含む請求項2〜6のいずれか一項に記載のフォトマスク用光学部材の製造方法。  The manufacturing method of the optical member for photomasks as described in any one of Claims 2-6 which further includes the grinding | polishing process of grind | polishing the surface which light permeate | transmits when using as a photomask after the said oxidation process process. フォトマスク用光学部材が矩形形状であり、対角線の長さが1470mm以上である請求項2〜7のいずれか一項に記載のフォトマスク用光学部材の製造方法。  The method for producing an optical member for photomask according to any one of claims 2 to 7, wherein the photomask optical member has a rectangular shape, and the length of the diagonal line is 1470 mm or more.
JP2010521732A 2008-07-23 2009-07-23 Optical member for photomask and method for manufacturing the same Active JP5561164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010521732A JP5561164B2 (en) 2008-07-23 2009-07-23 Optical member for photomask and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008190172 2008-07-23
JP2008190172 2008-07-23
JP2010521732A JP5561164B2 (en) 2008-07-23 2009-07-23 Optical member for photomask and method for manufacturing the same
PCT/JP2009/063168 WO2010010915A1 (en) 2008-07-23 2009-07-23 Optical member for photomask and method for manufacturing the optical member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014120151A Division JP2014221712A (en) 2008-07-23 2014-06-11 Optical member for photomask and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPWO2010010915A1 JPWO2010010915A1 (en) 2012-01-05
JP5561164B2 true JP5561164B2 (en) 2014-07-30

Family

ID=41570375

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010521732A Active JP5561164B2 (en) 2008-07-23 2009-07-23 Optical member for photomask and method for manufacturing the same
JP2014120151A Pending JP2014221712A (en) 2008-07-23 2014-06-11 Optical member for photomask and method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014120151A Pending JP2014221712A (en) 2008-07-23 2014-06-11 Optical member for photomask and method of manufacturing the same

Country Status (5)

Country Link
JP (2) JP5561164B2 (en)
KR (1) KR101606225B1 (en)
CN (1) CN102067036B (en)
TW (1) TWI541211B (en)
WO (1) WO2010010915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221712A (en) * 2008-07-23 2014-11-27 株式会社ニコン Optical member for photomask and method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320724A (en) * 2011-09-08 2012-01-18 北京金格兰石英玻璃有限公司 Preparation method of square quartz glass substrate for photomask
CA2844886C (en) 2014-03-06 2020-09-01 Nova Chemicals Corporation Radiation crosslinked polyethylene hinge
KR102568807B1 (en) * 2017-03-28 2023-08-21 호야 가부시키가이샤 Phase shift mask blank and method for manufacturing phase shift mask using the same, and pattern transfer method
JP7126836B2 (en) * 2017-03-28 2022-08-29 Hoya株式会社 PHASE SHIFT MASK BLANK, METHOD FOR MANUFACTURING PHASE SHIFT MASK USING SAME, AND PATTERN TRANSFER METHOD
JP6819451B2 (en) * 2017-05-08 2021-01-27 信越化学工業株式会社 Large synthetic quartz glass substrate and its evaluation method and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131373A (en) * 2002-09-09 2004-04-30 Corning Inc Method of manufacturing silica and titania extreme ultraviolet ray optical element
JP2005194118A (en) * 2004-01-05 2005-07-21 Asahi Glass Co Ltd Silica glass
JP2006306674A (en) * 2005-04-28 2006-11-09 Shinetsu Quartz Prod Co Ltd Silica-titania glass for nanoimprint stamper
JP2008505043A (en) * 2004-07-01 2008-02-21 旭硝子株式会社 Silica glass containing TiO2 and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255423A (en) * 2004-03-09 2005-09-22 Asahi Glass Co Ltd Synthetic quartz glass-made photomask substrate and photomask
CN101158806A (en) * 2007-11-15 2008-04-09 中国航天科技集团公司第五研究院第五一○研究所 Preparation method of binary optical elements mask
KR101606225B1 (en) * 2008-07-23 2016-03-24 가부시키가이샤 니콘 Optical member for photomask and method for manufacturing the optical member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131373A (en) * 2002-09-09 2004-04-30 Corning Inc Method of manufacturing silica and titania extreme ultraviolet ray optical element
JP2005194118A (en) * 2004-01-05 2005-07-21 Asahi Glass Co Ltd Silica glass
JP2008505043A (en) * 2004-07-01 2008-02-21 旭硝子株式会社 Silica glass containing TiO2 and method for producing the same
JP2006306674A (en) * 2005-04-28 2006-11-09 Shinetsu Quartz Prod Co Ltd Silica-titania glass for nanoimprint stamper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221712A (en) * 2008-07-23 2014-11-27 株式会社ニコン Optical member for photomask and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2010010915A1 (en) 2012-01-05
CN102067036A (en) 2011-05-18
WO2010010915A1 (en) 2010-01-28
KR101606225B1 (en) 2016-03-24
TW201006779A (en) 2010-02-16
TWI541211B (en) 2016-07-11
JP2014221712A (en) 2014-11-27
CN102067036B (en) 2013-05-01
KR20110033997A (en) 2011-04-04

Similar Documents

Publication Publication Date Title
TWI389866B (en) A quartz glass doped with titanium dioxide, a member for EUV micrographs, a mask for a EUV micrograph mask, and a quartz glass doped with titanium dioxide
JP5042714B2 (en) Titania-doped quartz glass for nanoimprint molds
TWI541212B (en) Titania-doped quartz glass member and making method
TWI247196B (en) Reduced striae extreme ultraviolet elements
JP2014221712A (en) Optical member for photomask and method of manufacturing the same
JP3064857B2 (en) Optical member for optical lithography and method for producing synthetic quartz glass
US6475682B2 (en) Photolithography method, photolithography mask blanks, and method of making
US7923394B2 (en) Titania-doped quartz glass for nanoimprint molds
JP3965734B2 (en) Quartz glass and method for producing the same
US6817211B2 (en) Vacuum ultraviolet transmitting direct deposit vitrified silicon oxyfluoride lithography glass photomask blanks
JP2008100891A (en) Titania-silica glass
JP3120647B2 (en) Method for producing quartz glass and quartz glass produced thereby
JP7155098B2 (en) SILICA GLASS FOR OPTICAL DEVICE AND METHOD FOR MANUFACTURING THE SAME
KR20010042697A (en) Synthetic quartz glass optical member for ultraviolet light and reduction projection exposure system using the same
JPH01212247A (en) Production of base material for laser optical system
JP2011051893A (en) Titania-doped quartz glass for nanoimprint mold
WO2004046056A1 (en) Synthetic quartz glass member and ultraviolet exposure apparatus using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5561164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250