JP5554865B1 - Energy generator that produces mechanical power energy and electrical energy using ion binding energy - Google Patents

Energy generator that produces mechanical power energy and electrical energy using ion binding energy Download PDF

Info

Publication number
JP5554865B1
JP5554865B1 JP2013124153A JP2013124153A JP5554865B1 JP 5554865 B1 JP5554865 B1 JP 5554865B1 JP 2013124153 A JP2013124153 A JP 2013124153A JP 2013124153 A JP2013124153 A JP 2013124153A JP 5554865 B1 JP5554865 B1 JP 5554865B1
Authority
JP
Japan
Prior art keywords
energy
power
gas
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013124153A
Other languages
Japanese (ja)
Other versions
JP2014227998A (en
Inventor
昌治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013124153A priority Critical patent/JP5554865B1/en
Application granted granted Critical
Publication of JP5554865B1 publication Critical patent/JP5554865B1/en
Publication of JP2014227998A publication Critical patent/JP2014227998A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】エネルギ−を生産する事を目的にした技術を提供する。
【解決手段】普通なら何処の国にもある、人間にも、自然にも比較的無害の微弱アルカリ性水溶液や微弱酸性水溶液水を使用するだけでなく、こらの水溶液を排出する事も無く機械動力エネルギ−や電気エネルギ−を生産し、産業界のみならず一般家庭でも自前でエネルギ−が調達出来、電気自動車の電源を充電し、余った電気は蓄電器に蓄電出来る。殊に工業生産界において、膨大な機械動力エネルギ−や電気エネルギ−を自前で賄える利点がある。これで生産コストも下げられる。普通自然にある無害の物質を利用するのが人間にとって最も安全であり、究極の安全なエネルギ−生産方法だと考える。
【選択図】図3
A technology for producing energy is provided.
[MEANS FOR SOLVING PROBLEMS] Not only using a weakly alkaline aqueous solution or a weakly acidic aqueous solution that is relatively harmless to humans, naturally in any country, but also mechanical power without discharging these aqueous solutions Energy and electric energy can be produced, energy can be procured by not only the industry but also general households, and the power of the electric vehicle can be charged, and surplus electricity can be stored in the capacitor. Particularly in the industrial production world, there is an advantage that a huge amount of mechanical power energy and electric energy can be provided by oneself. This also reduces production costs. It is safest and most safe for humans to use harmless substances that are normally found in nature.
[Selection] Figure 3

Description

環境に無害の方法で機械動力エネルギ−、電気エネルギ−を生産する機械装置。A machine that produces mechanical power energy and electrical energy in a manner that is harmless to the environment.

機械動力エネルギ−、電気エネルギ−、の生産方法で環境に無害の方法はあるが、それ以上にもっと多くの種類の物質や、多くの方法で機械動力エネルギ−、電気エネルギ−を生産する方法。There are methods for producing mechanical power energy and electric energy that are harmless to the environment, but more than that, more types of materials and methods for producing mechanical power energy and electric energy in many ways.

図 1、図 2、図 4、図 5、の様な方法で従来より効率良く機械動力エネルギ−、電気エネルギ−が生産出来る。Mechanical power energy and electric energy can be produced more efficiently than in the prior art by the methods shown in FIGS. 1, 2, 4, and 5.

1 特許第 4441751号 2 特許第 4604274号 3 特許第 5110335号 4 特許第 5196284号1 Japanese Patent No. 4444151 2 Japanese Patent No. 4604274 3 Japanese Patent No. 5110335 4 Japanese Patent No. 5196284

環境に無害の見地から、本発明はいろいろなイオン結合化合物を利用し、いろいろな機械装置を利用して、機械動力エネルギ−、電気エネルギ−を生産した後、排出する物質も無く、環境に害を与える事も無く多量のエネルギ−を生産出来る機械装置。  From the standpoint of harmless to the environment, the present invention uses various ion-binding compounds and uses various mechanical devices to produce mechanical power energy and electrical energy, and then does not discharge any substances and is harmful to the environment. A machine that can produce a large amount of energy without giving any energy.

課題を解決する為の手段Means to solve the problem

熱エネルギ−、圧力エネルギ−を機械動力エネルギ−、電気エネルギ−に、或いは機械動力エネルギ−を電気エネルギ−に、電気エネルギ−を機械動力エネルギ−に変換出来る装置においてイオン結合化合物水溶液のイオン結合エネルギ−を熱エネルギ−気体分子、熱圧力エネルギ−気体分子に変え、熱エネルギ−気体分子、熱圧力エネルギ−気体分子より、機械動力エネルギ−、電気エネルギ−を生産した後、熱エネル気体分子、熱圧力エネルギ−気体分子を装置外に排出し、熱エネルギ−気体分子、熱圧力エネルギ−気体分子を単なる動力として利用するか、或いは装置外に排出せず、全装置工程を通して仕事をした後イオン結合化合物水溶液水槽中に戻し、再度動力の燃料として利用し、繰り返し同じ工程を循環させ、連続して機械動力エネギ−、電気エネルギ−を生産するか、いずれかで、蓄電機能を備え持つ事を特徴とする機械動力エネルギ−、電気エネルギ−を生産し蓄電機能も備えた機械装置。  Ion binding energy of an aqueous ionic bond compound solution in a device capable of converting thermal energy, pressure energy into mechanical power energy, electrical energy, or mechanical power energy into electrical energy and electrical energy into mechanical power energy. -Is converted into thermal energy gas molecules, thermal pressure energy gas molecules, thermal energy gas molecules, thermal pressure energy gas mechanical molecules energy, electric energy is produced from thermal energy gas molecules, Pressure energy-gas molecules are discharged outside the device, and thermal energy-gas molecules, heat pressure energy-gas molecules are used as mere power, or are not discharged outside the device and work through the entire device process and then ion bond Return it to the compound aqueous solution tank and use it again as fuel for power. Enegi - electrical energy - or producing, either, mechanical power energy, characterized in that with equipped with a power storage function - electrical energy - mechanical apparatus having productivity and power storage function.

生成した気体水素、気体酸素の混合気体は爆発性があり、この混合気体を燃焼爆発室で爆発させ高温高圧生成ガス流を生成し、この高温高圧生成ガス流は熱エネルギ−、熱圧力エネルギ−を持ち、固定位置に在る回転中心軸を中心に回転出来る回転体を高温高圧生成ガス流で回転させ、回転体の回転で回転中心軸を回転させるか、固定位置に在る回転中心軸を中心に回転出来る回転体の外周の外側の定位置に固定された環状管を設け、環状管内で、回転体の一部である圧力受け機器がガス漏れも無く高温高圧生成ガス流で加圧され、環状管内を回転移動し、回転体の回転中心軸を回転させるか、環状管の外側に補助環状管を設け、環状管内をガス漏れも無く回転中の回転体の一部である圧力受け機器が補助環状管からもより一層の高温高圧生成ガス流の加圧を受け、回転体の回転中心軸の回転運動により大きい力を与えるか、これらの内の少なくとも一つを利用して回転体の回転中心軸の回転運動により機械動力エネルギ−、電気エネルギ−を生産し、高温高圧生成ガス流を熱機関の単なる動力として使用した後装置外に排出するか、或いは高温高圧生成ガス流を装置外に排出せず、再度動力の燃料として利用し、全機械装置内の全工程を繰り返し循環させ、熱損失は燃料補給で補い、機械動力エネルギ−、電気エネルギ−を生産し、蓄電機能も備える機械装置。  The produced gaseous mixture of gaseous hydrogen and gaseous oxygen is explosive, and this mixed gas is exploded in a combustion explosion chamber to generate a high-temperature and high-pressure product gas stream. Rotate the rotating body that can rotate around the rotation center axis at the fixed position with the high-temperature and high-pressure gas flow, and rotate the rotation center axis by rotating the rotation body, or rotate the rotation center axis at the fixed position. An annular tube fixed at a fixed position outside the outer periphery of the rotating body that can rotate at the center is provided, and the pressure receiving device that is a part of the rotating body is pressurized with a high-temperature and high-pressure gas flow without gas leakage in the annular tube. Rotating and moving inside the annular tube and rotating the rotation center axis of the rotating body, or providing an auxiliary annular tube outside the annular tube, and the pressure receiving device which is a part of the rotating body rotating without gas leakage inside the annular tube Still higher temperature and pressure than the auxiliary annular tube The mechanical power energy is applied by applying a pressure of the gas flow and applying a larger force to the rotational motion of the rotational center axis of the rotating body, or by utilizing the rotational motion of the rotational center axis of the rotating body using at least one of them. Electric energy is produced and the high-temperature high-pressure product gas stream is used as mere power for the heat engine and then discharged out of the device, or the high-temperature high-pressure product gas stream is not discharged out of the device and used again as power fuel. A mechanical device that repeatedly circulates all the processes in the entire mechanical device, compensates for heat loss by refueling, produces mechanical power energy and electric energy, and has a power storage function.

高温高圧生成ガス流を熱往復機関内に注入してピストン運動を起こさせるか、前記載の爆発性のある混合気体分子を熱往復機関内で直接爆発させてピストン運動を起こさせか、いずれかの方法でピストン運動を起こし、スライダクランク機構の固定位置に在る回転中心軸を中心に回転する回転体の回転中心軸が回転動力軸となり、回転動力軸と回転体の外周が円形の外周より機械動力エネルギ−、電気エネルギ−を得、高温高圧生成ガス流を単なる動力として仕事後装置外に排出するか、或いは装置外に排出せず、全装置内を循環して仕事をした後再度動力用の燃料として利用し、熱損失は燃料の補填で補うか、いずれの場合も機械動力エネネルギ−、電気エネルギ−を生産し蓄電機能も備えた機械装置。  Either a high-temperature high-pressure product gas flow is injected into the thermal reciprocating engine to cause piston motion, or the explosive gas mixture molecules described above are directly exploded in the thermal reciprocating engine to cause piston motion. The rotation center axis of the rotating body that rotates around the rotation center axis at the fixed position of the slider crank mechanism becomes the rotation power axis, and the outer periphery of the rotation power axis and the rotation body is from the circular outer periphery. After obtaining mechanical power energy and electrical energy, the high-temperature and high-pressure gas flow is discharged as a mere power to the outside of the device after work, or not discharged to the outside of the device. A mechanical device that is used as a fuel for heat and either compensates for heat loss by supplementing the fuel, or in any case produces mechanical power energy or electrical energy and has a storage function.

回転体を回転させた後の装置外に排出されない高温高圧生成ガス流はラバルノズル管内に流れ込み、ラバルノズル管内で高速度化して高温高速度生成ガス流となり、いろいろに組み合わせたラバルノズル管の管内に在るガスタ−ビンで発電を行い、ガスタ−ビンを通過した高温高速度生成ガス流は電気分解用イオン結合化合物水溶液水槽中に放出するか、或いはガスタ−ビンを通過した高温高速度生成ガス流を冷暖房機に通して冷暖房に利用した後電気分解イオン結合化合物水溶液水槽中に放出し、電気分解で得た気体を再度燃焼爆発室で爆発させ、繰り返し同じ工程を循環させて機械動力エネルギ−、電気エネルギ−を連続して生産し蓄電機能も備えた機械装置。  The high-temperature and high-pressure generated gas flow that is not discharged outside the device after rotating the rotating body flows into the Laval nozzle pipe, and the high-speed and high-speed generated gas flow is generated in the Laval nozzle pipe, which is in various combinations of Laval nozzle pipes. Electric power is generated in the gas turbine, and the high-temperature high-velocity product gas stream that has passed through the gas turbine is discharged into the ion-binding compound aqueous solution water tank for electrolysis, or the high-temperature high-speed product gas stream that has passed through the gas turbine is air-conditioned After passing through the machine and used for cooling and heating, it is discharged into an electrolytic ion binding compound aqueous solution tank, the gas obtained by electrolysis is exploded again in the combustion explosion chamber, and the same process is repeatedly circulated to mechanical power energy and electric energy. -A machine that continuously produces and has a power storage function.

上記で生産及び使用し電気が余った時は電気自動車の電源を充電し、更に余った電気を蓄電する蓄電機能も備えた機械動力エネルギ−、電気エネルギ−を生産する機械設備。  Mechanical equipment for producing mechanical power energy and electric energy having a storage function for charging the power source of the electric vehicle when the electricity is produced and used as described above, and storing the surplus electricity.

発明の効果Effect of the invention

イオン結合化合物水溶液の中で放射性能を持たず、分解気体は環境に無害であり、連続爆発の際は多量のエネルギ−を放出し、この熱エネルギ−と圧力エネルギ−を機械動力エネルギ−、電気エネルギ−に変換し、更に未使用のエネルギ−は、電気エネルギ−として蓄電する事が出来る。生産の仕事容量は大きいが、操作が環境に対し安全で、修理時にも安全である。  The ion-bonded compound aqueous solution does not have radiation performance, the decomposed gas is harmless to the environment, and a large amount of energy is released during the continuous explosion, and this thermal energy and pressure energy are used as mechanical power energy and electrical energy. The energy that is converted into energy, and the unused energy can be stored as electric energy. The production capacity is large, but the operation is safe for the environment and safe for repairs.

原子力発電機の様な排出気体や放射能排出水の放射性の危険もなく、人間に馴染みのある、普通に入手出来る物質を利用して機械動力エネルギ−や電気エネルギ−を得、しかも規模、場所、時間、天候に何の条件も必要無く生産出来る。しかし大規模の発電所となれば、場所の条件は必要だが、原子力発電の様な危険に対する条件は不要である。規模に対するエネルギ−の生産量は大きい。又エネルギ−生産に対する原料費は他の設備に比べ比較に成らない程小さい。最大の利点は工場等で機械動力エネルギ−、電気エネルギ−が自前で賄え、未使用の電気ば蓄電して保存したり、販売も出来るし、家庭でも超小型規模すれば利用出来る。イオン結合化合物水溶液の結合エネルギ−を利用した新しいエネルギ−生産体制が起きれば、それに対応する新しい重要が起きる。需要物質の生産、特に材料科学、金属材料科学を始め、海水の淡水化に刺激を与え、他の産業分野にも寄与するだろう。  There is no radioactive danger of exhaust gas or radioactive effluent, such as nuclear power generators, and mechanical power energy and electrical energy are obtained using materials that are familiar to humans and are available to the public. Can be produced without the need for time, weather conditions. However, if it is a large-scale power plant, the conditions of the place are necessary, but the condition for danger like nuclear power generation is not necessary. Energy production is large relative to scale. In addition, the cost of raw materials for energy production is incomparably smaller than other equipment. The biggest advantage is that mechanical power energy and electrical energy can be covered by the factory at the factory, and unused electricity can be stored and sold, and can be used at home if it is of a very small scale. If a new energy production system using the binding energy of an ion binding compound aqueous solution occurs, a corresponding new importance will arise. It will stimulate demand for the production of demand materials, especially materials science, metal materials science, seawater desalination, and contribute to other industrial fields.

イオン結合化合物水溶液の結合エネルギ−を利用した新しいエネルギ−生産体制が起きれば、それに対応する新しい需要が起きる。需要物質の生産、特に材料科学、金属材料科学を始め、海水の淡水化に刺激を与え、いろいろな産業分野に寄与するだろう。  If a new energy production system using the binding energy of the ion binding compound aqueous solution occurs, a new demand corresponding to it will arise. It will stimulate the production of demand substances, especially material science, metal materials science, desalination of seawater, and contribute to various industrial fields.

機械動力を生産するメカニズムの平面図  Plan view of the mechanism that produces mechanical power 図1に於けるB環状管の位置の変化した平面図  FIG. 1 is a plan view in which the position of the B annular tube is changed. 機械動力を生産するメカニズムを立体的に組み立てた斜視図  A perspective view of a three-dimensional assembly of the mechanism that produces mechanical power 熱往復機関内で燃焼爆発によるピストン運動メカニズムの横平面図  Horizontal plan view of piston motion mechanism due to combustion explosion in thermal reciprocating engine 高温高圧生成ガス流によるピストン運動で機械動力を生産する機械横断面図  Cross-sectional view of machine that produces mechanical power by piston motion by high-temperature and high-pressure generated gas flow ピストン運動による機械動力、発電機用動力を生産するメカニズムム横断面図  Mechanism cross-sectional view for producing mechanical power and power for generators by piston motion ピストン運動に遊びの動力伝達機器を挟んだ機械動力、発電機動力を生産するメカニズム横断面図  Cross-sectional view of the mechanism that produces mechanical power and generator power with the power transmission device of play in the piston motion A環状管のみで動力を生産した時のメカニズム組み立て斜視図  Mechanism assembly perspective view when power is produced only with the A ring pipe 動力伝達部のパ−ツ拡大斜視図  Part enlarged perspective view of power transmission part 熱機関の水冷却装置横断面図  Cross section of water cooling device for heat engine A環状管のみで動力を生産した時の機械組み立て斜視図  Mechanical assembly perspective view when power is produced only with the A ring pipe 機械動力、発電機用動力の伝達、受取パ−ツ部の拡大図  Enlarged view of mechanical power, transmission of power for generator, receiving part ラバルノズル管内部の斜視図  Perspective view of the inside of the Laval nozzle tube ラバルノズル管内部の横断面図  Cross-sectional view of the inside of the Laval nozzle tube ラバルノズル管組み立て横断面図  Laval nozzle tube assembly cross section ラバルノズル管組み立て斜視図  Laval nozzle tube assembly perspective view 電気分解用装置の水槽断面図  Water tank cross section of electrolysis equipment 電気分解時の分解気体貯蔵器の拡大図  Enlarged view of cracked gas reservoir during electrolysis 電気分解時の分解気体貯蔵器の組み立て図  Assembly drawing of decomposition gas reservoir during electrolysis 発電後電気自動車電源の充電用回路及び電気貯蔵の回路  Electric vehicle power supply charging circuit and electricity storage circuit after power generation 回転体大円周に取り付けた風受け取機器或いはタ−ビンの羽根の例  Example of wind receiving device or turbine blade attached to large circumference of rotating body 電気自動車電源充電回路図  Electric vehicle power supply charging circuit diagram

発明を実施する為の形態BEST MODE FOR CARRYING OUT THE INVENTION

電気分解して環境に無害の気体分子を出すイオン結合化合物水溶液はいろいろ有り、例としてNaOH,KOH,H、HNO,HSO,NaSO等の弱水溶液があり、これらのイオン結合化合物水溶液は熱によってある程度分解するが電気分解で決定的な分解をする。上記の水溶液は、電気分解によって陽極には気体酸素、陰極には気体水素が生成され、特殊な酸素を除けば水素気体も酸素気体も一般環境では無害の気体である。これらの物質の生成イオン結合エネルギ−を利用するのである。生成イオン結合化合物の最も安全な物質は水であるが、単独ではなかなか分解し難いが結局は水の電気分解であり、上記のイオン結合化合物水溶液は触媒の役をしている。熱エネルギ−気体分子は熱エネルギ−を持った気体の分子で、その分子が多く集つまり、熱圧力エネルギ−気体分子となる表現である。仕事を始動し始める場合い、液体水素や液体酸素を気化して気体水素、気体酸素を燃焼爆発室に送っても良く、或いは電気分解で生成した水素気体や酸素気体を最初から利用しても良い。これらの気体を燃焼爆発室で爆発させ高温高圧生成ガス流で固定位置に在る回転体を回転させ回転体の回転中心軸の回転による回転機械動力と発電用回転動力を得る方法か、或いは熱往復機関内に高温高圧生成ガス流を注入したり、爆発性の有る混合気体を熱往復機関内で爆発させたりしてピストン運動を起こさせ ピストンの左右軸にスライダクラン構造を施し、固定位置に在る回転体の回転中心軸の回転により回転機械動力と発電用回転動力を得る方法がある。機械動力を生産する為燃焼エネルギ−を内燃機関内で作用した直後装置から排出したとしても従来からある燃料の造る方も異なるし、内燃機関の構造も異なる。況んや全装置から排出ガスを装置外に排出する事無く新しい方法で製造した燃料と排出ガス全てを利用する方法は画期的方法だと考える。今後詳細文に出てくる回転機械動力は機械動力エネルギ−、回転発電動力や発電動力は発電エネルギ−、高温高圧生成ガス流は高温高圧水蒸気ガス流等を意味している。There are various ion binding compound aqueous solutions that electrolyze and emit gas molecules that are harmless to the environment. Examples include weak aqueous solutions such as NaOH, KOH, H 2 O 2 , HNO 3 , H 2 SO 4 , Na 2 SO 4 , These ion-binding compound aqueous solutions are decomposed to some extent by heat, but are decisively decomposed by electrolysis. The aqueous solution produces gaseous oxygen at the anode and gaseous hydrogen at the cathode by electrolysis. Except for special oxygen, both hydrogen gas and oxygen gas are harmless gases in general environments. The product ion binding energy of these substances is used. The safest substance of the produced ion-binding compound is water, but it is difficult to decompose by itself, but it is eventually electrolysis of water, and the above-described aqueous solution of ion-binding compound serves as a catalyst. A thermal energy gas molecule is a gas molecule having thermal energy, which is a collection of many molecules, that is, a thermal pressure energy gas molecule. When starting to work, liquid hydrogen or liquid oxygen may be vaporized to send gaseous hydrogen or gaseous oxygen to the combustion explosion chamber, or hydrogen gas or oxygen gas generated by electrolysis may be used from the beginning. good. These gases are exploded in a combustion explosion chamber, and a rotating body at a fixed position is rotated by a high-temperature and high-pressure generated gas flow to obtain rotating mechanical power and rotating power for power generation by rotation of the rotating central shaft of the rotating body, or heat. Inject a flow of high-temperature and high-pressure gas into the reciprocating engine or explode an explosive gas mixture in the thermal reciprocating engine to cause piston movement. There is a method for obtaining rotating machine power and power for generating power by rotation of a rotation center shaft of an existing rotating body. Even if the combustion energy is discharged from the device immediately after acting in the internal combustion engine to produce mechanical power, the conventional way of producing fuel is different and the structure of the internal combustion engine is also different. I think that the method of using all the fuel and exhaust gas produced by the new method without exhausting exhaust gas from the entire system without going out of business is an epoch-making method. Rotational mechanical power that will appear in the detailed statement in the future means mechanical power energy, rotational power generation and power generation power generation energy, high-temperature high-pressure generated gas flow means high-temperature high-pressure steam gas flow, and the like.

燃焼爆発室は爆発圧力が一か所に集中しない円形か楕円形が良い。燃焼爆発気体は高温高圧の為燃焼爆発室は断熱性物質か、内装が耐熱性処理をした物質を利用する。点火はプラグの如き電気スパークが良い。燃焼爆発によって生じた高温高圧生成ガス流は高温高圧水蒸気ガス流が最も安全性が高いからこれを利用する。以後高温高圧生成ガス流は高温高圧水蒸気ガス流を意味する。燃焼爆発室の点火点の反対側に噴射出口を付け、燃焼爆発室と管で環状管や環状管の外周を取り巻く補助環状管に繋ぐ。補助環状管は環状管の外側に密着し,一定間隔で穴が開いていて、この穴は補助環状管から環状管へのみ高温高圧生成ガス流が流れ込み、逆流が生じ無い構造で弁ガ付いている。又環状管のみの場合はただ環状管内に燃焼爆発室から直接に高温高圧生成ガス流が流れ込み、環状管内でガス漏れも無く羽根を押し押し動かし回転体を回転させ、回転体の回転中心軸を回転させ、回転機械動力と発電機用回転動力を得る。環状管と補助環状管が密着している場合は、燃焼爆発室から直接二本の管がそれぞれ環状管と補助環状刊管に繋がり,高温高圧生成ガス流が環状管に流れ込み、環状刊管内では上記と同じ仕事をし、補助環状管の末端は閉じているから補助環状管内では燃焼爆発室の直接の高温高圧生成ガス流が流れて為圧力に関して環状管内圧<補助環状管内圧であり、補助環状管の穴から環状管内へ高温高圧生成ガス流が流れ込み、環状管内を移動する羽根に圧力を加えるから移動する羽根はより一層の加速度と力を与えられる。環状管或いは補助環状管が密着した環状管の複数層、或いは複数段と隣り合っている場合環状管は環状管へ、補助環状管は補助環状管へ誘導管で高温高圧生成ガス流を上層或いは隣の段に誘導する。回転体の回転中心軸が任意方向に傾斜しても、環状管、補助環状管も同じ方向に傾斜するからお互いに接触する事も無い。The combustion explosion chamber should be circular or elliptical where the explosion pressure is not concentrated in one place. Because the combustion explosion gas is high temperature and pressure, the combustion explosion chamber uses a heat-insulating material or a heat-treated material inside. For ignition, an electric spark like a plug is good. The high-temperature high-pressure generated gas flow generated by the combustion explosion is utilized because the high-temperature high-pressure steam gas flow has the highest safety. Hereinafter, the high-temperature high-pressure product gas stream means a high-temperature high-pressure steam gas stream. An injection outlet is provided on the opposite side of the ignition point of the combustion explosion chamber, and the combustion explosion chamber and the pipe are connected to an annular pipe and an auxiliary annular pipe surrounding the outer circumference of the annular pipe. The auxiliary annular tube is in close contact with the outside of the annular tube, and holes are opened at regular intervals, and this hole has a valve with a structure in which the high-temperature and high-pressure generated gas flows only from the auxiliary annular tube to the annular tube and no backflow occurs. Yes. In the case of only the annular tube, the high-temperature and high-pressure gas flow flows directly from the combustion explosion chamber into the annular tube, and the rotor is rotated by pushing and moving the blade without gas leakage in the annular tube. Rotate to obtain rotating machine power and generator rotating power. When the annular pipe and the auxiliary annular pipe are in close contact, the two pipes are connected directly from the combustion explosion chamber to the annular pipe and the auxiliary annular publication pipe, respectively, and the high-temperature high-pressure product gas flows into the annular pipe. Performs the same work as above, and the end of the auxiliary annular pipe is closed, so in the auxiliary annular pipe, the direct high-temperature high-pressure generated gas flow in the combustion explosion chamber flows, so the pressure in the annular pipe is less than the pressure in the auxiliary annular pipe. the hole in the annular tube to the annular pipe flows into high temperature and high pressure product gas stream, vanes relocating the apply pressure to the blade to move annular tube is provided to further acceleration and force. Multiple layers of the annular tube or ring-shaped tube in which the auxiliary annular tube are in close contact, or if they are next to a plurality of stages into the annular pipe annular tube, the auxiliary annular tube upper hot pressure product gas stream in the guide tube to the auxiliary annular tube Or it leads to the next step. Even if the rotation center axis of the rotating body is inclined in an arbitrary direction, the annular tube and the auxiliary annular tube are also inclined in the same direction so that they do not contact each other.

高温高圧生成ガス流の圧力を受けた環状管内にある圧力受け機器の羽根が、環状管内を移動する。環状管内の圧力受け機器の羽根が一個から複数個あり、環状管との間にはガス漏れも無く回転出来、回転体も回転し、回転体の回転中心軸も回転し、回転中心軸の末端や中間部分の動力の枝別れ部分より回転機械動力と発電機用回転動力を得る。熱往復機関内に高温高圧生成ガス流を注入したり、爆発性の混合気体を直接熱往復機関内で爆発させてピストン運動を起こし、スライダクランク機構の回転体の中心軸の回転及び外周の回転より回転機械動力と発電機用回転動力を得る。  The vanes of the pressure receiving device in the annular tube subjected to the pressure of the high-temperature high-pressure product gas flow move in the annular tube. There are one or more blades of the pressure receiving device in the annular tube, it can rotate without gas leakage between the annular tube, the rotating body also rotates, the rotating center axis of the rotating body also rotates, and the end of the rotating center axis And the rotating machine power and the generator rotating power are obtained from the power branching part of the middle part. Injecting a high-temperature and high-pressure product gas flow into the thermal reciprocating engine or causing an explosive gas mixture to explode directly in the thermal reciprocating engine to cause piston movement, rotation of the center axis of the rotating body of the slider crank mechanism and rotation of the outer circumference Rotational mechanical power and generator rotational power are obtained.

回転体の形状として円盤型、円形フレ−ム型(ド−ウナツ状で回転中心軸とド−ウナツ状円形がシャフトで繋がっている)、球体、縦軸長楕円体(X,Y軸が同じ長さ、Z軸が長い楕円体)、縦軸短楕円体(X,Y軸が同じ長さ、Z軸が短い)、円柱、多角柱型、半球体、半楕円体、半縦軸長楕円体、半縦軸短楕円体、等がある。
回転中心軸で回転体が付いて無い側の回転中心軸の端末の大径の回転機械動力伝達機器と大径の回転機械動力受取機器を組み合わせよりモ−メントの大きい回転機械動力を得る。回転機械動力が不要の時は大径の回転機械動力受取機器を大径の回転機械動力伝達機器から自動的に取り外し、遊びの発電機用同心軸の大小径の動力伝達機器の小径を回転体の回転中心軸の末端の大径の回転機械動力伝達機器に接続し、遊びの同心軸の大径の動力伝達機器を発電機の回転子の小径の動力受取機器に繋げて発電機の回転子を高速度回転化をする。更に遊びの大径の動力伝達機器に複数の発電機の回転子の小径を繋ぎ多量の電気を生産する事が出来る。この時利用される発電機は、回転機械動力が不要の時のみに利用される発電機である。回転体の回転中心軸の中間部分にある動力の枝別れ部分、或いは複数の動力の枝別れ部分を造り、各分岐点部分毎の大径の動力伝達機器を設置し、遊びの同心軸の大小径の動力伝達機器を挟み、回転機械動力として利用する時は遊びの大径の動力伝達機器と大径の回転機械動力受取機器を繋ぎ、発電機として利用するときは動力の枝別れ点の大径動力伝達機器に遊びの小径の動力伝達機器を繋ぎ、遊びの大径の動力伝達機器には複数の発電機の小径の回転子と繋ぎ多量の電気を生産する。ここで利用される発電機は動力の枝別れを利用する時のみ使用する発電機である。
The shape of the rotating body is a disk type, a circular frame type (a donut shape with a rotation center axis and a donut shape circle connected by a shaft), a sphere, and a longitudinal ellipsoid (the X and Y axes are the same) Ellipsoid with long length and Z axis), short ellipsoid with vertical axis (X and Y axes are the same length and Z axis is short), cylinder, polygonal cylinder, hemisphere, semi-ellipsoid, semi-long ellipse Body, semi-longitudinal short ellipsoid, and the like.
A rotary machine power having a large moment is obtained by combining a large-diameter rotary machine power transmission device and a large-diameter rotary machine power receiving device at the end of the rotary center shaft on the side of the rotary center shaft not attached to the rotary body. When rotating machine power is not required, the large-diameter rotating machine power receiving device is automatically removed from the large-diameter rotating machine power transmission device, and the small diameter of the large and small diameter power transmission device of the concentric shaft for the idle generator is rotated. Connect to the large-diameter rotating machine power transmission equipment at the end of the rotation center shaft, and connect the large-diameter power transmission equipment of the concentric shaft of the play to the small-diameter power receiving equipment of the generator rotor. Rotate at high speed. Furthermore, it is possible to produce a large amount of electricity by connecting the small diameter of the rotors of a plurality of generators to a large-diameter power transmission device. The generator used at this time is a generator that is used only when rotary machine power is unnecessary. Build a power branching part or a plurality of power branching parts in the middle part of the rotation center shaft of the rotating body, install a large-diameter power transmission device for each branch point part, When a small-diameter power transmission device is sandwiched and used as rotating machine power, a large-diameter power transmission device and a large-diameter rotating machine power receiving device are connected, and when used as a generator, a large branching point of power is required. A small-diameter power transmission device is connected to a radial power transmission device, and a large-diameter power transmission device is connected to a small-diameter rotor of a plurality of generators to produce a large amount of electricity. The generator used here is a generator that is used only when the branching of power is used.

高温高圧生成ガス流、つまり高温高圧水蒸気ガス流を熱往復機関内に流し込み、ピストン運動を起こさせるか、或いは熱往復機関内室に気体水素、気体酸素を直接注入し、燃焼爆発させピストン運動を起こさせるかの2通りの方法がある。両方共スライダクランク構造を持ち、ピストンの往復運動を回転体の回転運動に変え、回転体の中心軸の回転と回転体の大円周の回転より回転機械動力や発電機用動力を得る。ピストンの両サイドに熱往復機関室が有り、一方の空間に高温高圧生成ガス流を注入し、一杯までピストンを動かしてから、反対側の空間に高温高圧生成ガス流を注入する交互注入の方法、或いは一方の空間に気体水素、気体酸素を2:1の割合で注入し燃焼爆発させてから反対側の空間に気体水素、気体酸素を2:1の割合で注入し連続爆発させる方法でピストンの両サイドの熱往復機関軸を左右対称に往復運動をおこさせ回転機械動力や発電機用動力を得る。熱往復機関の左右にスライダクランク機構の回転体を設け、回転体の外周に、遊びの同心軸で大小径の動力伝達機器を繋ぐ。回転機械動力として利用する時は遊びの同心軸の大径の動力伝達機器に回転機械動力伝達機器を繋ぎ、発電機用として利用するときは回転体の外周に遊びの同心軸の小径の動力伝達機器を繋ぎ、遊びの同心軸の大径動力伝達機器に複数の発電機の回転子の小径動力受取機器を繋いで多量の電気を生産する。この熱往復機関は幾層にも重ね持つ事が出来、多数の往復機関軸を持ち、多数の回転機械動力伝達機器と多数の発電機用伝達機器より多く回転機械エネルギ−や電気エネルギ−が造られる。熱往復機関室を通過した高温高圧生成ガス流は装置外に排出も出来るが、この場合はただの動力になる。本筋はやはり一つの太い管にまとめ集められ、ラバルノズル管へ繋がる。  A high-temperature high-pressure product gas flow, that is, a high-temperature high-pressure steam gas flow, flows into the thermal reciprocating engine to cause piston motion, or directly injects gaseous hydrogen or gaseous oxygen into the inner chamber of the thermal reciprocating engine to burn and explode the piston motion. There are two ways to make it happen. Both have a slider crank structure, and the reciprocating motion of the piston is changed to the rotational motion of the rotating body, and rotational mechanical power and generator power are obtained from the rotation of the central axis of the rotating body and the rotation of the large circumference of the rotating body. There is a thermal reciprocating engine room on both sides of the piston, injecting a high-temperature high-pressure product gas flow into one space, moving the piston to the full, and then injecting a high-temperature high-pressure product gas flow into the opposite space Alternatively, the gas hydrogen and gaseous oxygen are injected into one space at a ratio of 2: 1 and burned and exploded, and then the hydrogen and gaseous oxygen are injected into the opposite space at a ratio of 2: 1 and continuously exploded. The reciprocating motions of the thermal reciprocating engine shafts on both sides of the two are symmetrically reciprocated to obtain rotating machine power and generator power. A rotary body of a slider crank mechanism is provided on the left and right sides of the thermal reciprocating engine, and a large and small diameter power transmission device is connected to the outer periphery of the rotary body with a concentric shaft of play. When used as rotating machine power, connect the rotating machine power transmission device to the large diameter power transmission device of the concentric shaft of the play, and when using it for the generator, transmit the small diameter power of the concentric shaft of the play to the outer periphery of the rotating body. A large amount of electricity is produced by connecting devices and connecting a small-diameter power receiving device of a plurality of generator rotors to a large-diameter power transmission device of a concentric shaft of play. This thermal reciprocating engine can have many layers, has many reciprocating engine shafts, and produces more rotating mechanical energy and electrical energy than many rotating machine power transmission devices and many generator transmission devices. It is done. The high-temperature and high-pressure product gas flow that has passed through the thermal reciprocating engine chamber can be discharged out of the apparatus, but in this case, it is just power. The main lines are gathered together in one thick tube and connected to the Laval nozzle tube.

回転機械動力伝達機器、回転機械動力受取機器、遊びの高速度回転機械伝達機器、遊びの高速度回転機械動力機器等は「歯車」、「チェン」、「ベルト」、「歯付きベルト」、「摩擦車」、「平歯車」、「斜行傘歯車」、「はすば傘歯車」、「まがり傘歯車」、「ウ−ムギヤ」、「ハイポイド歯車」、「内歯車」、「ねじ歯車」等が利用でき、大きい回転機械動力伝達には「平歯車」が「力」の効率ロスが少なくて良い。抵抗の殆ど無い部分には、どの歯車を利用しても良い。  Rotating machinery power transmission device, rotating machinery power receiving device, idle high-speed rotating machinery transmission device, idle high-speed rotating machinery power device, etc. are `` gear '', `` chain '', `` belt '', `` toothed belt '', `` Friction wheel, Spur gear, Slanting bevel gear, Helical bevel gear, Spiral bevel gear, Worm gear, Hypoid gear, Internal gear, Screw gear The “spur gear” can reduce the efficiency loss of “force” for large rotating machine power transmission. Any gear may be used for the portion having almost no resistance.

回転体の外周の環状管内や熱往復機関内で仕事をした後の高温高圧生成ガス流は、環状管や熱往復機関の排出管より太い管に一度集められ、太い管より径の小さい管のラバルノズル効果で高温高速度生成ガス流と成る。ラバルノズル管内に発電機用の風受け機器、つまり発電機用タ−ビンをを設け、この発電機用タ−ビンはラバルノズル管の内壁と接する事無く高温高速度生成ガス流を受けて回転中心軸を中心に回転する。ラバルノズル管内に発電機用のタ−ビンが複数個有る場合も、回転中心軸はお互いに接する事も無く回転し、各回転中心軸のタ−ビンが付いて無い側の回転中心軸の先端に発電機用大径の回転動力伝達機器を施し、これに遊びの同心軸の小径の動力伝達機器を繋ぎ、同心軸の大径の動力伝達機器には複数の発電機の回転子の各小径の動力受取機器を繋げて多量の電気を生産する。ここで使用する発電機は常時発電している発電機である。複数のラバルノズル管を直列にして段差を付けたり、平行にして並列にしたり、複数個を直列にして段差のある並列に並べたりして多数の回転中心軸を造り、こらに前記記載の様な発電機の接続方法をすれば多数の発電機で多量の電気が生産される。各ラバルノズル管で仕事をした高温高速度生成ガス流は太い管に集められ、電気分解用イオン結合化合物水溶液水槽水中に放出され、イオン結合化合物水溶液水槽水の温度を高める。電気分解をする際分解液の温度が高ければ、消費電力は少なくて済む。  The high-temperature and high-pressure product gas flow after working in the annular pipe on the outer periphery of the rotating body or in the thermal reciprocating engine is once collected in a pipe that is thicker than the discharge pipe of the annular pipe or the thermal reciprocating engine. The Laval nozzle effect results in a high-temperature, high-velocity product gas stream. A wind turbine device for the generator, that is, a generator turbine, is provided in the Laval nozzle pipe, and this generator turbine receives the high-temperature, high-velocity generated gas flow without contacting the inner wall of the Laval nozzle pipe. Rotate around. Even when there are multiple generator turbines in the Laval nozzle tube, the rotation center shafts rotate without touching each other, and the rotation center shafts are not attached to the end of the rotation center shaft. A large-diameter rotary power transmission device for a generator is applied, and a small-diameter power transmission device with a concentric shaft for play is connected to the large-diameter power transmission device for a concentric shaft. A large amount of electricity is produced by connecting power receiving devices. The generator used here is a generator that constantly generates power. A plurality of Laval nozzle pipes are connected in series to create a step, parallel and parallel to each other, or a plurality of series are arranged in parallel with a step to create a large number of rotation center shafts, as described above. If the generator connection method is used, a large amount of electricity is produced by a large number of generators. The high-temperature, high-velocity product gas stream that has worked in each Laval nozzle tube is collected in a thick tube and released into the electrolyzed ion-binding compound aqueous solution tank to raise the temperature of the ion-binding compound aqueous solution water. If the temperature of the decomposition solution is high during electrolysis, less power is consumed.

イオン結合化合物水溶液を電気分解する際分解液を微弱アルカリ性か、微弱酸性にして分解する。電気分解の電極には、水素、酸素及びそれらの化合物に腐食され無い電導性の有るステンレス性合金が経済的である。本来は金あるいは白金が良いが高価である。  When electrolyzing an ion binding compound aqueous solution, the decomposition solution is weakly alkaline or weakly acidic and decomposed. As the electrode for electrolysis, a stainless steel alloy having conductivity which is not corroded by hydrogen, oxygen and their compounds is economical. Originally gold or platinum is good but expensive.

ラバルノズル管で発電作業をした後の高温高速度生成気ガス流はイオン結合化合物水溶液水槽水中に放出され、この作業の得点は高温高速度生成ガス流をイオン結合化合物水溶液水槽水中に放出する事によって、イオン結合化合物水溶液水の温度を高め分子の活性化を促し、電気分解の際の消費電力を少なく出来る。利用するイオン化合物がアルカリ性の時は 弱アルカリ性水溶液中に、利用するイオン化合物が希硫酸の時は 弱希硫酸水溶液中に高温高速度生成ガス流は排出し、電気分解を容易にする。
電気分解の際イオン結合化合物水溶液水槽水の水位は常に一定に保つ必要があり、その為水位が低下すれば水を注入する装置を設置しておく。生成気体は水上捕集で捕集時は気体水素、気体酸素は常温で一気圧であり、貯蔵容器に溜める時高圧で貯蔵するには工程中に高圧縮用設備を施す。同じ容量の貯蔵器なら気体水素:気体酸素=2n本;n本用意する。水素ガス、酸素ガス入りの貯蔵器は単独で商品化も出来る。貯蔵容器押し出し口の反対側にピストン圧縮装置を施し、必要に応じて燃焼爆発圧より大きい圧力で押し出し口より押し出し、燃焼爆発室に噴射し、再度爆発させる。この際ピストン圧縮をする為容器の形状は円筒形が便利である。押し出し時の高い圧力を造るのに油圧機を利用した方が経済的である。燃焼爆発室に噴射する前に再度コンピュ−タ制御で1秒間当たり噴射モル比が気体水素:気体酸素=2(mol/s):1(mol/s)に成る様に調整すると良い。
The high-temperature, high-velocity product gas flow after the power generation operation with the Laval nozzle tube is released into the ion-bonded compound aqueous solution tank water, and the score of this work is that the high-temperature high-velocity product gas flow is released into the ion-bonded compound aqueous solution tank water In addition, the temperature of the ion-binding compound aqueous solution can be increased to promote the activation of molecules, and the power consumption during electrolysis can be reduced. When the ionic compound used is alkaline, the high-temperature high-velocity product gas stream is discharged into the weakly alkaline aqueous solution, and when the ionic compound used is dilute sulfuric acid, the electrolysis is facilitated.
During the electrolysis, the water level of the ion-binding compound aqueous solution tank needs to be kept constant at all times, and therefore a device for injecting water is installed if the water level drops. The generated gas is collected on the water, gaseous hydrogen is collected at the time of collection, and gaseous oxygen is one atmospheric pressure at room temperature. In order to store at high pressure when stored in a storage container, high compression equipment is provided during the process. If the reservoir has the same capacity, prepare gaseous hydrogen: gaseous oxygen = 2n; n. Hydrogen gas and oxygen gas storage can be commercialized independently. A piston compression device is provided on the opposite side of the storage container extrusion port, and if necessary, it is extruded from the extrusion port at a pressure higher than the combustion explosion pressure, injected into the combustion explosion chamber, and again exploded. At this time, a cylindrical shape is convenient for the piston compression. It is more economical to use a hydraulic machine to create a high pressure during extrusion. Before injection into the combustion explosion chamber, it is preferable to adjust the injection molar ratio per second so as to be gaseous hydrogen: gaseous oxygen = 2 (mol / s): 1 (mol / s) by computer control again.

高圧熱エネルギ−を機械運動エネルギ−、電気エネルギ−に変換している機械装置は熱を持つから水槽水に浸したり、起こした電気の一部で造った冷却気体で機械装置の入った部屋を冷却する。温まった温水は温水として、温まった気体が空気の時は温水中に放出し温水として貯蔵する。  Machines that convert high-pressure heat energy into mechanical kinetic energy and electrical energy have heat, so they are immersed in aquarium water. Cooling. Warm warm water is used as warm water, and when the warm gas is air, it is discharged into warm water and stored as warm water.

発電機で得れる電気は直流或いは交流で製造され、製造電流の一部を電気自動車の充電に当てる。電気自動車の電源の大きさは電圧の大きい電源にするか、或いは電流の大きい電源にするかで電源補充用の電気回路が異なる。その点を考慮して電源回路を決める必要がある。交流電流は直流電流の変換し、直流電流はそのまま利用し、自動車用蓄電池に合致する電圧、電流に成るよう抵抗回路を通して充電する。電気分解にも利用し余っ電流は大型蓄電器で蓄電する。或いはコンデンサ−に蓄電して貯蔵する。  Electricity obtained by the generator is produced by direct current or alternating current, and a part of the production current is applied to charging the electric vehicle. The electric circuit for power supply is different depending on whether the power source of the electric vehicle is a power source having a large voltage or a power source having a large current. It is necessary to determine the power supply circuit in consideration of this point. The alternating current is converted into direct current, and the direct current is used as it is, and is charged through a resistance circuit so as to obtain a voltage and current that match a vehicle storage battery. The surplus current that is also used for electrolysis is stored in a large capacitor. Alternatively, it is stored and stored in a capacitor.

上記で余った電気を蓄電する蓄電装置は蓄電器の並列を並列にした機能を沢山持つ同じ構造の大型蓄電器A型、B型ある。A型蓄電器は固定され、B型蓄電器はレ−ル上を移動する台車に乗った蓄電器である。発電電流は直流電流と交流電流があるから直流電流はそのまま利用する。交流電流は直流電流に変換して利用し、A型蓄電器は発電機から直接蓄電し、B型蓄電器にはA型蓄電器から電気を移動し、B型蓄電器が充分充電出来ればA型、B型両蓄電器から正、負両極を切り離すと同時にA型蓄電器の正極とB型蓄電器の正極、A型蓄電器の負極と発電機の正極、B型蓄電器の負極と発電機の負極を繋ぐ。B型蓄電器に予定量の電気が蓄電出来ればA型蓄電器、B型蓄電器、発電機の各電極を全て切り離すと同時に1回目に行った同じ操作をA型蓄電器、B型蓄電器、発電機の三者間でB型蓄電器の蓄電気量が予定量に達するまで数回繰り返し行う。次第にB型蓄電器の電気量を増やし、B型蓄電器の電気量が所定電気量になればB型蓄電器は全ての電極を切り離して移動し、新しい電気量が空のB型蓄電器が移動して来て前記と同じ作業を行い、多数のB型蓄電器に多量の電気量が蓄電出来る。家庭で利用する場合は固定した小型のA型蓄電器と移動する事の無い数個のB型蓄電器を設け、小型のA型蓄電器、B型蓄電器、小型発電機の三者間で上記記載の操作をすれば良い。必要に応じ家庭の場合も交流、直流両発電が出来、電気自動車の充電にも利用出来る。この装置はどの様な発電方式でも利用出来る。  The power storage devices that store the surplus electricity in the above are large-sized capacitors A type and B type having the same structure having many functions of paralleling the capacitors. The A-type capacitor is fixed, and the B-type capacitor is a capacitor on a carriage that moves on the rail. Since the generated current has a direct current and an alternating current, the direct current is used as it is. AC current is converted to DC current for use, A type battery stores electricity directly from the generator, B type battery moves electricity from A type battery, and A type and B type can be charged if B type battery is fully charged. The positive and negative electrodes are disconnected from both capacitors, and simultaneously, the positive electrode of the A-type capacitor and the positive electrode of the B-type capacitor, the negative electrode of the A-type capacitor and the positive electrode of the generator, and the negative electrode of the B-type capacitor and the negative electrode of the generator are connected. If a predetermined amount of electricity can be stored in the B-type battery, all the electrodes of the A-type battery, the B-type battery, and the generator are disconnected, and at the same time, the same operation performed for the first time is performed for the A-type battery, the B-type battery, and the generator. This is repeated several times until the amount of electricity stored in the B-type capacitor reaches a predetermined amount. Gradually increase the amount of electricity in the B-type capacitor, and when the amount of electricity in the B-type capacitor reaches a predetermined amount, the B-type capacitor moves with all electrodes disconnected, and the B-type capacitor with an empty new amount of electricity moves Thus, a large amount of electricity can be stored in many B-type capacitors. When used at home, a fixed small A-type capacitor and several B-type capacitors that do not move are provided, and the operations described above are performed among the three types of small A-type capacitors, B-type capacitors, and small generators. Just do it. If necessary, both AC and DC power can be generated at home, and it can be used to charge electric vehicles. This device can be used with any power generation method.

電気自動車電源の充電は発電機と蓄電器の間の電気回路でa×10−bΩ の電気抵抗を主流に対し並列に入れ、電流を取り込む。但しa,bは実数である。計算方法は次のようにした。自動車充電用電流を取る為の装置がある。この装置の抵抗をXΩとする。装置に分路を作り、装置を流れる電流をn分の1にするのに分路の抵抗をr、全抵抗 をRとすれば(1/R)=(1/r)+(1/X)よりR=(rX)/(R+X)となり、この装置を流れる電流i,全電流をiとすればi=i×(R/X)=i×(rX)/(r+X)X=ir/(r+X),(1/n)=X/(r+X),nX=r+XよりX=r/(n−1)となる。これより必要な電流iはnを決める事によって求められる。Charging of the electric vehicle power source takes in an electric current by putting an electric resistance of a × 10 −b Ω in parallel with the mainstream in an electric circuit between the generator and the accumulator. However, a and b are real numbers. The calculation method was as follows. There is a device for taking current for charging a car. Let the resistance of this device be XΩ. If a shunt is created in the device, and the current flowing through the device is reduced to 1 / n, then the resistance of the shunt is r and the total resistance is R, (1 / R) = (1 / r) + (1 / X ), R = (rX) / (R + X). If the current i 1 flowing through the device is i and the total current is i, then i 1 = i × (R / X) = i × (rX) / (r + X) X = From ir / (r + X), (1 / n) = X / (r + X), nX = r + X, X = r / (n−1). Thus, the necessary current i 1 can be obtained by determining n.

次の様な製造方法は1例である。
燃焼爆発室(1)に弁を通じて液体水素及び液体酸素を気化した水素ガス及び酸素ガスを連続で送り、プラグ(4)で点火し、爆発燃焼室(1)内で連続爆発を起こさせ、高温高圧水蒸気ガス流(O)を3階建の環状管(5、5、5)のうちの1階の環状管(5)に流し、前記3階建の環状管内の各部分にお互に接触する事のない回転中心軸(A,B,C)を持つ回転円盤(7、7、7)が有り、回転円盤の周囲に羽根(17、17、17)が付いていて、羽根(17)と環状管(5)との間にガス漏れの無い構造で、羽根(17)は高温高圧水蒸気ガス流(O)の圧力を受け回転する。回転円盤(7)の回転中心軸(A)の回転で回転中心軸(A)の末端ギヤ(A)に噛み合ったギヤ(A)より機械回転動力を得る。高温高圧水蒸気ガス流(O)は高温高圧の為1階の高圧部から上部2階の低圧部へ、2階の高圧部から上部3階の低圧部へ誘導管(6、6)を通って流れ、2階、3階環状円管内部は1階部分と同じ構造で、1回部分と同じ作用を受けた2、3、階の各回転中心軸(B,C)の回転で末端ギヤ(B,C)に噛み合わせたギヤ(B,C)より機械回転動力を得る。各回転中心軸(A,B,C)上で,回転軸ホルダ−から外に出ている部分の回転中心軸 (A)末端ギヤ(A)と回転中心軸( B)末端ギヤ(B)の中間部の位置、回転中心軸(B)末端ギヤ(B)と回転中心軸(C)末端ギヤ(C)の中間部の位置、回転中心軸(C)末端ギヤ(C)と回転軸ホルダ−末端の中間部の位置の各位置に、各回転中心軸(A,B,C)上にギヤ(X,Y,Z)を設け、3個の発電機の回転子に繋がったギヤ(X,Y,Z)をギヤ(X,Y,Z)に噛み合わせて回転させ、3基の発電機より電気を起こし、機械回転動力が不要の時は各回転中心軸(A,B,C)末端ギヤ(A、B,C)より動力回転用ギヤ(A,B,C)を外し、ギヤ(A)と発電機用ギヤ(U2a),ギヤ(B)と発電機用ギヤ(U2b),ギヤ( C)と発電機用ギヤ(U2c)を噛み合わせ、それぞれ別個の発電機の回転子にギヤ( U2a,U2b,U2c)を繋いで回転子を回転させて電気を起こす。環状管内(5)の1階部分の圧力は燃焼爆発室(1)へ供給する水素ガス量と酸素ガス量で調整出来、1基の燃焼爆発室(1)で3軸の機械回転動力と3基の発電機の回転子を回転させ、機械回転動力不要の時は6基の発電機の回転子を回転させてオ−ル発電機となり、供給する水素ガス量、酸素ガス量及び供給時間はコンピュ−タ制御出来、余った電気は蓄電器に蓄電し、ガス圧力を機械回転運動エネルギ−と同時に電気エネルギ−に変換出来る構造を持つ。3階部分の前記記載環状管(5)の先に直線状ラバルノズル管(9)を接続し、直線状ラバルノズル管(9)の内径は3階部分環状管(5)の内径より小さくし、ノズル効果で高温高速度水蒸気ガス流(O)を得、直線状ラバルノズル管(9)内に3基の花形プロペラ(20、21、22、)を設け、花形プロペラ(20、21、22)の回転中心軸(D,E、F)を中心に花形プロペラ(20、21、22)が高温高速度水蒸気ガス流(O)を受けて高速度回転しても直線状ラバルノズル管の内壁と接触しない構造である。花形プロペラ(20、21、22)が高温高速度水蒸気ガス流(O)を受けて回転中心軸(D,E,F)を高速度回転させ、回転中心軸(D,E,F)先端のギヤ(D1a,E1a,F1a)に噛み合わせてより高速度回転運動をするギヤ(D,E,F)に接続した3基の発電機の回転子が高速度で発電機の磁力線を切って電気を得、電気を蓄電する構造を持っている。燃焼爆発室(1)、圧力機械回転動力機の入った室(30)、直線状ラバルノズル管(9)はいずれも高温の為冷却目的でこの3部門とも第一水槽(31)水内に漬けて冷却し、第一水槽(31)水内に液体水素、液体酸素を気化した両ガスが通るスパイラル状パイプ(50、51)があり、これによって第一水槽(31)水が冷却され、第一水槽(31)は常に満水で第一水槽(31)上水面より下方位にある第二水槽(32)の水面は常に一定の深さを保っている。第二水槽(32)の水面が下ればその水量分だけ前記記載の発電機で起こした電気の一部を利用して冷却した冷却水をパイプ(52)を通して第一水槽(31)内に送り、パイプ(40)を通して第一水槽(31)内にも淡水を送り第一水槽(31)より溢れた温水は弁が開いたパイプ(41)を通して第二水槽(32)に流れ込み、第一水槽(31)内の温水が予定温度を越えると冷水がパイプ(52)より注入され、パイプ(41)の弁が開いて第三温水貯水槽(96)へ溢れた温水が流れ込み、第三温水貯水槽(96)は単なる温水利用目的の温水あり、花型プロペラ(20、21、22)を回転させた後の高温高速度水蒸気ガス流(O)は第二水槽(32)水内にパイプ(42)で放出し、第二水槽(32)水の水温を高め、温水分子を活性化させ、第二水槽(32)水面上に複数の電気分解装置(33)を設け、第二水槽(32)内温水液は電気分解を容易にする為微弱アルカリ性とし、前記記載の発電機で起こした電気の一部を利用して第二水槽(32)水溶液を電気分解し、電気分解電極には水素、酸素と化合物を造らない金属の電導性物質を施し、陽極(34)、陰極(35)に生成する再生酸素ガス(60)、再生水素ガス(61)は共に水上補集し、再生水素ガス専用パイプ(37)、再生酸素ガス専用パイプ(36)を通ってガス別複数個の同形寸法で直円筒状片側にピストンp(45)付き再生水素ガス用貯蔵器(43)、再生酸素ガス用貯蔵器(71)が2:1の割合で水素ガス、酸素ガス別に複数個有り、再生水素ガス(61)は常温で1気圧になるまで入れ、一つが満たされれば次々に再生水素ガス用貯蔵器2n個(43,44,45,46,47,48)に順順に一気圧まで入れ、再生酸素ガス(60)も再生水素ガス(61)と同じに1気圧になるまで次々に再生酸素ガス用貯蔵器n個(71、72、73)に入れて貯蔵し、再生水素ガス(61)、再生酸素ガス(60)の使用時には再生水素ガス(61)と再生酸素ガス(60)がモル量比で2:1に成る様に燃焼爆発室(1)の燃焼爆発圧より少し高い圧力で貯蔵器のピストンp(45)で圧縮して送り出し、再生水素ガス(61)、再生酸素ガス(60)は各専用誘導管、再生水素ガス用管(80)、再生酸素ガス用管(81)を通って燃焼爆発室(1)の気化水素ガス、気化酸素ガスと共有の噴射口水素用(2)、酸素用(3)より噴射し、その時は気化水素ガス、気化酸素ガスの噴射は止め、再生ガスの噴射モル量比で水素:酸素が2:1と成るように再度制御し、燃焼爆発室(1)に入った再生水素ガス、再生酸素ガスを再び燃焼爆発室(1)で爆発を起こさせ、この繰り返し連続サイクルによって機械回転動力エネルギ−、と同時に発電機による電気エネルギ−を造り、電気が余れば蓄電器に貯電出来ると同時に温水貯水も出来る温水貯蔵、蓄電機能を持つ発電機装置付き機械装置。
The following manufacturing method is an example.
Hydrogen gas and oxygen gas, which are vaporized liquid hydrogen and liquid oxygen, are continuously sent to the combustion explosion chamber (1) through a valve, ignited by the plug (4), causing a continuous explosion in the explosion combustion chamber (1). A high-pressure steam gas flow (O a ) is caused to flow into the first-floor annular pipe (5 1 ) of the three-story annular pipes (5 1 , 5 2 , 5 3 ), and each part in the three-story annular pipe There are rotating disks (7 1 , 7 2 , 7 3 ) having rotation center axes (A 1 , B 1 , C 1 ) that do not contact each other, and blades (17 1 , 17 3 ) around the rotating disks 2 , 17 3 ) with no gas leakage between the blade (17) and the annular pipe (5), and the blade (17 1 ) receives the pressure of the high-temperature high-pressure steam gas flow (O a ). Rotate. Mechanical rotation power is obtained from the gear (A 3 ) meshed with the end gear (A 2 ) of the rotation center shaft (A 1 ) by the rotation of the rotation center shaft (A 1 ) of the rotating disk (7 1 ). The high-temperature and high-pressure steam gas stream (O a ) is high-temperature and high-pressure, so the induction pipes (6 1 , 6 2 ) from the high pressure section on the first floor to the low pressure section on the upper second floor to the low pressure section on the second floor from the high pressure section on the second floor. The second and third floor circular pipes are the same in structure as the first floor part, and have the same action as the first part of each of the rotation center axes (B 1 , C 1 ) of the second, third and third floors. Mechanical rotation power is obtained from the gears (B 3 , C 3 ) meshed with the terminal gears (B 2 , C 2 ) by rotation. On each rotation center axis (A 1 , B 1 , C 1 ), the rotation center axis (A 1 ) of the portion protruding from the rotation axis holder (A 1 ), the end gear (A 2 ), and the rotation center axis (B 1 ) The position of the intermediate portion of the end gear (B 2 ), the position of the rotation center shaft (B 1 ), the position of the intermediate portion of the end gear (B 2 ) and the rotation center shaft (C 1 ) end gear (C 2 ), the rotation center shaft (C 1 ) Gears (X 1 , Y 1 , Z 1 ) on each rotation center shaft (A 1 , B 1 , C 1 ) at each position of the intermediate position between the end gear (C 2 ) and the rotation shaft holder-end ), And the gears (X 2 , Y 2 , Z 2 ) connected to the rotors of the three generators are meshed with the gears (X 1 , Y 1 , Z 1 ) and rotated. When more electricity is generated and mechanical rotation power is not required, power rotation is performed from each rotation center shaft (A 1 , B 1 , C 1 ) end gear (A 2 , B 2 , C 2 ). The gears (A 3 , B 3 , C 3 ) are removed, the gear (A 2 ), the generator gear (U 2a ), the gear (B 2 ), the generator gear (U 2b ), and the gear (C 2 ). And the generator gear (U 2c ) are meshed with each other, and the gears (U 2a , U 2b , U 2c ) are connected to the rotors of separate generators to rotate the rotor to generate electricity. The pressure of the first floor portion in the annular pipe (5) can be adjusted by the amount of hydrogen gas and oxygen gas supplied to the combustion explosion chamber (1), and the three-axis mechanical rotation power and 3 in one combustion explosion chamber (1). Rotate the generator's rotor and rotate the six generator's rotors when the mechanical rotation power is not needed to turn into an all generator. The amount of hydrogen gas, oxygen gas, and supply time The computer can be controlled, and surplus electricity is stored in a capacitor, and the gas pressure is converted into electrical energy simultaneously with mechanical rotational kinetic energy. A straight Laval nozzle pipe (9) is connected to the tip of the annular pipe (5 3 ) on the third floor portion, and the inner diameter of the straight Laval nozzle pipe (9) is made smaller than the inner diameter of the third floor partial annular pipe (5 3 ). , A high-temperature high-speed steam gas flow (O b ) is obtained by the nozzle effect, and three flower-shaped propellers (20, 21, 22) are provided in the linear Laval nozzle pipe (9), and the flower-shaped propellers (20, 21, 22) are provided. ) Linear propeller nozzles even if the flower-shaped propeller (20, 21, 22) rotates at a high speed by receiving a high-temperature high-speed steam gas flow (O b ) around the rotation center axis (D 1 , E 1 , F 1 ) This structure does not contact the inner wall of the tube. The flower-shaped propeller (20, 21, 22) receives the high-temperature, high-speed steam gas flow (O b ) and rotates the rotation center axis (D 1 , E 1 , F 1 ) at a high speed, and the rotation center axis (D 1 , E 1 , F 1 ) Rotation of three generators connected to gears (D 2 , E 2 , F 2 ) meshing with the gears (D 1a , E 1a , F 1a ) at the front end and rotating at higher speeds The child has a structure that stores electricity by cutting the magnetic field lines of the generator at high speed to obtain electricity. The combustion explosion chamber (1), the chamber (30) containing the pressure machine rotary power machine, and the linear Laval nozzle tube (9) are all soaked in the first water tank (31) for cooling purposes. The first water tank (31) has a spiral pipe (50, 51) through which both hydrogen gas and liquid oxygen vaporize pass, and the first water tank (31) water is cooled thereby. The water tank (31) is always full and the water surface of the second water tank (32) located below the upper water surface of the first water tank (31) always maintains a constant depth. When the water level of the second water tank (32) is lowered, the cooling water cooled by utilizing a part of the electricity generated by the generator described above by the amount of water is passed through the pipe (52) into the first water tank (31). The fresh water is also fed into the first water tank (31) through the pipe (40), and the hot water overflowing from the first water tank (31) flows into the second water tank (32) through the pipe (41 a ) with the valve open, one aquarium (31) is heated in exceeds predetermined temperature cold water injected from the pipe (52), overflowing hot water flows into the pipe third hot water storage tank (41 b) of the valve is opened (96), first The tri-warm water tank (96) is simply warm water intended for hot water use, and the high-temperature high-speed steam gas stream (O b ) after rotating the flower-type propeller (20, 21, 22) is the water in the second tank (32). It is discharged through the pipe (42) and the water temperature of the second tank (32) is increased. The hot water molecules are activated, a plurality of electrolyzers (33) are provided on the surface of the second water tank (32), and the hot water liquid in the second water tank (32) is weakly alkaline to facilitate electrolysis, The second water tank (32) aqueous solution is electrolyzed using a part of electricity generated by the described generator, and a metal conductive material that does not form hydrogen, oxygen and a compound is applied to the electrolysis electrode, and the anode ( 34) and the regenerated oxygen gas (60) and regenerated hydrogen gas (61) produced at the cathode (35) are both collected on the water and passed through the regenerated hydrogen gas dedicated pipe (37) and the regenerated oxygen gas dedicated pipe (36). Regenerative hydrogen gas reservoir (43) and regenerative oxygen gas reservoir (71) with a piston p (45) on one side of a straight cylinder with a plurality of the same dimensions for each gas are in a ratio of 2: 1 hydrogen gas, oxygen gas There are several more, and the regenerated hydrogen gas (61) is 1 at room temperature. Until one pressure is satisfied, one after another is put into 2n regenerative hydrogen gas reservoirs (43, 44, 45, 46, 47, 48) in order to one atmosphere, and the regenerated oxygen gas (60) is also regenerated. As in the case of hydrogen gas (61), it is stored in n regenerative oxygen gas reservoirs (71, 72, 73) one by one until it reaches 1 atm, and regenerated hydrogen gas (61) and regenerated oxygen gas (60) are stored. In use, the piston p (45) of the reservoir is at a pressure slightly higher than the combustion explosion pressure of the combustion explosion chamber (1) so that the regenerated hydrogen gas (61) and the regenerated oxygen gas (60) are in a molar ratio of 2: 1. The regenerated hydrogen gas (61) and the regenerated oxygen gas (60) pass through the dedicated induction tube, the regenerated hydrogen gas tube (80), and the regenerated oxygen gas tube (81), and then the combustion explosion chamber (1 ) For vaporized hydrogen gas, vaporized oxygen gas and hydrogen (2), The oxygen gas (3) is injected, and at that time, the injection of vaporized hydrogen gas and vaporized oxygen gas is stopped, and the control is again performed so that the hydrogen: oxygen ratio is 2: 1 in the injection molar ratio of the regeneration gas. 1) The regenerated hydrogen gas and regenerated oxygen gas that entered enter the combustion explosion chamber (1) again, and by this repeated continuous cycle, mechanical rotation power energy and at the same time electrical energy from the generator are created. Machine equipment with a generator that has hot water storage and storage function that can store hot water at the same time as electricity can be stored in the capacitor.

1――燃焼爆発室、2――水素ガス噴射口、3――酸素ガス噴射口、4――点火用プラグ、5――高温高圧水蒸気ガスが流れる環状円管部、6――高温高圧水蒸気ガス流を上部階へ誘導する誘導管、7――羽根が圧力を受けて回転する円盤、(ハンドル状環状円管内、あるいは円盤の周囲に付いている圧力受け機器が圧力を受けて回転する状態の機器に相当)、8――回転軸カバ−、9――直線状ラバルノズル管(一般のラバルノズル管で複数あるラバルノズル管に相当)、17――高温高圧水蒸気ガス流を受ける円盤円周に付く羽根(ハンドル状環状円管内或いは円盤円周に付く圧力受け機器に相当)、20、21、22――ラバルノズル管内の花形プロペラ(ラバルノズル管内で風力を受け発電用回転動力を生む風受け機器に相当)、26――ラバルノズル管内の花形プロペラの支え、30――高温の環状円管と回転軸が入った室、31――第一水槽、32――第二水槽、33――電気分解時のガス水上捕集器、34――陽電極、35――陰電極、36――再生酸素ガス誘導管、37――再生水素ガス誘導管、40――第一水槽への淡水注入管、41――第一水槽の温水を第二水槽に誘導する誘導管、41――第一水槽より余分の温水を第三温水槽に誘導する管、42――花形プロペラを回転させた後の高温高速度水蒸気ガス流を第二水槽内に誘導する誘導管、43、44、45,46,47,48――再生水素ガス用貯蔵器(再生酸素ガス用貯蔵器n個に対する2n個でパスカルの原理の効く容器或いは高圧縮気体入れ容器に相当)、71、72、73――再生酸素ガス用貯蔵器(再生水素ガス用貯蔵器2n個に対するn個でパスカルの原理の効く容器或いは高圧縮気体入れ容器に相当)、50――気化酸素ガス誘導管、51――気化水素ガス誘導管、52――冷水を第一水槽に注入する管、53――符号30の室に冷却気を導入する管、54――符号30の室を冷却した後の温熱気を第一水槽内に放出するまがりパイプ、55――第一水槽の溢れる温水を流し出す放出口、56――第一水槽の水温を管理するセンサ−、60――再生酸素ガス、61――再生水素ガス、80、81――再生ガスを送り出す管、90――再生ガス誘導管の弁、91――再生ガス貯蔵器出口弁、92――弁91を閉じる時の磁石、O――――高温高圧水蒸気ガス流、O――高温高速度水蒸気ガス流、A,B,C――回転円盤の回転中心軸(回転ピストン構造の回転機械の回転中心軸に相当)、A――Aの末端平ギヤ、A――Aの噛み合せ平ギヤ、B―Bの末端平ギヤ、B――Bの噛み合わせ平ギヤ、C――Cの末端平ギヤ、C――Cの噛み合わせ平ギヤ(A,B,C,A,B,Cは機械回転動力伝達機器に相当)、X,Y,Z――A,B,Cの中間部にある発電機専用傘ギヤ(機械回転動力軸上の中間位置に枝別れした発電機用中間回転動力伝達機器に相当)、X,Y,Z――各発電機の回転子軸の末端に付いている回転動力伝達機器でX,Y,Zに噛み合うギヤ、U1a,U2b,U3c――機械動力が不要の時発電用の発電機回転子末端のギヤでA,B,Cと噛み合う、(A,B,C,A,B,C―――機械回転動力伝達機器に相当)、(X,Y,Z,X,Y,Z―――発電専用中間動力伝達機器に相当)、(U1a,U2b,U3c――――機械回転動力が不要の時、発電専用回転動力伝達機器に相当)、D,E,F――花形プロペラ20、21、22の回転中心軸(D,E,F――風受け機器の回転中心軸に相当)、D1a,E1a,F1a―――D,E,Fの末端大型平歯車、D,E,F――D,E,Fより小さい平歯車で高速回転し、各発電機の回転軸に繋がる、P,P,P―――再生ガスを貯蔵器から送り出す為のピストンP、80、81、82―――再生ガス噴出用誘導管、95――第一水槽排水用ドレン、第二水槽排水用ドレン,96――温水貯水槽(第二水槽排水用ドレンでなく温水槽が正しい)、α、β――発電機で起こされた交流電流を変換した直流電流の正、負電流、A,B――A型、B型の並列組み合せコンデンサ−C,D―――A型コンデンサ−の正、負極、E,F―――移動式B型コンダ

Figure 0005554865
方向、97――――J電気自動車充電用の電気抵抗XΩ 98―――――G,Hは電気自動車電源充電用電極、99―――――回転体で99は回転体の1段目、99は回転体の2段目、99は回転体の3段目 100―――――回転体の回転中心軸、101―――A環状管、102――――B環状管、103―――――A,B環状管間の気体の通り抜け穴、104―――燃焼爆発室よりA環状管へ高温高圧生成ガス流の誘導する管、105―――燃焼爆発室よりB環状管へ高温高圧生成ガス流の誘導する管、106―――ピストン、107―――ピストンの両シャフト、108―――燃焼内燃機関のピストン運動への動力変換機関室、109―――――高温高圧生成ガス流のピストン運動への動力変換機関室、110―――燃焼内燃機関室への気体水素誘導管、111―――燃焼内燃機関室への気体酸素誘導管、112――――弁、113―――――ピスンのストッパ、114――――ピストン機関室へ高温高圧生成ガス流を誘導する輸送管、115―――回転体外円周に付く風受け機器=タ−ビンの羽根、116―――ピストンと共に動いて気体の排出口を造る下壁、117―――B環状管を流れる高温高圧生成ガス流の上段或いは隣の段への誘導管、118―――A環状管を流れる高温高圧生成ガス流の上段或いは隣の段への誘導管、119―――――高温高圧生成ガス流を一括して集める太い管、120―――遊びの小径の動力伝達機器の回転中心軸、121――――遊びの小径の動力伝達機器、122―――遊びの大径の動力伝達機器、123――――遊びの大径の動力伝達機器の中心軸、124―――発電機の回転子末端の動力受取機器、125―――同心軸大径の遊びの動力伝達機器、126―――――同心軸小径の遊びの動力受取機器、127―――同心軸動力受取、伝達機器の中心軸、128―――発電機の回転子末端の動力受取機器の中心軸、129――クランク棒、130―――ラバルノズル管内のタ−ビン軸末端の動力伝達機器、131―――ラバルノズル管内のタ−ビン軸シャフト、132――ラバルノズル管の歪曲部分、133―――動力生産機関を通過して部位119に繋がる管、134――――発電機よりの電流i,135――――電気自動車充電機器を流れる電流i,136―――T抵抗はrΩ,全抵抗をRΩ1—Combustion explosion chamber, 2—Hydrogen gas injection port, 3—Oxygen gas injection port, 4—Ignition plug, 5—Annular circular tube through which high-temperature high-pressure steam gas flows, 6—High-temperature high-pressure steam Induction tube that guides the gas flow to the upper floor, 7—a disk whose blades rotate under pressure, (the pressure receiving device in the handle-like annular tube or around the disk rotates under pressure) 8) Rotating shaft cover, 9- Linear Laval nozzle pipe (corresponding to multiple Laval nozzle pipes in general Laval nozzle pipe), 17- Attached to the circumference of the disk that receives high-temperature high-pressure steam gas flow Blades (corresponding to pressure receiving devices attached to the handle-shaped annular tube or the circumference of the disk), 20, 21, 22-Flower-shaped propellers in the Laval nozzle tube (corresponding to wind receiving devices that generate wind power in the Raval nozzle tube and generate rotational power ) 2 ――Support of flower-shaped propeller in Laval nozzle tube, 30―― Chamber with high temperature annular tube and rotating shaft, 31―First water tank, 32―Second water tank, 33―Capture gas on water during electrolysis collecting vessel, 34-- positive electrode, 35-- cathode, 36-- playback oxygen gas induction pipe, 37-- reproduction hydrogen gas induction pipe, 40-- freshwater injection tube into the first water tank, 41 a - first Induction tube for guiding the warm water from one tank to the second water tank, 41 b- Tube for guiding extra warm water from the first tank to the third warm water tank, 42-High-temperature high-speed steam after rotating the propeller Guide pipes for guiding the gas flow into the second water tank, 43, 44, 45, 46, 47, 48--regenerative hydrogen gas reservoirs (2n per n regenerative oxygen gas reservoirs, the Pascal principle works) 71, 72, 73 – Regenerated oxygen gas Reservoir storage tanks (n corresponding to 2n regenerative hydrogen gas storage tanks, equivalent to Pascal's principle container or highly compressed gas container), 50--vaporized oxygen gas induction pipe, 51--vaporized hydrogen gas induction pipe, 52—pipe for injecting cold water into the first water tank, 53—pipe for introducing cooling air into the chamber 30; 54—releasing hot air after cooling the chamber 30 into the first water tank Pipes, 55-discharge port for flowing out the hot water overflowing from the first tank, 56-sensor for controlling the water temperature of the first tank, 60-regenerated oxygen gas, 61-regenerated hydrogen gas, 80, 81- -Pipe for sending out regenerative gas, 90-valve of regenerative gas guide pipe, 91-outlet valve of regenerative gas reservoir, 92-magnet when closing valve 91, O a --high-temperature high-pressure steam gas flow, O b - hot high velocity steam gas stream, A 1, B 1, C 1 - the rotation center axis of the rotary disc (corresponding to the rotational center axis of the rotary machine of the rotary piston structure), A 2 --A 1 end spur gear, A 3 --a 2 of mating spur gears, of B 2 -B 1 Terminal flat gear, B 3 --B 2 meshing flat gear, C 2 --C 1 terminal flat gear, C 3 --C 2 meshing flat gear (A 2 , B 2 , C 2 , A 3 , B 3 , C 3 are equivalent to a mechanical rotational power transmission device), X 1 , Y 1 , Z 1- A generator-specific umbrella gear (on the mechanical rotational power shaft) in the middle of A 1 , B 1 , C 1 X 2 , Y 2 , Z 2 —the rotary power transmission device attached to the end of the rotor shaft of each generator, X 1 , Y 1, gear meshing with Z 1, U 1a, U 2b , U 3c - generator rotor ends for power generation when the mechanical power is not required Meshes with A 2, B 2, C 2 by the gear, (A 2, B 2, C 2, A 3, B 3, corresponding to the C 3 --- mechanical rotational power transmission equipment), (X 1, Y 1 , Z 1 , X 2 , Y 2 , Z 2 ——corresponding to intermediate power transmission equipment dedicated to power generation), (U 1a , U 2b , U 3c ——— When the mechanical rotational power is not required, the rotational power transmission dedicated to power generation D 1 , E 1 , F 1 —Rotation center axes of the flower-shaped propellers 20, 21, 22 (D 1 , E 1 , F 1 —corresponding to the rotation center axis of the wind receiver device), D 1a , E 1a , F 1a --- D 1 , E 1 , F 1 end large spur gear, D 2 , E 2 , F 2 --D 1 , E 1 , F 1 P 1 , P 2 , P 3 connected to the rotating shaft of each generator——Pistons P, 80, 81 for sending out the regeneration gas from the reservoir 82--guide pipe for blowing out regenerative gas, 95--drain for draining the first tank, drain for draining the second tank, 96--warm water tank (the correct tank is not the drain for draining the second tank), α, β-DC current positive and negative currents converted from AC current generated by the generator, A, B-A-type and B-type parallel combination capacitors-C, D--of A-type capacitors Positive, negative, E, F --- Moving B type
Figure 0005554865
Direction, 97 ---- J electric vehicle electrical resistance XΩ 98 ----- G for charging, H is an electric vehicle power charging electrode, 99 ----- 99 1 1 stage of the rotating body in the rotating body eyes, second stage 99 2 is the rotating body, 99 3 the central axis of rotation of the third stage 100 ----- rotating body of the rotating body, 101 --- a circular tube, 102 ---- B ring tube , 103 --------------------------------------------------------------------------------------------------------------- Pipe tube from which the high-temperature and high-pressure generated gas flows from Pipe that induces high-temperature and high-pressure product gas flow to the annular pipe, 106--Piston, 107--Both shafts of piston, 108--Power conversion engine room for piston movement of combustion internal combustion engine, 109 --- -Power conversion engine room for piston movement of high-temperature high-pressure product gas flow, 110--Combustion internal combustion engine Gas hydrogen induction pipe to the chamber, 111--Gaseous oxygen induction pipe to the combustion internal combustion engine room, 112--Valve, 113 --- Pison stopper, 114 --- High temperature to the piston engine room Transport pipe for guiding high-pressure generated gas flow, 115--Wind receiving device attached to the outer circumference of the rotating body = turbine blade, 116--Lower wall that moves with the piston to create a gas outlet, 117-- -Induction pipe to the upper stage or the next stage of the high-temperature high-pressure product gas flow flowing through the B annular pipe, 118-- Induction pipe to the upper stage or the next stage of the high-temperature high-pressure product gas flow flowing through the A annular pipe, 119- ――― Thick tube that collects high-temperature and high-pressure product gas in a lump, 120 ――― Center of rotation of a small-diameter power transmission device, 121 ――― Power-transmission device of a small diameter play, 122 ――― Large-diameter power transmission equipment, 123- Central shaft of the transmission device, 124--Power receiving device at the rotor end of the generator, 125--Power transmission device of the concentric shaft large diameter play, 126 ---- Power receiving of the concentric shaft small diameter play Equipment, 127--Concentric shaft power reception, central axis of transmission equipment, 128--Central axis of power reception equipment at the rotor end of the generator, 129--Crank rod, 130--Turb in Laval nozzle tube Power transmission device at the end of the bin shaft, 131--Turbin shaft shaft in the Laval nozzle tube, 132--distorted portion of the Laval nozzle tube, 133--Pipe that passes through the power production engine to the part 119, 134-- --- Current i from the generator, 135 ---- Current i 1 , 136 flowing through the electric vehicle charging equipment --- T resistance is rΩ and total resistance is RΩ

Claims (4)

爆発性のある混合気体を燃焼爆発室で爆発させ,高温高圧生成ガス流を生成し、この高温高圧生成ガス流が環状管内でガス漏れも無く回転する回転体の圧力受け機器を加圧して前記回転体を回転させる事により回転体の回転中心軸より動力エネルギーを発生させる装置において、前記環状管に外接し,該環状管内に前記燃焼爆発室からの前記高温高圧生成ガス流を導入する補助環状管を設け、前記環状管とその補助環状管からも前記高温高圧生成ガス流を前記環状管内に導入して前記圧力受け機器を一層加圧することにより,前記回転体を加速回転させ、その回転体の回転中心軸も加速回転させ、大きい動力エネルギーを得、或いは回転する前記回転中心軸に発電機を繋いで多量の電気エネルギーを生産する事を特徴とする動力エネルギー、電気エネルギー発生装置。Explosive gas mixture is exploded in a combustion explosion chamber to generate a high-temperature and high-pressure product gas stream, and this high-temperature and high-pressure product gas stream pressurizes the pressure receiving device of a rotating body that rotates without any gas leakage in the annular pipe. In an apparatus for generating motive energy from a rotation center axis of a rotating body by rotating the rotating body, an auxiliary ring that circumscribes the annular tube and introduces the high-temperature high-pressure product gas flow from the combustion explosion chamber into the annular tube A pipe is provided, and the high temperature and high pressure product gas flow is also introduced into the annular pipe from the annular pipe and the auxiliary annular pipe to further pressurize the pressure receiving device, whereby the rotating body is accelerated and rotated. Rotational center axis of the accelerating rotation, obtaining a large motive energy, or connecting a generator to the rotating central axis rotating to produce a large amount of electric energy, Gas-energy generating device. 請求項1で生成された高温高圧生成ガス流を装置外に排出せずイオン結合化合物水溶液水槽内に戻して電気分解し、それによって前記混合気体を再び得て,前記燃焼爆発室で爆発燃焼させる事を特徴とする請求項1に記載の動力エネルギー、電気エネルギー発生装置。The high-temperature and high-pressure generated gas stream generated in claim 1 is returned to the ion-bonded compound aqueous solution water tank and electrolyzed without being discharged out of the apparatus, whereby the mixed gas is obtained again and explosively burned in the combustion explosion chamber. The apparatus for generating motive energy and electric energy according to claim 1. 前記環状管内を通過した前記高温高圧生成ガス流をガスタービンに導入して発電し、そのガスタービンを通過した高温高圧生成ガス流を直接前記イオン結合化合物水溶液水槽内にもどして電気分解するか、あるいは冷暖房用の熱として利用した後、前記イオン結合化合物水溶液水槽内に戻して電気分解し、それによって前記混合気体を再び得て,前記燃焼爆発室で爆発させる事を特徴とする請求項2に記載の動力エネルギー、電気エネルギー発生装置。Or wherein the high temperature and high pressure product gas stream passing through the annular tube and the generator is introduced into the gas turbine, is electrolyzed back the high-temperature high-pressure product gas stream that has passed through the gas turbine directly the ionic bond compound aqueous solution in the water tank, Alternatively, after being used as heat for cooling and heating, the ion-bonded compound aqueous solution is returned to the water tank and electrolyzed, whereby the mixed gas is obtained again and exploded in the combustion explosion chamber. The motive energy and electrical energy generator described. 電機能を備えた事を特徴とする請求項1から3の何れかに記載の動力エネルギー、電気エネルギー発生装置。Power energy, electrical energy generating device according to claim 1, characterized in that with a charge reservoir function 3.
JP2013124153A 2013-05-27 2013-05-27 Energy generator that produces mechanical power energy and electrical energy using ion binding energy Expired - Fee Related JP5554865B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124153A JP5554865B1 (en) 2013-05-27 2013-05-27 Energy generator that produces mechanical power energy and electrical energy using ion binding energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124153A JP5554865B1 (en) 2013-05-27 2013-05-27 Energy generator that produces mechanical power energy and electrical energy using ion binding energy

Publications (2)

Publication Number Publication Date
JP5554865B1 true JP5554865B1 (en) 2014-07-23
JP2014227998A JP2014227998A (en) 2014-12-08

Family

ID=51416869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124153A Expired - Fee Related JP5554865B1 (en) 2013-05-27 2013-05-27 Energy generator that produces mechanical power energy and electrical energy using ion binding energy

Country Status (1)

Country Link
JP (1) JP5554865B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001468A1 (en) * 2020-11-19 2022-05-25 Work & System Slot SARL Electrolytic cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257206A (en) * 1998-03-05 1999-09-21 Zipangu Energy:Kk Hydrogen fueled engine system using water as fuel source, hydrogen fueled engine, and hydrogen-fueled-engine automobile
JP2012528270A (en) * 2009-05-26 2012-11-12 ワチュー,パトリック Method of operating spark ignition engine and spark ignition engine using the method
JP2013007319A (en) * 2011-06-24 2013-01-10 Masaichi Hanada Power generation system using novel energy
JP5196284B1 (en) * 2012-03-27 2013-05-15 昌治 澤田 A mechanical rotating power mechanical device with a generator device that has hot water storage and storage functions, using water as a fuel source and hydrogen gas and oxygen gas as circulating and regenerated fuel and utilizing all the combined energy.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257206A (en) * 1998-03-05 1999-09-21 Zipangu Energy:Kk Hydrogen fueled engine system using water as fuel source, hydrogen fueled engine, and hydrogen-fueled-engine automobile
JP2012528270A (en) * 2009-05-26 2012-11-12 ワチュー,パトリック Method of operating spark ignition engine and spark ignition engine using the method
JP2013007319A (en) * 2011-06-24 2013-01-10 Masaichi Hanada Power generation system using novel energy
JP5196284B1 (en) * 2012-03-27 2013-05-15 昌治 澤田 A mechanical rotating power mechanical device with a generator device that has hot water storage and storage functions, using water as a fuel source and hydrogen gas and oxygen gas as circulating and regenerated fuel and utilizing all the combined energy.

Also Published As

Publication number Publication date
JP2014227998A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
CN110002398B (en) Hydrogen production device and method using magnesium hydride as raw material
KR20060009817A (en) Device for water decomposition by electrolysis
JP5554865B1 (en) Energy generator that produces mechanical power energy and electrical energy using ion binding energy
JP5196284B1 (en) A mechanical rotating power mechanical device with a generator device that has hot water storage and storage functions, using water as a fuel source and hydrogen gas and oxygen gas as circulating and regenerated fuel and utilizing all the combined energy.
CN102069723A (en) Power device of electric automobile
US9057024B2 (en) Liquefaction and internal logic flow processing unit and prioritized cost effective machine apparatus used for the creation of a liquid fuel material made from the underwater arching of carbon rods. Apparatus emphases are placed on cost-effectiveness and energy saving liquefaction process for the replacement of petroleum gasoline
JP5110335B1 (en) A machine-rotary power machine device with a generator device that has hot water storage and storage functions, using water as a fuel source, and hydrogen gas and oxygen gas as circulating and regenerated fuel and using a fully coupled energy
CN209815678U (en) Hydrogen production device using magnesium hydride as raw material
CN105034844A (en) Electric automobile with liquid air as power storage medium
CN101746251A (en) Energy-saving oxygen-hydrogen power vehicle
CN105244522A (en) Aluminium-water reaction high-energy system apparatus
WO2022172914A1 (en) Engine for combusting hydrogen-oxygen
CN202440551U (en) Wind-power generation seawater electrolyzing system
BG4298U1 (en) Kinetic generator and synchronization system thereof
CN104389649B (en) Expansion rotary generating device and electrification technique as well as thereof
CN204200289U (en) Expansion rotary generating device
RU2344201C2 (en) Device for energy transformation
BG113498A (en) Kinetic generator
CN217004506U (en) Waste heat recovery set composite of thermal power plant
CN213811908U (en) Thermal power plant uses thermal energy power cycle device
TWM351875U (en) Oxy-hydrogen power generator
CN201439519U (en) High security hydrogen-oxygen fuel generating device
US20120080887A1 (en) System and method for storing energy and/or generating efficient energy
CN204204962U (en) A kind of hydrogen-storing device comprising Ti-Ni alloy storage hydrogen bottle
CN203883076U (en) Hydrogen storage device made of silver-cadmium oxide materials

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140518

R150 Certificate of patent or registration of utility model

Ref document number: 5554865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5554865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees