JP5557969B1 - Cleaning device - Google Patents

Cleaning device Download PDF

Info

Publication number
JP5557969B1
JP5557969B1 JP2014014057A JP2014014057A JP5557969B1 JP 5557969 B1 JP5557969 B1 JP 5557969B1 JP 2014014057 A JP2014014057 A JP 2014014057A JP 2014014057 A JP2014014057 A JP 2014014057A JP 5557969 B1 JP5557969 B1 JP 5557969B1
Authority
JP
Japan
Prior art keywords
titanium
cleaning
atmosphere
unit
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014014057A
Other languages
Japanese (ja)
Other versions
JP2015139747A (en
Inventor
輝樹 高安
晋吾 森
隼人 森
金児 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORI KOSAN CO., LTD.
Showa Co Ltd
Original Assignee
MORI KOSAN CO., LTD.
Showa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORI KOSAN CO., LTD., Showa Co Ltd filed Critical MORI KOSAN CO., LTD.
Priority to JP2014014057A priority Critical patent/JP5557969B1/en
Application granted granted Critical
Publication of JP5557969B1 publication Critical patent/JP5557969B1/en
Priority to CN201480012761.7A priority patent/CN105026059B/en
Priority to PCT/JP2014/077642 priority patent/WO2015114889A1/en
Publication of JP2015139747A publication Critical patent/JP2015139747A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/02Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for washing or blanching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Food Science & Technology (AREA)
  • Catalysts (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cleaning In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

【課題】洗浄、除菌のための装置を設置した設置面や装置自体を衛生的に維持する。
【解決手段】洗浄装置は、洗浄部6と、消毒部1と、すすぎ部2と、洗浄部6、消毒部1及びすすぎ部2が設置される設置面4とを備える。設置面4は、(1)加熱温度が750℃以上であるアンモニア雰囲気下又は窒素ガス雰囲気下での加熱処理により、チタン材料の表面にチタン窒化物を形成する工程、(2)工程(1)で得られた表面にチタン窒化物が形成されたチタン材料を、チタンに対してエッチング作用を有しない電解液中で10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程、及び(3)工程(2)で得られた表面にチタンの酸化皮膜が形成されたチタン材料を、大気雰囲気下、酸素ガスと窒素ガスとを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程、にて作製される光触媒材料により構成される。
【選択図】図1
An installation surface on which an apparatus for cleaning and sterilization and an apparatus itself are maintained hygienically.
A cleaning apparatus includes a cleaning unit, a sterilizing unit, a rinsing unit, and an installation surface on which the cleaning unit, the sterilizing unit, and the rinsing unit are installed. The installation surface 4 includes (1) a step of forming titanium nitride on the surface of the titanium material by heat treatment in an ammonia atmosphere or a nitrogen gas atmosphere having a heating temperature of 750 ° C. or higher, and (2) step (1). The titanium material with titanium nitride formed on the surface is anodized by applying a voltage of 10 V or higher in an electrolyte solution that does not have an etching action on titanium, and a titanium oxide film is formed. And (3) a titanium material having a titanium oxide film formed on the surface obtained in step (2) is selected from an atmosphere in which oxygen gas and nitrogen gas are mixed or an oxygen gas atmosphere in an air atmosphere The photocatalyst material produced in the process of performing a heat treatment at a temperature of 400 ° C. or higher under the atmosphere.
[Selection] Figure 1

Description

本発明は、開口を有する容器及び野菜等の農作物の洗浄装置に関する。   The present invention relates to a container having an opening and an apparatus for cleaning agricultural products such as vegetables.

野菜や果実を栽培する際には、農薬を散布しているために、収穫後においても野菜や果実の表面には、農薬が付着している。そのため、調理したり生で食するに先立って、残留する農薬を除去することが不可欠である。この農薬除去には、各種の手法が採用されており、農薬除去洗剤を用いる手法も採用されているが、この農薬除去洗剤をすすぎ落とすには、多量の水を要するとの問題点があった。そこで、特許文献1では、野菜等の農作物の表面に残留する農薬を十分に除去しえる洗浄液として、塩化ナトリウム水溶液を被電解水として隔膜電解することにより陽極側に生成する酸性水を用いている。   When cultivating vegetables and fruits, since the agricultural chemicals are sprayed, the agricultural chemicals adhere to the surfaces of the vegetables and fruits even after harvesting. Therefore, it is essential to remove residual pesticides before cooking or eating raw. Various methods are used to remove this pesticide, and a method using a pesticide-removing detergent is also employed, but there is a problem that rinsing off this pesticide-removing detergent requires a large amount of water. . Therefore, in Patent Document 1, acidic water generated on the anode side by diaphragm electrolysis as an aqueous solution of sodium chloride as electrolyzed water is used as a cleaning liquid that can sufficiently remove agricultural chemicals remaining on the surface of agricultural products such as vegetables. .

また、近年、エコロジーの意識が高まり、例えばペットボトルやガラスびんといった飲料水用容器を分別回収し、これらを再利用することで、限りある資源をリサイクルする動きが活発化している。しかしながら、飲料水用容器の分別回収や再利用を行う工程には手間がかかり、資源のリサイクルは捗っていないのが現状であるため、簡易化及び効率化の観点から、使用済みの飲料水用容器を洗浄して再使用しようとする動きも出てきている。このように使用済みの飲料水用容器を洗浄する装置として、例えば、特許文献2には、飲料水用容器内にノズルを挿入し、このノズルから噴射される水により、容器の内側底面及び側面を洗浄する装置が提案されている。また、特許文献3には、逆浸透膜モジュールでろ過された水を飲料水用容器内に噴射し、容器内を洗浄する装置が提案されている。しかしながら、上述したような洗浄装置は、単に使用済みの飲料水用容器を水で洗い流すのみであり、容器を消毒することや洗浄後の容器を乾燥することまでは考慮されていなかった。   In recent years, awareness of ecology has increased, and for example, drinking water containers such as PET bottles and glass bottles are collected separately and reused to recycle limited resources. However, since the process of separating and reusing drinking water containers is laborious and the recycling of resources is not progressing at present, used drinking water is used from the viewpoint of simplification and efficiency. There has also been a movement to clean and reuse containers. As an apparatus for washing a used drinking water container as described above, for example, in Patent Document 2, a nozzle is inserted into a drinking water container, and the water is sprayed from the nozzle to cause an inner bottom surface and a side surface of the container to be used. There has been proposed an apparatus for cleaning the water. Patent Document 3 proposes an apparatus that sprays water filtered by a reverse osmosis membrane module into a drinking water container and cleans the inside of the container. However, the cleaning apparatus as described above merely rinses a used drinking water container with water, and has not been considered until the container is disinfected or the washed container is dried.

ここで、ペットボトルやガラスびんの洗浄を、界面活性剤が配合された一般的な洗剤にて実施すると、洗剤をすすぎ落とすために多量の水を要し、結果として多量の洗剤が混ざった水が排出されるという問題点がある。そこで、特許文献4では、洗剤を使用することなく、塩化ナトリウム水溶液を隔膜電解することにより陰極側に生成する還元水にて食器類に付着した油脂を微生物分解可能な微粒子状態に乳化させた後、塩化ナトリウム水溶液を隔膜電解することにより陽極側に生成する酸性水にて食器類を洗浄殺菌し、すすぎ洗浄後、排水をためる廃液受け部をつくり、この廃液部にて微粒子状態に乳化させた油脂分を微生物にて分解させた後、分解されなかった油脂分を微小繊維製の綿状部材に吸着させることにより、分解環境に悪影響を与えることのない洗浄技術を提案している。   Here, when washing PET bottles and glass bottles with a general detergent containing a surfactant, a large amount of water is required to rinse off the detergent, resulting in a mixture of a large amount of detergent. Has the problem of being discharged. Therefore, in Patent Document 4, after the oil and fat adhering to the dishes is emulsified into a microbe-decomposable fine particle state with reduced water generated on the cathode side by subjecting a sodium chloride aqueous solution to diaphragm electrolysis without using a detergent. The tableware was washed and sterilized with acidic water produced on the anode side by electrolyzing sodium chloride aqueous solution, rinsed, and then a waste liquid receiving part for collecting drainage was made, and this waste liquid part was emulsified in a fine particle state. After decomposing oils and fats with microorganisms, a cleaning technique that does not adversely affect the decomposition environment is proposed by adsorbing undecomposed oils and fats to a fine fiber cotton-like member.

特開2010−185018号公報JP 2010-185018 A 特開平8−309306号公報JP-A-8-309306 特開2004−122000号公報Japanese Patent Laid-Open No. 2004-122000 特開2008−272334号公報JP 2008-272334 A

しかし、上述した特許文献1〜特許文献4のように、開口を有する容器に付着する汚れや細菌、また、野菜や果実等の農作物に付着する農薬や細菌を、塩化ナトリウム水溶液の隔膜電解にて生成させた還元水、酸性水にて洗浄、除菌することができても、洗浄、除菌に用いた還元水、酸性水の廃液が洗浄、除菌のための装置を設置した設置面や装置自体に付着した状態では、衛生的に問題がある。また、還元水、酸性水は、塩化ナトリウム水溶液の隔膜電解を行うことにより生成しているが、十分な除菌、洗浄を起こすために高濃度の酸性水、還元水を生成し用いていた。この高濃度の酸性水、還元水を用いると、肌荒れ等、人体に悪影響を与えるおそれがある。さらに、高濃度の酸性水、還元水を生成するためには、比較的高濃度の塩化ナトリウム水溶液を隔膜電解する必要があるが、その際に陽極側に有毒な塩素ガスが多量に発生する恐れがあるため、この多量に発生する人体に極めて有害な塩素ガスが外部に漏出しないような工夫が要求される等の問題点もある。さらに、洗浄、除菌に用いた還元水、酸性水の廃液は、環境に悪影響を与えるところ、これらの廃液処理を行うことが十分に実施されていないのが現状である。   However, as in Patent Document 1 to Patent Document 4 described above, dirt and bacteria adhering to a container having an opening, and agricultural chemicals and bacteria adhering to agricultural products such as vegetables and fruits can be obtained by diaphragm electrolysis of an aqueous sodium chloride solution. Even if the generated reduced water and acid water can be washed and sterilized, the reduced water used for washing and sterilization, the waste water of the acid water is washed, and the installation surface where the device for sterilization is installed When attached to the device itself, there is a sanitary problem. Moreover, although reduced water and acidic water are produced | generated by performing diaphragm electrolysis of sodium chloride aqueous solution, in order to raise | generate sufficient disinfection and washing | cleaning, high concentration acidic water and reduced water were produced | generated and used. If this highly concentrated acidic water or reduced water is used, there is a risk of adverse effects on the human body, such as rough skin. Furthermore, in order to produce high-concentration acidic water and reduced water, it is necessary to perform diaphragm electrolysis with a relatively high-concentration sodium chloride aqueous solution. At that time, a large amount of toxic chlorine gas may be generated on the anode side. Therefore, there is a problem that a device is required to prevent the chlorine gas, which is extremely harmful to the human body generated in large quantities, from leaking outside. Furthermore, the waste water of reduced water and acidic water used for washing and sterilization has an adverse effect on the environment, but the current situation is that these waste liquid treatments are not sufficiently performed.

そこで、本発明は、上記従来技術の問題点である、洗浄、除菌のための装置を設置した設置面や装置自体を衛生的に維持できる洗浄装置を提供することを目的とする。また、洗浄、除菌後の廃液が環境に悪影響を与えることなく、比較的低濃度の酸性水、還元水を用いて比較的短時間に、容器に付着する汚れや細菌、また、野菜や果実等の農作物に付着する農薬や細菌を除去することが可能な洗浄装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a cleaning device that can maintain the installation surface on which a device for cleaning and sterilization, which is a problem of the above-described prior art, and the device itself are hygienically maintained. In addition, the waste liquid after washing and sterilization does not adversely affect the environment, and dirt and bacteria attached to the container, vegetables and fruits in a relatively short time using relatively low concentrations of acidic water and reduced water. It aims at providing the washing | cleaning apparatus which can remove the agrochemical and bacteria adhering to agricultural products, such as.

本発明者らは、上記課題を解決すべく鋭意検討を行ったところ、下記に掲げる洗浄装置にて上記課題が解決することができることを見出し、本発明に至った。すなわち、本発明に係る洗浄装置は、開口を有する容器を洗浄する装置であって、前記開口を介して前記容器内に還元水を供給する洗浄部と、前記開口を介して前記容器内に酸性水を供給する消毒部と、前記開口を介して前記容器内にすすぎ液を供給するすすぎ部と、前記洗浄部、前記消毒部及び前記すすぎ部が設置される設置面と、を備えている。前記設置面は、光触媒材料により構成されている。前記光触媒材料は、(1)金属チタン材料又はチタン合金(チタンを主成分とする合金)材料の表面に、加熱温度が750℃以上である、アンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法により、チタン窒化物を形成する工程、(2)工程(1)で得られた、表面にチタン窒化物が形成された金属チタン材料又はチタン合金材料を、チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程、及び(3)工程(2)で得られた、表面にチタンの酸化皮膜が形成された金属チタン材料又はチタン合金材料を、大気雰囲気下、酸素ガスと窒素ガスとを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程、からなる表面処理方法を行うことによって作製される。   As a result of diligent studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by the following cleaning apparatus, and have reached the present invention. That is, the cleaning device according to the present invention is a device for cleaning a container having an opening, and includes a cleaning unit that supplies reducing water into the container through the opening, and an acid in the container through the opening. A disinfecting unit for supplying water; a rinsing unit for supplying a rinsing liquid into the container through the opening; and an installation surface on which the cleaning unit, the disinfecting unit, and the rinsing unit are installed. The installation surface is made of a photocatalytic material. The photocatalytic material comprises (1) a surface of a titanium metal material or a titanium alloy (alloy containing titanium as a main component) material, a heating temperature of 750 ° C. or higher, a heat treatment in an ammonia atmosphere, and a nitrogen gas atmosphere. A step of forming titanium nitride by one type of processing method selected from the group consisting of the heat treatment of (2), a metal titanium material having titanium nitride formed on the surface, obtained in step (1), or A step of anodizing the titanium alloy material by applying a voltage of 10 V or higher in an electrolyte solution having no etching action on titanium to form an oxide film of titanium; and (3) step (2). The metal titanium material or titanium alloy material having a titanium oxide film formed on the surface is selected from an atmosphere in which oxygen gas and nitrogen gas are mixed or an oxygen gas atmosphere. In an atmosphere that is, it is produced by carrying out the surface treatment method step, and heat treatment is performed at 400 ° C. or higher.

上記構成の洗浄装置によると、容器から排出された還元水、酸性水及びすすぎ液が設置面に滴下した場合でも、還元水、酸性水及びすすぎ液の液滴が光触媒材料の超親水性により設置面に残りにくく、また光触媒材料による抗菌作用があることから、設置面を清潔に保つことができる。   According to the cleaning device having the above configuration, even when the reducing water, acidic water and rinsing liquid discharged from the container are dropped on the installation surface, the reducing water, acidic water and rinsing liquid droplets are installed due to the super hydrophilicity of the photocatalytic material. The installation surface can be kept clean because it hardly remains on the surface and has antibacterial action due to the photocatalytic material.

上記構成の洗浄装置において、前記設置面に近紫外線又は紫外線を光照射する光照射手段をさらに備えていることが好ましい。光触媒材料に、光触媒材料が励起する近紫外線もしくは紫外線をランプや蛍光灯等の光照射手段から光照射することにより、高い酸化力を有する活性酸素であるOHラジカル等が発生する。このOHラジカルは、消毒や殺菌に広く用いている過酸化水素やオゾン等より遥かに強い殺菌力を有しているために、設置面に滴下する廃液中の細菌を殺菌することができる。よって、設置面をさらに効果的に衛生的に維持することができる。   In the cleaning apparatus having the above configuration, it is preferable that the installation surface further includes light irradiation means for irradiating near ultraviolet rays or ultraviolet rays. By irradiating the photocatalyst material with near-ultraviolet rays or ultraviolet rays excited by the photocatalyst material from a light irradiation means such as a lamp or a fluorescent lamp, OH radicals or the like which are active oxygen having high oxidizing power are generated. Since this OH radical has a sterilizing power far stronger than hydrogen peroxide, ozone, etc. widely used for disinfection and sterilization, it is possible to sterilize bacteria in the waste liquid dripping on the installation surface. Therefore, the installation surface can be more effectively maintained in a sanitary manner.

また、上記構成の洗浄装置において、前記洗浄部は、前記設置面の上方に突出するように設けられ、還元水を前記容器内に噴射する第1のノズルを有し、前記消毒部は、前記設置面の上方に突出するように設けられ、酸性水を前記容器内に噴射する第2のノズルを有し、前記すすぎ部は、前記設置面の上方に突出するように設けられ、すすぎ液を前記容器内に噴射する第3のノズルを有することが好ましい。   Further, in the cleaning apparatus having the above-described configuration, the cleaning unit is provided so as to protrude above the installation surface, and includes a first nozzle that injects reducing water into the container. A second nozzle for injecting acidic water into the container; and the rinsing portion is provided to protrude above the installation surface, and the rinse liquid It is preferable to have a third nozzle that sprays into the container.

また、本発明に係る洗浄装置は、農作物を洗浄する装置であって、還元水を貯留し、前記農作物を浸漬可能な第1の槽を有する洗浄部と、酸性水を貯留し、前記農作物を浸漬可能な第2の槽を有する消毒部と、すすぎ液を貯留し、前記農作物を浸漬可能な第3の槽を有するすすぎ部と、を備えている。前記第1の層の内面、前記第2の層の内面及び前記第3の層の内面は、光触媒材料により構成されている。前記光触媒材料は、(1)加熱温度が750℃以上である、アンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法により、金属チタン材料又はチタン合金材料の表面にチタン窒化物を形成する工程、(2)工程(1)で得られた、表面にチタン窒化物が形成された金属チタン材料又はチタン合金材料を、チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程、及び(3)工程(2)で得られた、表面にチタンの酸化皮膜が形成された金属チタン材料又はチタン合金材料を、大気雰囲気下、酸素ガスと窒素ガスとを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程、にて作製される。   The cleaning device according to the present invention is a device for cleaning crops, stores reduced water, has a first tank that can immerse the crops, stores acidic water, and stores the crops. The disinfection part which has the 2nd tank which can be immersed and the rinse part which has a 3rd tank which can store the rinse liquid and can immerse the said crop are provided. The inner surface of the first layer, the inner surface of the second layer, and the inner surface of the third layer are made of a photocatalytic material. The photocatalyst material is obtained by (1) a metal titanium material produced by one treatment method selected from the group consisting of a heat treatment under an ammonia atmosphere and a heat treatment under a nitrogen gas atmosphere, wherein the heating temperature is 750 ° C. or higher. Alternatively, a step of forming titanium nitride on the surface of the titanium alloy material, (2) etching the titanium metal material or titanium alloy material with titanium nitride formed on the surface obtained in step (1) with respect to titanium A step of forming an oxide film of titanium by anodizing by applying a voltage of 10 V or more in an electrolyte having no action, and (3) oxidation of titanium on the surface obtained in step (2). The metal titanium material or titanium alloy material with the coating formed is heated to 400 ° C. or higher under an atmosphere selected from an atmosphere in which oxygen gas and nitrogen gas are mixed or an oxygen gas atmosphere. Step at a temperature heat treatment is performed, it is produced by.

上記構成の洗浄装置によると、還元水、酸性水及びすすぎ液が槽内から排出される際に、還元水、酸性水及びすすぎ液の液滴が光触媒材料の超親水性により槽内に残りにくく、また光触媒材料による抗菌作用があることから、槽内を清潔に保つことができる。   According to the cleaning device having the above configuration, when the reducing water, the acidic water, and the rinsing liquid are discharged from the tank, the droplets of the reducing water, the acidic water, and the rinsing liquid are less likely to remain in the tank due to the superhydrophilicity of the photocatalytic material. In addition, since the photocatalytic material has an antibacterial action, the inside of the tank can be kept clean.

上記構成の洗浄装置において、前記第1〜第3の層の内面に近紫外線又は紫外線を光照射する光照射手段をさらに備えていることが好ましい。光触媒材料に、光触媒材料が励起する近紫外線もしくは紫外線をランプや蛍光灯等の光照射手段から光照射することにより、高い酸化力を有する活性酸素であるOHラジカル等が発生する。このOHラジカルは、消毒や殺菌に広く用いている過酸化水素やオゾン等より遥かに強い殺菌力を有しているために、槽内の廃液中の細菌を殺菌することができる。よって、槽内をさらに効果的に衛生的に維持することができる。   In the cleaning apparatus having the above-described configuration, it is preferable to further include light irradiation means for irradiating the inner surfaces of the first to third layers with near ultraviolet rays or ultraviolet rays. By irradiating the photocatalyst material with near-ultraviolet rays or ultraviolet rays excited by the photocatalyst material from a light irradiation means such as a lamp or a fluorescent lamp, OH radicals or the like which are active oxygen having high oxidizing power are generated. Since this OH radical has a sterilizing power far stronger than hydrogen peroxide, ozone, etc. widely used for disinfection and sterilization, it can sterilize bacteria in the waste liquid in the tank. Therefore, the inside of the tank can be more effectively maintained in a sanitary manner.

また、上記構成の洗浄装置において、前記第1〜第3の層が揺動可能であることが好ましい。また、必要に応じて、超音波洗浄装置を付設すれば、農薬に付着する農薬を効果的に洗浄することが可能である。   In the cleaning apparatus having the above-described configuration, it is preferable that the first to third layers are swingable. Further, if necessary, an ultrasonic cleaning device can be attached to effectively clean the pesticide adhering to the pesticide.

また、上記したいずれの構成の洗浄装置においても、設置面を構成する材料に用いられる金属チタンやチタン合金の前記窒素ガス雰囲気下での加熱処理が、酸素トラップ剤の存在下で実施されることが好ましい。   In any of the above-described cleaning apparatuses, the heat treatment in the nitrogen gas atmosphere of the titanium metal or titanium alloy used as the material constituting the installation surface is performed in the presence of an oxygen trap agent. Is preferred.

また、前記陽極酸化で用いるチタンに対してエッチング作用を有しない電解液が、無機酸、有機酸及びこれらの塩よりなる群から選択される少なくとも1種の化合物を含有する電解液であることが好ましい。   Further, the electrolytic solution having no etching action on titanium used in the anodic oxidation is an electrolytic solution containing at least one compound selected from the group consisting of inorganic acids, organic acids and salts thereof. preferable.

また、前記無機酸、有機酸及びこれらの塩よりなる群から選択される少なくとも1種の化合物が、リン酸及びリン酸塩よりなる群から選択される少なくとも1種の化合物であることが好ましい。   In addition, it is preferable that at least one compound selected from the group consisting of the inorganic acid, organic acid and salts thereof is at least one compound selected from the group consisting of phosphoric acid and phosphate.

また、前記工程(2)の陽極酸化で印加する電圧が、50V〜300Vであることが好ましい。   Moreover, it is preferable that the voltage applied by the anodic oxidation of the said process (2) is 50V-300V.

また、前記酸化性雰囲気中で行う加熱処理の温度が、400℃〜700℃であることが好ましい。   Moreover, it is preferable that the temperature of the heat processing performed in the said oxidizing atmosphere is 400 to 700 degreeC.

また、前記陽極酸化により形成されるチタンの酸化皮膜が、結晶性酸化チタン皮膜であることが好ましい。   The titanium oxide film formed by anodic oxidation is preferably a crystalline titanium oxide film.

また、前記結晶性酸化チタン皮膜が、アナターゼ型酸化チタン皮膜であることが好ましい。   The crystalline titanium oxide film is preferably an anatase type titanium oxide film.

また、前記洗浄部から排出される還元水廃液、前記消毒部から排出される酸性水廃液及び前記すすぎ部から排出されるすすぎ廃液を回収し、光触媒材料にて浄化処理する浄化処理部と、前記浄化処理部から排出される前記還元水廃液、前記酸性水廃液及び前記すすぎ液廃液をフィルターにより濾過する濾過部と、前記浄化処理部の前記光触媒材料に近紫外線又は紫外線を光照射する光照射手段と、をさらに備え、前記浄化処理部では、(1)加熱温度が750℃以上である、アンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法により、金属チタン材料又はチタン合金材料の表面にチタン窒化物を形成する工程、(2)工程(1)で得られた、表面にチタン窒化物が形成された金属チタン材料又はチタン合金材料を、チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程、及び(3)工程(2)で得られた、表面にチタンの酸化皮膜が形成された金属チタン材料又はチタン合金材料を、大気雰囲気下、酸素ガスと窒素ガスとを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程、によって作製される光触媒材料を用いて浄化処理を行うことが好ましい。   Further, the reducing water waste liquid discharged from the cleaning section, the acidic water waste liquid discharged from the disinfection section and the rinse waste liquid discharged from the rinse section, and a purification processing section for purifying with a photocatalytic material, and A filtration unit that filters the reduced water waste liquid, the acidic water waste liquid, and the rinse liquid waste liquid discharged from the purification processing unit with a filter, and a light irradiation unit that irradiates the photocatalyst material of the purification processing unit with near ultraviolet rays or ultraviolet rays. And (1) one type selected from the group consisting of heat treatment in an ammonia atmosphere and heat treatment in a nitrogen gas atmosphere, wherein the heating temperature is 750 ° C. or higher. A step of forming titanium nitride on the surface of the metal titanium material or titanium alloy material by a treatment method; (2) a metal chip obtained in step (1) and having titanium nitride formed on the surface; Forming an oxide film of titanium by anodizing a titanium material or a titanium alloy material by applying a voltage of 10 V or more in an electrolyte solution having no etching action on titanium, and (3) step The metal titanium material or titanium alloy material having a titanium oxide film formed on the surface obtained in (2) was selected from an atmosphere in which oxygen gas and nitrogen gas were mixed or an oxygen gas atmosphere in an air atmosphere It is preferable to perform the purification treatment using a photocatalytic material produced by a heat treatment step at a temperature of 400 ° C. or higher in an atmosphere.

この実施態様によると、例えば、光触媒材料を設置した廃液貯留タンクに、廃液を注ぎこみ、光触媒材料にアナターゼ型酸化チタンを光励起できる近紫外線もしくは紫外線をランプや蛍光灯等にて光照射することにより、極めて活性が高く酸化力の強いOHラジカル等の活性酸素が発生する。よって、廃液中に含まれる油脂等の有機物や農薬、細菌等を光触媒材料にて分解・殺菌することが可能となる。よって、廃液中の油脂等の有機物の分解や酸性水にて除菌されなかった細菌の殺菌を行うことができる。この光触媒材料を用いた廃液浄化技術は、従来から実施されている微生物分解とは異なり、抗菌性を有する酸性水が共存しても効果が低下する心配がない。また、微生物分解においては、微生物層を時々入れかれる必要があるのに対して、光触媒反応での廃液浄化技術は、光照射があれば半永久的に効果が持続する。また光触媒反応を向上させるために、必要に応じて微量のオゾンや過酸化水素を添加してもよい。さらに光触媒材料にて除去できなかった有機物や農薬、細菌、さらに食物残渣等の固形物をフィルターにて濾過することで、廃液を清浄な状態にすることができるので、環境汚染を招くことも防止できる。   According to this embodiment, for example, the waste liquid is poured into a waste liquid storage tank in which the photocatalytic material is installed, and the photocatalytic material is irradiated with near ultraviolet rays or ultraviolet rays that can photoexcite anatase-type titanium oxide with a lamp or a fluorescent lamp. Active oxygen such as OH radicals, which are extremely active and have strong oxidizing power, are generated. Therefore, it becomes possible to decompose and sterilize organic substances such as fats and oils, agricultural chemicals, bacteria, and the like contained in the waste liquid with the photocatalytic material. Therefore, it is possible to decompose organic substances such as fats and oils in the waste liquid and sterilize bacteria that have not been sterilized with acidic water. Unlike the conventional microbial decomposition, the waste liquid purification technology using this photocatalyst material does not have a concern that the effect is reduced even when acidic water having antibacterial properties coexists. In the microbial decomposition, the microbial layer needs to be inserted from time to time, whereas the waste liquid purification technology by the photocatalytic reaction lasts semipermanently if there is light irradiation. Moreover, in order to improve a photocatalytic reaction, you may add a trace amount ozone and hydrogen peroxide as needed. In addition, by filtering solid matter such as organic matter, agricultural chemicals, bacteria, and food residues that could not be removed with the photocatalyst material, the waste liquid can be made clean, preventing environmental pollution. it can.

また、洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水が、濃度が0.001%〜0.5%の塩化ナトリウム水溶液を被電解水とする隔膜電解にて生成されることが好ましい。比較的高濃度の塩化ナトリウム水溶液の隔膜電解を行うと、その際に陽極側に有毒な塩素ガスが多量に発生する恐れがあるため、この多量に発生する人体に極めて有害な塩素ガスが外部に漏出しないような工夫が必要である。この実施態様のように、希薄な塩化ナトリウム水溶液を被電解水とした隔膜電解においては、有害な塩素ガスが外部に漏出しないような工夫も実施する必要もないために、簡便性、経済性、安全性等の理由から好ましい。   Moreover, it is preferable that the said reduced water used for washing | cleaning and the said acidic water used for disinfection are produced | generated by diaphragm electrolysis which uses sodium chloride aqueous solution whose density | concentration is 0.001%-0.5% as electrolyzed water. . When membrane electrolysis of a relatively high concentration sodium chloride aqueous solution is performed, a large amount of toxic chlorine gas may be generated on the anode side at that time. It is necessary to devise such that it does not leak. As in this embodiment, in diaphragm electrolysis using a dilute sodium chloride aqueous solution as electrolyzed water, since it is not necessary to implement a device that prevents harmful chlorine gas from leaking to the outside, simplicity, economy, It is preferable for reasons such as safety.

また、前記濾過工程後の前記還元水及び前記酸性水が、洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水の生成のために再利用されることが好ましい。この実施態様によると、最終的にフィルターにて濾過した廃液を再利用して隔膜電解にて還元水、酸性水を生成することで、酸性水及び還元水を効率よく使用することができるだけではなく、排液量を抑えることにより、汚染された廃液が環境に負荷を与えることを未然に防止することが可能であるため、高効率な循環型の洗浄装置を構築することができる。なお、酸性水及び還元水生成のための再利用に関しては、すすぎ液の回収や電解による次亜塩素酸生成において塩化物イオンが消費されること等により、被電解水である塩化ナトリウム水溶液中の塩化ナトリウム濃度が低下するおそれがあるために、必要に応じて隔膜電解する際に、適時塩化ナトリウムを添加してもよい。   Moreover, it is preferable that the said reduced water and the said acidic water after the said filtration process are reused for the production | generation of the said reduced water used for washing | cleaning and the said acidic water used for disinfection. According to this embodiment, it is possible not only to efficiently use the acidic water and the reduced water by reusing the waste liquid finally filtered through the filter and generating reduced water and acidic water by diaphragm electrolysis. By suppressing the amount of discharged liquid, it is possible to prevent the contaminated waste liquid from causing a load on the environment, so that a highly efficient circulation type cleaning apparatus can be constructed. In addition, regarding the reuse for the production of acidic water and reduced water, the chloride ion is consumed in the recovery of the rinsing liquid and the production of hypochlorous acid by electrolysis. Since the sodium chloride concentration may decrease, sodium chloride may be added in a timely manner when performing diaphragm electrolysis as necessary.

また、前記フィルターが、有機物を除去するフィルター、固形物を除去するフィルター及びイオン交換樹脂フィルターから選択される少なくとも1種類以上のフィルターにて構成されることが好ましい。フィルターによる濾過工程は、浄化処理後の廃液に含まれる食物残渣や細菌の残骸、光触媒材料にて分解できなかった有機物を廃液中から除去するためのものであり、廃液が通過可能な廃液流通管の内部にフィルターを設置した構成のものである。フィルターとしては、活性炭、中空糸膜、連続多孔体等の多孔質材料を用いることで、光触媒材料にて分解されなかった汚れ、油脂分等を濾過することができる。また、イオン性物質が廃液中に含まれている場合には、イオン交換樹脂フィルターを用いることで除去することができる。また、食物残渣、細菌の死骸等の固形物は、その固形物のサイズに合った濾紙等のフィルターを用いることで除去することができる。本フィルターは、必要に応じて、上記した複数種類のものを組み合わせて使用することで、廃液を良好に濾過することができ、清浄な状態にて排出することが可能となる。なお、フィルターの濾過性を向上するために、必要に応じてポリ塩化アルミニウム等の凝集剤を併用してもよい。   The filter is preferably composed of at least one filter selected from a filter that removes organic matter, a filter that removes solid matter, and an ion exchange resin filter. The filtration process with a filter is intended to remove food residues, bacterial debris, and organic substances that could not be decomposed by the photocatalyst material in the waste liquid after purification treatment from the waste liquid. It is the thing of the structure which installed the filter inside. As a filter, by using a porous material such as activated carbon, a hollow fiber membrane, or a continuous porous body, dirt, oil and fat, etc. that have not been decomposed by the photocatalyst material can be filtered. Moreover, when an ionic substance is contained in the waste liquid, it can be removed by using an ion exchange resin filter. Moreover, solid matters such as food residues and dead bodies of bacteria can be removed by using a filter such as filter paper suitable for the size of the solid matter. If necessary, the present filter can be used to combine the above-described plural kinds of waste liquids, so that the waste liquid can be filtered well and discharged in a clean state. In order to improve the filterability of the filter, an aggregating agent such as polyaluminum chloride may be used in combination as necessary.

本発明の洗浄装置によれば、洗浄、除菌のための装置を設置した設置面や装置自体を衛生的に維持することができる。   According to the cleaning apparatus of the present invention, the installation surface on which the apparatus for cleaning and sterilization is installed and the apparatus itself can be maintained hygienically.

本発明の一実施形態に係る洗浄装置の正面概略図である。It is a front schematic diagram of the washing device concerning one embodiment of the present invention. 本発明の一実施形態に係る洗浄装置の使用方法を示す正面概略図である。It is a front schematic diagram which shows the usage method of the washing | cleaning apparatus which concerns on one Embodiment of this invention. 図1の変形例の洗浄装置の正面概略図である。It is the front schematic of the washing | cleaning apparatus of the modification of FIG. 図1の変形例の洗浄装置の正面概略図である。It is the front schematic of the washing | cleaning apparatus of the modification of FIG. 本発明の他の実施形態に係る洗浄装置の正面概略図である。It is a front schematic diagram of the washing device concerning other embodiments of the present invention. 電解装置に供給された塩化ナトリウム濃度と陽極側から生成される酸性水中の次亜塩化酸濃度との関係を示すグラフである。It is a graph which shows the relationship between the sodium chloride density | concentration supplied to the electrolysis apparatus, and the hypochlorous acid density | concentration in the acidic water produced | generated from the anode side.

以下、本発明の実施形態について図面を参照しつつ詳細に説明する。本実施形態に係る洗浄装置10は、開口を有するボトルB(容器)に付着する汚れや細菌等を除去してボトルBを洗浄するものであり、図1に示すように、ボトルB内に洗浄液として還元水を供給する洗浄部6と、ボトルB内に消毒液として酸性水を供給する消毒部1と、ボトルB内にすすぎ液を供給するすすぎ部2と、ボトルB内に送風する乾燥部3と、を備えている。また、洗浄装置10は、後述する第1〜第4のノズル61,11,21,31が設置される設置面4を備えている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The cleaning apparatus 10 according to the present embodiment is for cleaning the bottle B by removing dirt, bacteria, and the like attached to the bottle B (container) having an opening, and as shown in FIG. As a cleaning unit 6 for supplying reducing water, a disinfecting unit 1 for supplying acidic water as a disinfecting liquid in the bottle B, a rinsing unit 2 for supplying a rinsing liquid into the bottle B, and a drying unit for blowing air into the bottle B 3 is provided. Moreover, the washing | cleaning apparatus 10 is provided with the installation surface 4 in which the 1st-4th nozzle 61,11,21,31 mentioned later is installed.

洗浄部6は、設置面4から上方に突出する第1のノズル61と、還元水が貯留される洗浄液貯留タンク(洗浄液供給源)62とを備えており、コンプレッサにより洗浄液貯留タンク62内に圧縮空気が送り込まれることで、洗浄液貯留タンク62内の還元水が第1のノズル61に送られるよう構成されている。第1のノズル61は、洗浄液貯留タンク62からの還元水を先端及び側面からボトルB内に噴射可能であるとともに、軸周りに360°回転可能なよう構成されている。この第1のノズル61は、ボトルB内に挿入可能な形状であればよいが、ボトルB内に噴射された還元水をボトルBの開口から排出することができるよう、ボトルBの開口よりも径が小さくなっている。設置面4には第1の規制具50が設けられており、この第1の規制具50により、第1のノズル61から噴射された還元水の液圧で上方に移動しないようボトルBの動きが規制される。第1の規制具50は、特に限定されるものではないが、例えば、棒材501及び上片材502を備え、上片材502にボトルBの底面が当接するよう構成されたものを挙げることができ、上片材502は、ネジにより棒材501に着脱可能に取り付けられ、あるいは、棒材501との連結部を支点に開くよう棒材501に取り付けられていてもよい。なお、開口を有するボトルBに直接に口をつける場合もあることから、ボトルBの開口の外周面に対しても還元水の噴射ができるように、ノズルを設けるようにしてもよい。   The cleaning unit 6 includes a first nozzle 61 that protrudes upward from the installation surface 4 and a cleaning liquid storage tank (cleaning liquid supply source) 62 in which the reduced water is stored, and is compressed into the cleaning liquid storage tank 62 by a compressor. When the air is sent in, the reducing water in the cleaning liquid storage tank 62 is sent to the first nozzle 61. The first nozzle 61 is configured to be able to inject the reducing water from the cleaning liquid storage tank 62 into the bottle B from the tip and side surfaces, and to be able to rotate 360 ° around the axis. The first nozzle 61 may have any shape that can be inserted into the bottle B. However, the first nozzle 61 is more than the opening of the bottle B so that the reducing water injected into the bottle B can be discharged from the opening of the bottle B. The diameter is small. A first restricting tool 50 is provided on the installation surface 4, and the movement of the bottle B is prevented by the first restricting tool 50 from moving upward due to the hydraulic pressure of the reducing water ejected from the first nozzle 61. Is regulated. Although the 1st control tool 50 is not specifically limited, For example, the thing provided with the bar 501 and the upper piece 502, and the bottom piece of the bottle B contact | abutted to the upper piece 502 is mentioned. The upper piece 502 may be detachably attached to the bar 501 with a screw, or may be attached to the bar 501 so as to open a connecting portion with the bar 501 as a fulcrum. In addition, since a mouth may be directly attached to the bottle B having an opening, a nozzle may be provided so that the reducing water can be injected also to the outer peripheral surface of the opening of the bottle B.

洗浄部6において噴霧される還元水の温度としては、特に限定されるものではなく、通常5℃〜30℃、好ましくは20℃〜30℃である。また、還元水の噴霧時間は、ボトルBに付着している油脂等の有機物の量により異なるが、1秒〜60秒、好ましくは1秒〜30秒、さらに好ましくは3秒〜10秒である。噴霧時間を短くすることで、還元水の廃液量を減少させることが可能となる。   The temperature of the reducing water sprayed in the cleaning unit 6 is not particularly limited, and is usually 5 ° C to 30 ° C, preferably 20 ° C to 30 ° C. Further, the spray time of the reduced water varies depending on the amount of organic matter such as fats and oils adhering to the bottle B, but is 1 second to 60 seconds, preferably 1 second to 30 seconds, more preferably 3 seconds to 10 seconds. . By shortening the spraying time, it becomes possible to reduce the amount of waste water of reduced water.

消毒部1は、設置面4から上方に突出する第2のノズル11と、酸性水が貯留される消毒液貯留タンク(消毒液供給源)12とを備えており、コンプレッサにより消毒液貯留タンク12内に圧縮空気が送り込まれることで、消毒液貯留タンク12内の酸性水が第2のノズル11に送られるよう構成されている。第2のノズル11は、消毒液貯留タンク12からの酸性水を先端及び側面からボトルB内に噴射可能であるとともに、軸周りに360°回転可能なよう構成されている。なお、開口を有するボトルBに直接に口をつける場合もあることから、ボトルBの開口の外周面に対しても酸性水の噴射ができるように、ノズルを設けるようにしてもよい。第2のノズル11及び第2の規制具51の構成については、第1のノズル61及び第1の規制具61と同様であるので説明を省略する。   The disinfecting unit 1 includes a second nozzle 11 protruding upward from the installation surface 4 and a disinfecting liquid storage tank (disinfecting liquid supply source) 12 in which acidic water is stored, and the disinfecting liquid storage tank 12 by a compressor. The acidic water in the disinfectant liquid storage tank 12 is configured to be sent to the second nozzle 11 by sending compressed air therein. The second nozzle 11 is configured to be able to inject the acidic water from the disinfectant solution storage tank 12 into the bottle B from the tip and side surfaces, and to rotate 360 ° around the axis. In addition, since a mouth may be directly attached to the bottle B having an opening, a nozzle may be provided so that acidic water can be injected also to the outer peripheral surface of the opening of the bottle B. About the structure of the 2nd nozzle 11 and the 2nd control tool 51, since it is the same as that of the 1st nozzle 61 and the 1st control tool 61, description is abbreviate | omitted.

消毒部1において噴霧される酸性水の温度としては、特に限定されるものではなく、通常5℃〜30℃、好ましくは20℃〜30℃である。また、酸性水の噴霧時間は、ボトルBに付着している細菌汚染度により異なるが、1秒〜60秒、好ましくは1秒〜30秒、さらに好ましくは3秒〜10秒である。噴霧時間を短くすることで、酸性水の廃液量を減少させることが可能となる。   The temperature of the acidic water sprayed in the disinfection unit 1 is not particularly limited, and is usually 5 ° C to 30 ° C, preferably 20 ° C to 30 ° C. Moreover, although the spray time of acidic water changes with the bacterial contamination degree adhering to the bottle B, it is 1 second-60 seconds, Preferably it is 1 second-30 seconds, More preferably, it is 3 seconds-10 seconds. By shortening the spraying time, it becomes possible to reduce the amount of waste liquid of acidic water.

すすぎ部2は、設置面4から上方に突出する第3のノズル21と、すすぎ液が貯留されるすすぎ液貯留タンク(すすぎ液供給源)22とを備えており、コンプレッサによりすすぎ液貯留タンク22内に圧縮空気が送り込まれることで、すすぎ液貯留タンク22内のすすぎ液が第3のノズル21に送られるよう構成されている。なお、ボトルBの開口の外周面に対してもすすぎ液の噴射ができるように、ノズルを設けるようにしてもよい。第3のノズル21及び第3の規制具52の構成については、第1のノズル61及び第1の規制具61と同様であるので説明を省略する。すすぎ液としては、ボトルBへの残存性がないものであれば特に限定されず、経済性を考慮すると水道水を用いることが好ましい。   The rinsing unit 2 includes a third nozzle 21 that protrudes upward from the installation surface 4 and a rinsing liquid storage tank (rinsing liquid supply source) 22 in which the rinsing liquid is stored. The rinsing liquid in the rinsing liquid storage tank 22 is sent to the third nozzle 21 by sending the compressed air into the inside. In addition, you may make it provide a nozzle so that the rinse liquid can also be injected also with respect to the outer peripheral surface of the opening of the bottle B. About the structure of the 3rd nozzle 21 and the 3rd control tool 52, since it is the same as that of the 1st nozzle 61 and the 1st control tool 61, description is abbreviate | omitted. The rinsing liquid is not particularly limited as long as it does not remain in the bottle B, and it is preferable to use tap water in consideration of economy.

乾燥部3は、設置面4から上方に突出する第4のノズル31と、気流発生手段32と、を備えている。気流発生手段32としては、第4のノズル31に向かう気流を発生させることができるものであれば特に限定されず、例えば、圧縮空気を発生させるコンプレッサや、エアポンプ、ファン等、種々のものを用いることができる。乾燥部3には、ボトルBの乾燥時間を短縮するため、気流発生手段32から第4のノズル31に送られる空気を加熱するヒーター(図示省略)が設けられていることが好ましい。なお、第4のノズル31及び第4の規制具53の構成については、第1のノズル61及び第1の規制具61と同様と同様であるので説明を省略する。   The drying unit 3 includes a fourth nozzle 31 that protrudes upward from the installation surface 4 and an airflow generation means 32. The air flow generation means 32 is not particularly limited as long as it can generate an air flow toward the fourth nozzle 31. For example, various devices such as a compressor that generates compressed air, an air pump, and a fan are used. be able to. In order to shorten the drying time of the bottle B, the drying unit 3 is preferably provided with a heater (not shown) for heating the air sent from the airflow generation means 32 to the fourth nozzle 31. Note that the configurations of the fourth nozzle 31 and the fourth restricting tool 53 are the same as those of the first nozzle 61 and the first restricting tool 61, and thus the description thereof is omitted.

設置面4は、光触媒材料で構成されている。光触媒材料は、(1)金属チタン材料又はチタン合金(チタンを主成分とする合金)材料の表面に加熱温度が750℃以上でアンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法によりチタン窒化物を形成する工程を実施した後、(2)チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程を実施した後、(3)大気雰囲気下、酸素ガスと窒素ガスを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程を実施するという表面処理方法を行うことによって形成されるものである。   The installation surface 4 is made of a photocatalytic material. The photocatalyst material is obtained by (1) heat treatment in an ammonia atmosphere and heat treatment in a nitrogen gas atmosphere at a heating temperature of 750 ° C. or higher on the surface of a titanium metal material or a titanium alloy (alloy containing titanium as a main component) material. After performing the step of forming titanium nitride by one type of processing method selected from the group consisting of: (2) by applying a voltage of 10 V or higher in an electrolyte solution that does not have an etching action on titanium. After performing the step of forming an oxide film of titanium by performing anodization, (3) 400 ° C. or higher in an atmosphere selected from an atmosphere in which oxygen gas and nitrogen gas are mixed or an oxygen gas atmosphere It is formed by performing the surface treatment method of performing the process of heat-processing at the temperature of this.

(1)チタン窒化物を形成する工程
表面処理された金属チタン材料又はチタン合金材料(以下、金属チタン材料及びチタン合金材料を単に「チタン材料」と記すこともある)の製造方法は、金属チタン材料又はチタン合金材料の表面にチタン窒化物を形成する工程を含む。本発明においてチタン合金材料を使用する場合、その種類については、特に限定されない。チタン合金材料としては、Ti−6Al−4V、Ti−4.5Al−3V−2Fe−2Mo、Ti−0.5Pd等が挙げられる。金属チタン材料とは、チタンそのものである。
(1) Step of forming titanium nitride A method for producing a surface-treated metal titanium material or titanium alloy material (hereinafter, the metal titanium material and titanium alloy material may be simply referred to as “titanium material”) Forming titanium nitride on the surface of the material or titanium alloy material. In the present invention, when a titanium alloy material is used, the type thereof is not particularly limited. Examples of the titanium alloy material include Ti-6Al-4V, Ti-4.5Al-3V-2Fe-2Mo, Ti-0.5Pd, and the like. The metal titanium material is titanium itself.

当該工程において、チタン材料の表面にチタン窒化物の層を、通常0.1μm〜100μm程度、好ましくは0.5μm〜50μm程度、更に好ましくは1μm〜10μm程度を形成する。チタン材料の表面にチタン窒化物を形成させる手段については、アンモニアガス雰囲気下での加熱処理、窒素ガス雰囲気下での加熱処理が用いられる。アンモニアガス又は窒素ガス雰囲気下での加熱処理の加熱温度は、750℃程度以上が好ましく、750℃〜1050℃程度がより好ましく、750℃〜950℃程度が更に好ましい。簡便性、経済性、安全性を考慮すると、窒素ガス雰囲気下で、通常750℃程度以上でチタン材料を加熱する方法が最も好ましい。アンモニアガス又は窒素ガス雰囲気下での加熱処理は、酸素トラップ剤の存在下で行われることが好ましい。チタン材料の加熱処理で用いられる酸素トラップ剤は、チタン材料よりも酸素に対する親和性が高い物質又は気体が挙げられる。例えば、カーボン材料、金属粉末、水素ガス等が例示される。これらの酸素トラップ剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。   In this step, a titanium nitride layer is usually formed on the surface of the titanium material to a thickness of about 0.1 μm to 100 μm, preferably about 0.5 μm to 50 μm, more preferably about 1 μm to 10 μm. As a means for forming titanium nitride on the surface of the titanium material, heat treatment in an ammonia gas atmosphere and heat treatment in a nitrogen gas atmosphere are used. The heating temperature of the heat treatment under an ammonia gas or nitrogen gas atmosphere is preferably about 750 ° C. or higher, more preferably about 750 ° C. to 1050 ° C., and further preferably about 750 ° C. to 950 ° C. Considering simplicity, economy, and safety, a method of heating the titanium material at about 750 ° C. or higher in a nitrogen gas atmosphere is most preferable. The heat treatment in an ammonia gas or nitrogen gas atmosphere is preferably performed in the presence of an oxygen trap agent. Examples of the oxygen trap agent used in the heat treatment of the titanium material include a substance or gas having a higher affinity for oxygen than the titanium material. For example, a carbon material, metal powder, hydrogen gas, etc. are illustrated. These oxygen trap agents may be used individually by 1 type, and may be used in combination of 2 or more type.

カーボン材料としては、特に制限されず、例えば黒鉛質系カーボン、非晶質カーボン、これらの中間的結晶構造を持つカーボン等が挙げられる。カーボン材料は、平板状、箔状、粉末状等如何なる形状のものでもよい。取扱い性やチタン材料の加熱処理中の熱歪を防止できるという理由から、平板状のカーボン材料を使用することが好ましい。   The carbon material is not particularly limited, and examples thereof include graphitic carbon, amorphous carbon, and carbon having an intermediate crystal structure. The carbon material may have any shape such as a flat plate shape, a foil shape, and a powder shape. It is preferable to use a flat carbon material because it is easy to handle and prevents thermal distortion during the heat treatment of the titanium material.

金属粉末としては、特に制限されず、例えばチタン、チタン合金、クロム、クロム合金、モリブデン、モリブデン合金、バナジウム、バナジウム合金、タンタル、タンタル合金、ジルコニウム、ジルコニウム、ジルコニウム合金、シリコン、シリコン合金、アルミニウム、アルミニウム合金等の金属粉末が挙げられる。酸素親和性が高いという理由から、チタン、チタン合金、クロム、クロム合金、ジルコニウム、ジルコニウム合金、アルミニウム、アルミニウム合金等の金属粉末を使用することが好ましい。最も好ましい金属粉末は、微粒子状のチタン、チタン合金の金属粉末である。前記金属粉末を1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。金属粉末の平均粒子径は、好ましくは0.1μm〜1000μm程度であり、より好ましくは0.1μm〜100μm程度であり、更に好ましくは0.1〜10μm程度である。   The metal powder is not particularly limited. For example, titanium, titanium alloy, chromium, chromium alloy, molybdenum, molybdenum alloy, vanadium, vanadium alloy, tantalum, tantalum alloy, zirconium, zirconium, zirconium alloy, silicon, silicon alloy, aluminum, Examples thereof include metal powders such as aluminum alloys. For reasons of high oxygen affinity, it is preferable to use metal powder such as titanium, titanium alloy, chromium, chromium alloy, zirconium, zirconium alloy, aluminum, aluminum alloy. The most preferable metal powder is fine particle titanium or titanium alloy metal powder. The said metal powder may be used individually by 1 type, and may be used in combination of 2 or more type. The average particle diameter of the metal powder is preferably about 0.1 μm to 1000 μm, more preferably about 0.1 μm to 100 μm, and still more preferably about 0.1 to 10 μm.

アンモニアガス又は窒素ガス雰囲気中での酸素トラップ剤を使用する条件を、酸素トラップ剤の種類や形状に応じて適時設定することができる。例えば、酸素トラップ剤としてカーボン材料や金属粉末を使用する場合であれば、チタン材料にカーボン材料や金属粉末を接触させ、チタン材料の表面をカーボン材料や金属粉末で覆い、チタン材料をアンモニアガス又は窒素ガス雰囲気中で加熱処理する方法が挙げられる。また酸素トラップ剤として水素ガスを使用する場合であれば、アンモニアガス、窒素ガス雰囲気下に水素ガスを導入した状態で、チタン材料を加熱処理する方法が挙げられる。   Conditions for using the oxygen trap agent in an ammonia gas or nitrogen gas atmosphere can be set in a timely manner according to the type and shape of the oxygen trap agent. For example, when a carbon material or metal powder is used as an oxygen trap agent, the carbon material or metal powder is brought into contact with the titanium material, the surface of the titanium material is covered with the carbon material or metal powder, and the titanium material is covered with ammonia gas or The method of heat-processing in nitrogen gas atmosphere is mentioned. In the case where hydrogen gas is used as the oxygen trap agent, there is a method in which the titanium material is heat-treated in a state where hydrogen gas is introduced in an atmosphere of ammonia gas or nitrogen gas.

アンモニアガス、窒素ガス、又はアンモニアガス及び窒素ガスの混合ガス雰囲気下で加熱処理を行うことができる。簡便性、経済性、安全性を考慮すると、窒素ガスを用いるのが最も好ましい。   Heat treatment can be performed in an atmosphere of ammonia gas, nitrogen gas, or a mixed gas of ammonia gas and nitrogen gas. Considering simplicity, economy and safety, it is most preferable to use nitrogen gas.

アンモニアガス又は窒素ガス雰囲気下での加熱処理の反応気圧としては、0.01MPa〜100MPa程度、好ましくは0.1MPa〜10MPa程度、更に好ましくは0.1MPa〜1MPa程度である。窒素ガス雰囲気下での加熱処理が好ましい。   The reaction pressure of the heat treatment in an ammonia gas or nitrogen gas atmosphere is about 0.01 MPa to 100 MPa, preferably about 0.1 MPa to 10 MPa, and more preferably about 0.1 MPa to 1 MPa. Heat treatment in a nitrogen gas atmosphere is preferable.

アンモニアガス又は窒素ガス雰囲気下での加熱処理の加熱時間は、1分〜12時間程度が好ましく、10分〜8時間程度がより好ましく、1時間〜6時間程度が更に好ましい。この時間で、チタン材料を加熱処理することが好ましい。   The heating time of the heat treatment under an ammonia gas or nitrogen gas atmosphere is preferably about 1 minute to 12 hours, more preferably about 10 minutes to 8 hours, and further preferably about 1 hour to 6 hours. It is preferable to heat-treat the titanium material for this time.

チタン材料をアンモニアガス又は窒素ガス雰囲気下で加熱処理する方法では、チタン材料の表面にチタン窒化物を効率よく形成するために、ロータリー式真空ポンプや必要に応じてメカニカルブースターポンプ、油拡散ポンプを用いて加熱処理する炉内を減圧し、加熱処理する炉内(窒化炉内)に残留する酸素濃度を減少させておくことが好ましい。加熱処理する炉内の真空度を、好ましくは10Pa程度以下、より好ましくは1Pa程度以下、更に好ましくは0.1Pa程度以下まで減圧することで、チタン材料表面にチタン窒化物を効率よく形成できる。   In the method of heat-treating titanium material in an atmosphere of ammonia gas or nitrogen gas, in order to efficiently form titanium nitride on the surface of the titanium material, a rotary vacuum pump, mechanical booster pump, or oil diffusion pump is used as necessary. It is preferable that the inside of the furnace to be heat-treated is depressurized to reduce the oxygen concentration remaining in the furnace to be heat-treated (inside the nitriding furnace). Titanium nitride can be efficiently formed on the surface of the titanium material by reducing the pressure in the furnace for heat treatment to about 10 Pa or less, more preferably about 1 Pa or less, and even more preferably about 0.1 Pa or less.

前記減圧された炉内に、アンモニアガス、窒素ガス又はアンモニアガス及び窒素ガスの混合ガスを炉内に供給して、炉内を復圧し、チタン材料を加熱処理することにより、チタン材料の表面にチタン窒化物を効率よく形成できる。本炉を用いた加熱処理の加熱温度、加熱時間等については、前記した条件と同じ条件でよい。ガス組成としては、簡便性、経済性、安全性を考慮すると、窒素ガスを用いることが最も好ましい。   By supplying ammonia gas, nitrogen gas or a mixed gas of ammonia gas and nitrogen gas into the furnace in the decompressed furnace, the inside of the furnace is decompressed, and the titanium material is heat-treated, so that the surface of the titanium material is heated. Titanium nitride can be formed efficiently. About the heating temperature, heating time, etc. of the heat treatment using the main furnace, the same conditions as described above may be used. As the gas composition, it is most preferable to use nitrogen gas in consideration of simplicity, economy, and safety.

また、加熱処理する炉内に残留する酸素濃度を減少させる減圧処理と、窒素ガス等を炉内に供給する復圧処理とを、交互に繰り返すこと(数回)で、チタン材料の表面にチタン窒化物をより効率良く形成できる。更に、酸素トラップ剤の存在下で減圧処理、アンモニアガス、窒素ガス等のガス雰囲気下での加熱処理を行うことにより、チタン材料の表面にチタン窒化物をより効率良く形成できる。   In addition, by alternately repeating (several times) a decompression process for reducing the oxygen concentration remaining in the furnace to be heat-treated and a return pressure process for supplying nitrogen gas or the like into the furnace, the surface of the titanium material is made of titanium. Nitride can be formed more efficiently. Furthermore, titanium nitride can be more efficiently formed on the surface of the titanium material by performing pressure reduction treatment in the presence of an oxygen trap agent and heat treatment in a gas atmosphere such as ammonia gas or nitrogen gas.

チタン材料の表面に形成されるチタン窒化物の種類については、特に制限されない。例えば、TiN、Ti2N、α−TiN0.3、η−Ti3N2-X、ζ−Ti4N3-X(但し、Xは0以上3未満の数値を示す)、これらの混在物、及びアモルファス状チタン窒化物等が挙げられる。これらの中で好ましくは、TiN、Ti2N、及びこれらの混在物、更に好ましくはTiN、及びTiNとTi2Nの混在物、特に好ましくはTiNが例示される。 The type of titanium nitride formed on the surface of the titanium material is not particularly limited. For example, TiN, Ti 2 N, α-TiN 0.3 , η-Ti 3 N 2-X , ζ-Ti 4 N 3-X (where X represents a numerical value of 0 or more and less than 3), a mixture thereof, And amorphous titanium nitride. Among these, TiN, Ti 2 N, and a mixture thereof, more preferably TiN, and a mixture of TiN and Ti 2 N, particularly preferably TiN are exemplified.

本発明では、上記チタン窒化物を形成する手段として、上記方法の内、1つの方法を単独で行ってもよく、また2種以上の方法を任意に組み合わせて行ってもよい。上記チタン窒化物を形成する方法の中で、簡便性、量産性、或いは製造コスト等の観点から、好ましくは、窒素ガス雰囲気下でのチタン材料の加熱処理である。   In the present invention, as a means for forming the titanium nitride, one of the above methods may be performed alone, or two or more methods may be arbitrarily combined. Among the methods for forming titanium nitride, from the viewpoints of simplicity, mass productivity, production cost, etc., heat treatment of the titanium material in a nitrogen gas atmosphere is preferable.

(2)陽極酸化を行う工程
表面処理された金属チタン材料又はチタン合金材料の製造方法は、表面にチタン窒化物が形成された金属チタン材料又はチタン合金材料を、チタンに対してエッチング作用を有しない無機酸及び有機酸よりなる群から選択される少なくとも1種の酸やこれらの塩化合物を含有する電解液中で、陽極酸化を行い、チタンの酸化皮膜を形成する工程を含む。
(2) Step of anodizing The method for producing a surface-treated metal titanium material or titanium alloy material has an etching action on titanium with a metal titanium material or titanium alloy material having titanium nitride formed on the surface. A step of forming an oxide film of titanium by performing anodic oxidation in an electrolytic solution containing at least one acid selected from the group consisting of inorganic acids and organic acids and salt compounds thereof.

表面にチタン窒化物が形成されたチタン材料を、チタンにエッチング性を有しない電解液中で、10V以上の電圧にて陽極酸化を行うことにより、チタン材料の表面に非晶質(アモルファス)なチタンの酸化皮膜を形成することができる。   A titanium material with titanium nitride formed on the surface is anodized at an electric voltage of 10 V or more in an electrolyte solution that does not have an etching property to titanium, so that the surface of the titanium material is amorphous. An oxide film of titanium can be formed.

チタンに対してエッチング作用を有しない電解液としては、無機酸、有機酸及びこれらの塩よりなる群から選択される少なくとも1種の化合物(以下無機酸等とも記す)を含有する電解液であることが好ましい。前記無機酸等を含有する電解液は、リン酸、リン酸塩等の希薄な水溶液であることが好ましい。   The electrolytic solution having no etching action on titanium is an electrolytic solution containing at least one compound selected from the group consisting of inorganic acids, organic acids and salts thereof (hereinafter also referred to as inorganic acids). It is preferable. The electrolytic solution containing the inorganic acid or the like is preferably a dilute aqueous solution such as phosphoric acid or phosphate.

本発明の陽極酸化を行う工程だけでは、通常、アナターゼ型酸化チタン等の結晶性酸化チタンは形成されない。次工程の加熱処理では、非晶質な酸化チタンからアナターゼ型酸化チタンを形成することができる。そのため、チタン材料の表面に非晶質なチタンの酸化皮膜が効果的に形成されるという理由から、表面にチタン窒化物が形成されたチタン材料を陽極酸化することが好ましい。   Usually, crystalline titanium oxide such as anatase-type titanium oxide is not formed only by the step of performing the anodic oxidation of the present invention. In the next heat treatment, anatase-type titanium oxide can be formed from amorphous titanium oxide. Therefore, for the reason that an amorphous titanium oxide film is effectively formed on the surface of the titanium material, it is preferable to anodize the titanium material having titanium nitride formed on the surface.

上述のチタン窒化物を形成する工程と後述する加熱処理を行う工程との間に、陽極酸化を行う工程を経ることで、低コストにて、安全な手法で高活性な光触媒材料を作製することができる。   A highly active photocatalytic material is produced at a low cost and in a safe manner by performing an anodizing step between the above-described titanium nitride forming step and a heat treatment step described later. Can do.

本発明の陽極酸化を行う工程は、チタンに対してエッチング作用を有する硫酸等の強酸を用いないので、安全性が高い。本発明の陽極酸化を行う工程は、火花放電現象に伴うチタンに対するエッチングを行わないことから、高電圧及び高電流を必要としない。そのため、高電流・高電圧を付与する高額な電源装置や高電流・高電圧に伴う高電力を必要としないので、経済性が高い。   Since the step of anodizing according to the present invention does not use a strong acid such as sulfuric acid having an etching action on titanium, safety is high. The step of anodizing according to the present invention does not require etching with respect to titanium accompanying the spark discharge phenomenon, and therefore does not require a high voltage and a high current. Therefore, an expensive power supply device that applies high current and high voltage and high power associated with high current and high voltage are not required, which is economical.

陽極酸化では、簡便性、経済性、安全性等を考慮し、チタンに対してエッチング作用を有しない電解液を用いることが好ましい。チタンに対してエッチング作用を有しない電解液としては、無機酸(リン酸等)、有機酸及びこれらの塩(リン酸塩等)よりなる群から選択される少なくとも1種の化合物(無機酸等)を含有する電解液であることが好ましい。   In anodic oxidation, it is preferable to use an electrolytic solution that does not have an etching action on titanium in consideration of simplicity, economy, safety, and the like. As an electrolytic solution having no etching action on titanium, at least one compound (inorganic acid, etc.) selected from the group consisting of inorganic acids (phosphoric acid, etc.), organic acids and salts thereof (phosphates, etc.) ) Is preferable.

チタンに対してエッチング作用を有しない無機酸としては、簡便性、経済性、安全性等を考慮し、リン酸、炭酸等が好ましい。チタンに対してエッチング作用を有しない有機酸としては、酢酸、アジピン酸、乳酸等が好ましい。またこれらの酸の塩である、リン酸二水素ナトリウム、リン酸水素二ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、アジピン酸カリウム、乳酸ナトリウム等を用いることもできる。   As an inorganic acid that does not have an etching action on titanium, phosphoric acid, carbonic acid, and the like are preferable in consideration of convenience, economy, safety, and the like. As the organic acid having no etching action on titanium, acetic acid, adipic acid, lactic acid and the like are preferable. Further, salts of these acids such as sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium hydrogen carbonate, sodium acetate, potassium adipate, sodium lactate and the like can also be used.

その他、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸カルシウム等の電解質を含有する電解液を用いることが好ましい。前記無機酸等としては、リン酸及びリン酸塩が最も好ましい。   In addition, it is preferable to use an electrolytic solution containing an electrolyte such as sodium sulfate, potassium sulfate, magnesium sulfate, sodium nitrate, potassium nitrate, magnesium nitrate, or calcium nitrate. As the inorganic acid, phosphoric acid and phosphate are most preferable.

電解液は、無機酸等の希薄な水溶液であることが好ましい。電解液中の無機酸等の濃度は、経済性等の理由から、1重量%程度の範囲であることが好ましい。例えば、リン酸が含まれる電解液では、0.01重量%〜10重量%程度の濃度範囲が好ましく、0.1重量%〜10重量%程度の濃度範囲がより好ましく、1重量%〜3重量%程度の濃度範囲が更に好ましい。   The electrolytic solution is preferably a dilute aqueous solution such as an inorganic acid. The concentration of the inorganic acid or the like in the electrolytic solution is preferably in the range of about 1% by weight for reasons such as economy. For example, in an electrolytic solution containing phosphoric acid, a concentration range of about 0.01 wt% to 10 wt% is preferable, a concentration range of about 0.1 wt% to 10 wt% is more preferable, and 1 wt% to 3 wt%. A concentration range of about% is more preferable.

これらの酸は、1種単独で使用してもよく、また有機酸、無機酸、もしくはこれらの塩を問わず、これらの酸を2種以上任意に組み合わせて使用してもよい。2種以上の酸や塩を含有する電解液の好ましい態様の一例として、リン酸塩及びリン酸を含有する水溶液が挙げられる。当該電解液における上記酸の配合割合については、使用する酸及び酸の塩の種類、陽極酸化条件等によって異なるが、通常、上記酸の総量で0.01重量%〜10重量%、好ましくは0.1重量%〜10重量%、更に好ましくは1重量%〜3重量%となる割合を挙げることができる。   These acids may be used alone or in combination of any two or more of these acids, regardless of whether they are organic acids, inorganic acids, or salts thereof. As an example of the preferable aspect of the electrolyte solution containing 2 or more types of acids and salts, the aqueous solution containing a phosphate and phosphoric acid is mentioned. The mixing ratio of the acid in the electrolytic solution varies depending on the type of acid and acid salt used, anodization conditions, and the like, but is generally 0.01% to 10% by weight, preferably 0, in terms of the total amount of the acid. A ratio of 1 wt% to 10 wt%, more preferably 1 wt% to 3 wt% can be mentioned.

本発明の陽極酸化を行う工程では、チタンに対してエッチング作用を有しない無機酸等を含有する電解液を用いることから、本発明の陽極酸化を行う工程は、危険性が低いと共に、特開2011−200406号公報に開示されている火花放電現象を伴う陽極酸化と比較して、高電流を必要としない。また、本発明の陽極酸化を行う工程は、火花放電現象に伴う陽極酸化と比較して、陽極酸化に用いる電解浴の温度上昇を抑えることができるので、電解液の冷却に使用する費用を抑えることが可能である。そのため、火花放電現象を伴う陽極酸化処理と比較して、本発明の陽極酸化を行う工程は、大面積を材料の処理も可能であり、経済性、安全性、量産性等に有利である。   In the step of anodizing according to the present invention, an electrolytic solution containing an inorganic acid or the like that does not have an etching action on titanium is used. Compared with the anodic oxidation accompanied by the spark discharge phenomenon disclosed in 2011-200406, a high current is not required. In addition, since the step of anodizing according to the present invention can suppress an increase in the temperature of the electrolytic bath used for anodizing, compared with anodizing associated with the spark discharge phenomenon, the cost for cooling the electrolytic solution can be suppressed. It is possible. Therefore, as compared with the anodizing process accompanied by the spark discharge phenomenon, the process of anodizing according to the present invention can process a material over a large area, which is advantageous in terms of economy, safety, mass productivity, and the like.

チタンに対してエッチング作用を有しない無機酸等を含有する希薄な電解液中に、前記チタン窒化物を形成する工程で得られた表面にチタン窒化物が形成されたチタン材料を浸漬する。次いで、好ましくは10V〜300V程度の電圧を印加することにより陽極酸化を行う。50V〜300V程度の電圧で陽極酸化を行うことがより好ましく、50V〜200V程度の電圧で陽極酸化を行うことが更に好ましい。   A titanium material in which titanium nitride is formed is immersed in a dilute electrolytic solution containing an inorganic acid or the like that does not have an etching action on titanium on the surface obtained in the step of forming titanium nitride. Next, anodization is preferably performed by applying a voltage of about 10V to 300V. It is more preferable to perform anodization at a voltage of about 50V to 300V, and it is even more preferable to perform anodization at a voltage of about 50V to 200V.

陽極酸化の処理温度は、簡便性、経済性、安全性等の理由から、0℃〜80℃程度が好まし。10℃〜50℃程度の温度で陽極酸化を行うことがより好ましく、20℃〜30℃程度の温度で陽極酸化を行うことが更に好ましい。   The treatment temperature for anodization is preferably about 0 ° C. to 80 ° C. for reasons such as simplicity, economy and safety. It is more preferable to perform anodization at a temperature of about 10 ° C to 50 ° C, and it is more preferable to perform anodization at a temperature of about 20 ° C to 30 ° C.

陽極酸化の処理時間は、1秒〜1時間程度が好ましい。10秒〜30分程度の時間で陽極酸化を行うことがより好ましく、5分〜20分程度の時間で陽極酸化を行うことが更に好ましい。火花放電が発生しない陽極酸化処理は、処理時間が短く経済性が高いことから、好ましい陽極酸化処理である。   The treatment time for anodization is preferably about 1 second to 1 hour. It is more preferable to perform anodization in a time of about 10 seconds to 30 minutes, and it is further preferable to perform anodization in a time of about 5 minutes to 20 minutes. Anodizing treatment that does not generate spark discharge is a preferred anodizing treatment because the treatment time is short and the cost is high.

(3)加熱処理を行う工程
表面処理された金属チタン材料又はチタン合金材料の製造方法は、表面にチタンの酸化皮膜が形成された金属チタン材料又はチタン合金材料を、大気雰囲気下、酸素ガスと窒素ガスを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程を含む。
(3) Step of performing heat treatment The method for producing a surface-treated metal titanium material or titanium alloy material is obtained by combining a metal titanium material or titanium alloy material having a titanium oxide film formed on the surface thereof with oxygen gas in an air atmosphere. A step of performing a heat treatment at a temperature of 400 ° C. or higher in an atmosphere selected from an atmosphere in which nitrogen gas is mixed or an oxygen gas atmosphere.

金属チタン材料等を単に加熱処理するだけでは、光触媒活性の乏しいルチル型酸化チタンは形成されるが、高い光触媒活性を示すアナターゼ型酸化チタンは形成されない。本発明では、チタンの酸化皮膜(非晶質な酸化チタン膜)が形成されたチタン材料(陽極酸化処理後のチタン材料)を、酸化性雰囲気中で加熱処理(大気酸化処理等)することにより、結晶性の酸化チタンにおいて高活性光触媒に有用なアナターゼ型酸化チタン皮膜を形成することができるので、加熱処理後のチタン材料は、光触媒活性に優れる。   By simply heat-treating a metal titanium material or the like, rutile type titanium oxide having poor photocatalytic activity is formed, but anatase type titanium oxide having high photocatalytic activity is not formed. In the present invention, a titanium material (titanium material after anodizing treatment) on which a titanium oxide film (amorphous titanium oxide film) is formed is heated in an oxidizing atmosphere (such as atmospheric oxidation treatment). Since anatase-type titanium oxide film useful for a highly active photocatalyst can be formed in crystalline titanium oxide, the titanium material after the heat treatment is excellent in photocatalytic activity.

加熱処理を行う酸化性雰囲気として、大気酸化雰囲気、酸素ガスと窒素ガスとを混合させた任意な酸素ガス濃度の雰囲気、酸素ガス雰囲気等から選択されたものであればよいが、簡便性、経済性、安全性等という理由から、大気酸化雰囲気化での加熱処理が好ましい。   The oxidizing atmosphere for performing the heat treatment may be selected from an atmospheric oxidizing atmosphere, an atmosphere having an arbitrary oxygen gas concentration in which oxygen gas and nitrogen gas are mixed, an oxygen gas atmosphere, and the like. Heat treatment in an atmospheric oxidation atmosphere is preferable for reasons such as safety and safety.

酸化性雰囲気中で加熱処理の温度は、非晶質な酸化チタンからアナターゼ型酸化チタンに効率よく変化するという理由から、400℃程度以上が好ましい。酸化性雰囲気中で加熱処理の温度は、アナターゼ型酸化チタンからルチル型酸化チタンに相転移しないようにする理由から、800℃程度以下が好ましい。アナターゼ型酸化チタンに比べて、ルチル型酸化チタンは、光触媒特性が乏しいからである。酸化性雰囲気中で加熱処理の温度は、400〜700℃程度が特に好ましい。   The temperature of the heat treatment in an oxidizing atmosphere is preferably about 400 ° C. or higher because it efficiently changes from amorphous titanium oxide to anatase titanium oxide. The temperature of the heat treatment in an oxidizing atmosphere is preferably about 800 ° C. or lower for the purpose of preventing phase transition from anatase-type titanium oxide to rutile-type titanium oxide. This is because rutile type titanium oxide has poor photocatalytic properties as compared with anatase type titanium oxide. The temperature of heat treatment in an oxidizing atmosphere is particularly preferably about 400 to 700 ° C.

加熱処理を行う反応気圧としては、0.01MPa〜10MPa程度、好ましくは0.01MPa〜5MPa程度、更に好ましくは0.1MPa〜1MPa程度である。加熱処理を行う加熱時間は、1分〜12時間程度が好ましく、10分〜8時間程度がより好ましく、1時間〜6時間程度が更に好ましい。   The reaction pressure for performing the heat treatment is about 0.01 MPa to 10 MPa, preferably about 0.01 MPa to 5 MPa, and more preferably about 0.1 MPa to 1 MPa. The heating time for performing the heat treatment is preferably about 1 minute to 12 hours, more preferably about 10 minutes to 8 hours, and further preferably about 1 hour to 6 hours.

このような光触媒材料で設置面4を構成することで、超親水性を発揮させる光触媒機能化を設置面4に施すことが可能であるので、ボトルBから排出された還元水、酸性水及びすすぎ液の液滴が設置面4に残りにくく、設置面4を清潔に保つことができる。また、光触媒材料による抗菌作用があることからも、設置面4を清潔に保つことができる。   By configuring the installation surface 4 with such a photocatalyst material, it is possible to provide the installation surface 4 with a photocatalyst function that exhibits super-hydrophilicity. Therefore, the reduced water, acidic water, and rinse discharged from the bottle B Liquid droplets are unlikely to remain on the installation surface 4, and the installation surface 4 can be kept clean. Moreover, since the antibacterial action by the photocatalytic material is present, the installation surface 4 can be kept clean.

また、近紫外線又は紫外線を光照射するランプや蛍光灯などの光照射手段14を用いて、設置面4の光触媒材料に光照射することが好ましい。光触媒材料が光照射されることにより、高い酸化力を有する活性酸素であるOHラジカル等が発生する。このOHラジカルは、消毒や殺菌に広く用いている過酸化水素やオゾン等より遥かに強い殺菌力を有しているために、ボトルBに付着する細菌の殺菌することができるために、装置を衛生的に維持することができる。なお、光照射手段14の形状や設置位置は、設置面4に光照射が可能であれば特に限定されるものではないが、光触媒の反応性を向上させるために、近紫外線又は紫外線を放射するランプや蛍光灯などは、設置面4から近い位置に設けられることが好ましい。   Moreover, it is preferable to irradiate the photocatalyst material of the installation surface 4 with light using light irradiation means 14 such as a lamp or a fluorescent lamp that irradiates near ultraviolet rays or ultraviolet rays. When the photocatalyst material is irradiated with light, OH radicals or the like which are active oxygen having high oxidizing power are generated. Since this OH radical has a sterilizing power far stronger than hydrogen peroxide and ozone widely used for disinfection and sterilization, bacteria attached to the bottle B can be sterilized. It can be kept hygienic. The shape and the installation position of the light irradiation means 14 are not particularly limited as long as the installation surface 4 can be irradiated with light, but near ultraviolet rays or ultraviolet rays are emitted in order to improve the reactivity of the photocatalyst. The lamp, the fluorescent lamp, and the like are preferably provided at a position close to the installation surface 4.

なお、上述した特開2011−200406号公報には、光触媒材料を作製するために、金属チタンの表面にチタン窒化物を形成させた後、金属チタンに対してエッチング性を有する酸を含有する電解液中にて火花放電発生電圧以上の電圧を印加することによる陽極酸化を行うことにより、金属チタン表面にアナターゼ型酸化チタンを形成させる技術が提案されている。しかし、この技術では、耐食性の極めて高い金属チタンをエッチングするには、硫酸等の危険な強酸を使用することが必要である。また、火花放電発生電圧以上の電圧での陽極酸化においては、高電圧、高電流の出力が可能な高額の電源を必要とする。また、火花放電発生に伴う電解液の発熱を抑制させるための冷却装置を必要とし、光触媒を作製するにはコスト高となるという問題点があった。本発明における光触媒材料の作成方法では、上記した問題を解決できるという効果を奏する。   In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 2011-200406, in order to produce a photocatalytic material, after forming titanium nitride on the surface of metal titanium, electrolysis containing an acid having an etching property with respect to metal titanium. There has been proposed a technique for forming anatase-type titanium oxide on the surface of titanium metal by performing anodization by applying a voltage higher than the spark discharge generation voltage in the liquid. However, in this technique, it is necessary to use a dangerous strong acid such as sulfuric acid in order to etch metal titanium having extremely high corrosion resistance. In addition, in anodizing at a voltage higher than the spark discharge generation voltage, an expensive power source capable of outputting high voltage and high current is required. In addition, a cooling device for suppressing the heat generation of the electrolytic solution due to the occurrence of spark discharge is required, and there is a problem that the cost is high for producing the photocatalyst. The method for producing a photocatalytic material in the present invention has an effect that the above-described problems can be solved.

上記した還元水及び酸性水は、例えば、次のような方法で生成することができる。すなわち、陰イオン又は陽イオンを透過させるイオン透過膜を介して陽極板及び陰極板を設けた電解槽において塩化ナトリウム水溶液を隔膜電解させることにより、陰極側で還元水が生成されると同時に、陽極側では殺菌消毒性を有する酸性水が生成される。なお、この電解槽中の塩化ナトリウム水溶液としては、その濃度が0.001〜0.5%、好ましくは0.01〜0.5%、さらに好ましくは0.01〜0.2%という希薄な塩化ナトリウム水溶液を用いることができる。これにより、環境負荷が少なく人体に影響を与えない希薄な還元水および酸性水が生成される。なお、この還元水は、pH10.25〜12.00且つORP(酸化還元電位)が−121mV〜−858mV程度であり、また、酸性水は、pH2.10〜3.50且つORP(酸化還元電位)が+746mV〜+1171mV程度である。本実施形態では、電解水製造装置9にて、上記した希薄な還元水及び酸性水が生成され、それぞれ洗浄液貯留タンク(洗浄液供給源)62および消毒液貯留タンク(消毒液供給源)12に供給される。   The above-described reduced water and acidic water can be generated, for example, by the following method. That is, reducing water is generated on the cathode side simultaneously with an aqueous solution of sodium chloride in an electrolytic cell provided with an anode plate and a cathode plate through an ion permeable membrane that transmits anions or cations. On the side, acid water having sterilization and disinfection is generated. The aqueous sodium chloride solution in this electrolytic cell has a dilute concentration of 0.001 to 0.5%, preferably 0.01 to 0.5%, more preferably 0.01 to 0.2%. An aqueous sodium chloride solution can be used. As a result, dilute reduced water and acidic water are generated that have little environmental impact and do not affect the human body. The reduced water has a pH of 10.25 to 12.00 and an ORP (redox potential) of about −121 mV to −858 mV, and the acidic water has a pH of 2.10 to 3.50 and an ORP (redox potential). ) Is about +746 mV to +1171 mV. In the present embodiment, the above-described diluted reduced water and acidic water are generated in the electrolyzed water production apparatus 9 and supplied to the cleaning liquid storage tank (cleaning liquid supply source) 62 and the disinfecting liquid storage tank (disinfecting liquid supply source) 12, respectively. Is done.

次に上述したような洗浄装置10の使用方法について図1及び図2を参照しつつ説明する。   Next, a method of using the cleaning apparatus 10 as described above will be described with reference to FIGS.

まず、図2に示すように、空のボトルBの開口を下に向け、この開口からボトルB内に洗浄部6の第1のノズル61を挿入し、ボトルBが第1のノズル61から外れないよう、第1の規制具50の上片材502をボトルBの上方に配置する(図2(a))。この状態で、洗浄液貯留タンク62内にコンプレッサで圧縮空気を供給し、洗浄液貯留タンク62内の還元水を第1のノズル50の先端及び側面からボトルB内に噴射させる。このとき、第1のノズル61は、ボトルB内にまんべんなく還元水が行き渡るよう軸周りに360°回転する。還元水を所定時間、ボトルB内に噴射させた後、洗浄液貯留タンク62内への圧縮空気の供給を停止し、第1のノズル61からの還元水の噴射を停止させる。   First, as shown in FIG. 2, the opening of the empty bottle B is directed downward, the first nozzle 61 of the cleaning unit 6 is inserted into the bottle B from this opening, and the bottle B comes off from the first nozzle 61. The upper piece member 502 of the first restricting tool 50 is disposed above the bottle B so as not to be present (FIG. 2A). In this state, compressed air is supplied to the cleaning liquid storage tank 62 by a compressor, and the reducing water in the cleaning liquid storage tank 62 is injected into the bottle B from the tip and side surfaces of the first nozzle 50. At this time, the 1st nozzle 61 rotates 360 degrees around an axis | shaft so that reduced water may spread evenly in the bottle B. After reducing water is injected into the bottle B for a predetermined time, the supply of compressed air into the cleaning liquid storage tank 62 is stopped, and the injection of reducing water from the first nozzle 61 is stopped.

次に、第1の規制具50及び第1のノズル61からボトルBを取り外して消毒部1へと移動させる(図2(b))。そして、ボトルB内に消毒部1の第2のノズル11を挿入し、第2のノズル11から外れないよう、第2の規制具51の上片材512をボトルBの上方に配置する(図2(b))。この状態で、消毒液貯留タンク12内にコンプレッサで圧縮空気を供給し、消毒液貯留タンク12内の酸性水を第2のノズル11の先端及び側面からボトルB内に噴射させる。このとき、第2のノズル11は、ボトルB内にまんべんなく酸性水が行き渡るよう軸周りに360°回転する。酸性水を所定時間、ボトルB内に噴射させた後、消毒液貯留タンク12内への圧縮空気の供給を停止し、第2のノズル11からの消毒液の噴射を停止させる。   Next, the bottle B is removed from the first restricting tool 50 and the first nozzle 61 and moved to the disinfection unit 1 (FIG. 2B). And the 2nd nozzle 11 of the disinfection part 1 is inserted in the bottle B, and the upper piece material 512 of the 2nd control tool 51 is arrange | positioned above the bottle B so that it may not remove | deviate from the 2nd nozzle 11 (FIG. 2 (b)). In this state, compressed air is supplied into the disinfecting liquid storage tank 12 by a compressor, and acidic water in the disinfecting liquid storage tank 12 is injected into the bottle B from the tip and side surfaces of the second nozzle 11. At this time, the second nozzle 11 rotates 360 ° around the axis so that the acidic water is evenly distributed in the bottle B. After the acidic water is sprayed into the bottle B for a predetermined time, the supply of compressed air into the disinfecting liquid storage tank 12 is stopped, and the disinfecting liquid injection from the second nozzle 11 is stopped.

次に、第2の規制具51及び第2のノズル11からボトルBを取り外してすすぎ部2へと移動させる(図2(c))。そして、ボトルB内に第3のノズル21を挿入するとともに第3の規制具52をセットし、すすぎ液貯留タンク22内にコンプレッサで圧縮空気を供給することにより、すすぎ液貯留タンク22内のすすぎ液を第3のノズル21の先端及び側面からボトルB内に噴射させる。このとき、第3のノズル21は、ボトルB内にまんべんなくすすぎ液が行き渡るよう軸周りに360°回転する。すすぎ液の温度は、特に限定されるものではなく、ボトルBの材質にもよるが、通常5〜80℃、好ましくは20〜30℃である。なお、すすぎ液の温度が高い程、次工程の乾燥時間の短縮が図れる。約1秒〜60秒の間、ボトルB内にすすぎ液を噴射させた後、すすぎ液貯留タンク22内への圧縮空気の供給を停止し、第3のノズル21からのすすぎ液の噴射を停止させる。   Next, the bottle B is removed from the second restricting tool 51 and the second nozzle 11 and moved to the rinsing section 2 (FIG. 2C). Then, the third nozzle 21 is inserted into the bottle B and the third restrictor 52 is set, and the compressed air is supplied into the rinse liquid storage tank 22 by a compressor, thereby rinsing the rinse liquid storage tank 22. The liquid is sprayed into the bottle B from the tip and side surfaces of the third nozzle 21. At this time, the third nozzle 21 rotates 360 ° around the axis so that the rinsing liquid is evenly distributed in the bottle B. The temperature of the rinsing liquid is not particularly limited, and is usually 5 to 80 ° C., preferably 20 to 30 ° C., although it depends on the material of the bottle B. The higher the temperature of the rinsing liquid, the shorter the drying time for the next step. After the rinsing liquid is injected into the bottle B for about 1 second to 60 seconds, the supply of the compressed air into the rinsing liquid storage tank 22 is stopped, and the injection of the rinsing liquid from the third nozzle 21 is stopped. Let

次に、第3の規制具52及び第3のノズル21からボトルBを取り外して乾燥部3へと移動させ、ボトルB内に第4のノズル31を挿入するとともに第4の規制具53をセットする(図2(d))。そして、気流発生手段32を作動させ、第4のノズル31の先端及び側面からボトルB内に気流発生手段32からの空気を噴射する。このとき、必要に応じて、気流発生手段32から第4のノズル31に送られる空気をヒーターにより加熱してもよく、このときの加熱温度は、洗浄するボトルBの材質にもよるが、30〜100℃とすることができる。第4のノズル31は、ボトルB内が均一に乾燥されるよう軸周りに360°回転する。洗浄するボトルBの材質にもよるが、約1秒〜60秒の間、ボトルB内に空気を噴射した後気流発生手段32を停止すれば、ボトルBの洗浄が完了し、ボトルBを再使用することが可能となる。   Next, the bottle B is removed from the third restrictor 52 and the third nozzle 21 and moved to the drying unit 3, and the fourth nozzle 31 is inserted into the bottle B and the fourth restrictor 53 is set. (FIG. 2D). Then, the airflow generation means 32 is operated to inject air from the airflow generation means 32 into the bottle B from the tip and side surfaces of the fourth nozzle 31. At this time, if necessary, the air sent from the airflow generating means 32 to the fourth nozzle 31 may be heated by a heater, and the heating temperature at this time depends on the material of the bottle B to be washed, but 30 It can be set to -100 degreeC. The fourth nozzle 31 rotates 360 ° around the axis so that the inside of the bottle B is uniformly dried. Depending on the material of the bottle B to be cleaned, if the air flow generating means 32 is stopped after jetting air into the bottle B for about 1 second to 60 seconds, the cleaning of the bottle B is completed, and the bottle B is Can be used.

以上のように、本実施形態における洗浄装置10は、すすぎ部2の他に、ボトルBを洗浄・消毒する洗浄部6及び消毒部1、さらにボトルBを乾燥する乾燥部3を備えているので、ボトルBをすすぐだけでなく、ボトルBを洗浄・消毒することができ、すすいだ後のボトルBを乾燥することができる。また、洗浄部6、消毒部1、すすぎ部2、及び乾燥部3がそれぞれノズルを備えるよう構成されているため、複数のボトルBの洗浄、消毒、すすぎ、及び乾燥を同時に行うこともでき、効率的且つスピーディーにボトルBを洗浄することができる。なお、本実施形態では、還元水での洗浄、酸性水での除菌、すすぎ及び乾燥をそれぞれ別のノズルを介して行うように構成されているが、複数個のボトルBを同時にまとめて洗浄、除菌、すすぎ及び乾燥するように設計変更することも可能である。   As described above, the cleaning device 10 according to the present embodiment includes the cleaning unit 6 for cleaning and disinfecting the bottle B and the disinfecting unit 1 in addition to the rinsing unit 2, and the drying unit 3 for drying the bottle B. In addition to rinsing the bottle B, the bottle B can be cleaned and disinfected, and the rinsed bottle B can be dried. In addition, since the cleaning unit 6, the sterilizing unit 1, the rinsing unit 2, and the drying unit 3 are each provided with a nozzle, it is possible to simultaneously perform cleaning, disinfection, rinsing, and drying of a plurality of bottles B, The bottle B can be washed efficiently and speedily. In the present embodiment, washing with reducing water, sterilization with acidic water, rinsing and drying are performed through different nozzles, but a plurality of bottles B are washed together. It is also possible to change the design to sterilize, rinse and dry.

さらに、希薄な塩化ナトリウム水溶液を隔膜電解することで、希薄な還元水、酸性水を生成し、この希薄な還元水及び酸性水を用いてボトルBに付着した汚れや細菌の洗浄を行っているので、人体に悪影響を与えることを防止できる。   Furthermore, dilute reduced water and acidic water are produced by diaphragm electrolysis of a dilute sodium chloride aqueous solution, and dirt and bacteria attached to the bottle B are washed using the dilute reduced water and acidic water. Therefore, it can prevent adversely affecting the human body.

さらに、洗浄部6、消毒部1及びすすぎ部2が設置される設置面4が、所定の作製方法で作製された光触媒材料により構成されているので、ボトルBから排出された還元水、酸性水及びすすぎ液が設置面4に滴下した場合でも、還元水、酸性水及びすすぎ液の液滴が光触媒材料の超親水性により設置面4に残りにくく、また光触媒材料による抗菌作用があることから、設置面4を清潔に保つことができる。加えて、設置面4に近紫外線又は紫外線を光照射することで、光触媒材料が励起して高い酸化力を有する活性酸素であるOHラジカル等が発生する。このOHラジカルは、消毒や殺菌に広く用いている過酸化水素やオゾン等より遥かに強い殺菌力を有しているために、設置面4に滴下する廃液中の細菌を殺菌することができる。よって、設置面4をさらに効果的に衛生的に維持することができる。   Furthermore, since the installation surface 4 on which the cleaning unit 6, the sterilizing unit 1 and the rinsing unit 2 are installed is composed of a photocatalytic material produced by a predetermined production method, reduced water and acidic water discharged from the bottle B Even when the rinsing liquid is dropped on the installation surface 4, the reduced water, acidic water and rinsing liquid droplets are unlikely to remain on the installation surface 4 due to the superhydrophilicity of the photocatalytic material, and there is an antibacterial action by the photocatalytic material. The installation surface 4 can be kept clean. In addition, when the installation surface 4 is irradiated with near ultraviolet rays or ultraviolet rays, the photocatalytic material is excited to generate OH radicals or the like that are active oxygen having high oxidizing power. Since this OH radical has a sterilizing power far stronger than hydrogen peroxide, ozone, etc. widely used for disinfection and sterilization, it is possible to sterilize bacteria in the waste liquid dripping on the installation surface 4. Therefore, the installation surface 4 can be more effectively maintained in a sanitary manner.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上記実施形態においては、洗浄液供給源及び消毒液供給源として洗浄液貯留タンク62及び消毒液貯留タンク12を用いているが、還元水及び酸性水を第1、第2のノズル61、11に供給することができるものであればよく、例えば、第1、第2のノズル61、11に電解水製造装置を直接連結するようにしてもよい。同様に、すすぎ液供給源は、すすぎ液貯留タンク22に代えて、例えば、第3のノズル21に連結された水道とすることもできる。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning of this invention. For example, in the above embodiment, the cleaning liquid storage tank 62 and the disinfecting liquid storage tank 12 are used as the cleaning liquid supply source and the disinfecting liquid supply source, but the reducing water and the acidic water are supplied to the first and second nozzles 61 and 11. For example, the electrolyzed water production apparatus may be directly connected to the first and second nozzles 61 and 11. Similarly, instead of the rinsing liquid storage tank 22, the rinsing liquid supply source may be, for example, a water supply connected to the third nozzle 21.

また、上記実施形態においては、洗浄部6、消毒部1及びすすぎ部2がそれぞれノズル61、11、21を備えていたがこれに限定されず、例えば、図3に示すように、洗浄液供給源、消毒液供給源及びすすぎ液供給源を単一のノズル15に接続し、切換弁16等によって選択的にノズル15に還元水、酸性水又はすすぎ液を供給して単一のノズル15から噴射を行うよう構成してもよい。この実施形態によれば、装置10を小型化することができる。なお、この実施形態では、洗浄部6、消毒部1及びすすぎ部2が一体化されている。   Moreover, in the said embodiment, although the washing | cleaning part 6, the disinfection part 1, and the rinse part 2 were each equipped with the nozzles 61, 11, and 21, it is not limited to this, For example, as shown in FIG. The disinfecting liquid supply source and the rinsing liquid supply source are connected to the single nozzle 15, and the reducing water, the acidic water or the rinsing liquid is selectively supplied to the nozzle 15 by the switching valve 16 and the like, and the single nozzle 15 is injected. You may comprise so that it may perform. According to this embodiment, the apparatus 10 can be reduced in size. In this embodiment, the cleaning unit 6, the disinfecting unit 1, and the rinsing unit 2 are integrated.

また、上記実施形態においては、ノズルを介してボトルB内に還元水、酸性水及びすすぎ液を供給し、又は送風していたが、容器内に還元水、酸性水又はすすぎ液を供給したり送風したりすることができればノズルを用いなくてもよい。   Moreover, in the said embodiment, although reducing water, acidic water, and the rinse liquid were supplied or ventilated in the bottle B via the nozzle, reducing water, acidic water, or a rinse liquid was supplied in the container, If the air can be blown, the nozzle need not be used.

また、上記実施形態においては、洗浄装置10は、洗浄部6、消毒部1、すすぎ部2及び乾燥部3を1つずつ備えていたが、洗浄部、消毒部、すすぎ部及び乾燥部を複数備えることもできる。   Moreover, in the said embodiment, although the washing | cleaning apparatus 10 was equipped with the washing | cleaning part 6, the disinfection part 1, the rinse part 2, and the drying part 3, one washing | cleaning part, disinfection part, a rinse part, and a drying part are provided. It can also be provided.

また、図4に示すように、洗浄に用いた還元水および消毒に用いた酸性水等の廃液を回収して光触媒材料にて浄化処理する浄化処理部7と、浄化処理後の光触媒材料にて除去できなかったものを濾過する濾過部8と、をさらに備えるように構成されていてもよい。なお、図4において、基本的な構成は、図1及び図2の実施形態の構成と同様であり、ここでは対応する構成に同一の符号を付することで詳細な説明を省略する。   In addition, as shown in FIG. 4, a purification treatment unit 7 that collects waste liquid such as reduced water used for cleaning and acidic water used for disinfection and performs purification treatment with a photocatalytic material, and a photocatalytic material after purification treatment. It may be configured to further include a filtering unit 8 that filters what could not be removed. In FIG. 4, the basic configuration is the same as the configuration of the embodiment in FIGS. 1 and 2, and the detailed description is omitted here by assigning the same reference numerals to the corresponding configurations.

図4では、ボトルB内に洗浄液として還元水を供給する洗浄部6と、ボトルB内に消毒液として酸性水を供給する消毒部1と、ボトルB内にすすぎ液を供給するすすぎ部2と、ボトルB内に送風する乾燥部3と、洗浄に用いた還元水および消毒に用いた酸性水等の廃液を回収して前記の作製方法にて作製した光触媒材料にて浄化処理する浄化処理部7と、浄化処理後の光触媒材料にて除去できなかったものを濾過する濾過部8とを備えている。   In FIG. 4, a cleaning unit 6 that supplies reducing water as a cleaning liquid into the bottle B, a disinfection unit 1 that supplies acidic water as a disinfecting liquid into the bottle B, and a rinsing unit 2 that supplies a rinsing liquid into the bottle B. , A drying unit 3 that blows air into the bottle B, and a purification processing unit that recovers waste liquid such as reduced water used for cleaning and acidic water used for disinfection and performs purification using the photocatalyst material produced by the above production method. 7 and a filtration unit 8 for filtering what could not be removed by the photocatalyst material after the purification treatment.

浄化処理部7は、上記した洗浄、消毒及びすすぎに用いられた還元水廃液、酸性水廃液及びすすぎ液(全てまとめて廃液という)を回収して浄化処理を行うものであり、廃液を貯留可能な廃液貯留タンクの内部に光触媒材料を設置した構成のものである。廃液の浄化処理に用いられる光触媒材料としては、設置面4を構成する光触媒材料と同じ方法にて形成させたものが用いられる。   The purification treatment unit 7 collects the reducing water waste liquid, acidic water waste liquid and rinse liquid (all collectively referred to as waste liquid) used for the cleaning, disinfection and rinsing described above, and performs the purification treatment, and can store the waste liquid. In this configuration, a photocatalyst material is installed inside a waste liquid storage tank. As the photocatalyst material used for the waste liquid purification treatment, a material formed by the same method as the photocatalyst material constituting the installation surface 4 is used.

このような光触媒材料を設置した廃液貯留タンクに、廃液を注ぎこみ、光触媒材料にアナターゼ型酸化チタンを光励起できる近紫外線もしくは紫外線をランプや蛍光灯等の光照射手段14にて光照射することにより、極めて活性が高く酸化力の強いOHラジカル等の活性酸素が発生し、廃液中の難分解性の有機物の分解が可能となる。よって、廃液中の油脂等の有機物の分解や酸性水にて除菌されなかった細菌の殺菌を行うことができる。なお、光触媒反応を向上させるために、必要に応じて微量のオゾンや過酸化水素を添加してもよい。   By pouring waste liquid into a waste liquid storage tank in which such a photocatalyst material is installed and irradiating the photocatalyst material with near-ultraviolet light or ultraviolet light capable of photoexciting anatase-type titanium oxide by a light irradiation means 14 such as a lamp or a fluorescent lamp. In addition, active oxygen such as OH radicals having extremely high activity and strong oxidizing power is generated, and it is possible to decompose hardly decomposable organic substances in the waste liquid. Therefore, it is possible to decompose organic substances such as fats and oils in the waste liquid and sterilize bacteria that have not been sterilized with acidic water. In addition, in order to improve a photocatalytic reaction, you may add a trace amount ozone and hydrogen peroxide as needed.

濾過部8は、浄化処理後の廃液に含まれる食物残渣や細菌の残骸、光触媒材料にて分解できなかった有機物を廃液中から除去するためのものであり、廃液が通過可能な廃液流通管の内部にフィルターを設置した構成のものである。フィルターとしては、活性炭、中空糸膜、連続多孔体等の多孔質材料を用いることで、光触媒材料にて分解されなかったボトルBの汚れ、油脂分等を濾過することができる。また、イオン性物質が廃液中に含まれている場合には、イオン交換樹脂フィルターを用いることで除去することができる。また、食物残渣、細菌の死骸等の固形物は、その固形物のサイズに合った濾紙等のフィルターを用いることで除去することができる。フィルターは、必要に応じて、上記した複数種類のものを組み合わせて使用することで、廃液を良好に濾過することができ、清浄な状態にて排出することが可能となる。なお、フィルターの濾過性を向上するために、必要に応じてポリ塩化アルミニウム等の凝集剤を併用してもよい。   The filtration unit 8 is for removing food residues, bacteria debris, and organic substances that could not be decomposed by the photocatalyst material from the waste liquid after the purification treatment. It has a configuration with a filter installed inside. As a filter, by using a porous material such as activated carbon, a hollow fiber membrane, or a continuous porous body, it is possible to filter dirt, oil and fat, etc. of the bottle B that has not been decomposed by the photocatalytic material. Moreover, when an ionic substance is contained in the waste liquid, it can be removed by using an ion exchange resin filter. Moreover, solid matters such as food residues and dead bodies of bacteria can be removed by using a filter such as filter paper suitable for the size of the solid matter. If necessary, the filter can be used in combination with a plurality of types described above, so that the waste liquid can be filtered well and discharged in a clean state. In order to improve the filterability of the filter, an aggregating agent such as polyaluminum chloride may be used in combination as necessary.

浄化処理部7及び濾過部8にて清浄された状態の廃液は、排出してもよいが、電解水製造装置9に導入し、酸性水及び還元水を生成するために再利用してもよい。このように酸性水及び還元水を循環させることにより、酸性水及び還元水を効率よく使用することができる。また、酸性水及び還元水生成のための再利用に関しては、必要に応じて電解水製造装置9に導入する際に、適時塩化ナトリウムを添加してもよい。   The waste liquid cleaned by the purification treatment unit 7 and the filtration unit 8 may be discharged, but may be introduced into the electrolyzed water production apparatus 9 and reused to generate acidic water and reduced water. . Thus, by circulating the acidic water and the reduced water, the acidic water and the reduced water can be used efficiently. Moreover, regarding the reuse for production | generation of acidic water and reduced water, when introducing into the electrolyzed water manufacturing apparatus 9 as needed, you may add sodium chloride timely.

また、上記実施形態においては、開口を有するボトルB(容器)を洗浄する場合を例に説明したが、図5に示すように、野菜、果実等の農作物Aを洗浄することもできる。農作物Aを洗浄する場合には、農作物Aに付着した汚れの他、農薬を効果的に除去することができる。   Moreover, in the said embodiment, although the case where the bottle B (container) which has an opening was wash | cleaned was demonstrated to the example, as shown in FIG. 5, crops A, such as a vegetable and a fruit, can also be wash | cleaned. In the case of cleaning the crop A, the pesticide can be effectively removed in addition to the dirt adhering to the crop A.

農作物Aを洗浄するために用いる還元水及び酸性水は、0.001%〜0.5%、好ましくは0.01%〜0.5%、さらに好ましくは0.1%〜0.2%の希薄な塩化ナトリウム水溶液を隔膜電解法にて電解することにより生成される。このようにして生成された還元水を貯留した槽63内に、農作物Aを例えば籠の中に入れて浸漬させて、槽63を揺動させることにより、農作物Aに付着する農薬を除去することができる。この際、農作物Aを超音波洗浄すると、農薬の除去効率が向上する。   Reduced water and acidic water used for washing the crop A are 0.001% to 0.5%, preferably 0.01% to 0.5%, more preferably 0.1% to 0.2%. It is produced by electrolyzing a dilute aqueous sodium chloride solution by a diaphragm electrolysis method. The agricultural chemical A adhering to the crop A is removed by putting the crop A in, for example, a tub and immersing it in the tank 63 storing the reduced water generated in this way, and swinging the tank 63. Can do. At this time, when the crop A is subjected to ultrasonic cleaning, the removal efficiency of the pesticide is improved.

次に、同様に酸性水を貯留した槽13内に、農作物Aを同様に籠等の中に入れて浸漬させて、揺動させることにより、農作物Aに付着した細菌を除菌することができる。次に、すすぎ液として水道水等を貯留した槽23内に農作物Aを同様に籠等の中に入れて浸漬させて、還元水及び酸性水のすすぎを行う。   Next, bacteria attached to the crop A can be sterilized by similarly putting the crop A in a basket or the like and immersing it in the tank 13 in which the acidic water is stored. . Next, the crop A is similarly put in a tub or the like and immersed in a tank 23 in which tap water or the like is stored as a rinsing solution, and rinsed with reducing water and acidic water.

槽63,13,23の内面は、図1及び図2の実施形態の設置面4と同様、(1)金属チタン材料又はチタン合金(チタンを主成分とする合金)材料の表面に加熱温度が750℃以上でアンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法によりチタン窒化物を形成する工程を実施した後、(2)チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程を実施した後、(3)大気雰囲気下、酸素ガスと窒素ガスを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程を実施するという表面処理方法を行うことによって形成される光触媒材料にて構成されている。これにより、槽63,13,23内から排出された還元水、酸性水及びすすぎ液の液滴が光触媒材料の超親水性により槽63,13,23内に残りにくく、槽63,13,23内を清潔に保つことができる。また、近紫外線又は紫外線を光照射するランプや蛍光灯などの光照射手段(図示せず)を用いて、槽63,13,23内面の光触媒材料に光照射することで、高い酸化力を有する活性酸素であるOHラジカル等が発生する。このOHラジカルは、消毒や殺菌に広く用いている過酸化水素やオゾン等より遥かに強い殺菌力を有しているために、槽63,13,23内に付着する細菌の殺菌することができるために、装置内を衛生的に維持することができる。   The inner surfaces of the tanks 63, 13, and 23 have a heating temperature on the surface of a metal titanium material or a titanium alloy (alloy containing titanium as a main component) material, like the installation surface 4 of the embodiment of FIGS. 1 and 2. After carrying out the step of forming titanium nitride by one kind of treatment method selected from the group consisting of heat treatment in an ammonia atmosphere at 750 ° C. or higher and heat treatment in a nitrogen gas atmosphere, On the other hand, after anodization was performed by applying a voltage of 10 V or higher in an electrolyte solution having no etching action, and a titanium oxide film was formed, (3) oxygen gas and nitrogen in an atmospheric atmosphere A photocatalyst material formed by performing a surface treatment method of performing a heat treatment step at a temperature of 400 ° C. or higher in an atmosphere selected from an atmosphere mixed with gas or an oxygen gas atmosphere It is composed of. Thereby, the droplets of reduced water, acidic water, and rinsing liquid discharged from the tanks 63, 13, and 23 are less likely to remain in the tanks 63, 13, and 23 due to the superhydrophilicity of the photocatalytic material. The inside can be kept clean. Moreover, it has high oxidizing power by irradiating the photocatalyst material on the inner surfaces of the tanks 63, 13, and 23 using a light irradiation means (not shown) such as a lamp or a fluorescent lamp that irradiates near ultraviolet rays or ultraviolet rays. Active radicals such as OH radicals are generated. Since this OH radical has a sterilizing power far stronger than hydrogen peroxide, ozone, etc. widely used for disinfection and sterilization, it is possible to sterilize bacteria adhering to the tanks 63, 13, and 23. Therefore, the inside of the apparatus can be maintained in a sanitary manner.

なお、このようにして排出された廃液(還元水廃液及び酸性水廃液、さらにすすぎ液廃液)は、上記した実施形態と同様に、光触媒材料が設置された廃液貯留タンク(浄化処理部7)内に導入される。この際に、光照射手段(図示せず)から、アナターゼ型酸化チタンを光励起できる近紫外線もしくは紫外線が光触媒材料に光照射されることで、極めて活性が高く酸化力の強いOHラジカル等の活性酸素が発生して、廃液中の難分解性の有機物である農薬の分解や酸性水にて除菌されなかった細菌の殺菌が行われる。なお、光触媒材料は、上記した実施形態と同様の方法により作成されたものが用いられる。また、光触媒反応を向上させるために微量のオゾンや過酸化水素を添加してもよい。   In addition, the waste liquid discharged in this way (reduced water waste liquid and acidic water waste liquid and further rinse liquid waste liquid) is stored in the waste liquid storage tank (purification processing unit 7) in which the photocatalytic material is installed, as in the above-described embodiment. To be introduced. At this time, the photocatalyst material is irradiated with near-ultraviolet rays or ultraviolet rays capable of photoexciting anatase-type titanium oxide from a light irradiation means (not shown), so that active oxygen such as OH radical having extremely high activity and strong oxidizing power can be obtained. Occurs, the agricultural chemicals that are hardly decomposable organic substances in the waste liquid are decomposed, and the bacteria that have not been sterilized with acidic water are sterilized. In addition, the photocatalyst material produced by the same method as the above-described embodiment is used. Further, in order to improve the photocatalytic reaction, a trace amount of ozone or hydrogen peroxide may be added.

そして、廃液中の光触媒材料にて分解できなかった有機物、細菌の残骸を濾過部8に導入してフィルターにて濾過することで、清浄な状態にて廃液を排出することができ、環境汚染を防止することができる。なお、清浄された状態の廃液を、排出するのではなく、上記した実施形態と同様に、電解水製造装置9に循環させて、還元水及び酸性水の生成に供するようにすれば、水を新たに追加しない循環型の洗浄装置を実現できる。これにより、酸性水及び還元水を効率よく使用することができるだけではなく、排液量を抑えることにより、汚染された廃液が環境に負荷を与えることを未然に防止することが可能である。   Then, by introducing the organic matter and bacteria debris that could not be decomposed by the photocatalyst material in the waste liquid into the filtration unit 8 and filtering through the filter, the waste liquid can be discharged in a clean state, and environmental pollution can be prevented. Can be prevented. In addition, if the waste liquid in the purified state is not discharged, but is circulated through the electrolyzed water production apparatus 9 and used for the production of reduced water and acidic water, the water is not discharged. A circulation type cleaning device that is not newly added can be realized. Thereby, it is possible not only to use the acidic water and the reduced water efficiently, but also to prevent the contaminated waste liquid from giving a load to the environment by suppressing the amount of drainage.

本願発明による洗浄装置は、開口を有する容器の洗浄、野菜、果実等農作物の農薬洗浄に限定するものではなく、ノズルによる洗浄や浸漬等による洗浄ができるものであればどのようなものに対しても応用することができる。   The cleaning device according to the present invention is not limited to cleaning of containers having openings, cleaning of agricultural products such as vegetables and fruits, but to anything that can be cleaned by nozzles or by immersion. Can also be applied.

以下、実施例を挙げて本発明を説明する。本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to examples. The present invention is not limited to these examples.

実施例1
窒化炉(NVF-600-PC、中日本炉工業製)を使用して、脱脂処理した金属チタン板の表面にチタン窒化物を形成した。まず、窒化炉内に設置した平板状のカーボン材により、金属チタン板を挟んだ。次いで、酸素を取り除くために窒化炉を1Pa以下まで減圧処理した後、窒化炉に99.99%以上の高純度の窒素ガスを導入して0.1MPa(大気圧)まで復圧させた。窒化炉を1Pa以下まで減圧させることで、空気中の酸素を除去することができ、酸素親和性が高いチタンが酸化されるのを防ぐことができる。次いで、窒化炉を2時間かけて950℃まで昇温した。次いで、この950℃の窒化炉において、1時間加熱処理を行い、金属チタン板の表面にチタン窒化物を形成した。
Example 1
Titanium nitride was formed on the surface of the degreased metal titanium plate using a nitriding furnace (NVF-600-PC, manufactured by Central Nippon Reactor Industry). First, a metal titanium plate was sandwiched between flat carbon materials installed in a nitriding furnace. Next, in order to remove oxygen, the nitriding furnace was depressurized to 1 Pa or less, and 99.99% or more of high-purity nitrogen gas was introduced into the nitriding furnace to restore the pressure to 0.1 MPa (atmospheric pressure). By reducing the pressure of the nitriding furnace to 1 Pa or less, oxygen in the air can be removed and titanium having high oxygen affinity can be prevented from being oxidized. Next, the temperature of the nitriding furnace was raised to 950 ° C. over 2 hours. Next, heat treatment was performed for 1 hour in the 950 ° C. nitriding furnace to form titanium nitride on the surface of the metal titanium plate.

表面にチタン窒化物を形成させた金属チタン板を、1重量%リン酸水溶液(電解液)中に浸漬した。次いで、ファンクションジェネレータ HB-105(北斗電工製)と直流安定化電源 PU300-5(TEXIO製)を用い、表面にチタン窒化物を形成させた金属チタン板を接続させた陽極とカーボン材を接続させた陰極との間の電圧を100mV/秒で昇圧させて、10分間、200Vを保持しながら、表面にチタン窒化物を形成させた金属チタン板を陽極酸化し、チタンの酸化皮膜を形成した。   A metal titanium plate having titanium nitride formed on the surface was immersed in a 1% by weight phosphoric acid aqueous solution (electrolytic solution). Next, using a function generator HB-105 (made by Hokuto Denko) and a direct current stabilized power supply PU300-5 (made by TEXIO), the carbon material was connected to the anode with a titanium metal plate with titanium nitride formed on the surface. The voltage between the cathode and the cathode was increased at 100 mV / second, and while maintaining 200 V for 10 minutes, the metal titanium plate having titanium nitride formed on the surface was anodized to form an oxide film of titanium.

表面にチタンの酸化皮膜を形成させた金属チタン板を、大気(酸化性雰囲気中)で、500℃で、1時間の加熱処理(大気酸化)を行った。   The metal titanium plate having a titanium oxide film formed on the surface was subjected to heat treatment (atmospheric oxidation) at 500 ° C. for 1 hour in the air (in an oxidizing atmosphere).

上記処理により、表面にアナターゼ型酸化チタン皮膜を形成させた金属チタン板(チタン材料)を製造することができた。実施例1は、(1)チタン窒化物を形成する工程、(2)陽極酸化を行う工程、(3)加熱処理を行う工程を含む製造方法により調製した表面処理されたチタン材料である。   By the above treatment, a metal titanium plate (titanium material) having an anatase-type titanium oxide film formed on the surface could be produced. Example 1 is a surface-treated titanium material prepared by a manufacturing method including (1) a step of forming titanium nitride, (2) a step of anodizing, and (3) a step of heat treatment.

比較例では、表面にチタン窒化物を形成させていない金属チタン板を用いたこと以外は、実施例1と同様の陽極酸化及び大気酸化を実施して、材料を作製した。比較例は、(2)陽極酸化を行う工程、(3)加熱処理を行う工程を含む製造方法により調製した表面処理されたチタン材料である。   In the comparative example, the material was produced by carrying out the same anodic oxidation and atmospheric oxidation as in Example 1 except that a metal titanium plate having no titanium nitride formed on the surface was used. The comparative example is a surface-treated titanium material prepared by a manufacturing method including (2) a process for anodizing and (3) a process for heat treatment.

上記表面処理した金属チタン板に、アナターゼ型酸化チタンが光励起する近紫外線を光照射するブラックライト(東芝ライテック製)を用いて、上部から光強度を2mW/cmに調整して、近紫外線を光照射させた。1時間毎に、本検体を取り出し、本検体上に蒸留水を1滴滴下し、本検体と蒸留水の接触角度を接触角計 CA−X型(協和界面科学製)にて測定した。 Using a black light (manufactured by Toshiba Lighting & Technology Corp.) that irradiates the surface-treated metal titanium plate with near-ultraviolet light photoexcited by anatase-type titanium oxide, the light intensity is adjusted to 2 mW / cm 2 from the top, Light was irradiated. This sample was taken out every hour, 1 drop of distilled water was dropped on this sample, and the contact angle between this sample and distilled water was measured with a contact angle meter CA-X type (manufactured by Kyowa Interface Science).

本結果を表1に示す。チタン材料にチタン窒化物を形成させた後、陽極酸化及び加熱処理を行って製造したチタン材料では、水との接触角度が小さくなり、10°以下の超親水性を示していることが分かる。一方、チタン材料にチタン窒化物を形成させずに、単に陽極酸化及び加熱処理を行って製造したチタン材料では、実施例と比べると明らかに接触角度が大きく、超親水性を示さないことがわかった。   The results are shown in Table 1. It can be seen that the titanium material manufactured by performing anodization and heat treatment after forming titanium nitride on the titanium material has a small contact angle with water and exhibits superhydrophilicity of 10 ° or less. On the other hand, the titanium material produced by simply anodizing and heating without forming titanium nitride on the titanium material clearly has a larger contact angle than the examples and does not show super hydrophilicity. It was.

Figure 0005557969
Figure 0005557969

実施例2
隔膜電解装置である電解水作製装置としてアルテック社製のALTRON-MINI AL-700A(電圧100V,電流0.6A 電解時間10分間)を用いて蒸留水にて希釈した塩化ナトリウム水溶液を電解し、陽極側から得られた酸性水を用いた抗菌性試験を実施した。酸性水中に生成する次亜塩素酸は、上水試験法に規定されているDPD法(ジエチル-p−フェニルジアミン法)により市販のパックテストの試薬(共立理化学研究所製)を用いて発色させ、紫外可視分光光度計UV mini 1240(島津製作所製)を用いて550nmの吸光度から求めた。
Example 2
Electrolysis of sodium chloride solution diluted with distilled water using ALTRON-MINI AL-700A (voltage 100V, current 0.6A, electrolysis time 10 minutes) manufactured by Altec as an electrolyzed water preparation device which is a diaphragm electrolyzer An antibacterial test using acid water obtained from the side was carried out. Hypochlorous acid produced in acidic water is colored using a commercially available pack test reagent (manufactured by Kyoritsu Riken) by the DPD method (diethyl-p-phenyldiamine method) specified in the water test method. Using an ultraviolet-visible spectrophotometer UV mini 1240 (manufactured by Shimadzu Corporation), the absorbance was determined from 550 nm.

塩化ナトリウム濃度を変化させた水溶液を用いて、前記電解装置の陽極側から生成される酸性水中の次亜塩化酸濃度を求めた結果を図6に示す。塩化ナトリウム濃度と次亜塩素酸濃度には、相関性が得られ、塩化ナトリウム濃度を変化させることにて、次亜塩素酸濃度を変化させることができることが分かった。   FIG. 6 shows the results of determining the hypochlorous acid concentration in the acidic water generated from the anode side of the electrolyzer using an aqueous solution with varying sodium chloride concentration. A correlation was obtained between the sodium chloride concentration and the hypochlorous acid concentration, and it was found that the hypochlorous acid concentration can be changed by changing the sodium chloride concentration.

開封後に冷蔵庫に長期間保存して細菌が繁殖した市販の飲料である日本コカコーラ社製の爽健美茶(登録商標)を、希薄な塩化ナトリウム水溶液を隔膜電解にて各種濃度の次亜塩素酸を含む酸性水と、また比較として水道水及び蒸留水とにより、それぞれ1容量%になるように調整し、調整した溶液中に残存する細菌数から抗菌試験を行った。細菌数は、上水試験方法に規定されている一般細菌数測定方法にて測定した。具体的には、上記した各種溶液にて爽健美茶を1容量%にした溶液0.1mlを標準寒天培地(ニッスイ製)に塗抹し、約24時間37℃にて培養させることにて生成するコロニー数から細菌数を求めた。表2に0.015%の塩化ナトリウム水溶液を隔膜電解することから作製した酸性水を適時希釈することにて各種次亜塩素酸濃度の酸性水を作製し、抗菌性を調べた結果を示した。酸性水中の次亜塩素酸濃度が0.6ppm以上にて顕著な抗菌性を発現し、1ppm程度の次亜塩素酸があると、細菌は残存しないことがわかった。また水道水中にも1ppm程度の次亜塩素酸が存在するが、水道水においては全く抗菌性を示さないこともわかった。   After opening, it is stored in a refrigerator for a long period of time, and is a commercially available beverage that has been bred with bacteria. The refreshing tea (registered trademark) manufactured by Coca-Cola Japan is used. It adjusted so that it might become 1 volume% respectively with the acidic water to contain, and a tap water and distilled water as a comparison, and the antibacterial test was done from the number of bacteria which remain | survived in the adjusted solution. The number of bacteria was measured by the general method for measuring the number of bacteria specified in the water test method. Specifically, it is produced by smearing 0.1 ml of a solution containing 1% by volume of refreshing beauty tea with the above-mentioned various solutions on a standard agar medium (Nissui) and culturing at 37 ° C. for about 24 hours. The number of bacteria was determined from the number of colonies. Table 2 shows the results of examining the antibacterial properties by preparing acidic water of various hypochlorous acid concentrations by diluting acidic water prepared from diaphragm electrolysis of 0.015% sodium chloride aqueous solution in a timely manner. . It was found that when the concentration of hypochlorous acid in acidic water was 0.6 ppm or more, remarkable antibacterial properties were exhibited, and when there was about 1 ppm of hypochlorous acid, no bacteria remained. It was also found that about 1 ppm of hypochlorous acid is present in tap water, but it does not exhibit antibacterial properties at all.

Figure 0005557969
Figure 0005557969

同じ濃度の次亜塩素酸が含まれていても、水道水と酸性水とにおいて抗菌性が異なることに着目し、酸性水にpH調整剤であるリン酸緩衝液(堀場製作所製)を適時添加し、pHをコントロールした溶液にて同様な一般細菌数試験を行った結果を表3に示した。0.01%という希薄な塩化ナトリウム水溶液を隔膜電解して得られた弱酸性(pH3.4)において強い抗菌性を示すが、pHを調整し中性になるようにすると、水道水と同様に全く抗菌性を示さないがわかった。本試験結果から希薄な塩化ナトリウム水溶液を隔膜電解した酸性水は、水道水と同じレベルの人体への為害性がまったく心配ない次亜塩素酸濃度であるにも関わらず、強い抗菌性があることがわかった。   Paying attention to the fact that antibacterial properties differ between tap water and acidic water even when hypochlorous acid is contained at the same concentration, a phosphate buffer solution (manufactured by Horiba) is added to acidic water as needed. Table 3 shows the results of the same general bacterial count test using a pH-controlled solution. It shows strong antibacterial properties in weak acidity (pH 3.4) obtained by diaphragm electrolysis of dilute sodium chloride aqueous solution of 0.01%, but if it is made neutral by adjusting pH, it is the same as tap water It showed no antibacterial properties. From the results of this test, acid water obtained by diaphragm electrolysis of dilute sodium chloride aqueous solution has strong antibacterial properties even though it has hypochlorous acid concentration that does not cause any harm to the human body at the same level as tap water. I understood.

Figure 0005557969
Figure 0005557969

実施例3
希薄な塩化ナトリウム水溶液の隔膜電解にて陰極側にて生成する還元水を用いた容器の洗浄試験を実施した。汚染物質として食用油に多量に含まれるオレイン酸を用いて評価した。オレイン酸濃度は、オレイン酸をメチルエステル化キット(ナカライテスク製)にて3時間誘導化させたものをガスクロマトグラフGC-2014(島津製作所製)にて測定することから求めた。試験方法としては、開口を有する容器としてビーカーを用いた。オレイン酸を付着させたビーカーに、希薄な塩化ナトリウム水溶液の隔膜電解にて陰極側にて生成する還元水を1800ml/分の噴霧量にて3秒噴霧させた。噴霧後、ビーカーに付着しているオレイン酸を、ヘキサン(和光純薬製)にて溶解させた溶液をメチルエステル化させたものをガスクロマトグラフにて分析し、オレイン酸残存量を求めた。初期付着量とオレイン酸残存量から容器の洗浄性を評価した結果を表4に示した。隔膜電解に用いる塩化ナトリウム濃度を増加させ、陽極側の酸性水の次亜塩素酸が濃い程、またpHが高い程、オレイン酸の洗浄率は向上する結果となっているが、酸性水側にて水道水と同程度の次亜塩素酸濃度を有する0.01%の塩化ナトリウム水溶液を隔膜電解した還元水において約90%の除去率が達成されている。またわずか3秒の噴霧において、希薄な塩化ナトリウム水溶液の隔膜電解にて生成される還元水にて高い洗浄性が確保されたことから、洗浄に用いる溶液量を制限することができ、最終的に排出される廃液の量も減少し、廃液を再利用する際においては、光触媒材料での処理やフィルターでの濾過の効率も向上する。
Example 3
A container cleaning test was conducted using reduced water produced on the cathode side by diaphragm electrolysis of a dilute sodium chloride aqueous solution. Evaluation was made using oleic acid contained in a large amount in edible oil as a contaminant. The oleic acid concentration was determined by measuring oleic acid derivatized with a methyl esterification kit (manufactured by Nacalai Tesque) for 3 hours using a gas chromatograph GC-2014 (manufactured by Shimadzu Corporation). As a test method, a beaker was used as a container having an opening. In a beaker to which oleic acid was attached, reduced water produced on the cathode side by diaphragm electrolysis of a dilute sodium chloride aqueous solution was sprayed at a spray rate of 1800 ml / min for 3 seconds. After spraying, a solution obtained by dissolving oleic acid adhering to a beaker with hexane (manufactured by Wako Pure Chemical Industries, Ltd.) as a methyl ester was analyzed with a gas chromatograph to determine the remaining amount of oleic acid. Table 4 shows the results of evaluating the detergency of the container from the initial adhesion amount and the remaining amount of oleic acid. The concentration of sodium chloride used for diaphragm electrolysis is increased. The higher the pH of the acidic water on the anode side and the higher the pH, the higher the washing rate of oleic acid. About 90% removal rate has been achieved in reduced water obtained by diaphragm electrolysis of a 0.01% sodium chloride aqueous solution having a hypochlorous acid concentration comparable to tap water. In addition, since spraying for only 3 seconds ensured high washability with reduced water produced by diaphragm electrolysis of dilute sodium chloride aqueous solution, the amount of solution used for washing can be limited, and finally The amount of discharged waste liquid is also reduced, and the efficiency of treatment with a photocatalytic material and filtration with a filter is improved when the waste liquid is reused.

Figure 0005557969
Figure 0005557969

実施例4
希薄な塩化ナトリウム水溶液の隔膜電解にて陰極側にて生成する還元水を用いた農薬除去試験を実施した。汚染物質としてスミチオン乳剤(住友化学製 主成分:フェニトロチオンC9H12NO5PS)を用いた。スミチオン乳剤を蒸留水にて10倍希釈した溶液0.05mlを76mm×26mmのスライドガラスに付着し、1日常温にて乾燥させ、農薬をスライドガラスに付着させた。この農薬を付着させたスライドガラスを200mlの還元水中に30秒浸漬したものを改めて50mlの蒸留水中に浸漬、超音波洗浄機ASU CLEANER ASU-3D(アズワン製)を用いて43KHzにて15分間超音波洗浄し、スライドガラスに付着した農薬を溶液中に完全に溶解させた。還元水洗浄前後のスライドガラスに付着している農薬を完全溶解させた溶液をそれぞれ作製、分析した。農薬除去率は、還元水洗浄前後のスライドガラスへの農薬付着量から求めた。
Example 4
A pesticide removal test using reduced water produced on the cathode side by diaphragm electrolysis of dilute sodium chloride aqueous solution was carried out. A Sumithion emulsion (manufactured by Sumitomo Chemical Co., Ltd., main component: fenitrothion C 9 H 12 NO 5 PS) was used as a contaminant. 0.05 ml of a solution obtained by diluting the Sumithion emulsion 10 times with distilled water was attached to a 76 mm × 26 mm slide glass and dried at room temperature for 1 day to attach the pesticide to the slide glass. A slide glass with this pesticide attached immersed in 200 ml of reducing water for 30 seconds is again immersed in 50 ml of distilled water and used for 15 minutes at 43 KHz using an ultrasonic cleaner ASU CLEANER ASU-3D (manufactured by ASONE). Sonication was performed, and the pesticide adhering to the slide glass was completely dissolved in the solution. A solution in which the pesticide adhering to the slide glass before and after washing with reduced water was completely dissolved was prepared and analyzed. The pesticide removal rate was determined from the amount of pesticide attached to the slide glass before and after washing with reduced water.

農薬スミチオン乳剤の分析は、JISK0102 46.3.1ペルオキソ二硫酸カリウム分解法に基づき、フェニトロチオン中のリンをリン酸に変化させる。このリン酸濃度をJISK0102 46.1.1モリブデン青吸光度法にて発色させ、紫外可視分光光度計UV mini 1240(島津製作所製)を用いて880nmの吸光度を測定することから、農薬付着量を求めた。   The analysis of the pesticide Sumithion emulsion is based on the JISK0102 46.3.1 potassium peroxodisulfate decomposition method, changing the phosphorus in fenitrothion to phosphoric acid. The phosphoric acid concentration was developed by JISK0102 46.1.1 molybdenum blue absorbance method, and the absorbance at 880 nm was measured using UV-visible spectrophotometer UV mini 1240 (manufactured by Shimadzu Corporation), and the amount of adhering pesticide was determined.

表5、6は、希薄な塩化ナトリウム水溶液から隔膜電解にて陰極側に生成された還元水を用いた農薬除去率測定結果である。具体的には、表5、6の還元水は、0.13%、0.20%塩化ナトリウム水溶液の隔膜電解にて陰極側から作製した還元水を用いた。本還元水作製時の陽極側にて同時に生成する酸性水側の次亜塩素酸濃度は、それぞれ20ppm、40ppmの際に同時に生成される還元水を用いた。還元水の濃度を増加させることにより、農薬除去率は向上することがわかった。前記の容器洗浄方法と比較すると、還元水は、高濃度のものを使用しないと農薬は有効に除去できないが、前記した容器洗浄方法が噴霧して洗浄するのに対して、農薬洗浄は還元水を貯めた槽に浸漬することにより洗浄するために一部だけ新たに供給すればよいので、廃液を再利用する際においては、廃液量も制限され光触媒での処理やフィルターでの濾過の効率も向上する。   Tables 5 and 6 show measurement results of the pesticide removal rate using reduced water generated on the cathode side by membrane electrolysis from a dilute sodium chloride aqueous solution. Specifically, as the reduced water in Tables 5 and 6, reduced water prepared from the cathode side by diaphragm electrolysis of 0.13% and 0.20% sodium chloride aqueous solution was used. The reducing water produced simultaneously at the acidic water side hypochlorous acid concentration produced at the same time on the anode side during the production of the reduced water was 20 ppm and 40 ppm, respectively. It was found that the pesticide removal rate was improved by increasing the concentration of reduced water. Compared with the container cleaning method described above, reduced water cannot be effectively removed unless high-concentration water is used, but the above-mentioned container cleaning method sprays and cleans, whereas pesticide cleaning is reduced water. Since it is only necessary to supply a part of the waste liquid for cleaning by immersing it in a tank in which the waste liquid is stored, the amount of waste liquid is limited and the efficiency of treatment with a photocatalyst and filtration with a filter are reduced. improves.

Figure 0005557969
Figure 0005557969

Figure 0005557969
Figure 0005557969

10 洗浄装置
1 消毒部
11 第2のノズル
12 消毒液貯留タンク(消毒液供給源)
13 第2の槽
2 すすぎ部
21 第3のノズル
22 すすぎ液貯留タンク(すすぎ液供給源)
23 第3の槽
3 乾燥部
31 第4のノズル
32 気流発生手段
4 設置面
6 洗浄部
61 第1のノズル
62 洗浄液貯留タンク(洗浄液供給源)
63 第1の槽
DESCRIPTION OF SYMBOLS 10 Cleaning apparatus 1 Disinfection part 11 2nd nozzle 12 Disinfection liquid storage tank (disinfection liquid supply source)
13 Second tank 2 Rinsing section 21 Third nozzle 22 Rinsing liquid storage tank (rinsing liquid supply source)
23 3rd tank 3 Drying part 31 4th nozzle 32 Airflow generation means 4 Installation surface 6 Cleaning part 61 1st nozzle 62 Cleaning liquid storage tank (cleaning liquid supply source)
63 First tank

Claims (17)

開口を有する容器を洗浄する装置であって、
前記開口を介して前記容器内に還元水を供給する洗浄部と、
前記開口を介して前記容器内に酸性水を供給する消毒部と、
前記開口を介して前記容器内にすすぎ液を供給するすすぎ部と、
前記洗浄部、前記消毒部及び前記すすぎ部が設置される設置面と、を備え、
前記設置面は、光触媒材料により構成され、
前記光触媒材料が、
(1)加熱温度が750℃以上である、アンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法により、金属チタン材料又はチタン合金材料の表面にチタン窒化物を形成する工程、
(2)工程(1)で得られた、表面にチタン窒化物が形成された金属チタン材料又はチタン合金材料を、チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程、及び
(3)工程(2)で得られた、表面にチタンの酸化皮膜が形成された金属チタン材料又はチタン合金材料を、大気雰囲気下、酸素ガスと窒素ガスとを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程、にて作製される洗浄装置。
An apparatus for cleaning a container having an opening,
A cleaning unit for supplying reducing water into the container through the opening;
A disinfection unit for supplying acidic water into the container through the opening;
A rinsing section for supplying a rinsing liquid into the container through the opening;
An installation surface on which the cleaning unit, the disinfecting unit and the rinsing unit are installed,
The installation surface is made of a photocatalytic material,
The photocatalytic material is
(1) The heating temperature is 750 ° C. or higher, and the metal titanium material or the titanium alloy material is subjected to one treatment method selected from the group consisting of a heat treatment in an ammonia atmosphere and a heat treatment in a nitrogen gas atmosphere. Forming titanium nitride on the surface;
(2) Applying a voltage of 10 V or more to the titanium titanium material or titanium alloy material having titanium nitride formed on the surface, obtained in step (1), in an electrolyte solution having no etching action on titanium. And a step of forming an oxide film of titanium by anodizing, and (3) a metal titanium material or titanium alloy material having a titanium oxide film formed on the surface, obtained in step (2). A cleaning apparatus manufactured in a process of performing heat treatment at a temperature of 400 ° C. or higher in an atmosphere selected from an atmosphere in which oxygen gas and nitrogen gas are mixed or an oxygen gas atmosphere.
前記設置面に近紫外線又は紫外線を光照射する光照射手段をさらに備えている請求項1に記載の洗浄装置。   The cleaning apparatus according to claim 1, further comprising light irradiation means for irradiating the installation surface with near ultraviolet rays or ultraviolet rays. 前記洗浄部は、前記設置面の上方に突出するように設けられ、還元水を前記容器内に噴射する第1のノズルを有し、
前記消毒部は、前記設置面の上方に突出するように設けられ、酸性水を前記容器内に噴射する第2のノズルを有し、
前記すすぎ部は、前記設置面の上方に突出するように設けられ、すすぎ液を前記容器内に噴射する第3のノズルを有する請求項1又は2に記載の洗浄装置。
The cleaning unit includes a first nozzle that is provided so as to protrude above the installation surface and that injects reducing water into the container,
The disinfection unit is provided to protrude above the installation surface, and has a second nozzle that injects acidic water into the container.
The cleaning apparatus according to claim 1, wherein the rinsing portion includes a third nozzle that is provided so as to protrude above the installation surface and that jets a rinsing liquid into the container.
農作物を洗浄する装置であって、
還元水を貯留し、前記農作物を浸漬可能な第1の槽を有する洗浄部と、
酸性水を貯留し、前記農作物を浸漬可能な第2の槽を有する消毒部と、
すすぎ液を貯留し、前記農作物を浸漬可能な第3の槽を有するすすぎ部と、を備え、
前記第1のの内面、前記第2のの内面及び前記第3のの内面は、光触媒材料により構成され、
前記光触媒材料が、
(1)加熱温度が750℃以上である、アンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法により、金属チタン材料又はチタン合金材料の表面にチタン窒化物を形成する工程、
(2)工程(1)で得られた、表面にチタン窒化物が形成された金属チタン材料又はチタン合金材料を、チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程、及び
(3)工程(2)で得られた、表面にチタンの酸化皮膜が形成された金属チタン材料又はチタン合金材料を、大気雰囲気下、酸素ガスと窒素ガスとを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程、にて作製される洗浄装置。
A device for cleaning crops,
A cleaning unit that stores reduced water and has a first tank capable of immersing the crops;
A disinfecting part having a second tank for storing acidic water and capable of immersing the crops;
A rinsing section for storing a rinsing liquid and having a third tank in which the crop can be immersed, and
The inner surface of the first tank, the inner surface of the second tank , and the inner surface of the third tank are made of a photocatalytic material,
The photocatalytic material is
(1) The heating temperature is 750 ° C. or higher, and the metal titanium material or the titanium alloy material is subjected to one treatment method selected from the group consisting of a heat treatment in an ammonia atmosphere and a heat treatment in a nitrogen gas atmosphere. Forming titanium nitride on the surface;
(2) Applying a voltage of 10 V or more to the titanium titanium material or titanium alloy material having titanium nitride formed on the surface, obtained in step (1), in an electrolyte solution having no etching action on titanium. And a step of forming an oxide film of titanium by anodizing, and (3) a metal titanium material or titanium alloy material having a titanium oxide film formed on the surface, obtained in step (2). A cleaning apparatus manufactured in a process of performing heat treatment at a temperature of 400 ° C. or higher in an atmosphere selected from an atmosphere in which oxygen gas and nitrogen gas are mixed or an oxygen gas atmosphere.
前記第1〜第3のの内面に近紫外線又は紫外線を光照射する光照射手段をさらに備えている請求項4に記載の洗浄装置。 The cleaning apparatus according to claim 4, further comprising light irradiation means for irradiating the inner surfaces of the first to third tanks with near ultraviolet rays or ultraviolet rays. 前記第1〜第3のが揺動可能である請求項4又は5に記載の洗浄装置。 The cleaning apparatus according to claim 4 or 5, wherein the first to third tanks are swingable. 前記窒素ガス雰囲気下での加熱処理が、酸素トラップ剤の存在下で実施される請求1〜6のいずれかに記載の洗浄装置。 Heat treatment under the nitrogen gas atmosphere, the cleaning apparatus according to claim 1 carried out in the presence of oxygen trapping agent. 前記陽極酸化で用いるチタンに対してエッチング作用を有しない電解液が、無機酸、有機酸及びこれらの塩よりなる群から選択される少なくとも1種の化合物を含有する電解液である請求項1〜7のいずれかに記載の洗浄装置。   The electrolytic solution having no etching action on titanium used in the anodization is an electrolytic solution containing at least one compound selected from the group consisting of inorganic acids, organic acids and salts thereof. The cleaning apparatus according to any one of 7. 前記無機酸、有機酸及びこれらの塩よりなる群から選択される少なくとも1種の化合物が、リン酸及びリン酸塩よりなる群から選択される少なくとも1種の化合物である請求項8に記載の洗浄装置。   9. The at least one compound selected from the group consisting of the inorganic acid, organic acid and salts thereof is at least one compound selected from the group consisting of phosphoric acid and phosphate. Cleaning device. 前記工程(2)の陽極酸化で印加する電圧が、50〜300Vである請求項1〜9のいずれかに記載の洗浄装置。 The cleaning apparatus according to any one of claims 1 to 9, wherein a voltage applied in the anodic oxidation in the step (2) is 50 to 300V. 前記工程(3)の雰囲気中で行う加熱処理の温度が、400℃〜700℃である請求項1〜10のいずれかに記載の洗浄装置。 The temperature of the heat processing performed in the atmosphere of the said process (3) is 400 to 700 degreeC, The washing | cleaning apparatus in any one of Claims 1-10. 前記陽極酸化により形成されるチタンの酸化皮膜が、結晶性酸化チタン皮膜である請求項1〜11のいずれかに記載の洗浄装置。   The cleaning apparatus according to claim 1, wherein the titanium oxide film formed by the anodic oxidation is a crystalline titanium oxide film. 前記結晶性酸化チタン皮膜が、アナターゼ型酸化チタン皮膜である請求項12に記載の洗浄装置。   The cleaning apparatus according to claim 12, wherein the crystalline titanium oxide film is an anatase type titanium oxide film. 前記洗浄部から排出される還元水廃液、前記消毒部から排出される酸性水廃液及び前記すすぎ部から排出されるすすぎ廃液を回収し、光触媒材料にて浄化処理する浄化処理部と、
前記浄化処理部から排出される前記還元水廃液、前記酸性水廃液及び前記すすぎ液廃液をフィルターにより濾過する濾過部と、
前記浄化処理部の前記光触媒材料に近紫外線又は紫外線を光照射する光照射手段と、をさらに備え、
前記浄化処理部では、
(1)加熱温度が750℃以上である、アンモニア雰囲気下での加熱処理及び窒素ガス雰囲気下での加熱処理よりなる群から選択される1種の処理方法により、金属チタン材料又はチタン合金材料の表面にチタン窒化物を形成する工程、
(2)工程(1)で得られた、表面にチタン窒化物が形成された金属チタン材料又はチタン合金材料を、チタンに対してエッチング作用を有しない電解液中で、10V以上の電圧を印加することにより陽極酸化を行い、チタンの酸化皮膜を形成する工程、及び
(3)工程(2)で得られた、表面にチタンの酸化皮膜が形成された金属チタン材料又はチタン合金材料を、大気雰囲気下、酸素ガスと窒素ガスとを混合させた雰囲気又は酸素ガス雰囲気から選択された雰囲気下で、400℃以上の温度で加熱処理を行う工程、にて作製される光触媒材料にて浄化処理を行う請求項1〜13のいずれかに記載の洗浄装置。
A purification processing unit that collects the reduced water waste liquid discharged from the cleaning unit, the acidic water waste liquid discharged from the disinfection unit, and the rinse liquid waste liquid discharged from the rinse unit, and performs purification treatment with a photocatalytic material;
A filtration unit that filters the reduced water waste liquid, the acidic water waste liquid, and the rinse liquid waste liquid discharged from the purification treatment unit with a filter;
A light irradiation means for irradiating the photocatalyst material of the purification treatment unit with near ultraviolet rays or ultraviolet rays, and further comprising:
In the purification processing unit,
(1) The heating temperature is 750 ° C. or higher, and the metal titanium material or the titanium alloy material is subjected to one treatment method selected from the group consisting of a heat treatment in an ammonia atmosphere and a heat treatment in a nitrogen gas atmosphere. Forming titanium nitride on the surface;
(2) Applying a voltage of 10 V or more to the titanium titanium material or titanium alloy material having titanium nitride formed on the surface, obtained in step (1), in an electrolyte solution having no etching action on titanium. And a step of forming an oxide film of titanium by anodizing, and (3) a metal titanium material or titanium alloy material having a titanium oxide film formed on the surface, obtained in step (2). Purifying treatment with a photocatalyst material produced in a step of performing heat treatment at a temperature of 400 ° C. or higher in an atmosphere, an atmosphere selected from an atmosphere in which oxygen gas and nitrogen gas are mixed, or an oxygen gas atmosphere The cleaning apparatus according to claim 1, wherein the cleaning apparatus is performed.
洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水が、濃度が0.001%〜0.5%の塩化ナトリウム水溶液を被電解水とする隔膜電解にて生成される請求項1〜14のいずれかに記載の洗浄装置。   The reduced water used for cleaning and the acidic water used for disinfection are generated by diaphragm electrolysis using a sodium chloride aqueous solution having a concentration of 0.001% to 0.5% as electrolyzed water. The cleaning apparatus according to any one of the above. 前記濾過部にて清浄された後の前記還元水及び前記酸性水が、洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水の生成のために再利用される請求項15に記載の洗浄装置。 The cleaning according to claim 15, wherein the reduced water and the acidic water after being cleaned in the filtration unit are reused for the production of the reduced water used for cleaning and the acidic water used for disinfection. apparatus. 前記フィルターが、有機物を除去するフィルター、固形物を除去するフィルター及びイオン交換樹脂フィルターから選択される少なくとも1種類以上のフィルターにて構成される請求項14〜16のいずれかに記載の洗浄装置。   The cleaning device according to any one of claims 14 to 16, wherein the filter includes at least one type of filter selected from a filter that removes organic matter, a filter that removes solid matter, and an ion exchange resin filter.
JP2014014057A 2014-01-29 2014-01-29 Cleaning device Expired - Fee Related JP5557969B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014014057A JP5557969B1 (en) 2014-01-29 2014-01-29 Cleaning device
CN201480012761.7A CN105026059B (en) 2014-01-29 2014-10-17 Clean device
PCT/JP2014/077642 WO2015114889A1 (en) 2014-01-29 2014-10-17 Cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014014057A JP5557969B1 (en) 2014-01-29 2014-01-29 Cleaning device

Publications (2)

Publication Number Publication Date
JP5557969B1 true JP5557969B1 (en) 2014-07-23
JP2015139747A JP2015139747A (en) 2015-08-03

Family

ID=51416933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014057A Expired - Fee Related JP5557969B1 (en) 2014-01-29 2014-01-29 Cleaning device

Country Status (3)

Country Link
JP (1) JP5557969B1 (en)
CN (1) CN105026059B (en)
WO (1) WO2015114889A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114889A1 (en) * 2014-01-29 2015-08-06 株式会社昭和 Cleaning device
CN113550631A (en) * 2021-08-26 2021-10-26 深圳市合众源环保科技有限公司 A fountain rubbish deodorizing device for garbage chamber

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106691347A (en) * 2017-03-08 2017-05-24 苏州弗乐卡电器科技发展有限公司 Food purifying basin type cleaning machine
GR1009338B (en) * 2017-04-12 2018-07-31 Ιωαννης Κωνσταντινου Κουκουτσης Automatic integrated system for the management of void plastic pesticides-packaging containers
JP6922779B2 (en) * 2018-02-20 2021-08-18 日本製鉄株式会社 Titanium lumber
CN108541960B (en) * 2018-03-09 2019-11-22 龙南天宇生态农业有限公司 A kind of conveying cleaning machine for fruit process
CN109198394A (en) * 2018-05-24 2019-01-15 益阳市福华米业有限公司 A kind of purple sweet potato rice and its processing method
CN109266467A (en) * 2018-08-20 2019-01-25 四川建元天地环保科技有限公司 Purposes of the organic electrolyte in product surface decontamination

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065661A1 (en) * 2011-11-01 2013-05-10 株式会社昭和 Washing method and washing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013667B2 (en) * 2002-06-24 2007-11-28 富士電機システムズ株式会社 Container cleaning equipment
JP3936642B2 (en) * 2002-08-06 2007-06-27 ホシザキ電機株式会社 Rinsing agent for carbonated drinking water order container and cleaning method for order container
JP4264426B2 (en) * 2005-05-19 2009-05-20 日本ピラー工業株式会社 Photocatalyst material, photocatalyst filter, photocatalyst filter unit, and photocatalyst purification treatment apparatus
JP4796471B2 (en) * 2006-10-06 2011-10-19 日本錬水株式会社 Rincer drainage recovery system and Rincer drainage recovery method
JP5557969B1 (en) * 2014-01-29 2014-07-23 株式会社昭和 Cleaning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065661A1 (en) * 2011-11-01 2013-05-10 株式会社昭和 Washing method and washing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114889A1 (en) * 2014-01-29 2015-08-06 株式会社昭和 Cleaning device
CN113550631A (en) * 2021-08-26 2021-10-26 深圳市合众源环保科技有限公司 A fountain rubbish deodorizing device for garbage chamber

Also Published As

Publication number Publication date
WO2015114889A1 (en) 2015-08-06
CN105026059B (en) 2016-08-31
CN105026059A (en) 2015-11-04
JP2015139747A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5557969B1 (en) Cleaning device
WO2013065661A1 (en) Washing method and washing device
JP5615718B2 (en) Manufacturing, processing, packaging and dispensing of beverages using electrochemically activated water
CN205658321U (en) Disinfection cleaning machine
JP2003251353A (en) Method and device for producing washing/cleaning sterilized water
Wei et al. Recent advances in electrochemical sterilization
JP2017502832A (en) Cart washing machine
WO2011129262A1 (en) Disinfection aid for ozone disinfection and method for ozone disinfection
US20030109398A1 (en) Cleaning solution, and method and apparatus for cleaning using the same
JP2011173858A (en) Hypochlorous acid-based germicidal disinfectant, and method and apparatus for preparing the same
KR20070098292A (en) Cleaning system and cleaning methode using electrolysis sterilizing water and ultrasonic vibration
EP2794976B1 (en) Method for operating a domestic appliance having a storage container and an oxidizing agent generator, and domestic appliance suitable for same
JP2007145961A (en) Sterilizing cleanser and method for removing stains therewith
JPH11290049A (en) Washing of vegetable and machine for washing vegetable
US10993448B2 (en) Method for sanitizing fresh produce
JP2015159794A (en) Vegetable sterilization system
CN101278686B (en) Semi-conductor photoelectrocatalysis combination electrode for simultaneously degrading ethylene and sterilizing and preparation and applications
CN104162418A (en) Activated carbon loaded titanium dioxide composite photocatalyst and preparation method thereof
JP3169258U (en) Disinfectant cleaning agent
CN104874000B (en) A kind of water-borne sterilization sterilizer
JP3552347B2 (en) Food cleaning equipment
WO2007132832A1 (en) Method for processing object substance in aqueous solution, and apparatus and photocatalyst material used for the method
RU156246U1 (en) DEVICE FOR ELECTROCHEMICAL TREATMENT OF LIQUID MEDIA
JPH0975050A (en) Food washer
JPH0919376A (en) Food washing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees