JP5555864B2 - Insulated gate semiconductor device and insulated gate semiconductor integrated circuit - Google Patents

Insulated gate semiconductor device and insulated gate semiconductor integrated circuit Download PDF

Info

Publication number
JP5555864B2
JP5555864B2 JP2009290910A JP2009290910A JP5555864B2 JP 5555864 B2 JP5555864 B2 JP 5555864B2 JP 2009290910 A JP2009290910 A JP 2009290910A JP 2009290910 A JP2009290910 A JP 2009290910A JP 5555864 B2 JP5555864 B2 JP 5555864B2
Authority
JP
Japan
Prior art keywords
region
main electrode
gate
insulating film
electrode region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009290910A
Other languages
Japanese (ja)
Other versions
JP2011134784A (en
Inventor
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BROOKMAN TECHNOLOGY,INC.
Original Assignee
BROOKMAN TECHNOLOGY,INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BROOKMAN TECHNOLOGY,INC. filed Critical BROOKMAN TECHNOLOGY,INC.
Priority to JP2009290910A priority Critical patent/JP5555864B2/en
Publication of JP2011134784A publication Critical patent/JP2011134784A/en
Application granted granted Critical
Publication of JP5555864B2 publication Critical patent/JP5555864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、耐放射線性を有する絶縁ゲート型半導体素子の構造、及びこの絶縁ゲート型半導体素子を用いた絶縁ゲート型半導体集積回路の構造に関する。   The present invention relates to a structure of an insulated gate semiconductor element having radiation resistance and an insulated gate semiconductor integrated circuit using the insulated gate semiconductor element.

固体撮像装置はCCD型とCMOS型とに大別される。これらの固体撮像装置を衛星搭載カメラなど放射線の多い環境で使用する場合において、多段の電荷転送動作を行うCCD型は、放射線の影響による転送劣化が生じ易いため、多段電荷転送動作を伴わないCMOS型の方が有利である。しかしながらCMOS型も放射線照射により様々な影響を受ける。具体的には、受光部の暗電流増大や白傷増大、トランジスタのリーク電流増大、ラッチアップなどである。この内、トランジスタのリーク電流は、画素内のトランジスタや読み出し回路系で用いるアナログ回路内のトランジスタ等で発生し、その対策を行うことはCMOS型固体撮像装置の耐放射線設計をする上で重要なポイントの1つとなる。   Solid-state imaging devices are roughly classified into CCD types and CMOS types. When these solid-state imaging devices are used in a radiation-intensive environment such as a satellite-mounted camera, the CCD type that performs multi-stage charge transfer operation is susceptible to transfer deterioration due to the influence of radiation, so a CMOS that does not involve multi-stage charge transfer operation. The mold is more advantageous. However, the CMOS type is also affected variously by irradiation. Specifically, the increase in dark current and white defects in the light receiving unit, the increase in leakage current in the transistor, and the latch-up. Among these, the leakage current of the transistor is generated in the transistor in the pixel or the transistor in the analog circuit used in the readout circuit system, and it is important to take measures against the radiation-resistant design of the CMOS type solid-state imaging device. It becomes one of the points.

図10を参照し、一般的なMOS型トランジスタが放射線照射を受けることによりリーク電流の増大を引き起こすことを説明する。図10に示すMOS型トランジスタは、p型基板である半導体層11の上に、シリコン酸化膜からなるゲート絶縁膜22を介してゲート電極24Pが形成され、厚い素子分離絶縁膜21で周辺を囲まれた領域を活性領域21Bとし、活性領域21Bにn型のドレイン領域12、ソース領域13が形成されて、ゲート電極24Pの下のチャネルをドレイン領域12からソース領域13に向かい電流が流れる。図11は図10に示すMOS型トランジスタの深さ方向の電位分布を示したものである。MOSトランジスタは、X線やガンマ線などの高エネルギ光や高エネルギの荷電粒子等のイオン化放射線(Ionizing Radiation)が照射されると、絶縁膜中に電子正孔対が発生した後、移動度の低い正孔が取り残されて半導体との界面近傍に多いトラップに蓄積する。これによりゲート電圧Vgが変わらなくてもチャネルのキャリア(電子)に対するポテンシャルはVs0からVs1まで深くなり、ゲート電圧Vgが通常ではオフ(遮断)となる値であってもチャネルをオフできなくなる。換言すればゲートがオン(導通)するしきい値電圧がマイナス方向にシフトする。この効果は酸化膜の厚さの2乗に比例するため厚い酸化膜で顕著となり、図10(a)に示すように、オフ時にチャネルの長さ方向に沿う両端部でリークパスが形成され、リーク電流Iが流れる。 With reference to FIG. 10, it will be described that a general MOS transistor causes an increase in leakage current when irradiated with radiation. In the MOS transistor shown in FIG. 10, a gate electrode 24P is formed on a semiconductor layer 11 that is a p-type substrate via a gate insulating film 22 made of a silicon oxide film, and the periphery is surrounded by a thick element isolation insulating film 21. This region is used as an active region 21B, and an n-type drain region 12 and a source region 13 are formed in the active region 21B. A current flows from the drain region 12 to the source region 13 through the channel below the gate electrode 24P. FIG. 11 shows a potential distribution in the depth direction of the MOS transistor shown in FIG. MOS transistors have low mobility after electron-hole pairs are generated in an insulating film when irradiated with high-energy light such as X-rays or gamma rays, or ionizing radiation such as charged particles of high energy. Holes are left behind and accumulate in many traps near the interface with the semiconductor. As a result, even if the gate voltage Vg does not change, the channel potential (electrons) has a deep potential from Vs0 to Vs1, and the channel cannot be turned off even if the gate voltage Vg is normally off (cut off). In other words, the threshold voltage at which the gate is turned on (conducted) shifts in the negative direction. Since this effect is proportional to the square of the thickness of the oxide film, it becomes significant when the oxide film is thick. As shown in FIG. 10A, a leak path is formed at both ends along the length direction of the channel at the time of off. Current Ia flows.

これを防ぐ方法の1つとして、図12に示すようにゲート電極81をリング状にし、ゲート電極81に囲まれた領域82をソースないしドレイン、ゲート電極81の周囲の領域83をドレインないしソースとすることが知られている(非特許文献1参照)。これによりソースとドレイン間に厚い酸化膜の側壁が無くなり、リーク電流は防止される。しかしながら、この方法はトランジスタサイズの増大を招く。   As one method for preventing this, as shown in FIG. 12, the gate electrode 81 is formed in a ring shape, a region 82 surrounded by the gate electrode 81 is a source or drain, and a region 83 around the gate electrode 81 is a drain or source. It is known (see Non-Patent Document 1). This eliminates the thick oxide sidewall between the source and drain and prevents leakage current. However, this method increases the transistor size.

他の方法として、図13に示すようにゲート電極88の下でチャネル86の幅を広げ、厚い酸化膜による側壁部のエッジ長さをyから2x+yへ増大することが提案されている(特許文献1参照)。これにより側壁部近傍のチャネル長が増大しリーク電流が流れ難くなるが、この方法もゲートサイズの増大を招く。   As another method, as shown in FIG. 13, it is proposed to increase the width of the channel 86 under the gate electrode 88 and increase the edge length of the side wall portion from a thick oxide film from y to 2x + y (Patent Document). 1). This increases the channel length near the side wall and makes it difficult for leakage current to flow, but this method also increases the gate size.

特表2009−516361号公報Special table 2009-516361

G.アネリ(Anelli)他、「LHC実験のための標準的なディープサブミクロンCMOS技術を用いた放射線耐性を有するVLSIの実用的設計(Radiation Tolerant VLSI Circuits in Standard Deep Submicron CMOS Technologies for the LHC Experiments: Practical Design Aspects)」、米国電気電子学会(IEEE)、原子核科学会報(Transactions on Nuclear Science)、第46巻、pp.1690-1696、1999年12月G. Anelli et al., “Radiation Tolerant VLSI Circuits in Standard Deep Submicron CMOS Technologies for the LHC Experiments: Practical Design Aspects), American Institute of Electrical and Electronics Engineers (IEEE), Transactions on Nuclear Science, Volume 46, pp. 1690-1696, December 1999

本発明は、サイズを増大することなく、放射線によるソースドレイン間のオフ時のリーク電流を低減することが可能な絶縁ゲート型半導体素子、及びこの絶縁ゲート型半導体素子を用いた絶縁ゲート型半導体集積回路を提供することを目的とする。   The present invention relates to an insulated gate semiconductor device capable of reducing a leakage current between a source and a drain due to radiation without increasing the size, and an insulated gate semiconductor integration using the insulated gate semiconductor device An object is to provide a circuit.

上記目的を達成するために、本発明の第1の態様は、(a)少なくとも一部がチャネル領域をなす第1導電型の半導体層と、(b)チャネル領域を少なくとも囲み、半導体層の上部に活性領域を定義する素子分離絶縁膜と、(c)活性領域の一方に設けられ、チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型の第1主電極領域と、(d)活性領域の他方に設けられ、チャネル領域から、キャリアを排出するキャリア排出口を有する第2導電型の第2主電極領域と、(e)活性領域の表面に設けられたゲート絶縁膜と、(f)ゲート絶縁膜の上に設けられ、キャリアの流れを静電的に制御し、平面パターン上、キャリアの流路に直交する主制御部、この主制御部にπ字型をなすように交わる2本のガード部を有し、第2の主電極領域の3方を囲むゲート電極と、(g)活性領域に、平面パターン上、第2主電極領域のゲート幅方向の両端側に、それぞれ2本のガード部を隔てて、ガード部、素子分離絶縁膜に接するようにそれぞれ形成され、第1導電型で、半導体層よりも高不純物密度のリーク阻止領域とを備える絶縁ゲート型半導体素子であることを要旨とする。   In order to achieve the above object, according to a first aspect of the present invention, there is provided: (a) a first conductivity type semiconductor layer at least partially forming a channel region; and (b) at least surrounding the channel region, (C) a first main electrode region of a second conductivity type provided in one of the active regions and injecting carriers into the channel region via a carrier injection port; and (d) ) A second main electrode region of a second conductivity type provided on the other side of the active region and having a carrier discharge port for discharging carriers from the channel region; and (e) a gate insulating film provided on the surface of the active region; (f) Provided on the gate insulating film, electrostatically control the carrier flow, and on the plane pattern, the main control unit orthogonal to the carrier flow path, and to form a π-shape in this main control unit There are two guard parts that intersect, and a gage surrounding three sides of the second main electrode region. (G) on the active region, on the planar pattern, on both ends in the gate width direction of the second main electrode region, with two guard portions, respectively, in contact with the guard portion and the element isolation insulating film The gist of the present invention is that each of the gate electrodes is an insulated gate semiconductor element having a first conductivity type and a leak prevention region having a higher impurity density than the semiconductor layer.

本発明の第2の態様は、(a)少なくとも一部がチャネル領域をなす第1導電型の半導体層と、(b)チャネル領域を少なくとも囲み、半導体層の上部に活性領域を定義する素子分離絶縁膜と、(c)活性領域の一方の端部側に設けられ、チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型の第1主電極領域と、(d)活性領域の他方の端部側に設けられ、チャネル領域から、キャリアを排出するキャリア排出口を有する第2導電型の第2主電極領域と、(e)活性領域の表面に設けられたゲート絶縁膜と、(f)ゲート絶縁膜の上に設けられ、キャリアの流路に直交する第1主制御部、この第1主制御部にπ字型をなすように交わる2本の第1ガード部を有し、第1主電極領域の3方を囲む第1のゲート電極と、(g)活性領域の第1ガード部と素子分離絶縁膜の間にそれぞれ挿入された一対の第1導電型で、半導体層よりも高不純物密度の第1リーク阻止領域と、(h)ゲート絶縁膜の上に第1のゲート電極と対向して設けられ、キャリアの流路に直交する第2主制御部、この第2主制御部にπ字型をなすように交わる2本の第2ガード部を有し、第2主電極領域の3方を囲む第2のゲート電極と、(i)活性領域の第2ガード部と素子分離絶縁膜の間にそれぞれ挿入された一対の第1導電型で、半導体層よりも高不純物密度の第2リーク阻止領域と、(j)活性領域の第1及び第2のゲート電極の間に位置し、第2導電型で、第1主電極領域に対して第2主電極領域と機能し、第2主電極領域に対して第1主電極領域と機能する共通主電極領域とを備える絶縁ゲート型半導体集積回路であることを要旨とする。   According to a second aspect of the present invention, there is provided: (a) a first conductivity type semiconductor layer at least partially forming a channel region; and (b) an element isolation that surrounds at least the channel region and defines an active region above the semiconductor layer. An insulating film; (c) a first main electrode region of a second conductivity type provided on one end side of the active region and injecting carriers into the channel region via a carrier injection port; and (d) an active region A second main electrode region of the second conductivity type provided on the other end side and having a carrier discharge port for discharging carriers from the channel region; and (e) a gate insulating film provided on the surface of the active region; (f) a first main controller provided on the gate insulating film and orthogonal to the carrier flow path; and two first guard portions intersecting the first main controller so as to form a π-shape. A first gate electrode surrounding three sides of the first main electrode region; and (g) a first guard portion and an element in the active region. A pair of first conductivity types inserted between the isolation insulating films and having a higher impurity density than the semiconductor layer; and (h) a first gate electrode facing the gate insulating film. A second main control section that is perpendicular to the carrier flow path, and two second guard sections that intersect with the second main control section so as to form a π-shape. A second gate electrode that surrounds the first gate electrode; and (i) a pair of first conductivity types respectively inserted between the second guard portion of the active region and the element isolation insulating film, and a second impurity having a higher impurity density than the semiconductor layer. (J) located between the first and second gate electrodes of the active region, and is of a second conductivity type, functions as a second main electrode region with respect to the first main electrode region, It is an insulated gate semiconductor integrated circuit comprising a first main electrode region and a common main electrode region that functions with respect to the main electrode region. To.

本発明の第3の態様は、(a)少なくとも一部がチャネル領域をなす第1導電型の半導体層と、(b)チャネル領域を少なくとも囲み、半導体層の上部に活性領域を定義する素子分離絶縁膜と、(c)活性領域の一方の端部側に設けられ、チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型の第1主電極領域と、(d)活性領域の他方の端部側に設けられ、チャネル領域から、キャリアを排出するキャリア排出口を有する第2導電型の第2主電極領域と、(e)活性領域の表面に設けられたゲート絶縁膜と、(f)ゲート絶縁膜の上に設けられ、キャリアの流路に直交する第1主制御部、この第1主制御部にπ字型をなすように交わる2本の第1ガード部を有し、第1主電極領域の3方を囲む第1のゲート電極と、(g)活性領域の第1ガード部と素子分離絶縁膜の間にそれぞれ挿入された一対の第1導電型で、半導体層よりも高不純物密度の第1リーク阻止領域と、(h)ゲート絶縁膜の上に第1のゲート電極と対向して設けられ、キャリアの流路に直交する第2主制御部、この第2主制御部にπ字型をなすように交わる2本の第2ガード部を有し、第2主電極領域の3方を囲む第2のゲート電極と、(i)活性領域の第2ガード部と素子分離絶縁膜の間にそれぞれ挿入された一対の第1導電型で、半導体層よりも高不純物密度の第2リーク阻止領域と、(j)第1のゲート電極と第2のゲート電極の間にそれぞれ離間して配置された複数の中間ゲート電極と、(k)第1のゲート電極と複数の中間ゲート電極のいずれかとの間、複数の中間ゲート電極のそれぞれの間、複数の中間ゲート電極のいずれかと第2のゲート電極の間にそれぞれ位置し、活性領域に素子分離絶縁膜から離間して設けられた第2導電型の複数の共通主電極領域とを備える絶縁ゲート型半導体集積回路であることを要旨とする。   According to a third aspect of the present invention, there is provided: (a) a first conductivity type semiconductor layer at least partially forming a channel region; and (b) an element isolation that surrounds at least the channel region and defines an active region above the semiconductor layer. An insulating film; (c) a first main electrode region of a second conductivity type provided on one end side of the active region and injecting carriers into the channel region via a carrier injection port; and (d) an active region A second main electrode region of the second conductivity type provided on the other end side and having a carrier discharge port for discharging carriers from the channel region; and (e) a gate insulating film provided on the surface of the active region; (f) a first main controller provided on the gate insulating film and orthogonal to the carrier flow path; and two first guard portions intersecting the first main controller so as to form a π-shape. A first gate electrode surrounding three sides of the first main electrode region; and (g) a first guard portion and an element in the active region. A pair of first conductivity types inserted between the isolation insulating films and having a higher impurity density than the semiconductor layer; and (h) a first gate electrode facing the gate insulating film. A second main control section that is perpendicular to the carrier flow path, and two second guard sections that intersect with the second main control section so as to form a π-shape. A second gate electrode that surrounds the first gate electrode; and (i) a pair of first conductivity types respectively inserted between the second guard portion of the active region and the element isolation insulating film, and a second impurity having a higher impurity density than the semiconductor layer. A leakage prevention region; (j) a plurality of intermediate gate electrodes spaced apart between the first gate electrode and the second gate electrode; and (k) a first gate electrode and a plurality of intermediate gate electrodes. Between each of the plurality of intermediate gate electrodes, between each of the plurality of intermediate gate electrodes and the second A gist of the present invention is an insulated gate semiconductor integrated circuit including a plurality of second conductive type common main electrode regions that are located between the gate electrodes and are provided in the active region and spaced apart from the element isolation insulating film. .

本発明によれば、サイズを増大することなく、放射線によるソースドレイン間のオフ時のリーク電流を低減することが可能な絶縁ゲート型半導体素子、及びこの絶縁ゲート型半導体素子を用いた絶縁ゲート型半導体集積回路を提供することができる。   According to the present invention, an insulated gate semiconductor element capable of reducing a leakage current between the source and the drain due to radiation without increasing the size, and an insulated gate type using the insulated gate semiconductor element A semiconductor integrated circuit can be provided.

図1(a)は、本発明の第1の実施形態に係る絶縁ゲート型半導体素子を示す平面図であり、図1(b)は図1(a)のIA−IA方向から見た、第1の実施形態に係る絶縁ゲート型半導体素子の一部を示す模式的な断面図、図1(c)は図1(a)のIB−IB方向から見た第1の実施形態に係る絶縁ゲート型半導体素子の一部を示す模式的な断面図、図1(d)は図1(a)のIC−IC方向から見た第1の実施形態に係る絶縁ゲート型半導体素子の一部を示す模式的な断面図である。FIG. 1A is a plan view showing an insulated gate semiconductor device according to the first embodiment of the present invention, and FIG. 1B is a first view seen from the IA-IA direction of FIG. FIG. 1C is a schematic cross-sectional view showing a part of an insulated gate semiconductor device according to the first embodiment, and FIG. 1C is an insulated gate according to the first embodiment as viewed from the IB-IB direction in FIG. FIG. 1D shows a part of the insulated gate semiconductor device according to the first embodiment as viewed from the IC-IC direction of FIG. It is typical sectional drawing. 図2(a)は、本発明の第2の実施形態に係る絶縁ゲート型半導体素子を示す平面図であり、図2(b)は図2(a)のIIA−IIA方向から見た、第2の実施形態に係る絶縁ゲート型半導体素子の一部を示す模式的な断面図である。FIG. 2A is a plan view showing an insulated gate semiconductor device according to the second embodiment of the present invention, and FIG. 2B is a plan view seen from the IIA-IIA direction of FIG. It is typical sectional drawing which shows a part of insulated gate semiconductor element which concerns on 2 embodiment. 図3(a)は、本発明の第3の実施形態に係る絶縁ゲート型半導体素子を示す平面図であり、図3(b)は図3(a)のIIIB−IIIB方向から見た、第3の実施形態に係る絶縁ゲート型半導体素子の一部を示す模式的な断面図である。FIG. 3A is a plan view showing an insulated gate semiconductor device according to the third embodiment of the present invention, and FIG. 3B is a plan view seen from the IIIB-IIIB direction of FIG. It is typical sectional drawing which shows a part of insulated gate semiconductor element which concerns on 3 embodiment. 本発明の第4の実施形態に係る絶縁ゲート型半導体集積回路の平面図の一例である。It is an example of the top view of the insulated gate semiconductor integrated circuit which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る絶縁ゲート型半導体集積回路の平面図の一例である。It is an example of the top view of the insulated gate semiconductor integrated circuit which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る絶縁ゲート型半導体集積回路の平面図の一例である。It is an example of the top view of the insulated gate semiconductor integrated circuit which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る絶縁ゲート型半導体素子、及び第8の実施形態に係る絶縁ゲート型半導体集積回路が適用される増幅型イメージセンサの各画素の回路構成の例を示す回路図である。The circuit diagram which shows the example of the circuit structure of each pixel of the amplification type image sensor to which the insulated gate semiconductor device which concerns on the 7th Embodiment of this invention, and the insulated gate semiconductor integrated circuit which concerns on 8th Embodiment are applied. It is. 図7に示す回路図の一部に用いられる本発明の第7の実施形態に係る絶縁ゲート型半導体素子の平面図の一例である。It is an example of the top view of the insulated gate semiconductor element which concerns on the 7th Embodiment of this invention used for a part of circuit diagram shown in FIG. 図7に示す回路図の一部に用いられる本発明の第8の実施形態に係る絶縁ゲート型半導体集積回路の平面図の一例である。It is an example of the top view of the insulated gate semiconductor integrated circuit which concerns on the 8th Embodiment of this invention used for a part of circuit diagram shown in FIG. 図10(a)は、従来の絶縁ゲート型半導体素子の主電流の経路を説明する平面図であり、図10(b)は図10(a)の絶縁ゲート型半導体素子のチャネル部のオン(導通)時とオフ(遮断)時のポテンシャルプロファイルを示す模式的な断面図である。FIG. 10A is a plan view for explaining the path of the main current of the conventional insulated gate semiconductor device, and FIG. 10B is a diagram illustrating the on-state of the channel portion of the insulated gate semiconductor device of FIG. It is a typical sectional view showing a potential profile at the time of conduction) and off (cut off). 従来の絶縁ゲート型半導体素子のチャネルのポテンシャルの変化を、放射線の照射前及び照射後の絶縁ゲート型半導体素子のチャネルのポテンシャル分布と比較して示す図である。It is a figure which compares the potential change of the channel of the conventional insulated gate semiconductor element with the potential distribution of the channel of the insulated gate semiconductor element before and after irradiation of a radiation. 従来の耐放射線性を有する絶縁ゲート型半導体素子を説明する平面図である。It is a top view explaining the conventional insulated gate semiconductor element which has radiation resistance. 従来の耐放射線性を有する絶縁ゲート型半導体素子を説明する平面図である。It is a top view explaining the conventional insulated gate semiconductor element which has radiation resistance.

次に、図面を参照して、本発明の第1〜第8の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Next, first to eighth embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す第1〜第8の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   Further, the following first to eighth embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is a material of a component. The shape, structure, arrangement, etc. are not specified as follows. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

(第1の実施形態)
図1に示すように、本発明の第1の実施形態に係る絶縁ゲート型半導体素子は、第1導電型(p型)のシリコン(Si)からなり、少なくとも一部がチャネル領域をなす第1導電型の半導体層11と、チャネル領域を少なくとも囲み、半導体層11の上部に活性領域21Bを定義する素子分離絶縁膜21と、活性領域21Bの一方に設けられ、チャネル領域にキャリア注入口を介してキャリア(電子)を注入する第2導電型(n型)で、素子分離絶縁膜21に3辺を接した矩形の第1主電極領域12と、活性領域21Bの他方に設けられ、チャネル領域から、キャリアを排出するキャリア排出口を有する第2導電型(n型)で、素子分離絶縁膜21の他方の端部に1辺のみを接した矩形の第2主電極領域13と、活性領域21Bの表面に設けられたゲート絶縁膜22と、ゲート絶縁膜22の上に設けられ、キャリアの流れを静電的に制御し、平面パターン上、第1主電極領域12と第2主電極領域13との間のチャネル領域を流れるキャリアの流路に直交する主制御部、この主制御部に、この主制御部と共に第2主電極領域13の3方を囲むように交わる2本のガード部241,242を有してπ字型をなすゲート電極24と、活性領域21Bに、平面パターン上、第2主電極領域13のゲート幅方向の両端側に、それぞれ2本のガード部241,242を隔てて、このガード部241,242、素子分離絶縁膜21に接するようにそれぞれ形成され、第1導電型(p型)で、半導体層11よりも高不純物密度のリーク阻止領域61,62とを備える。
(First embodiment)
As shown in FIG. 1, the insulated gate semiconductor device according to the first embodiment of the present invention is composed of a first conductivity type (p-type) silicon (Si), and at least a part of the first gate gate region forms a channel region. The conductive type semiconductor layer 11 and at least one of the channel region and the element isolation insulating film 21 defining the active region 21B on the semiconductor layer 11 are provided on one side of the active region 21B, and the channel region is provided with a carrier injection port. A second conductive type (n-type) for injecting carriers (electrons), a rectangular first main electrode region 12 having three sides in contact with the element isolation insulating film 21, and the active region 21B. A second main electrode region 13 having a second conductivity type (n-type) having a carrier discharge port for discharging carriers and having one side in contact with the other end of the element isolation insulating film 21, and an active region Provided on the surface of 21B The gate insulating film 22 is provided on the gate insulating film 22, and the flow of carriers is electrostatically controlled, so that the plane pattern is formed between the first main electrode region 12 and the second main electrode region 13. The main control unit orthogonal to the flow path of the carrier flowing in the channel region, and the main control unit have two guard portions 241 and 242 that intersect with the main control unit so as to surround three sides of the second main electrode region 13. The two guard portions 241 and 242 are separated from each other in the gate width direction of the second main electrode region 13 on the planar pattern on the gate electrode 24 having a π-shape and the active region 21B on the planar pattern. The guard portions 241 and 242 and the element isolation insulating film 21 are formed so as to be in contact with each other, and are provided with leak prevention regions 61 and 62 of the first conductivity type (p + type) and having a higher impurity density than the semiconductor layer 11.

第1主電極領域12は、ゲート電極24に近接する辺をキャリア注入口として有し、第2主電極領域13は、第1主電極領域12に近接する辺をキャリア排出口として有する。第1主電極領域12のキャリア注入口と第2主電極領域13のキャリア排出口とを結ぶキャリアの流路は、放射線によって生成されるリークパスから離間して設けられる。リークパスは、電子に対するポテンシャルが周囲より低く、活性領域21Bに素子分離絶縁膜21に沿って形成される。ゲート電極24の上には層間絶縁膜25が設けられ、層間絶縁膜25に開口されたコンタクトホールを介して、第1主電極領域12には第1主電極配線23が、第2主電極領域13には第2主電極配線27が接続されている。   The first main electrode region 12 has a side close to the gate electrode 24 as a carrier injection port, and the second main electrode region 13 has a side close to the first main electrode region 12 as a carrier discharge port. The carrier flow path connecting the carrier injection port of the first main electrode region 12 and the carrier discharge port of the second main electrode region 13 is provided apart from the leak path generated by radiation. The leak path has a lower potential for electrons than the surroundings, and is formed along the element isolation insulating film 21 in the active region 21B. An interlayer insulating film 25 is provided on the gate electrode 24, and a first main electrode wiring 23 is formed in the first main electrode region 12 and a second main electrode region through a contact hole opened in the interlayer insulating film 25. A second main electrode wiring 27 is connected to 13.

図1(b)〜図1(d)では「半導体層11」として、第1導電型(p型)の半導体基板(Si基板)を用いる場合を例示しているが、半導体基板の代わりに、第1導電型の半導体基板上に、半導体基板よりも低不純物密度の第1導電型のエピタキシャル成長層を形成して、エピタキシャル成長層を半導体層11として採用してもよく、第2導電型(n型)の半導体基板上に、第1導電型(p型)のエピタキシャル成長層を形成して、エピタキシャル成長層を半導体層11として採用してもよく、SOI構造の第1導電型の半導体層(SOI層)を半導体層11として採用してもよい。素子分離絶縁膜21は素子分離機能を有するものであれば種々の構造や種々の材料の絶縁膜が採用可能である。例えば微細化された集積回路等に有利な浅いトレンチ分離(STI:Shallow Trench Isolation)等のトレンチ分離構造に用いられる厚い酸化膜などが素子分離絶縁膜21として好適である。素子分離絶縁膜21は半導体層11の少なくとも上部を囲む構造であれば、種々の構造が採用可能で、SOI構造のように島状に半導体層11の底部及び側面を囲む構造であっても構わない。   In FIG. 1B to FIG. 1D, the case where a semiconductor substrate (Si substrate) of the first conductivity type (p-type) is used as the “semiconductor layer 11” is illustrated, but instead of the semiconductor substrate, An epitaxial growth layer of a first conductivity type having a lower impurity density than the semiconductor substrate may be formed on the semiconductor substrate of the first conductivity type, and the epitaxial growth layer may be adopted as the semiconductor layer 11. The first conductive type (p-type) epitaxial growth layer may be formed on the semiconductor substrate, and the epitaxial growth layer may be adopted as the semiconductor layer 11. The first conductive type semiconductor layer (SOI layer) having the SOI structure may be used. May be employed as the semiconductor layer 11. As the element isolation insulating film 21, various structures and insulating films of various materials can be adopted as long as they have an element isolation function. For example, a thick oxide film used for a trench isolation structure such as shallow trench isolation (STI), which is advantageous for miniaturized integrated circuits, is suitable as the element isolation insulating film 21. As long as the element isolation insulating film 21 surrounds at least the upper portion of the semiconductor layer 11, various structures can be adopted, and a structure surrounding the bottom and side surfaces of the semiconductor layer 11 like an island structure may be adopted. Absent.

本明細書及び本特許請求の範囲の記載において、「第1主電極領域」とは、電界効果トランジスタ(FET)や静電誘導トランジスタ(SIT)等のソース領域又はドレイン領域のいずれか一方となる半導体領域を意味する。「第2主電極領域」とは、FET,SIT等の上記第1主電極領域とはならないソース領域又はドレイン領域のいずれか一方となる半導体領域を意味する。即ち、第1主電極領域がソース領域であれば、第2主電極領域はドレイン領域であり、第1主電極領域がドレイン領域であれば、第2主電極領域はソース領域である。以下の説明では、便宜上、第1主電極領域がドレイン領域で第2主電極領域がソース領域の場合について説明するが、どちらをドレイン領域と呼び、どちらをソース領域と呼ぶかは、絶縁ゲート型半導体素子のバイアス関係で決まる単なる選択の問題であり、ドレイン領域とソース領域を入れ替えても構わない場合があることは勿論である。   In the description of the present specification and claims, the “first main electrode region” is either a source region or a drain region of a field effect transistor (FET), a static induction transistor (SIT), or the like. It means a semiconductor region. The “second main electrode region” means a semiconductor region such as an FET, SIT, etc., which is either the source region or the drain region that is not the first main electrode region. That is, if the first main electrode region is a source region, the second main electrode region is a drain region, and if the first main electrode region is a drain region, the second main electrode region is a source region. In the following description, for the sake of convenience, the case where the first main electrode region is the drain region and the second main electrode region is the source region will be described, but which is called the drain region and which is called the source region is an insulated gate type. Of course, this is merely a selection problem determined by the bias relationship of the semiconductor element, and the drain region and the source region may be interchanged.

又、本明細書及び本特許請求の範囲の記載において、「矩形」とは完全な矩形(長方形)のみを意味するものではない。即ち、「矩形の第1主電極領域12」や「矩形の第2主電極領域13」の表現は、完全な矩形(長方形)の第1主電極領域12や第2主電極領域13のみを意味する意図ではなく、フォトリソグラフィーやその他のプロセス上の理由から、第1主電極領域12や第2主電極領域13の平面形状のコーナ部分が丸みを帯びた矩形になる場合等が発生するので、そのような不完全な矩形のトポロジーをも許容するものであることに留意すべきである。特に、微細化が進んだ構造においては、第1主電極領域12や第2主電極領域13の平面形状は円に近い平面形状になりうるが、本明細書及び本特許請求の範囲の記載においては、それらの平面形状をも含めて「矩形の第1主電極領域12」や「矩形の第2主電極領域13」と呼ぶ。   In the description of the present specification and claims, the term “rectangle” does not mean a complete rectangle (rectangle). In other words, the expression “the rectangular first main electrode region 12” and “the rectangular second main electrode region 13” means only the first main electrode region 12 and the second main electrode region 13 which are completely rectangular (rectangular). However, for the reason of photolithography and other processes, the case where the corner portion of the planar shape of the first main electrode region 12 or the second main electrode region 13 becomes a rounded rectangle occurs. It should be noted that such incomplete rectangular topologies are also tolerated. In particular, in a structure that has been miniaturized, the planar shape of the first main electrode region 12 and the second main electrode region 13 can be a planar shape close to a circle, but in the description of the present specification and claims. These are also referred to as “rectangular first main electrode region 12” and “rectangular second main electrode region 13” including their planar shapes.

図1(a)では、第1主電極領域12が、平面パターン上、ゲート電極24の上にのみ設けられ、第2主電極領域13が、平面パターン上、ゲート電極24の下にのみ設けられた構造を例示した。しかし、第1主電極領域12は平面パターン上、第1主電極領域12側からゲート電極24の直下に、少なくともデバイ長以上の長さで、若干張り出していてもよく、第2主電極領域13は平面パターン上、第2主電極領域13側からゲート電極24の直下に若干張り出していてもよい。実際に、プロセス上の熱処理工程を考慮すれば、第1主電極領域12が、平面パターン上、第1主電極領域12側からゲート電極24の直下において、横方向(図1(a)において下方向)に拡散し、第2主電極領域13が第2主電極領域13側からゲート電極24の直下において、横方向(図1(a)において上方向)に拡散する構造は容易に実現できる。よって、現実の構造としては、図1(a)に示す構造は、第1主電極領域12が、平面パターン上、第1主電極領域12側からゲート電極24の直下において、下方向に若干張り出し、第2主電極領域13が第2主電極領域13側からゲート電極24の直下において、上方向に若干張り出している。   In FIG. 1A, the first main electrode region 12 is provided only on the planar pattern on the gate electrode 24, and the second main electrode region 13 is provided only on the planar pattern on the lower side of the gate electrode 24. The structure was illustrated. However, the first main electrode region 12 may slightly protrude from the first main electrode region 12 side directly below the gate electrode 24 on the plane pattern, at least with a Debye length or longer. May slightly protrude from the second main electrode region 13 side directly below the gate electrode 24 on the plane pattern. Actually, in consideration of the heat treatment process in the process, the first main electrode region 12 is arranged in the horizontal direction (in FIG. 1A) directly below the gate electrode 24 from the first main electrode region 12 side on the plane pattern. The structure in which the second main electrode region 13 diffuses in the lateral direction (upward in FIG. 1A) immediately below the gate electrode 24 from the second main electrode region 13 side can be easily realized. Therefore, as an actual structure, in the structure shown in FIG. 1A, the first main electrode region 12 slightly protrudes downward from the first main electrode region 12 side directly below the gate electrode 24 on the plane pattern. The second main electrode region 13 slightly protrudes upward from the second main electrode region 13 side directly below the gate electrode 24.

ゲート電極24は、燐(P)、砒素(As)等の第2導電型(n型)の不純物をドープした多結晶シリコン(以下において「ドープドポリシリコン」という。)膜等で形成すれば、ゲート電極24と第1主電極領域12との境界、及びゲート電極24と第2主電極領域13との境界は自己整合的に定めることが可能である。或いは、ゲート電極24を、ドープドポリシリコン膜とタングステンシリサイド(WSi2)膜等の多層構造から構成すればゲート電極24の抵抗値を低減させ、高速動作を可能にすることができる。シリサイド膜としては、タングステンシリサイド(WSi2)膜の他、コバルトシリサイド(CoSi2)膜、チタンシリサイド(TiSi2)膜、モリブデンシリサイド(MoSi2)膜等の金属シリサイド膜が使用可能である。シリサイド膜の代わりに、タングステン(W)、コバルト(Co)、チタン(Ti)、モリブデン(Mo)等の高融点金属でもよく、更には、これらのシリサイド膜を用いたポリサイド膜でゲート電極24を構成してもよい。シリサイド膜の代わりに、アルミニウム(Al)或いは銅(Cu)等の高導電率の金属膜をドープドポリシリコン膜の上に配置してもよく、タングステン窒化物(WN)膜、チタン窒化物(TiN,Ti2N)膜のいずれか1つ或いは複数の積層膜を、シリサイド膜の代わりにドープドポリシリコン膜の上に配置してゲート電極24を構成してもよい。 The gate electrode 24 may be formed of a polycrystalline silicon (hereinafter referred to as “doped polysilicon”) film doped with a second conductivity type (n-type) impurity such as phosphorus (P) or arsenic (As). The boundary between the gate electrode 24 and the first main electrode region 12 and the boundary between the gate electrode 24 and the second main electrode region 13 can be determined in a self-aligning manner. Alternatively, if the gate electrode 24 is formed of a multilayer structure such as a doped polysilicon film and a tungsten silicide (WSi 2 ) film, the resistance value of the gate electrode 24 can be reduced and high-speed operation can be achieved. As the silicide film, a metal silicide film such as a cobalt silicide (CoSi 2 ) film, a titanium silicide (TiSi 2 ) film, and a molybdenum silicide (MoSi 2 ) film can be used in addition to a tungsten silicide (WSi 2 ) film. Instead of the silicide film, a refractory metal such as tungsten (W), cobalt (Co), titanium (Ti), and molybdenum (Mo) may be used. Furthermore, the gate electrode 24 is formed of a polycide film using these silicide films. It may be configured. Instead of the silicide film, a metal film having a high conductivity such as aluminum (Al) or copper (Cu) may be disposed on the doped polysilicon film, such as a tungsten nitride (WN) film, a titanium nitride ( Any one or a plurality of laminated films of (TiN, Ti 2 N) film may be arranged on the doped polysilicon film instead of the silicide film to constitute the gate electrode 24.

第1の実施形態に係る絶縁ゲート型半導体素子は、ゲート絶縁膜22としてシリコン酸化膜を用いた単なるMOS型のトランジスタだけに限定されるものではない。即ち、第1の実施形態に係る絶縁ゲート型半導体素子のゲート絶縁膜22としては、シリコン酸化膜の他、ストロンチウム酸化物(SrO)膜、シリコン窒化物(Si34)膜、アルミニウム酸化物(Al23)膜、マグネシウム酸化物(MgO)膜、イットリウム酸化物(Y23)膜、ハフニウム酸化物(HfO2)膜、ジルコニウム酸化物(ZrO2)膜、タンタル酸化物(Ta25)膜、ビスマス酸化物(Bi23)膜のいずれか1つの単層膜或いはこれらの複数を積層した複合膜等を使用して、MIS型のトランジスタを構成してもよい。但し、これらゲート絶縁膜材料としては、放射線に対して耐性があることが前提となる。 The insulated gate semiconductor device according to the first embodiment is not limited to a simple MOS transistor using a silicon oxide film as the gate insulating film 22. That is, as the gate insulating film 22 of the insulated gate semiconductor device according to the first embodiment, in addition to a silicon oxide film, a strontium oxide (SrO) film, a silicon nitride (Si 3 N 4 ) film, an aluminum oxide (Al 2 O 3 ) film, magnesium oxide (MgO) film, yttrium oxide (Y 2 O 3 ) film, hafnium oxide (HfO 2 ) film, zirconium oxide (ZrO 2 ) film, tantalum oxide (Ta A MIS transistor may be formed using any one single layer film of 2 O 5 ) film, bismuth oxide (Bi 2 O 3 ) film, or a composite film in which a plurality of these films are stacked. However, these gate insulating film materials are premised on being resistant to radiation.

第1の実施形態に係る絶縁ゲート型半導体素子にイオン化放射線が照射されると、ゲート電極24下方の素子分離絶縁膜21近傍の領域PA及びPBでゲートのしきい値電圧が負方向にシフトする。しかしながら、それぞれ領域PA及びPBの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61,62であるため、リーク阻止領域61,62を介する電流経路はブロックされる。従って、イオン化放射線が照射されても、リーク電流が流れることをほぼ完全に防止できる。   When ionizing radiation is irradiated to the insulated gate semiconductor device according to the first embodiment, the threshold voltage of the gate shifts in the negative direction in the regions PA and PB near the device isolation insulating film 21 below the gate electrode 24. . However, since one end of each of the regions PA and PB is the leakage prevention regions 61 and 62 made of a layer having a conductivity type opposite to the channel charge, the current path through the leakage prevention regions 61 and 62 is blocked. Therefore, even when ionizing radiation is irradiated, it is possible to almost completely prevent the leakage current from flowing.

(第2の実施形態)
第1の実施形態に係る絶縁ゲート型半導体素子では、第1主電極領域12として3辺を素子分離絶縁膜21に接した構造を説明したが、素子分離絶縁膜21に接する3辺の内対向する2辺を、素子分離絶縁膜21から離間する構造としてもよい。
(Second Embodiment)
In the insulated gate semiconductor device according to the first embodiment, the structure in which three sides are in contact with the element isolation insulating film 21 as the first main electrode region 12 has been described, but the inner sides of the three sides in contact with the element isolation insulating film 21 are described. The two sides may be separated from the element isolation insulating film 21.

即ち、第2の実施形態に係る絶縁ゲート型半導体素子は、図2に示すように、第1主電極領域12aが、第1主電極領域12aのキャリアの流路に平行な2辺と素子分離絶縁膜21との間に、それぞれキャリアの流路に直交する方向(ゲート幅方向)に距離qを隔てて設けられている点で第1の実施形態と異なる。その他の構造は、第1の実施形態に係る絶縁ゲート型半導体素子と同一であるので重複した説明を省略する。   That is, in the insulated gate semiconductor device according to the second embodiment, as shown in FIG. 2, the first main electrode region 12a is separated from two sides parallel to the carrier flow path of the first main electrode region 12a. The second embodiment is different from the first embodiment in that a distance q is provided between the insulating film 21 and the insulating film 21 in a direction (gate width direction) orthogonal to the carrier flow path. Since the other structure is the same as that of the insulated gate semiconductor device according to the first embodiment, a duplicate description is omitted.

第2の実施形態に係る絶縁ゲート型半導体素子にイオン化放射線が照射されると、ゲート電極24の下方の素子分離絶縁膜21近傍の領域PA及びPBでゲートのしきい値電圧が負方向にシフトする。しかしながら、それぞれ領域PA及びPBの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61,62であるため、これらの部分を介する電流経路はブロックされる。更に、第2の実施形態に係る絶縁ゲート型半導体素子は、第1主電極領域12aが、素子分離絶縁膜21近傍に形成されるリークパスを避けるように、第1主電極領域12aのキャリアの流路に平行な2辺と素子分離絶縁膜21とが離間するように設けられているので、イオン化放射線が照射されても、より確実にリーク電流が流れることを防止できる。   When ionizing radiation is irradiated to the insulated gate semiconductor device according to the second embodiment, the threshold voltage of the gate shifts in the negative direction in the regions PA and PB near the device isolation insulating film 21 below the gate electrode 24. To do. However, since one end of each of the regions PA and PB is the leakage prevention regions 61 and 62 made of a layer having a conductivity type opposite to that of the channel charge, the current path through these portions is blocked. Furthermore, in the insulated gate semiconductor device according to the second embodiment, the carrier flow of the first main electrode region 12a is avoided so that the first main electrode region 12a avoids a leak path formed in the vicinity of the element isolation insulating film 21. Since the two sides parallel to the path and the element isolation insulating film 21 are provided so as to be separated from each other, it is possible to prevent leakage current from flowing more reliably even when ionizing radiation is irradiated.

(第3の実施形態)
図3に示すように、本発明の第3の実施形態に係る絶縁ゲート型半導体素子は、π字型のゲート電極24の下方の活性領域21Bに、チャネル幅と同方向に第2主電極領域13と同程度の幅を有するn型の埋込領域15が形成されている点で第1の実施形態と異なる。第3の実施形態に係る絶縁ゲート型半導体素子は、ゲート電圧0Vでチャネルにキャリアが注入されるノーマリオン(ディプリーション)型の絶縁ゲート型トランジスタであり、導通時には埋込領域15の部分のキャリア(電子)に対するポテンシャルが深く形成されている。埋込領域15の不純物密度は、第1主電極領域12と第2主電極領域13より低不純物密度であるが、p型の半導体層11と同程度若しくはp型の半導体層11よりも大きな値である。
(Third embodiment)
As shown in FIG. 3, the insulated gate semiconductor device according to the third embodiment of the present invention includes a second main electrode region in the active region 21B below the π-shaped gate electrode 24 in the same direction as the channel width. 13 differs from the first embodiment in that an n type buried region 15 having a width comparable to 13 is formed. The insulated gate semiconductor device according to the third embodiment is a normally-on (depletion) insulated gate transistor in which carriers are injected into the channel at a gate voltage of 0 V. The potential for carriers (electrons) is deeply formed. The impurity density of the buried region 15 is lower than that of the first main electrode region 12 and the second main electrode region 13, but is about the same as that of the p-type semiconductor layer 11 or larger than that of the p-type semiconductor layer 11. It is.

第3の実施形態に係る絶縁ゲート型半導体素子にイオン化放射線が照射されると、ゲート電極24の下方の素子分離絶縁膜21近傍の領域PA及びPBでゲートのしきい値電圧が負方向にシフトする。しかしながら、それぞれ領域PA及びPBの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61,62であるため、リーク阻止領域61,62を介する電流経路はブロックされる。更に、第3の実施形態に係る絶縁ゲート型半導体素子は、ゲート電極24の下方の活性領域21Bに、チャネル幅と同方向に第2主電極領域13と同程度の幅を有するn−型の埋込領域15が形成されているので、キャリアの流路が埋込領域15に制約され、イオン化放射線が照射されても、より一層リーク電流を防止できる。   When the insulated gate semiconductor device according to the third embodiment is irradiated with ionizing radiation, the threshold voltage of the gate shifts in the negative direction in the regions PA and PB near the device isolation insulating film 21 below the gate electrode 24. To do. However, since one end of each of the regions PA and PB is the leakage prevention regions 61 and 62 made of a layer having a conductivity type opposite to the channel charge, the current path through the leakage prevention regions 61 and 62 is blocked. Furthermore, the insulated gate semiconductor device according to the third embodiment has an n − type active region 21B below the gate electrode 24 and having an approximately the same width as the second main electrode region 13 in the same direction as the channel width. Since the buried region 15 is formed, the carrier flow path is restricted by the buried region 15, and even when ionizing radiation is irradiated, leakage current can be further prevented.

(第4の実施形態)
図4に示すように、第4の実施形態に係る絶縁ゲート型半導体集積回路は、図1に示した第1の実施形態に係る絶縁ゲート型半導体素子を、第1主電極領域12を共通した電極領域として、2つの絶縁ゲート型半導体素子を対向するように直列接続した構成である。
(Fourth embodiment)
As shown in FIG. 4, the insulated gate semiconductor integrated circuit according to the fourth embodiment shares the first main electrode region 12 with the insulated gate semiconductor element according to the first embodiment shown in FIG. As the electrode region, two insulated gate semiconductor elements are connected in series so as to face each other.

即ち、第4の実施形態に係る絶縁ゲート型半導体集積回路は、第1導電型(p型)のSiからなり、少なくとも一部がチャネル領域をなす半導体層11と、チャネル領域を少なくとも囲み、半導体層11の上部に活性領域21Bを定義する素子分離絶縁膜21と、活性領域21Bの一方の端部側に設けられ、チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型(n型)で矩形の第1主電極領域12と、活性領域21Bの他方の端部側に設けられ、チャネル領域から、キャリアを排出するキャリア排出口を有する第2導電型(n型)で矩形の第2主電極領域13と、活性領域21Bの表面に設けられたゲート絶縁膜(図示省略)と、ゲート絶縁膜の上に設けられ、キャリアの流路に直交する第1主制御部、この第1主制御部にπ字型をなすように交わる2本の第1ガード部241a,242aを有し、第1主電極領域12の3方を囲む第1のゲート電極24aと、活性領域21Bの第1ガード部241a,242aと素子分離絶縁膜21の間にそれぞれ挿入された一対の第1導電型(p型)で、半導体層11よりも高不純物密度の第1リーク阻止領域61a,62aと、ゲート絶縁膜の上に第1のゲート電極24aと対向して設けられ、キャリアの流路に直交する第2主制御部、この第2主制御部にπ字型をなすように交わる2本の第2ガード部241b,242bを有し、第2主電極領域13の3方を囲む第2のゲート電極24bと、活性領域21Bの第2ガード部241b,242bと素子分離絶縁膜21の間にそれぞれ挿入された一対の第1導電型(p型)で、半導体層11よりも高不純物密度の第2リーク阻止領域61b,62bと、活性領域21Bの第1のゲート電極24aと第2のゲート電極24bの間に位置し、第2導電型(n型)で、第1主電極領域12に対して第2主電極領域13と機能し、第2主電極領域13に対して第1主電極領域12と機能する共通主電極領域14とを備える。 That is, the insulated gate semiconductor integrated circuit according to the fourth embodiment is made of first conductivity type (p-type) Si, and at least a part of which forms a channel region, and at least surrounds the channel region. The element isolation insulating film 21 defining the active region 21B is formed on the upper side of the layer 11, and is provided on one end side of the active region 21B. The second conductivity type (n is injected into the channel region via the carrier injection port). Type) rectangular first main electrode region 12 and the second conductivity type (n type) rectangular on the other end side of the active region 21B and having a carrier discharge port for discharging carriers from the channel region. A second main electrode region 13, a gate insulating film (not shown) provided on the surface of the active region 21B, a first main controller provided on the gate insulating film and orthogonal to the carrier flow path, 1 Main control unit A first gate electrode 24a that has two first guard portions 241a and 242a that intersect in a π-shape, surrounds three sides of the first main electrode region 12, and a first guard portion 241a of the active region 21B. , 242a and the element isolation insulating film 21 and a pair of first conductivity type (p + type) first impurity blocking regions 61a, 62a having a higher impurity density than the semiconductor layer 11, and a gate insulating film A second main control unit provided opposite to the first gate electrode 24a and orthogonal to the carrier flow path, and two second guards intersecting the second main control unit so as to form a π-shape. Having a portion 241b, 242b and inserted between the second gate electrode 24b surrounding three sides of the second main electrode region 13 and the second guard portions 241b, 242b of the active region 21B and the element isolation insulating film 21, respectively. a pair of first conductivity type (p + ) Is located between the second leakage prevention regions 61b and 62b having a higher impurity density than the semiconductor layer 11 and the first gate electrode 24a and the second gate electrode 24b in the active region 21B, and has the second conductivity type ( n-type), and a common main electrode region 14 that functions as the second main electrode region 13 for the first main electrode region 12 and functions as the first main electrode region 12 for the second main electrode region 13. .

第4の実施形態に係る絶縁ゲート型半導体集積回路にイオン化放射線が照射されると、第1のゲート電極24a及び第2のゲート電極24bのそれぞれ下方の素子分離絶縁膜21近傍の領域PAa,PBa;PAb,PBbでゲートのしきい値電圧が負方向にシフトする。しかしながら、それぞれ領域PAa,PBa;PAb,PBbの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61a,62a;61b,62bであるため、リーク阻止領域61a,62a;61b,62bを介する電流経路はブロックされる。従って、イオン化放射線が照射されても、リーク電流が流れることをほぼ完全に防止できる。   When ionizing radiation is irradiated to the insulated gate semiconductor integrated circuit according to the fourth embodiment, regions PAa and PBa near the element isolation insulating film 21 below the first gate electrode 24a and the second gate electrode 24b, respectively. The threshold voltage of the gate shifts in the negative direction at PAb and PBb. However, since one end of each of the regions PAa, PBa; PAb, PBb is a leakage prevention region 61a, 62a; 61b, 62b made of a layer having a conductivity type opposite to the channel charge, the leakage prevention regions 61a, 62a; 61b, 62b are interposed. The current path is blocked. Therefore, even when ionizing radiation is irradiated, it is possible to almost completely prevent the leakage current from flowing.

(第5の実施形態)
図4に示す第4の実施形態に係る絶縁ゲート型半導体集積回路は、平面パターン上、π字型の第1のゲート電極24aとπ字型の第2のゲート電極24bとの間に共通主電極領域14を配置し、2つのトランジスタを直列に接続した構成としたが、複数の共通主電極領域、更に複数のゲート電極を用いて、更に複数のトランジスタを直列接続する構成としてもよい。
(Fifth embodiment)
The insulated gate semiconductor integrated circuit according to the fourth embodiment shown in FIG. 4 has a common main portion between the π-shaped first gate electrode 24a and the π-shaped second gate electrode 24b on the plane pattern. Although the electrode region 14 is disposed and the two transistors are connected in series, a plurality of transistors may be connected in series by using a plurality of common main electrode regions and a plurality of gate electrodes.

図5に示すように、本発明の第5の実施形態に係る絶縁ゲート型半導体集積回路は、第1導電型(p型)のSiからなり、少なくとも一部がチャネル領域をなす半導体層11と、チャネル領域を少なくとも囲み、半導体層11の上部に活性領域21Bを定義する素子分離絶縁膜21と、活性領域21Bの一方の端部側に設けられ、チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型(n型)の第1主電極領域12と、活性領域21Bの他方の端部側に設けられ、チャネル領域から、キャリアを排出するキャリア排出口を有する第2導電型(n型)の第2主電極領域13と、活性領域21Bの表面に設けられたゲート絶縁膜(図示省略)と、ゲート絶縁膜の上に設けられ、キャリアの流路に直交する第1主制御部、この第1主制御部にπ字型をなすように交わる2本の第1ガード部241a,242aを有し、第1主電極領域12の3方を囲む第1のゲート電極24aと、活性領域21Bの第1ガード部241a,242aと素子分離絶縁膜21の間にそれぞれ挿入された一対の第1導電型(p型)で、半導体層11よりも高不純物密度の第1リーク阻止領域61a,62aと、ゲート絶縁膜の上に第1のゲート電極24aと対向して設けられ、キャリアの流路に直交する第2主制御部、この第2主制御部にπ字型をなすように交わる2本の第2ガード部241b,242bを有し、第2主電極領域13の3方を囲む第2のゲート電極24bと、活性領域21Bの第2ガード部241b,242bと素子分離絶縁膜21の間にそれぞれ挿入された一対の第1導電型(p型)で、半導体層11よりも高不純物密度の第2リーク阻止領域61b,62bと、第1のゲート電極24aと第2のゲート電極24bの間にそれぞれ離間して配置された複数の中間ゲート電極26-1〜26-m(mは正の整数)と、第1のゲート電極24aと中間ゲート電極26-1との間、複数の中間ゲート電極26-1〜26-mのそれぞれの間、中間ゲート電極26-mと第2のゲート電極24bの間にそれぞれ位置し、活性領域21Bに素子分離絶縁膜21から離間して設けられた第2導電型(n型)の複数の共通主電極領域141とを備えて、複数の絶縁ゲート型半導体素子の直列回路を構成している。 As shown in FIG. 5, the insulated gate semiconductor integrated circuit according to the fifth embodiment of the present invention includes a semiconductor layer 11 made of Si of the first conductivity type (p-type) and at least part of which forms a channel region. The element isolation insulating film 21 that at least surrounds the channel region and defines the active region 21B above the semiconductor layer 11, and is provided on one end side of the active region 21B, and carriers are supplied to the channel region via a carrier injection port. A second conductivity type (n-type) first main electrode region 12 to be injected and a second conductivity type (on the other end side of the active region 21B) and having a carrier discharge port for discharging carriers from the channel region ( n-type) second main electrode region 13, a gate insulating film (not shown) provided on the surface of the active region 21B, and a first main control provided on the gate insulating film and orthogonal to the carrier flow path. Part, this first The control unit has two first guard portions 241a and 242a that intersect in a π-shape, and includes a first gate electrode 24a that surrounds three sides of the first main electrode region 12, and a first of the active region 21B. A pair of first conductivity type ( p.sup. + Type) inserted between the guard portions 241a and 242a and the element isolation insulating film 21 and having a higher impurity density than the semiconductor layer 11, and first leakage prevention regions 61a and 62a; A second main control unit that is provided on the gate insulating film so as to face the first gate electrode 24a, and intersects the second main control unit so as to form a π-shape. A second gate electrode 24b that has second guard portions 241b and 242b and surrounds three sides of the second main electrode region 13, and between the second guard portions 241b and 242b of the active region 21B and the element isolation insulating film 21. A pair of first conductivity types, each inserted A plurality of (p + -type) second leak blocking regions 61b and 62b having a higher impurity density than the semiconductor layer 11 and spaced apart between the first gate electrode 24a and the second gate electrode 24b. Intermediate gate electrodes 26 -1 to 26 -m (m is a positive integer), a plurality of intermediate gate electrodes 26 -1 to 26 -m between the first gate electrode 24 a and the intermediate gate electrode 26 -1 . A plurality of second conductivity types (n-type) are provided between the intermediate gate electrode 26- m and the second gate electrode 24b, respectively, and are provided in the active region 21B apart from the element isolation insulating film 21. And a common main electrode region 141 to form a series circuit of a plurality of insulated gate semiconductor elements.

第5の実施形態に係る絶縁ゲート型半導体集積回路にイオン化放射線が照射されると、第1のゲート電極24a及び第2のゲート電極24bのそれぞれ下方の素子分離絶縁膜21近傍の領域PAa,PBa;PAb,PBbでゲートのしきい値電圧が負方向にシフトする。しかしながら、それぞれ領域PAa,PBa;PAb,PBbの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61a,62a;61b,62bであるため、リーク阻止領域61a,62a;61b,62bを介する電流経路はブロックされる。従って、イオン化放射線が照射されても、リーク電流が流れることをほぼ完全に防止できる。   When ionizing radiation is irradiated to the insulated gate semiconductor integrated circuit according to the fifth embodiment, regions PAa and PBa near the element isolation insulating film 21 below the first gate electrode 24a and the second gate electrode 24b, respectively. The threshold voltage of the gate shifts in the negative direction at PAb and PBb. However, since one end of each of the regions PAa, PBa; PAb, PBb is a leakage prevention region 61a, 62a; 61b, 62b made of a layer having a conductivity type opposite to the channel charge, the leakage prevention regions 61a, 62a; 61b, 62b are interposed. The current path is blocked. Therefore, even when ionizing radiation is irradiated, it is possible to almost completely prevent the leakage current from flowing.

更に、第5の実施形態に係る絶縁ゲート型半導体集積回路は、複数の共通主電極領域141が、それぞれ素子分離絶縁膜21と離間して設けられているので、キャリアが、素子分離絶縁膜21近傍にリークパスが形成される領域PAcを避けて、より確実にリーク電流が流れることを防止できる。   Furthermore, in the insulated gate semiconductor integrated circuit according to the fifth embodiment, since the plurality of common main electrode regions 141 are provided separately from the element isolation insulating film 21, the carrier is the element isolation insulating film 21. By avoiding the region PAc in which a leak path is formed in the vicinity, it is possible to prevent leakage current from flowing more reliably.

(第6の実施形態)
図5に示す第5の実施形態に係る絶縁ゲート型半導体集積回路では、複数の共通主電極領域141を素子分離絶縁膜21からそれぞれ離間した構成とすることによって、キャリアが素子分離絶縁膜21近傍に形成されるリークパスを流れることを防止したが、複数の中間ゲート電極26-1〜26-mのそれぞれ下方の素子分離絶縁膜21に近接する領域に、半導体層11より高濃度の第1導電型の領域を設けることによっても2つのπ字型のゲート電極の間のリーク電流を防止できる。
(Sixth embodiment)
In the insulated gate semiconductor integrated circuit according to the fifth embodiment shown in FIG. 5, the plurality of common main electrode regions 141 are separated from the element isolation insulating film 21 so that the carriers are in the vicinity of the element isolation insulating film 21. In the region adjacent to the element isolation insulating film 21 below each of the plurality of intermediate gate electrodes 26 -1 to 26 -m , the first conductivity having a concentration higher than that of the semiconductor layer 11 is prevented. By providing the mold region, it is possible to prevent leakage current between the two π-shaped gate electrodes.

図6に示すように、本発明の第6の実施形態に係る絶縁ゲート型半導体集積回路は、第1導電型(p型)のSiからなり、少なくとも一部が複数のトランジスタのチャネル領域をなす半導体層11と、半導体層11の上部のそれぞれのトランジスタのチャネル領域となる領域を少なくとも囲み、半導体層11の上部に複数のトランジスタに共通の活性領域21Bを定義する素子分離絶縁膜21と、活性領域21Bの一方の端部側に設けられ、チャネル領域にキャリア注入口を介してキャリアを注入し、第2導電型(n型)で、素子分離絶縁膜の一方の端部に一辺のみを接した矩形の第1主電極領域12と、活性領域21Bの他方の端部側に設けられ、チャネル領域からキャリアを排出するキャリア排出口を有し、第2導電型(n型)で、素子分離絶縁膜に他方の端部に一辺のみを接した矩形の第2主電極領域13と、活性領域21Bの表面に設けられたゲート絶縁膜(図示省略)と、ゲート絶縁膜の上方において、キャリアの流れを静電的に制御し、平面パターン上、第1主電極領域12と第2主電極領域13との間を第1主電極領域12の1辺と接して、第1主電極領域12と第2主電極領域13との間のチャネル領域を流れるキャリアの流路に直交する方向に伸延し、第1主電極領域12の3辺を囲むように更に伸延する2本の第1ガード部241a,242aを有するπ字型の第1のゲート電極24aと、活性領域21Bに、平面パターン上、第1主電極領域12のゲート幅方向の両端側に、それぞれ第1のゲート電極24aの第1ガード部241a,242aを隔てて、第1ガード部241a,242a及び素子分離絶縁膜21に接した第1導電型(p型)の第1リーク阻止領域61a,62aと、ゲート絶縁膜の上方において、キャリアの流れを静電的に制御し、平面パターン上、第1主電極領域12と第2主電極領域13との間を第2主電極領域13の1辺と接して、第1のゲート電極24aに対向し、第2主電極領域13の3辺を囲むように更に伸延する2本の第2ガード部241b,242bを有し、第1のゲート電極24aに対して、第1のゲート電極24a、第2のゲート電極24b間のチャネル幅方向に沿う中心線に関して互いに鏡像対称に配置されるπ字型の第2のゲート電極24bと、活性領域21Bに、平面パターン上、第2主電極領域13のゲート幅方向の両端側に、それぞれ第2のゲート電極24bの第2ガード部241b,242bを隔てて、第2ガード部241b,242b及び素子分離絶縁膜21に接した第1導電型(p型)の第2リーク阻止領域61b,62bと、ゲート絶縁膜の上方において、キャリアの流れをそれぞれ静電的に制御し、平面パターン上、第1のゲート電極24a、第2のゲート電極24bの間にそれぞれ離間して配置され、第1のゲート電極24a、第2のゲート電極24bの間を互いに平行に伸延する複数の中間ゲート電極26-1〜26-m(mは正の整数)と、活性領域21Bの、複数の中間ゲート電極26-1〜26-mのそれぞれ下方の素子分離絶縁膜21に近接する領域にそれぞれ形成され、素子分離絶縁膜21近傍にリークパスが形成されることを阻止するリーク阻止領域18,19と、平面パターン上、第1のゲート電極24a、複数の中間ゲート電極26-1〜26-m、第2のゲート電極24bのそれぞれの間に位置し、活性領域21Bに設けられた第2導電型(n型)の複数の共通主電極領域14とを備えて、複数の絶縁ゲート型半導体素子の直列回路を構成している。 As shown in FIG. 6, the insulated gate semiconductor integrated circuit according to the sixth embodiment of the present invention is made of Si of the first conductivity type (p-type), and at least a part forms channel regions of a plurality of transistors. An element isolation insulating film 21 that at least surrounds the semiconductor layer 11 and a channel region of each transistor above the semiconductor layer 11 and defines an active region 21B common to a plurality of transistors above the semiconductor layer 11; Provided on one end side of the region 21B, injects carriers into the channel region via a carrier injection port, and is of the second conductivity type (n-type), with only one side contacting one end of the element isolation insulating film. The first main electrode region 12 having a rectangular shape and the other end side of the active region 21B have a carrier discharge port for discharging carriers from the channel region, and are of the second conductivity type (n-type). A rectangular second main electrode region 13 having only one side in contact with the other end portion of the separation insulating film, a gate insulating film (not shown) provided on the surface of the active region 21B, and a carrier above the gate insulating film Of the first main electrode region 12 in contact with one side of the first main electrode region 12 between the first main electrode region 12 and the second main electrode region 13 on the plane pattern. Two first guard portions extending in a direction orthogonal to the flow path of carriers flowing in the channel region between the first main electrode region 13 and the second main electrode region 13 and further extending so as to surround three sides of the first main electrode region 12 Pi-shaped first gate electrode 24a having 241a, 242a, active region 21B, planar pattern, both ends of first main electrode region 12 in the gate width direction, and the first gate electrode 24a The first guard portion 241a, 242a is separated from the first The carrier flow is electrostatically controlled above the first conductivity type (p + type) first leak prevention regions 61a and 62a in contact with the guard portions 241a and 242a and the element isolation insulating film 21 and the gate insulating film. Then, on the plane pattern, the first main electrode region 12 and the second main electrode region 13 are in contact with one side of the second main electrode region 13 so as to face the first gate electrode 24a, and the second main electrode Two second guard portions 241b and 242b that further extend so as to surround the three sides of the region 13 are provided. Between the first gate electrode 24a and the second gate electrode 24b with respect to the first gate electrode 24a. Π-shaped second gate electrode 24b disposed mirror-image-symmetrically with respect to the center line along the channel width direction, and the active region 21B on the planar pattern on both ends in the gate width direction of the second main electrode region 13 And the second game The second guard portion 241b of the electrode 24b, at a 242b, second guard portion 241b, a first conductivity type in contact with 242b and the isolation insulating film 21 (p + -type) of the second leakage blocking region 61b, and 62b, The carrier flow is electrostatically controlled above the gate insulating film, and is arranged on the plane pattern so as to be spaced apart from each other between the first gate electrode 24a and the second gate electrode 24b. electrodes 24a, (the m positive integer) multiple of the intermediate gate electrode 26 -1 ~ 26 -m for extending parallel to each other between the second gate electrode 24b and, in the active region 21B, a plurality of intermediate gate electrode 26 - 1 ~ 26 -m of being respectively formed in a region near each of the element isolation insulating film 21 of the lower, the leak blocking regions 18, 19 prevents the leakage path in the vicinity of the element isolation insulating film 21 is formed, On the surface pattern, the first gate electrode 24a, a plurality of intermediate gate electrode 26 -1 ~ 26 -m, located between the respective second gate electrode 24b, the second conductivity type provided on the active region 21B ( n-type) common main electrode regions 14 and a series circuit of a plurality of insulated gate semiconductor elements.

リーク阻止領域18,19は、半導体層11より高不純物密度の第1導電型(p型)であり、複数の中間ゲート電極26-1〜26-mのそれぞれ下方の領域において、主電流の経路(電流パス)をなす中央部の電位より周辺部の電位を低くする。 Leakage prevention regions 18 and 19 are of the first conductivity type (p + type) having a higher impurity density than that of semiconductor layer 11, and the main current flows in regions below each of the plurality of intermediate gate electrodes 26 −1 to 26 −m . The potential at the peripheral portion is made lower than the potential at the central portion forming the path (current path).

第6の実施形態に係る絶縁ゲート型半導体集積回路にイオン化放射線が照射されると、第1のゲート電極24a及び第2のゲート電極24bのそれぞれ下方の素子分離絶縁膜21近傍の領域PAa,PBa;PAb,PBbでゲートのしきい値電圧が負方向にシフトする。しかしながら、それぞれ領域PAa,PBa;PAb,PBbの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61a,62a;61b,62bであるため、これらの部分を介した電流経路はブロックされる。従って、イオン化放射線が照射されても、リーク電流が流れることをほぼ完全に防止できる。   When ionizing radiation is applied to the insulated gate semiconductor integrated circuit according to the sixth embodiment, regions PAa and PBa near the element isolation insulating film 21 below the first gate electrode 24a and the second gate electrode 24b, respectively. The threshold voltage of the gate shifts in the negative direction at PAb and PBb. However, since one end of each of the regions PAa, PBa; PAb, PBb is a leakage prevention region 61a, 62a; 61b, 62b made of a layer having a conductivity type opposite to that of the channel charge, the current path through these portions is blocked. . Therefore, even when ionizing radiation is irradiated, it is possible to almost completely prevent the leakage current from flowing.

更に、第6の実施形態に係る絶縁ゲート型半導体集積回路は、複数の中間ゲート電極26-1〜26-mのそれぞれ下方の領域において、主電流の経路(電流パス)をなす中央部の電位より周辺部の電位が低くなっているので、キャリアが、素子分離絶縁膜21近傍にリークパスが形成される領域PAcを避けて、より確実にリーク電流が流れることを防止できる。 Furthermore, in the insulated gate semiconductor integrated circuit according to the sixth embodiment, the potential of the central portion forming the main current path (current path) in each of the regions below the plurality of intermediate gate electrodes 26 -1 to 26 -m. Since the potential at the peripheral portion is lower, carriers can avoid the region PAc where a leak path is formed in the vicinity of the element isolation insulating film 21 and prevent leakage current from flowing more reliably.

(第7の実施形態)
図7は、増幅型イメージセンサ(APS:Active Pixel Sensor)の各画素5内に4つのMOS型トランジスタを備える4トランジスタ型の画素構成の一例を示す図である。増幅型イメージセンサの各画素5の受光部である埋込フォトダイオードPDijのカソード領域は、転送トランジスタTTijのソース領域と共通している。転送トランジスタTTijのフローティングドレイン(FD)領域は、図7のF部に示す増幅回路を構成する信号読み出しトランジスタ(増幅トランジスタ)TAijのゲート電極と、リセットトランジスタTRijのソース電極が接続されている。リセットトランジスタTRijのドレイン電極及び信号読み出しトランジスタ(増幅トランジスタ)TAijのドレイン電極は、それぞれ電源VDDに接続され、信号読み出しトランジスタ(増幅トランジスタ)TAijのソース電極は画素選択用のスイッチングトランジスタTSijのドレイン電極に接続されている。画素選択用のスイッチングトランジスタTSijのソース電極は、j列の垂直信号線Bjに接続され、ゲート電極にはi行の水平ラインの垂直選択信号Siがタイミング発生回路(図示省略)に駆動されて垂直シフトレジスタ(垂直走査回路)(図示省略)から与えられる。
(Seventh embodiment)
FIG. 7 is a diagram illustrating an example of a four-transistor pixel configuration including four MOS transistors in each pixel 5 of an amplification type image sensor (APS: Active Pixel Sensor). The cathode region of the embedded photodiode PD ij that is the light receiving portion of each pixel 5 of the amplification type image sensor is common to the source region of the transfer transistor TT ij . The floating drain (FD) region of the transfer transistor TT ij is connected to the gate electrode of the signal readout transistor (amplification transistor) TA ij constituting the amplifier circuit shown in the F part of FIG. 7 and the source electrode of the reset transistor TR ij. Yes. The drain electrode of the reset transistor TR ij and the drain electrode of the signal readout transistor (amplification transistor) TA ij are connected to the power supply VDD, respectively, and the source electrode of the signal readout transistor (amplification transistor) TA ij is the switching transistor TS ij for pixel selection. Connected to the drain electrode. The source electrode of the pixel selection switching transistor TS ij is connected to the j vertical signal line B j, and the vertical selection signal S i of the horizontal line of i rows is driven to the timing generation circuit (not shown) by the gate electrode. And supplied from a vertical shift register (vertical scanning circuit) (not shown).

第7の実施形態に係る絶縁ゲート型半導体素子は、図7のE部に示す転送トランジスタTTij及び埋込フォトダイオードPDijを集積化した半導体素子である。図8(a)及び図8(b)に、それぞれ図7のE部に対応する平面図及び断面図を示す。 The insulated gate semiconductor device according to the seventh embodiment is a semiconductor device in which the transfer transistor TT ij and the embedded photodiode PD ij shown in part E of FIG. 7 are integrated. FIGS. 8A and 8B are a plan view and a cross-sectional view corresponding to part E in FIG. 7, respectively.

図8に示すように、本発明の第7の実施形態に係る絶縁ゲート型半導体素子は、第1導電型(p型)のSiからなり、少なくとも一部がチャネル領域をなす半導体層51と、半導体層51の上部のチャネル領域となる領域を少なくとも囲み、半導体層51の上部に活性領域21Bを定義する素子分離絶縁膜21と、活性領域21Bの一方の端部側に設けられ、半導体層51とフォトダイオードPDijを構成し、チャネル領域にキャリア注入口を介してフォトダイオードPDijが生成したキャリア(電子)を注入し、第2導電型(n型)で、素子分離絶縁膜21から離間した矩形の表面埋込領域(第1主電極領域)52と、活性領域21Bの他方の端部側に設けられ、チャネル領域からキャリア(電子)を排出し、第2導電型(n型)で、素子分離絶縁膜21の他方の端部に1辺のみを接した矩形の電荷検出部(第2主電極領域)53と、活性領域21Bの表面に設けられたゲート絶縁膜22と、ゲート絶縁膜22の上において、キャリアの流れを静電的に制御し、平面パターン上、表面埋込領域52と電荷検出領域53との間を、表面埋込領域52と電荷検出領域53との間のチャネル領域を流れるキャリアの流路に直交する方向に伸延し、電荷検出領域(第2主電極領域)53の3辺を囲むように更に伸延する2本のガード部241,242を有するπ字型のゲート電極(転送ゲート電極)24とを備える。 As shown in FIG. 8, the insulated gate semiconductor device according to the seventh embodiment of the present invention includes a semiconductor layer 51 made of Si of the first conductivity type (p-type), at least a part of which forms a channel region, An element isolation insulating film 21 that at least surrounds a region to be a channel region above the semiconductor layer 51 and defines an active region 21B above the semiconductor layer 51, and is provided on one end side of the active region 21B. apart from the configure photodiode PD ij, via a carrier injection port injecting the photodiode PD ij is generated carriers (electrons) to the channel region, the second conductivity type (n-type), from the device isolation insulating film 21 The rectangular surface-buried region (first main electrode region) 52 and the other end side of the active region 21B are provided, and carriers (electrons) are discharged from the channel region to be of the second conductivity type (n-type). ,element A rectangular charge detection part (second main electrode region) 53 having only one side in contact with the other end of the separation insulating film 21, a gate insulating film 22 provided on the surface of the active region 21B, and the gate insulating film 22 The carrier flow is electrostatically controlled to form a channel pattern between the surface buried region 52 and the charge detection region 53 and a channel region between the surface buried region 52 and the charge detection region 53 on the plane pattern. A π-shaped gate having two guard portions 241 and 242 extending in a direction orthogonal to the flow path of the carrier flowing through and further extending so as to surround three sides of the charge detection region (second main electrode region) 53 And an electrode (transfer gate electrode) 24.

埋込フォトダイオードPDijは、半導体層51をアノード領域、表面埋込領域52をカソード領域とし、それぞれの表面埋込領域52の上には第1導電型(p型)のピニング層54が形成されている。 The buried photodiode PD ij has a semiconductor layer 51 as an anode region and a surface buried region 52 as a cathode region, and a first conductivity type (p + -type) pinning layer 54 is formed on each surface buried region 52. Is formed.

転送トランジスタTTijのソース領域(第1主電極領域)として機能する受光部の表面埋込領域52から、転送トランジスタTTijのフローティングドレイン(FD)領域(第2主電極領域)として機能する電荷検出領域53へは、転送トランジスタTTijのゲート電極(転送ゲート電極)24に制御信号Tとしてハイ(H)レベルの信号を印加することにより、第1導電型(p型)の半導体層51を経由して信号電荷が転送される。電荷検出領域53には、ゲート絶縁膜22に設けられたコンタクトプラグ(図示省略)を介して、表面配線により、信号読み出しトランジスタ(増幅トランジスタ)TAijのゲート電極及びリセットトランジスタTRijのソース電極が接続されている。リセットトランジスタTRijのリセットゲート電極に対し、リセット信号Riをハイ(H)レベル(Ri=“1”)にして、電荷検出領域53に蓄積された電荷をそれぞれ吐き出し、電荷検出領域53をリセットする。 From the surface buried region 52 of the light receiving portion that functions as a source region of the transfer transistor TT ij (first main electrode region), a charge detection functioning as a floating drain of the transfer transistor TT ij (FD) region (second main electrode region) By applying a high (H) level signal as the control signal T to the gate electrode (transfer gate electrode) 24 of the transfer transistor TT ij , the region 53 passes through the first conductivity type (p-type) semiconductor layer 51. Thus, the signal charge is transferred. In the charge detection region 53, the gate electrode of the signal readout transistor (amplification transistor) TA ij and the source electrode of the reset transistor TR ij are formed by surface wiring through a contact plug (not shown) provided in the gate insulating film 22. It is connected. The reset signal R i is set to the high (H) level (R i = “1”) to the reset gate electrode of the reset transistor TR ij , and the charges accumulated in the charge detection region 53 are discharged, respectively. Reset.

第7の実施形態に係る絶縁ゲート型半導体素子にイオン化放射線が照射されると、ゲート電極24の下方の素子分離絶縁膜21近傍の領域PA及びPBでゲートのしきい値電圧が負方向にシフトする。しかしながら、領域PA及びPBの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61,62であるため、リーク阻止領域61,62を介する電流経路はブロックされる。従って、イオン化放射線が照射されても、リーク電流が流れることをほぼ完全に防止できる。   When ionizing radiation is irradiated to the insulated gate semiconductor device according to the seventh embodiment, the threshold voltage of the gate shifts in the negative direction in the regions PA and PB near the device isolation insulating film 21 below the gate electrode 24. To do. However, since one end of each of the regions PA and PB is the leakage prevention regions 61 and 62 made of a layer having a conductivity type opposite to the channel charge, the current path through the leakage prevention regions 61 and 62 is blocked. Therefore, even when ionizing radiation is irradiated, it is possible to almost completely prevent the leakage current from flowing.

(第8の実施形態)
第7の実施形態において説明した増幅型イメージセンサの各画素5の構成の内、第7の実施形態に係る絶縁ゲート型半導体素子以外の素子についても、本発明の構成を応用することができる。本発明の第8の実施形態に係る絶縁ゲート型半導体集積回路は、図9に示すように、n型の第1主電極領域12と、n型の第1の共通主電極領域14a及び第2の共通主電極領域14bと、n型の第2主電極領域13から構成される、図7のF部に示すリセットトランジスタTRijと、信号読み出しトランジスタ(増幅トランジスタ)TAijと、スイッチングトランジスタTSijとを一体化した集積回路である。
(Eighth embodiment)
Of the configuration of each pixel 5 of the amplification type image sensor described in the seventh embodiment, the configuration of the present invention can be applied to elements other than the insulated gate semiconductor device according to the seventh embodiment. As shown in FIG. 9, the insulated gate semiconductor integrated circuit according to the eighth embodiment of the present invention includes an n + -type first main electrode region 12, an n + -type first common main electrode region 14a, The reset transistor TR ij shown in the F section of FIG. 7, the signal readout transistor (amplification transistor) TA ij, and the switching, each including the second common main electrode region 14 b and the n + -type second main electrode region 13. This is an integrated circuit in which the transistor TS ij is integrated.

即ち、本発明の第8の実施形態に係る絶縁ゲート型半導体集積回路は、図9に示すように、第1導電型(p型)のSiからなり、少なくとも一部が複数のトランジスタのチャネル領域をなす半導体層11と、半導体層11の上部のそれぞれのトランジスタのチャネル領域となる領域を少なくとも囲み、半導体層11の上部に複数のトランジスタに共通の活性領域21Bを定義する素子分離絶縁膜(図示省略)と、活性領域21Bの一方の端部側に設けられ、チャネル領域にキャリア注入口を介してキャリアを注入し、第2導電型(n型)で、素子分離絶縁膜の一方の端部に一辺のみを接した矩形の第1主電極領域12と、活性領域21Bの他方の端部側に設けられ、チャネル領域からキャリアを排出するキャリア排出口を有し、第2導電型(n型)で、素子分離絶縁膜に他方の端部に一辺のみを接した矩形の第2主電極領域13と、活性領域21Bの表面に設けられたゲート絶縁膜(図示省略)と、ゲート絶縁膜の上方において、キャリアの流れを静電的に制御し、平面パターン上、第1主電極領域12と第2主電極領域13との間を第1主電極領域12の1辺と接して、第1主電極領域12と第2主電極領域13との間のチャネル領域を流れるキャリアの流路に直交する方向に伸延し、第1主電極領域12の3辺を囲むように更に伸延する2本の第1ガード部241a,242aを有するπ字型の第1のゲート電極24aと、ゲート絶縁膜の上方において、キャリアの流れを静電的に制御し、平面パターン上、第1主電極領域12と第2主電極領域13との間を第2主電極領域13の1辺と接して、第2主電極領域13の3辺を囲むように更に伸延する2本の第2ガード部241b,242bを有し、第1のゲート電極24aに対して、第1のゲート電極24a、第2のゲート電極24b間のチャネル幅方向に沿う中心線に関して互いに鏡像対称に配置されるπ字型の第2のゲート電極24bと、ゲート絶縁膜の上方において、キャリアの流れを静電的に制御し、平面パターン上、第1のゲート電極24aと第2のゲート電極24bとの間にそれぞれ離間して配置され、第1のゲート電極24a、第2のゲート電極24bに対して互いに平行に伸延する中間ゲート電極26と、平面パターン上、第1のゲート電極24a、中間ゲート電極26の間に位置し、キャリアをチャネル領域に注入するキャリア注入口及びチャネル領域からキャリアを排出するキャリア排出口を有する第2導電型(n型)の第1の共通主電極領域14aと、平面パターン上、中間ゲート電極26、第2のゲート電極24bの間に位置し、キャリアをチャネル領域に注入するキャリア注入口及びチャネル領域からキャリアを排出するキャリア排出口を有する第2導電型(n型)の第2の共通主電極領域14bとを備えて、図7のF部に示すリセットトランジスタTRijと、信号読み出しトランジスタ(増幅トランジスタ)TAijと、スイッチングトランジスタTSijとを集積化した増幅回路を構成している。 That is, the insulated gate semiconductor integrated circuit according to the eighth embodiment of the present invention is made of Si of the first conductivity type (p-type) as shown in FIG. And an element isolation insulating film (illustrated) defining at least a region to be a channel region of each transistor above the semiconductor layer 11 and defining an active region 21B common to a plurality of transistors above the semiconductor layer 11. And is provided on one end side of the active region 21B, injects carriers into the channel region via a carrier injection port, and is of the second conductivity type (n-type) and one end portion of the element isolation insulating film. The first main electrode region 12 having a rectangular shape in contact with only one side of the active region 21B and a carrier discharge port for discharging carriers from the channel region are provided on the other end side of the active region 21B. A rectangular second main electrode region 13 having only one side in contact with the other end portion of the element isolation insulating film, a gate insulating film (not shown) provided on the surface of the active region 21B, and a gate insulating film The flow of carriers is electrostatically controlled above the upper surface of the first main electrode region 12 in contact with one side between the first main electrode region 12 and the second main electrode region 13 on the plane pattern. Two lines extending in a direction orthogonal to the flow path of carriers flowing in the channel region between the first main electrode region 12 and the second main electrode region 13 and further extending so as to surround three sides of the first main electrode region 12 The π-shaped first gate electrode 24 a having the first guard portions 241 a and 242 a and the carrier flow is electrostatically controlled above the gate insulating film, and the first main electrode region 12 is formed on the planar pattern. Between the first main electrode region 13 and the second main electrode region 13. Two second guard portions 241b and 242b extending further to surround three sides of the second main electrode region 13 in contact with one side of the second main electrode region 13, and the first gate electrode 24a The carrier flows above the gate insulating film and the π-shaped second gate electrode 24b arranged in mirror symmetry with respect to the center line along the channel width direction between the gate electrode 24a and the second gate electrode 24b. The first gate electrode 24a and the second gate electrode 24b are electrostatically controlled and arranged on the plane pattern so as to be separated from each other between the first gate electrode 24a and the second gate electrode 24b. And the intermediate gate electrode 26 extending in parallel with each other and the carrier injection port and the channel which are located between the first gate electrode 24a and the intermediate gate electrode 26 on the plane pattern and inject carriers into the channel region. The second conductive type (n-type) first common main electrode region 14a having a carrier discharge port for discharging carriers from the region and the plane pattern is located between the intermediate gate electrode 26 and the second gate electrode 24b. A second common main electrode region 14b of the second conductivity type (n-type) having a carrier injection port for injecting carriers into the channel region and a carrier discharge port for discharging carriers from the channel region. An amplifying circuit in which a reset transistor TR ij , a signal reading transistor (amplifying transistor) TA ij, and a switching transistor TS ij are integrated is configured.

図7に示す転送トランジスタTTijのフローティングドレイン(FD)領域は、信号読み出しトランジスタ(増幅トランジスタ)TAijのゲート電極である中間ゲート電極26と、リセットトランジスタTRijのソース電極である第1主電極領域12に接続されている。第1の共通主電極領域14aは、リセットトランジスタTRijのドレイン領域及び信号読み出しトランジスタ(増幅トランジスタ)TAijのドレイン領域と共通する領域として機能し、それぞれ電源VDDに接続されている。第2の共通主電極領域14bは、信号読み出しトランジスタ(増幅トランジスタ)TAijのソース領域及び画素選択用のスイッチングトランジスタTSijのドレイン領域と共通する領域として機能する。画素選択用のスイッチングトランジスタTSijのソース領域である第2主電極領域13は、j列の垂直信号線Bjに接続され、ゲート電極である第2のゲート電極24bにはi行の水平ラインの垂直選択信号Siがタイミング発生回路(図示省略)に駆動されて垂直シフトレジスタ(垂直走査回路)(図示省略)から与えられる。 The floating drain (FD) region of the transfer transistor TT ij shown in FIG. 7 includes an intermediate gate electrode 26 that is a gate electrode of a signal readout transistor (amplification transistor) TA ij and a first main electrode that is a source electrode of a reset transistor TR ij. Connected to region 12. The first common main electrode region 14a functions as a region common to the drain region of the reset transistor TRij and the drain region of the signal readout transistor (amplification transistor) TAij , and is connected to the power supply VDD. The second common main electrode region 14b functions as a region common to the source region of the signal readout transistor (amplification transistor) TAij and the drain region of the pixel selection switching transistor TSij . The second main electrode region 13 which is a source region of the pixel selection switching transistor TS ij is connected to j vertical signal lines B j , and i rows of horizontal lines are connected to the second gate electrode 24b which is a gate electrode. The vertical selection signal S i is driven by a timing generation circuit (not shown) and supplied from a vertical shift register (vertical scanning circuit) (not shown).

第8の実施形態に係る絶縁ゲート型半導体素子にイオン化放射線が照射されると、第1のゲート電極24a及び第2のゲート電極24bのそれぞれ下方の素子分離絶縁膜21近傍の領域PAa,PBa;PAb,PBbでゲートのしきい値電圧が負方向にシフトする。しかしながら、それぞれ領域PAa,PBa;PAb,PBbの一端がチャネル電荷と反対導電型の層からなるリーク阻止領域61a,62a;61b,62bであるため、リーク阻止領域61a,62a;61b,62bを介する電流経路はブロックされる。従って、イオン化放射線が照射されても、リーク電流が流れることをほぼ完全に防止できる。   When the insulated gate semiconductor device according to the eighth embodiment is irradiated with ionizing radiation, regions PAa and PBa near the device isolation insulating film 21 below the first gate electrode 24a and the second gate electrode 24b, respectively; The threshold voltage of the gate shifts in the negative direction at PAb and PBb. However, since one end of each of the regions PAa, PBa; PAb, PBb is a leakage prevention region 61a, 62a; 61b, 62b made of a layer having a conductivity type opposite to the channel charge, the leakage prevention regions 61a, 62a; 61b, 62b are interposed. The current path is blocked. Therefore, even when ionizing radiation is irradiated, it is possible to almost completely prevent the leakage current from flowing.

(その他の実施形態)
上記のように、本発明は第1〜第8の実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the first to eighth embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

図4では、本発明の第4の実施形態に係る絶縁ゲート型半導体集積回路として、2つの第1の実施形態に係る絶縁ゲート型半導体素子を第1主電極領域12を互いに共有させて対向する構成を説明したが、第1の実施形態に係る絶縁ゲート型半導体素子の代わりに、第2又は第3の実施形態に係る絶縁ゲート型半導体素子を2つ直列接続するように配置してもよい。   In FIG. 4, two insulated gate semiconductor devices according to the first embodiment are opposed to each other by sharing the first main electrode region 12 as an insulated gate semiconductor integrated circuit according to the fourth embodiment of the present invention. Although the configuration has been described, two insulated gate semiconductor devices according to the second or third embodiment may be arranged in series instead of the insulated gate semiconductor device according to the first embodiment. .

又、第5及び第6の実施形態に係る絶縁ゲート型半導体集積回路の説明においては、図5及び図6に示すようにπ字型の第1のゲート電極24aとπ字型の第2のゲート電極24bとの間に配置されるゲート電極を、複数の中間ゲート電極26-1〜26-mとして説明したが、中間ゲート電極は必ずしも複数である必要はなく、単数であってもよい。 In the description of the insulated gate semiconductor integrated circuit according to the fifth and sixth embodiments, as shown in FIGS. 5 and 6, the π-shaped first gate electrode 24a and the π-shaped second gate are used. a gate electrode disposed between the gate electrode 24b, is described as a plurality of intermediate gate electrode 26 -1 ~ 26 -m, intermediate gate electrode is not necessarily a multiple may be one.

又、図7の増幅型イメージセンサのF部に示すリセットトランジスタTRijと、信号読み出しトランジスタ(増幅トランジスタ)TAijと、スイッチングトランジスタTSijとを一体化した集積回路として、図9に示す第8の実施形態に係る絶縁ゲート型半導体集積回路を説明したが、図9に示す構成の代わりに、図5及び図6に示すそれぞれ第5及び第6の実施形態に係る絶縁ゲート型半導体集積回路において、中間ゲート電極を単数とした構成としてもよい。これらの場合には、信号読み出しトランジスタ(増幅トランジスタ)TAijのゲート電極である1本の中間ゲート電極26を挟んで、第1の共通主電極領域14aと第2の共通主電極領域14bとの間で、キャリアが、素子分離絶縁膜21近傍にリークパスが形成される領域PAcを避け、より確実にリーク電流が流れることを防止できる。 Further, as an integrated circuit in which the reset transistor TR ij shown in the F portion of the amplification type image sensor of FIG. 7, the signal readout transistor (amplification transistor) TA ij, and the switching transistor TS ij are integrated, an eighth circuit shown in FIG. In the insulated gate semiconductor integrated circuit according to the fifth embodiment, the insulated gate semiconductor integrated circuit according to the fifth and sixth embodiments shown in FIGS. 5 and 6 is used instead of the configuration shown in FIG. A single intermediate gate electrode may be used. In these cases, across one of the intermediate gate electrode 26 is the gate electrode of the signal reading transistor (amplification transistor) TA ij, the first common main electrode region 14a and the second common main electrode region 14b In the meantime, carriers can avoid the region PAc in which a leak path is formed in the vicinity of the element isolation insulating film 21, and more reliably prevent a leak current from flowing.

又、既に述べた第1〜第8の実施形態の説明においては、第1導電型をp型、第2導電型をn型として、各絶縁ゲート型半導体素子がnMOS型トランジスタである場合について説明したが、第1導電型をn型、第2導電型をp型として、各絶縁ゲート型半導体素子がpMOS型トランジスタである場合についても、電気的な極性を反対にすれば同様な効果が得られることは容易に理解できるであろう。   In the description of the first to eighth embodiments already described, the first conductivity type is p-type, the second conductivity type is n-type, and each insulated gate semiconductor element is an nMOS transistor. However, even when the first conductivity type is n-type and the second conductivity type is p-type, and each insulated gate semiconductor element is a pMOS-type transistor, the same effect can be obtained by reversing the electrical polarity. It will be easy to understand.

又、半導体集積回路は固体撮像装置以外の、例えば、半導体記憶装置、微細化された論理集積回路やシステムLSI等の種々の半導体集積回路の用途にも適用可能であることも、上記の説明から容易に理解できるであろう。   In addition, the semiconductor integrated circuit can be applied to various semiconductor integrated circuits such as a semiconductor memory device, a miniaturized logic integrated circuit, and a system LSI other than the solid-state imaging device. It will be easy to understand.

更に、第1〜第8の実施形態の説明においては半導体層11の半導体材料としてSiの場合を説明したが、ゲルマニウム(Ge)、炭化珪素(SiC)、ダイアモンドやガリウム砒素(GaAs)等の他の半導体の場合であっても、本発明の技術的思想は同様に適用可能であり、半導体層11をSiで形成し、ドレイン領域(第1主電極領域)12やソース領域(第2主電極領域)13をGeに形成したSi−Geヘテロ接合等であっても構わない。   Furthermore, in the description of the first to eighth embodiments, the case of Si as the semiconductor material of the semiconductor layer 11 has been described. However, other than germanium (Ge), silicon carbide (SiC), diamond, gallium arsenide (GaAs), and the like. In this case, the technical idea of the present invention can be similarly applied. The semiconductor layer 11 is formed of Si, and the drain region (first main electrode region) 12 or the source region (second main electrode). It may be a Si-Ge heterojunction in which the (region) 13 is formed in Ge.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

5…画素
11,51…半導体層
12,12a…第1主電極領域
13…第2主電極領域
14,141…共通主電極領域
14a…第1の共通主電極領域
14b…第2の共通主電極領域
15…埋込領域
18,19…リーク阻止領域
21…素子分離絶縁膜
21B…活性領域
22…ゲート絶縁膜
23…第1主電極配線
24…ゲート電極
24P…ゲート電極
24a…第1のゲート電極
24b…第2のゲート電極
25…層間絶縁膜
26-1〜26-m…中間ゲート電極
27…第2主電極配線
52…表面埋込領域(第1主電極領域)
53…電荷検出領域(第2主電極領域)
54…ピニング層
61,62,61a,62a,61b,62b…リーク阻止領域
81…ゲート電極
82…ソース/ドレイン領域
83…ドレイン/ソース領域
86…チャネル
88…ゲート電極
241,242,241a,242a,241b,242b…ガード部
DESCRIPTION OF SYMBOLS 5 ... Pixel 11, 51 ... Semiconductor layer 12, 12a ... 1st main electrode area | region 13 ... 2nd main electrode area | region 14, 141 ... Common main electrode area | region 14a ... 1st common main electrode area | region 14b ... 2nd common main electrode Region 15 ... Embedded region 18, 19 ... Leak prevention region 21 ... Element isolation insulating film 21B ... Active region 22 ... Gate insulating film 23 ... First main electrode wiring 24 ... Gate electrode 24P ... Gate electrode 24a ... First gate electrode 24b ... second gate electrode 25 ... interlayer insulation film 26 -1 ~ 26 -m ... intermediate gate electrode 27 ... second main electrode wiring 52 ... surface-buried region (first main electrode region)
53 ... Charge detection region (second main electrode region)
54 ... Pinning layer 61, 62, 61a, 62a, 61b, 62b ... Leakage prevention region 81 ... Gate electrode 82 ... Source / drain region 83 ... Drain / source region 86 ... Channel 88 ... Gate electrode 241, 242, 241a, 242a, 241b, 242b ... guard part

Claims (5)

少なくとも一部がチャネル領域をなす第1導電型の半導体層と、
前記チャネル領域を少なくとも囲み、前記半導体層の上部に活性領域を定義する素子分離絶縁膜と、
前記活性領域の一方に設けられ、前記チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型の第1主電極領域と、
前記活性領域の他方に設けられ、前記チャネル領域から、前記キャリアを排出するキャリア排出口を有する第2導電型の第2主電極領域と、
前記活性領域の表面に設けられたゲート絶縁膜と、
前記ゲート絶縁膜の上に設けられ、前記キャリアの流路に直交する主制御部、該主制御部にπ字型をなすように交わる2本のガード部を有し、前記第2主電極領域の3方を囲むゲート電極と、
前記活性領域の前記ガード部と前記素子分離絶縁膜との間に、前記主制御部の直下の領域を介し前記第1主電極領域から離間し、且つ、前記2本のガード部の直下の領域を介し前記第2主電極領域から離間して、それぞれ挿入された、一対の第1導電型で、前記半導体層よりも高不純物密度のリーク阻止領域
とを備え、前記リーク阻止領域によって、前記素子分離絶縁膜近傍に形成される前記第1主電極領域から前記第2主電極領域に至る電流経路をブロックすることを特徴とする絶縁ゲート型半導体素子。
A first conductivity type semiconductor layer at least partially forming a channel region;
An element isolation insulating film that at least surrounds the channel region and defines an active region above the semiconductor layer;
A first main electrode region of a second conductivity type provided in one of the active regions and injecting carriers into the channel region via a carrier injection port;
A second main electrode region of a second conductivity type provided on the other side of the active region and having a carrier discharge port for discharging the carriers from the channel region;
A gate insulating film provided on the surface of the active region;
A second main electrode region provided on the gate insulating film, having a main control portion orthogonal to the carrier flow path and two guard portions intersecting the main control portion so as to form a π-shape; A gate electrode surrounding three sides of
Between the guard part of the active region and the element isolation insulating film, a region separated from the first main electrode region via a region immediately below the main control unit, and immediately below the two guard portions the through spaced apart from said second main electrode region, are inserted respectively, the first conductivity type of the pair, and a leakage blocking region of high impurity concentration than the semiconductor layer, by the leakage preventing region, the element An insulated gate semiconductor device, wherein a current path from the first main electrode region to the second main electrode region formed in the vicinity of the isolation insulating film is blocked .
前記第1主電極領域が、前記素子分離絶縁膜からゲート幅方向に離間して設けられていることを特徴とする請求項1に記載の絶縁ゲート型半導体素子。   2. The insulated gate semiconductor device according to claim 1, wherein the first main electrode region is provided apart from the device isolation insulating film in a gate width direction. 前記ゲート電極の下方に、前記素子分離絶縁膜から離間して設けられ、第2導電型で、前記第1主電極領域及び前記第2主電極領域よりも低不純物密度の埋込領域を更に備えることを特徴とする請求項1に記載の絶縁ゲート型半導体素子。   Provided below the gate electrode is spaced apart from the element isolation insulating film, and further includes a second conductivity type buried region having a lower impurity density than the first main electrode region and the second main electrode region. The insulated gate semiconductor device according to claim 1, wherein: 少なくとも一部がチャネル領域をなす第1導電型の半導体層と、
前記チャネル領域を少なくとも囲み、前記半導体層の上部に活性領域を定義する素子分離絶縁膜と、
前記活性領域の一方の端部側に設けられ、前記チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型の第1主電極領域と、
前記活性領域の他方の端部側に設けられ、前記チャネル領域から、前記キャリアを排出するキャリア排出口を有する第2導電型の第2主電極領域と、
前記活性領域の表面に設けられたゲート絶縁膜と、
前記ゲート絶縁膜の上に設けられ、前記キャリアの流路に直交する第1主制御部、該第1主制御部にπ字型をなすように交わる2本の第1ガード部を有し、前記第1主電極領域の3方を囲む第1のゲート電極と、
前記ゲート絶縁膜の上に前記第1のゲート電極と対向して設けられ、前記キャリアの流路に直交する第2主制御部、該第2主制御部にπ字型をなすように交わる2本の第2ガード部を有し、前記第2主電極領域の3方を囲む第2のゲート電極と、
前記活性領域の前記第1及び第2のゲート電極の間に位置し、第2導電型で、前記第1主電極領域に対して第2主電極領域と機能し、前記第2主電極領域に対して第1主電極領域と機能する共通主電極領域と、
前記活性領域の前記第1ガード部と前記素子分離絶縁膜の間に、前記第1主制御部の直下の領域を介し前記共通主電極領域から離間し、且つ、前記2本の第1ガード部の直下の領域を介し前記第1主電極領域から離間して、それぞれ挿入された一対の第1導電型で、前記半導体層よりも高不純物密度の第1リーク阻止領域と、
前記活性領域の前記第2ガード部と前記素子分離絶縁膜の間に、前記第2主制御部の直下の領域を介し前記共通主電極領域から離間し、且つ、前記2本の第2ガード部の直下の領域を介し前記第2主電極領域から離間して、それぞれ挿入された一対の第1導電型で、前記半導体層よりも高不純物密度の第2リーク阻止領域
とを備え、前記第1及び第2のリーク阻止領域によって、前記素子分離絶縁膜近傍に形成される前記第1主電極領域から前記共通主電極領域を経由して前記第2主電極領域に至る電流経路をブロックすることを特徴とする絶縁ゲート型半導体集積回路。
A first conductivity type semiconductor layer at least partially forming a channel region;
An element isolation insulating film that at least surrounds the channel region and defines an active region above the semiconductor layer;
A first main electrode region of a second conductivity type provided on one end side of the active region and injecting carriers into the channel region via a carrier injection port;
A second conductive type second main electrode region provided on the other end side of the active region and having a carrier discharge port for discharging the carriers from the channel region;
A gate insulating film provided on the surface of the active region;
A first main control unit provided on the gate insulating film and orthogonal to the carrier flow path; and two first guard units intersecting the first main control unit so as to form a π-shape; A first gate electrode surrounding three sides of the first main electrode region;
A second main control unit that is provided on the gate insulating film so as to face the first gate electrode and intersects the carrier flow path so as to form a π shape with the second main control unit 2 A second gate electrode having three second guard portions and surrounding three sides of the second main electrode region;
The active region is located between the first and second gate electrodes, is of a second conductivity type, functions as a second main electrode region with respect to the first main electrode region, and is formed in the second main electrode region. On the other hand, a common main electrode region that functions as the first main electrode region ;
Between the first guard part of the active region and the element isolation insulating film, the space is separated from the common main electrode region through a region immediately below the first main control unit, and the two first guard units A pair of first conductivity types that are spaced apart from the first main electrode region via a region immediately below the first main electrode region and have a higher impurity density than the semiconductor layer;
A space between the second guard portion of the active region and the element isolation insulating film is separated from the common main electrode region via a region immediately below the second main control portion, and the two second guard portions A pair of first conductivity types and a second leakage prevention region having a higher impurity density than the semiconductor layer, spaced apart from the second main electrode region via a region immediately below the first main electrode region , And the second leakage prevention region blocks a current path from the first main electrode region formed in the vicinity of the element isolation insulating film to the second main electrode region via the common main electrode region. A feature of an insulated gate semiconductor integrated circuit.
少なくとも一部がチャネル領域をなす第1導電型の半導体層と、
前記チャネル領域を少なくとも囲み、前記半導体層の上部に活性領域を定義する素子分離絶縁膜と、
前記活性領域の一方の端部側に設けられ、前記チャネル領域にキャリア注入口を介してキャリアを注入する第2導電型の第1主電極領域と、
前記活性領域の他方の端部側に設けられ、前記チャネル領域から、前記キャリアを排出するキャリア排出口を有する第2導電型の第2主電極領域と、
前記活性領域の表面に設けられたゲート絶縁膜と、
前記ゲート絶縁膜の上に設けられ、前記キャリアの流路に直交する第1主制御部、該第1主制御部にπ字型をなすように交わる2本の第1ガード部を有し、前記第1主電極領域の3方を囲む第1のゲート電極と、
前記ゲート絶縁膜の上に前記第1のゲート電極と対向して設けられ、前記キャリアの流路に直交する第2主制御部、該第2主制御部にπ字型をなすように交わる2本の第2ガード部を有し、前記第2主電極領域の3方を囲む第2のゲート電極と、
前記第1のゲート電極と前記第2のゲート電極の間にそれぞれ離間して配置された複数の中間ゲート電極と、
前記第1のゲート電極と前記複数の中間ゲート電極のいずれかとの間、前記複数の中間ゲート電極のそれぞれの間、前記複数の中間ゲート電極のいずれかと前記第2のゲート電極の間にそれぞれ位置し、前記活性領域に前記素子分離絶縁膜から離間して設けられた第2導電型の複数の共通主電極領域と、
前記活性領域の前記第1ガード部と前記素子分離絶縁膜の間に、前記第1主制御部の直下の領域を介し前記共通主電極領域から離間し、且つ、2本の第1ガード部の直下の領域を介し前記第1主電極領域から離間して、それぞれ挿入された一対の第1導電型で、前記半導体層よりも高不純物密度の第1リーク阻止領域と、
前記活性領域の前記第2ガード部と前記素子分離絶縁膜の間に、前記第2主制御部の直下の領域を介し前記共通主電極領域から離間し、且つ、前記2本の第2ガード部の直下の領域を介し前記第2主電極領域から離間して、それぞれ挿入された一対の第1導電型で、前記半導体層よりも高不純物密度の第2リーク阻止領域
とを備え、前記第1及び第2のリーク阻止領域によって、前記素子分離絶縁膜近傍に形成される前記第1主電極領域から前記複数の共通主電極領域を経由して前記第2主電極領域に至る電流経路をブロックすることを特徴とする絶縁ゲート型半導体集積回路。
A first conductivity type semiconductor layer at least partially forming a channel region;
An element isolation insulating film that at least surrounds the channel region and defines an active region above the semiconductor layer;
A first main electrode region of a second conductivity type provided on one end side of the active region and injecting carriers into the channel region via a carrier injection port;
A second conductive type second main electrode region provided on the other end side of the active region and having a carrier discharge port for discharging the carriers from the channel region;
A gate insulating film provided on the surface of the active region;
A first main control unit provided on the gate insulating film and orthogonal to the carrier flow path; and two first guard units intersecting the first main control unit so as to form a π-shape; A first gate electrode surrounding three sides of the first main electrode region;
A second main control unit that is provided on the gate insulating film so as to face the first gate electrode and intersects the carrier flow path so as to form a π shape with the second main control unit 2 A second gate electrode having three second guard portions and surrounding three sides of the second main electrode region;
A plurality of intermediate gate electrodes arranged respectively apart from between the first gate electrode and the second gate electrode,
Positioned between the first gate electrode and any of the plurality of intermediate gate electrodes, between each of the plurality of intermediate gate electrodes, and between any of the plurality of intermediate gate electrodes and the second gate electrode. A plurality of second conductive type common main electrode regions provided apart from the element isolation insulating film in the active region ;
A space between the first guard portion of the active region and the element isolation insulating film is spaced from the common main electrode region via a region immediately below the first main control unit, and two first guard portions A pair of first conductivity types that are spaced apart from the first main electrode region via a region directly below, respectively, and a first leakage prevention region having a higher impurity density than the semiconductor layer;
A space between the second guard portion of the active region and the element isolation insulating film is separated from the common main electrode region via a region immediately below the second main control portion, and the two second guard portions A pair of first conductivity types and a second leakage prevention region having a higher impurity density than the semiconductor layer, spaced apart from the second main electrode region via a region immediately below the first main electrode region , And a second leakage prevention region blocks a current path from the first main electrode region formed in the vicinity of the element isolation insulating film to the second main electrode region via the plurality of common main electrode regions. An insulated gate semiconductor integrated circuit.
JP2009290910A 2009-12-22 2009-12-22 Insulated gate semiconductor device and insulated gate semiconductor integrated circuit Active JP5555864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290910A JP5555864B2 (en) 2009-12-22 2009-12-22 Insulated gate semiconductor device and insulated gate semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290910A JP5555864B2 (en) 2009-12-22 2009-12-22 Insulated gate semiconductor device and insulated gate semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JP2011134784A JP2011134784A (en) 2011-07-07
JP5555864B2 true JP5555864B2 (en) 2014-07-23

Family

ID=44347229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290910A Active JP5555864B2 (en) 2009-12-22 2009-12-22 Insulated gate semiconductor device and insulated gate semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP5555864B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014205353A2 (en) 2013-06-20 2014-12-24 Stratio, Inc. Gate-controlled charge modulated device for cmos image sensors
US9899376B2 (en) * 2016-03-04 2018-02-20 Texas Instruments Incorporated MOSFET transistors with robust subthreshold operations
KR102503213B1 (en) * 2016-04-05 2023-02-23 삼성전자 주식회사 Cds circuit for decreasing settling time and image sensor including the same
CN107516650A (en) * 2016-06-17 2017-12-26 中国科学院上海微系统与信息技术研究所 A kind of single-port SRAM unit based on SOI and preparation method thereof
KR102554664B1 (en) * 2017-05-26 2023-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging devices and electronic devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164265A (en) * 1985-01-16 1986-07-24 Nec Corp Mis type semiconductor integrated circuit device
JPS62262462A (en) * 1986-05-09 1987-11-14 Agency Of Ind Science & Technol Semiconductor device
JP3049725B2 (en) * 1990-03-21 2000-06-05 ソニー株式会社 MOS transistor
USH1435H (en) * 1991-10-21 1995-05-02 Cherne Richard D SOI CMOS device having body extension for providing sidewall channel stop and bodytie
JPH0661484A (en) * 1992-04-27 1994-03-04 Nec Corp Semiconductor device
JP3470133B2 (en) * 1994-06-03 2003-11-25 セイコーインスツルメンツ株式会社 Method for manufacturing semiconductor device
JP4104701B2 (en) * 1997-06-26 2008-06-18 株式会社半導体エネルギー研究所 Semiconductor device
JP2000114536A (en) * 1998-10-06 2000-04-21 Mitsubishi Electric Corp Soi semiconductor device
US6307237B1 (en) * 1999-12-28 2001-10-23 Honeywell International Inc. L-and U-gate devices for SOI/SOS applications
KR100525111B1 (en) * 2004-04-19 2005-11-01 주식회사 하이닉스반도체 Semiconductor device
JP2006128160A (en) * 2004-10-26 2006-05-18 Seiko Epson Corp Semiconductor apparatus and its manufacturing method

Also Published As

Publication number Publication date
JP2011134784A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
CN101740568B (en) Integrated circuit
US7964893B2 (en) Forming ESD diodes and BJTs using FinFET compatible processes
US9673188B2 (en) Integrated electrostatic discharge (ESD) clamping for an LDMOS transistor device having a bipolar transistor
US8658956B2 (en) Trench transfer gate for increased pixel fill factor
CN104253138B (en) Photoelectric conversion device and imaging system
US7939859B2 (en) Solid state imaging device and method for manufacturing the same
CN102163611B (en) Solid state image pickup device and method for manufacturing solid state image pickup device
KR20080106846A (en) Solid-state imaging device and manufacturing method thereof
JP5555864B2 (en) Insulated gate semiconductor device and insulated gate semiconductor integrated circuit
TW201312740A (en) Solid-state imaging element
JP2005072236A (en) Semiconductor device and method for manufacturing same
TW560043B (en) ESD protection devices and methods to reduce trigger voltage
US7670864B2 (en) CMOS image sensor and fabricating method thereof
JPH04207069A (en) Semiconductor device
US10026774B2 (en) Method of manufacturing solid-state image sensor and solid-state image sensor
US20160156817A1 (en) Manufacturing method of imaging apparatus, imaging apparatus, and imaging system
JP2011114036A (en) Insulated gate type semiconductor element and insulated gate type semiconductor integrated circuit
US7282754B2 (en) Unit pixel in CMOS image sensor
JP6818931B1 (en) Vacuum channel field effect transistor, its manufacturing method and semiconductor device
US10157941B2 (en) Image sensor and fabrication method thereof
KR101517664B1 (en) Self-aligned implantation process for forming junction isolation regions
JP2013058505A (en) Insulated gate semiconductor element and insulated gate semiconductor integrated circuit
US20090302421A1 (en) Method and apparatus for creating a deep trench capacitor to improve device performance
US20100308384A1 (en) Metal oxide semiconductor (mos) solid state imaging device that includes a surface layer formed by implanting a high concentration of impurity during creation of a photodiode, and manufacturing method thereof
JP6799739B2 (en) Photodetector and solid-state image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140502

R150 Certificate of patent or registration of utility model

Ref document number: 5555864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250