JP5550020B2 - Water supply pump controller - Google Patents

Water supply pump controller Download PDF

Info

Publication number
JP5550020B2
JP5550020B2 JP2010271324A JP2010271324A JP5550020B2 JP 5550020 B2 JP5550020 B2 JP 5550020B2 JP 2010271324 A JP2010271324 A JP 2010271324A JP 2010271324 A JP2010271324 A JP 2010271324A JP 5550020 B2 JP5550020 B2 JP 5550020B2
Authority
JP
Japan
Prior art keywords
pump
flow rate
condensate
feed water
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010271324A
Other languages
Japanese (ja)
Other versions
JP2012122626A (en
Inventor
欽吾 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010271324A priority Critical patent/JP5550020B2/en
Priority to US13/310,403 priority patent/US20120183413A1/en
Publication of JP2012122626A publication Critical patent/JP2012122626A/en
Application granted granted Critical
Publication of JP5550020B2 publication Critical patent/JP5550020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

本発明は、火力及び原子力発電プラントの給水ポンプ制御装置に関する。   The present invention relates to a feedwater pump control device for thermal power and nuclear power plants.

一般に、原子力発電プラント又は火力発電プラントにおいては、原子炉やボイラ等の蒸気発生器により発生した蒸気で蒸気タービンを駆動し、蒸気タービンを駆動した後の蒸気を復水器で冷却して復水としている。この復水は、予備機を含んでそれぞれ複数台で構成される復水ポンプと給水ポンプとを備えた給水装置によって、昇圧され蒸気発生器に給水されている。   Generally, in a nuclear power plant or a thermal power plant, a steam turbine is driven by steam generated by a steam generator such as a nuclear reactor or a boiler, and the steam after driving the steam turbine is cooled by a condenser to condensate. It is said. This condensate is pressurized and supplied to the steam generator by a water supply device including a condensate pump and a water supply pump each including a plurality of units including a spare machine.

このような給水装置の上流側の1台の復水ポンプがトリップした場合、その復水ポンプから出力される流量が低下するため、下流側のポンプである給水ポンプを通常運転すると、上流側の復水ポンプが通常送水可能な流量と下流側の給水ポンプ間の流量アンバランスにより、残りの復水ポンプが一定の時間だけ過渡的に認められる過流量領域(以下、ランアウト領域という)を超える運転となり、これらの復水ポンプが損傷するおそれがある。また、給水ポンプは、必要吸込み圧力が確保されないためキャビテーションが発生し、損傷するおそれがある。   When one condensate pump on the upstream side of such a water supply device trips, the flow rate output from the condensate pump decreases, so when the water supply pump that is the downstream pump is normally operated, the upstream side Operation beyond the overflow range (hereinafter referred to as the runout region) where the remaining condensate pump is transiently recognized for a certain period of time due to the flow rate imbalance between the flow rate that the condensate pump can normally supply and the downstream feed water pump These condensate pumps may be damaged. Further, since the required suction pressure is not ensured in the water supply pump, cavitation occurs and there is a risk of damage.

そこで、このような場合に、上流側のポンプの流量と下流側のポンプの流量をバランスさせる方策をとる必要が生じる。
給水ポンプの駆動用電動機を可変速駆動するインバータ装置を備えた給水装置であって、制御装置が、運転中の復水ポンプのトリップを検知したとき、運転中の全ての給水ポンプのインバータ装置に設定速度による減速運転指令を出力するトリップ時制御を実行し、その後、トリップした復水ポンプの予備機に起動指令を出力するとともに、給水ポンプの全てのインバータ装置に通常状態への復帰指令を出力する復帰時制御を実行するものがある(例えば、特許文献1参照)。
Therefore, in such a case, it is necessary to take measures to balance the flow rate of the upstream pump and the downstream pump.
A water supply device having an inverter device for driving a water pump drive motor at a variable speed, and when the control device detects a trip of the operating condensate pump, all the water supply pump inverters in operation are connected to the inverter device. Executes a trip time control that outputs a deceleration operation command at the set speed, and then outputs a start command to the spare unit of the tripped condensate pump and outputs a return command to the normal state for all inverter devices of the feed pump There is one that performs the return time control (see, for example, Patent Document 1).

特開2009−204255号公報JP 2009-204255 A

上述した特許文献1において、例えば、復水ポンプ及び給水ポンプをそれぞれ3台運転することで通常のプラント給水流量を補っている場合、各ポンプ1台が担う給水流量はプラント給水流量の33%となる。したがって、復水ポンプ1台がトリップした時のトリップ時制御において、給水ポンプのインバータ装置は、プラント給水流量を100%から66%まで減らす減速運転指令を出力する。そして、復帰時制御において、復水ポンプ予備機起動指令を出力するとともに、この予備機の起動確認後、給水ポンプのインバータ装置は、プラント給水流量を66%から100%まで増やす増速運転指令を出力する。   In Patent Document 1 described above, for example, when a normal plant water supply flow rate is supplemented by operating three condensate pumps and three water supply pumps, the water supply flow rate for each pump is 33% of the plant water supply flow rate. Become. Therefore, in the trip time control when one condensate pump trips, the inverter device of the feed water pump outputs a deceleration operation command for reducing the plant feed water flow rate from 100% to 66%. In the return control, the condensate pump preliminary machine start command is output, and after confirming the start of the spare machine, the inverter device of the feed water pump issues a speed increasing operation command to increase the plant water supply flow rate from 66% to 100%. Output.

しかしながら、この復水ポンプトリップ時の給水装置の挙動には、以下のような課題がある。
(1)インバータ装置の特性から給水ポンプの回転速度を急激に降下させることができない。したがって、減速運転指令を受けても給水ポンプの実際の回転速度の降下率は制限されてしまう。
(2)予備機である復水ポンプの起動は、通常であれば、復水ポンプ1台のトリップ発生から短時間のうちになされ、予備機の起動確認は電源遮断器の閉接点信号であるため、上述した減速運転指令が出力される時間は短い。予備機の起動確認後には、通常の流量に戻すための増速運転指令が出力される。
(3)つまり、プラント給水流量を100%から66%まで減らす減速運転指令の出力時間は短く、減速運転指令を受けてもインバータ装置が給水ポンプの回転速度を急激に降下させることができず、かつ、すぐ後にプラント給水流量を66%から100%まで増やす増速運転指令が出力されることから、給水ポンプの実際の回転速度はほとんど減速されない場合がある。
(4)この場合、予備機である復水ポンプが起動すれば数秒後に流量を確保できるとしても、トリップしなかった復水ポンプ2台は、減速しない給水ポンプの流量を補うためにランアウト領域での運転を継続させてしまうという問題がある。
(5)また、インバータ装置駆動の給水ポンプの回転速度を十分に減速できたとしても、給水ポンプの増速は、インバータ装置の特性上から徐々にしか上昇できないため、復帰時制御において、必要なプラント給水流量に相当する回転速度へ達するまでに一定の時間を要する。このため、その間に蒸気発生器の水位が大きく低下してしまうという問題がある。
(6)さらに、予備の復水ポンプが不起動時の制御の説明がないため、例えば、減速制御が継続されると蒸気発生器の水位低下によりプラントトリップに移行してしまうという問題がある。
However, the behavior of the water supply device during this condensate pump trip has the following problems.
(1) Due to the characteristics of the inverter device, the rotational speed of the water supply pump cannot be rapidly decreased. Therefore, even if the deceleration operation command is received, the rate of decrease in the actual rotation speed of the water supply pump is limited.
(2) The condensate pump, which is a spare machine, is normally started within a short time after the trip of one condensate pump, and the start of the spare machine is confirmed by a closing contact signal of the power breaker Therefore, the time during which the above-described deceleration operation command is output is short. After confirming the start-up of the spare machine, an acceleration operation command for returning to the normal flow rate is output.
(3) That is, the output time of the deceleration operation command for reducing the plant water supply flow rate from 100% to 66% is short, and even if the deceleration operation command is received, the inverter device cannot rapidly decrease the rotation speed of the water supply pump, And since the speed-up operation command which increases a plant water supply flow rate from 66% to 100% is output immediately afterward, the actual rotational speed of a water supply pump may be hardly decelerated.
(4) In this case, even if the condensate pump, which is a spare machine, is started, the flow rate can be secured several seconds later, but the two condensate pumps that did not trip are There is a problem of continuing the driving of.
(5) Even if the rotation speed of the feed water pump driven by the inverter device can be sufficiently reduced, the speed increase of the feed water pump can only be increased gradually due to the characteristics of the inverter device. It takes a certain time to reach the rotation speed corresponding to the plant feed water flow rate. For this reason, there exists a problem that the water level of a steam generator falls large in the meantime.
(6) Furthermore, since there is no description of the control when the spare condensate pump is not started, there is a problem that, for example, when deceleration control is continued, the steam generator shifts to a plant trip due to a drop in the water level.

本発明は、上述の事柄に基づいてなされたもので、その目的は、復水ポンプトリップ時に蒸気発生器への給水流量の低下量を小さくし、蒸気発生器の水位低下量を抑制するとともに、運転継続する復水ポンプのランアウト運転の継続を防止する給水ポンプ制御装置を提供することにある。   The present invention has been made based on the above-mentioned matters, and its purpose is to reduce the amount of decrease in the feed water flow rate to the steam generator when the condensate pump trips, and to suppress the amount of decrease in the water level of the steam generator, An object of the present invention is to provide a feed water pump control device that prevents continuation of run-out operation of a condensate pump that continues operation.

上記の目的を達成するために、第1の発明は、復水器からの復水を昇圧するために複数台を並列に設置した復水ポンプと,前記復水ポンプで昇圧された復水をさらに昇圧して蒸気発生器に供給するために複数台を並列に設置した給水ポンプと,前記給水ポンプの電動機を可変速駆動する可変周波数電源装置とを有する給水装置を備え、前記給水装置における前記可変周波数電源装置へ周波数制御指令を出力することで、前記給水ポンプの回転速度を制御する給水ポンプ制御装置であって、前記給水ポンプ制御装置は、運転中の前記復水ポンプのトリップを検知すると、前記可変周波数電源装置への周波数制御指令に対する最大流量制限値を過渡時のみ短時間運転が認められるランアウト流量に変更するトリップ時制御手段と、前記復水ポンプの予備機起動を検知すると、前記最大流量制限値をランアウト流量から通常流量に変更する復帰時制御手段と、前記復水ポンプの予備機不起動を検知すると、前記最大流量制限値を前記ランアウト流量から復水ポンプの運転継続した台数の通常運転流量に変更する制御手段とを備えたものとする。 In order to achieve the above object, the first invention provides a condensate pump in which a plurality of units are installed in parallel to boost the condensate from the condenser, and the condensate boosted by the condensate pump. The water supply device further comprises a water supply pump having a plurality of water supply pumps installed in parallel for boosting and supplying to the steam generator, and a variable frequency power supply device for driving the motor of the water supply pump at a variable speed, A feedwater pump control device that controls the rotational speed of the feedwater pump by outputting a frequency control command to a variable frequency power supply device, wherein the feedwater pump control device detects a trip of the condensate pump during operation. A trip time control means for changing a maximum flow rate limit value for a frequency control command to the variable frequency power supply device to a runout flow rate that allows a short-time operation only during a transient, and the condensate pump When detecting the spare machine startup, the return time control means for changing the maximum flow rate limit value to the normal flow rate from the run-out rate, when detecting the pre-press non activation of the condensate pump, the maximum flow rate limit value from the run-out flow rate It is assumed that control means for changing the normal operation flow rate of the number of the condensate pumps that have been operated is provided.

また、第2の発明は、第1の発明において、前記給水ポンプ制御装置は、前記復水ポンプの予備機不起動を検知すると、前記蒸気発生器の出力減少を要求する指令を前記蒸気発生器の出力制御装置に対して出力する制御手段を備えたことを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, when the feedwater pump control device detects that the condensate pump is not activated, a command for requesting a reduction in the output of the steam generator is issued to the steam generator. And a control means for outputting to the output control device .

更に、第3の発明は、第の発明において、前記給水ポンプ制御装置は、前記復水ポンプの予備機不起動を検知すると、運転継続した復水ポンプの運転台数と同数になるように、前記給水ポンプの運転台数を変更する制御手段を備えたことを特徴とする。 Further, in a third aspect based on the second aspect , when the feed pump control device detects that the spare pump of the condensate pump has not been started, the same number as the number of condensate pumps that have been operated continues. Control means for changing the number of operating water pumps is provided .

本発明によれば、復水ポンプトリップ時に蒸気発生器への給水流量の低下量を小さくし、蒸気発生器の水位低下量を抑制するとともに、運転継続する復水ポンプのランアウト運転の継続を防止することができる。   According to the present invention, when the condensate pump trips, the amount of decrease in the feed water flow rate to the steam generator is reduced, the amount of decrease in the water level of the steam generator is suppressed, and continuation of the run-out operation of the condensate pump that continues operation is prevented. can do.

本発明の給水ポンプ制御装置の第1の実施の形態を適用する蒸気タービン設備を示す系統図である。It is a distribution diagram showing steam turbine equipment to which a 1st embodiment of a feed water pump control device of the present invention is applied. 本発明の給水ポンプ制御装置の第1の実施の形態の構成を説明するブロック図である。It is a block diagram explaining the structure of 1st Embodiment of the feed pump control apparatus of this invention. 本発明の給水ポンプ制御装置の第1の実施の形態における復水ポンプトリップ予備機起動時の動作を説明する特性図である。It is a characteristic view explaining the operation | movement at the time of starting the condensate pump trip preliminary | backup machine in 1st Embodiment of the feed water pump control apparatus of this invention. 本発明の給水ポンプ制御装置の第2の実施の形態における復水ポンプトリップ予備機不起動時の動作を説明する特性図である。It is a characteristic view explaining the operation | movement at the time of the condensate pump trip reserve machine non-starting in 2nd Embodiment of the feed water pump control apparatus of this invention. 本発明の給水ポンプ制御装置の第3の実施の形態における復水ポンプトリップ予備機不起動時の動作を説明する特性図である。It is a characteristic view explaining the operation | movement at the time of the condensate pump trip reserve machine non-starting in 3rd Embodiment of the feed water pump control apparatus of this invention. 本発明の給水ポンプ制御装置の第4の実施の形態における復水ポンプトリップ予備機不起動時の動作を説明する特性図である。It is a characteristic view explaining the operation | movement at the time of the condensate pump trip preliminary machine non-starting in 4th Embodiment of the feed water pump control apparatus of this invention. 本発明の給水ポンプ制御装置の各実施の形態におけるポンプ運転状態判定と最大流量制限の設定例を示す表図である。It is a table | surface figure which shows the example of a setting of the pump driving | running state determination and the maximum flow volume restriction | limiting in each embodiment of the feed water pump control apparatus of this invention.

以下に、本発明の給水ポンプ制御装置の実施の形態を図面を用いて説明する。   Hereinafter, an embodiment of a feed water pump control device of the present invention will be described with reference to the drawings.

図1は本発明の給水ポンプ制御装置の第1の実施の形態を適用する蒸気タービン設備を示す系統図、図2は本発明の給水ポンプ制御装置の第1の実施の形態の構成を説明するブロック図、図3は本発明の給水ポンプ制御装置の第1の実施の形態における復水ポンプトリップ予備機起動時の動作を説明する特性図である。   FIG. 1 is a system diagram showing a steam turbine facility to which a first embodiment of a feed water pump control device of the present invention is applied, and FIG. 2 explains the configuration of the first embodiment of the feed water pump control device of the present invention. FIG. 3 is a characteristic diagram for explaining the operation when the condensate pump trip preliminary machine is activated in the first embodiment of the feed pump control device of the present invention.

図1において、蒸気発生器1によって発生した蒸気は、供給配管を介して高圧タービン2に供給される。高圧タービン2で膨張した蒸気は、蒸気配管を通って湿分分離加熱器3にて再熱され低圧タービン4に供給される。低圧タービン4で膨張した蒸気は復水器5によって凝縮され復水となる。この復水は、並列に配置された複数台の低圧復水ポンプ6(この例では4台)によって、復水器5から導出され昇圧されて並列に配置された複数台の高圧復水ポンプ7(この例では4台)へ供給される。高圧復水ポンプ7でさらに昇圧された復水は給水配管を通って低圧給水加熱器8に供給される。低圧給水加熱器8は低圧タービン4の抽気蒸気によって供給された復水を加熱昇温する。加熱昇温された復水は駆動用電動機が可変周波数電源装置9で可変速駆動する並列に配置された複数台の給水ポンプ10(この例では4台)に供給され再昇圧されて高圧給水加熱器12に供給される。高圧給水加熱器12は高圧タービン2の抽気蒸気によって供給された復水を加熱昇温する。加熱昇温された復水は蒸気発生器1に供給される。   In FIG. 1, the steam generated by the steam generator 1 is supplied to the high-pressure turbine 2 through a supply pipe. The steam expanded in the high-pressure turbine 2 is reheated in the moisture separation heater 3 through the steam pipe and supplied to the low-pressure turbine 4. The steam expanded in the low-pressure turbine 4 is condensed by the condenser 5 to become condensate. This condensate is led out from the condenser 5 by a plurality of low-pressure condensate pumps 6 (four in this example) arranged in parallel, and is boosted to a plurality of high-pressure condensate pumps 7 arranged in parallel. (4 in this example). The condensate further boosted by the high-pressure condensate pump 7 is supplied to the low-pressure feed water heater 8 through the feed water pipe. The low-pressure feed water heater 8 heats and raises the condensate supplied by the extracted steam of the low-pressure turbine 4. The heated and heated condensate is supplied to a plurality of water supply pumps 10 (four in this example) arranged in parallel and driven at a variable speed by a variable frequency power supply device 9 and is re-pressurized for high-pressure feed water heating. Supplied to the vessel 12. The high pressure feed water heater 12 heats and raises the temperature of the condensate supplied by the extracted steam of the high pressure turbine 2. The condensate heated and heated is supplied to the steam generator 1.

一方、高圧タービン2からの抽気蒸気は、上述したように湿分分離加熱器3と高圧給水加熱器12に加熱蒸気として供給されているが、高圧タービン2の排気蒸気や給水とそれぞれ熱交換した後、ドレンとなり、ドレン配管を通って高圧ドレンタンク11に集められている。なお、湿分分離加熱器3の湿分分離によって生じた高圧タービン2の排気蒸気からのドレンも同様に高圧ドレンタンク11に集められている。高圧ドレンタンク11に集められたドレンは、並列に配置された複数台の高圧ドレンポンプ13(この例では4台)によって、高圧ドレンタンク11から導出され昇圧されて給水ポンプ10の入口側に供給されている。   On the other hand, the extraction steam from the high-pressure turbine 2 is supplied as heating steam to the moisture separation heater 3 and the high-pressure feed water heater 12 as described above, and exchanges heat with the exhaust steam and feed water of the high-pressure turbine 2, respectively. After that, it becomes drain and is collected in the high pressure drain tank 11 through the drain pipe. In addition, the drain from the exhaust steam of the high-pressure turbine 2 generated by the moisture separation of the moisture separator / heater 3 is also collected in the high-pressure drain tank 11. The drain collected in the high-pressure drain tank 11 is led out from the high-pressure drain tank 11 by a plurality of high-pressure drain pumps 13 (four in this example) arranged in parallel and supplied to the inlet side of the water supply pump 10. Has been.

上述したタービン設備における蒸気発生器1への給水流量制御は、蒸気発生器1の水位、蒸気発生器1の発生蒸気量および蒸気発生器1への給水流量に基づき蒸気発生器1の水位を制御する給水流量制御装置16と給水ポンプ制御装置15とによって、可変周波数電源装置9に回転速度指令を出力することで駆動用電動機と給水ポンプ10の回転速度を制御して行う。   The feed water flow rate control to the steam generator 1 in the turbine equipment described above controls the water level of the steam generator 1 based on the water level of the steam generator 1, the amount of steam generated by the steam generator 1, and the feed water flow rate to the steam generator 1. The rotation speed command of the drive motor and the feed water pump 10 is controlled by outputting a rotation speed command to the variable frequency power supply device 9 by the feed water flow rate control device 16 and the feed water pump control device 15.

給水ポンプ制御装置15は、図2に示すように、低圧復水ポンプ6、高圧復水ポンプ7、給水ポンプ10及び高圧ドレンポンプ13の運転状態を判別するポンプ運転状態判定回路14を備え、ポンプ運転状態判定回路14からの各ポンプの運転状態により、給水ポンプ10への回転速度指令の最大値を制限する最大流量制限設定回路15Aを設けている。この最大流量制限設定回路15Aによって、各ポンプの容量を超えた運転を防止している。なお、各ポンプの制限流量としては、通常運転に於ける流量の揺らぎ等の制御余裕を考慮した連続運転可能な仕様点流量と、過渡時における運転可能時間を限定したランアウト流量とがある。   As shown in FIG. 2, the feed water pump control device 15 includes a pump operation state determination circuit 14 that determines operation states of the low pressure condensate pump 6, the high pressure condensate pump 7, the feed water pump 10, and the high pressure drain pump 13. A maximum flow rate restriction setting circuit 15A that restricts the maximum value of the rotational speed command to the feed water pump 10 according to the operation state of each pump from the operation state determination circuit 14 is provided. The maximum flow rate restriction setting circuit 15A prevents operation exceeding the capacity of each pump. The limited flow rate of each pump includes a specification point flow rate that allows continuous operation in consideration of a control margin such as flow rate fluctuation in normal operation, and a run-out flow rate that limits the operable time during transition.

図1に戻り、低圧復水ポンプ6、高圧復水ポンプ7、及び高圧ドレンポンプ13の構成について説明する。これらのポンプは、通常時のプラント給水流量を100%としたときの復水流量及び高圧ドレン流量のそれぞれが1台あたり約33%容量のポンプである。これらの各ポンプをそれぞれ4台並列接続して構成し、通常時のプラント給水流量100%時にはそれぞれ3台運転し、1台を予備機として運用している。   Returning to FIG. 1, the configuration of the low-pressure condensate pump 6, the high-pressure condensate pump 7, and the high-pressure drain pump 13 will be described. Each of these pumps has a capacity of about 33% per unit of the condensate flow rate and the high-pressure drain flow rate when the normal plant water supply flow rate is 100%. Each of these pumps is connected in parallel to each other, and each of the three pumps is operated at a normal plant water supply flow rate of 100%, and one is operated as a spare machine.

可変周波数電源装置9駆動の給水ポンプ10も同様の構成であって、通常時のプラント給水流量を100%としたときの給水流量が1台あたり約33%容量のポンプであり、通常時は3台運転で運用し、1台は予備機として設けている。   The feed pump 10 driven by the variable frequency power supply 9 has the same configuration, and is a pump having a capacity of about 33% per unit when the normal plant feed flow rate is 100%. It is operated by stand-alone operation, and one is provided as a spare machine.

通常運転中、低圧復水ポンプ6の複数台の内の1台に何らかの故障が発生した場合、故障した低圧復水ポンプ6が1台トリップすると、低圧復水ポンプ6の2台から供給できる給水流量に減少する。このとき、下流側ポンプである高圧復水ポンプ7と可変周波数電源装置9駆動の給水ポンプ10を通常通りに合わせて100%の給水流量で運転を継続すると、上流側の低圧復水ポンプ6が送水可能な流量と下流側の高圧復水ポンプ7と可変周波数電源装置9駆動の給水ポンプ10流量アンバランスにより低圧復水ポンプ6の2台がランアウト領域を超える運転となり、これらの低圧復水ポンプ6が損傷する恐れがある。また、高圧復水ポンプ7と可変周波数電源装置9駆動の給水ポンプ10は、必要吸込み圧力が確保されないためキャビテーションが発生し下流側のポンプが損傷するおそれがある。   During normal operation, if any failure occurs in one of a plurality of low-pressure condensate pumps 6, when one of the failed low-pressure condensate pumps 6 trips, the water supply that can be supplied from the two low-pressure condensate pumps 6. Reduce to flow rate. At this time, if the high-pressure condensate pump 7 that is the downstream pump and the feed pump 10 driven by the variable frequency power supply device 9 are combined as usual and the operation is continued at a feed water flow rate of 100%, the low-pressure condensate pump 6 on the upstream side The low-pressure condensate pump 6 is operated beyond the run-out region due to the flow rate that can be fed, the high-pressure condensate pump 7 on the downstream side, and the feed pump 10 driven by the variable frequency power supply 9. 6 may be damaged. In addition, the high-pressure condensate pump 7 and the feed pump 10 driven by the variable frequency power supply 9 do not secure the required suction pressure, so that cavitation may occur and the downstream pump may be damaged.

そこで、ポンプトリップ時の給水系の上流側から下流側に至る流量アンバランスを解消するため、本実施の形態においては、給水ポンプ制御装置15に最大流量制限設定回路15Aを設けている。給水ポンプ制御装置15の構成について、図2を用いて説明する。   Therefore, in order to eliminate the flow rate imbalance from the upstream side to the downstream side of the water supply system when the pump trips, in this embodiment, the maximum flow rate restriction setting circuit 15A is provided in the water supply pump control device 15. The structure of the feed water pump control apparatus 15 is demonstrated using FIG.

図2に示すように、給水ポンプ制御装置15は、ポンプ運転状態判定回路14と最大流量制限設定回路15Aと蒸気発生器出力変更要求回路15Bとを備えている。ポンプ運転状態判定回路14には、低圧復水ポンプ6、高圧復水ポンプ7、給水ポンプ10及び高圧ドレンポンプ13の運転状態が入力されている。これらは、例えば各ポンプを駆動する電動機用の電源遮断器の開閉接点などが用いられる。また、最大流量制限設定回路15Aからは、可変周波数電源装置9へ給水ポンプ10の回転速度指令が出力され、蒸気発生器出力変更要求回路15Bからは、蒸気発生器出力制御装置100へ蒸気発生器1の出力変更を要求する出力変更指令が出力される。   As shown in FIG. 2, the feed water pump control device 15 includes a pump operation state determination circuit 14, a maximum flow rate restriction setting circuit 15A, and a steam generator output change request circuit 15B. The operation state of the low pressure condensate pump 6, the high pressure condensate pump 7, the feed water pump 10, and the high pressure drain pump 13 is input to the pump operation state determination circuit 14. For example, switching contacts of a power circuit breaker for an electric motor that drives each pump are used. The maximum flow rate restriction setting circuit 15A outputs a rotation speed command of the feed pump 10 to the variable frequency power supply device 9, and the steam generator output change request circuit 15B outputs the steam generator to the steam generator output control device 100. An output change command requesting output change of 1 is output.

ここで、低圧復水ポンプ6、又は高圧復水ポンプ7のいずれかの複数台の内の1台がトリップした場合、給水ポンプ制御装置15に設けた以下のトリップ時制御手段が実行される。ポンプ運転状態判定回路14からの各復水ポンプの運転状態により、給水ポンプ制御装置15は、可変周波数電源装置9駆動の給水ポンプ6の回転速度指令の最大値を制限する最大流量制限設定回路15Aに設定変更指令を出力する。これにより、最大流量制限設定回路15Aは、最大流量制限値を仕様点流量から、ポンプの過渡時の短時間運転可能なランアウト流量に変更する。この結果、給水ポンプ10の回転速度が減速し、給水流量が減少するので、上流側ポンプの復水ポンプ6,7と下流側ポンプの給水ポンプ10との間の流量アンバランスが無くなる。   Here, when one of the low pressure condensate pump 6 or the high pressure condensate pump 7 trips, the following trip time control means provided in the feed water pump control device 15 is executed. Depending on the operation state of each condensate pump from the pump operation state determination circuit 14, the feed water pump control device 15 limits the maximum value of the rotational speed command of the feed water pump 6 driven by the variable frequency power supply device 9 to a maximum flow rate restriction setting circuit 15A. A setting change command is output to. As a result, the maximum flow rate restriction setting circuit 15A changes the maximum flow rate restriction value from the specification point flow rate to a runout flow rate that can be operated for a short time during the transition of the pump. As a result, the rotation speed of the feed water pump 10 is reduced and the feed water flow rate is reduced, so that there is no flow rate imbalance between the condensing pumps 6 and 7 of the upstream pump and the feed water pump 10 of the downstream pump.

また、トリップしたポンプの予備機起動を検知すると、給水ポンプ制御装置15に設けた以下の復帰時制御手段が実行される。給水ポンプ制御装置15は、最大流量制限設定回路15Aに設定復帰指令を出力する。これにより、最大流量制限設定回路15Aは、最大流量制限値をランアウト流量から、仕様点流量に変更する。この結果、通常運転状態に制御が移行されるので、蒸気発生器1に対する必要給水流量と送水給水流量のミスマッチを最小限にすることができ、蒸気発生器1の水位低下量を抑制することができる。   Further, when the start-up of the tripped pump is detected, the following return time control means provided in the feed water pump control device 15 is executed. The feed pump control device 15 outputs a setting return command to the maximum flow rate restriction setting circuit 15A. Accordingly, the maximum flow rate restriction setting circuit 15A changes the maximum flow rate restriction value from the runout flow rate to the specification point flow rate. As a result, since the control is transferred to the normal operation state, the mismatch between the required water supply flow rate and the water supply / water supply flow rate for the steam generator 1 can be minimized, and the water level lowering amount of the steam generator 1 can be suppressed. it can.

次に、低圧復水ポンプ6の複数台の内の1台がトリップした時の最大流量制限設定回路15Aの設定変更例を図3を用いて説明する。
ここで、説明の便宜のため、仮に仕様点流量をプラント給水流量の110%とし、ランアウト流量をプラント給水流量の130%で運転時間2分以下と設定する。低圧復水ポンプ6の2台運転時におけるランアウト流量は、33.3×2×1.3より86.8%になる。
Next, a setting change example of the maximum flow rate restriction setting circuit 15A when one of the plurality of low-pressure condensate pumps 6 has tripped will be described with reference to FIG.
Here, for convenience of explanation, the specification point flow rate is assumed to be 110% of the plant feed water flow rate, and the runout flow rate is set to 130% of the plant feed water flow rate and the operation time is 2 minutes or less. The run-out flow rate when two low-pressure condensate pumps 6 are operated is 86.8% from 33.3 × 2 × 1.3.

図3において、ポンプ運転状態判定回路14により、低圧復水ポンプ6の複数台の内の1台のトリップを判定した場合、給水ポンプ制御装置15は、可変周波数電源装置9駆動の給水ポンプ10の回転速度指令の最大値を制限する最大流量制限設定回路15Aに設定変更指令を出力する。これにより、最大流量制限設定回路15Aは、最大流量制限値を低圧復水ポンプ6の3台運転の仕様点流量である110%から、ポンプの過渡時の短時間運転可能な低圧復水ポンプ6の2台運転のランアウト流量である86.8%に変更する。この結果、給水ポンプ10の回転速度は減速制御され、給水流量が減少する。このことにより、上流側の低圧復水ポンプ6と下流側の高圧復水ポンプ7、高圧ドレンポンプ13及び可変周波数電源装置9駆動の給水ポンプ10との間の流量アンバランスがなくなり、キャビテーション運転の発生が防止される。   In FIG. 3, when the pump operation state determination circuit 14 determines a trip of one of the plurality of low-pressure condensate pumps 6, the water supply pump control device 15 performs the operation of the water supply pump 10 driven by the variable frequency power supply device 9. A setting change command is output to the maximum flow rate limit setting circuit 15A that limits the maximum value of the rotation speed command. As a result, the maximum flow rate restriction setting circuit 15A allows the low-pressure condensate pump 6 that can operate for a short time during the transition of the pump from the 110% which is the specification point flow rate of the three low-pressure condensate pumps 6 for the maximum flow rate limit value. This is changed to 86.8%, which is the run-out flow rate for the two units. As a result, the rotation speed of the feed water pump 10 is controlled to be reduced, and the feed water flow rate is reduced. This eliminates flow unbalance between the low pressure condensate pump 6 on the upstream side, the high pressure condensate pump 7 on the downstream side, the high pressure drain pump 13, and the water supply pump 10 driven by the variable frequency power supply device 9. Occurrence is prevented.

次に、ポンプ運転状態判定回路14が低圧復水ポンプ6の予備機起動を検知すると、給水ポンプ制御装置15は、最大流量制限設定回路15Aに設定復帰指令を出力する。これにより、最大流量制限設定回路15Aは、最大流量制限値を低圧復水ポンプ6の2台運転のランアウト流量である86.8%から、低圧復水ポンプ6の3台運転の仕様点流量である110%に変更する。このことにより、給水ポンプ10の回転速度は増速制御され、給水流量が増加し、通常運転状態に制御が移行される。この結果、プラント給水流量を速やかに確保することができるとともに、蒸気発生器1の水位の低下量を少なくすることができる。   Next, when the pump operation state determination circuit 14 detects the start of the spare machine of the low-pressure condensate pump 6, the feed water pump control device 15 outputs a setting return command to the maximum flow rate restriction setting circuit 15A. As a result, the maximum flow rate restriction setting circuit 15A changes the maximum flow rate restriction value from the 86.8% that is the runout flow rate of the two low-pressure condensate pumps 6 to the specification point flow rate of the three low-pressure condensate pumps 6 operation. Change to 110%. As a result, the rotation speed of the feed water pump 10 is controlled to increase, the feed water flow rate increases, and the control is shifted to the normal operation state. As a result, the plant water supply flow rate can be secured quickly and the amount of decrease in the water level of the steam generator 1 can be reduced.

上述した本発明の給水ポンプ制御装置の第1の実施の形態によれば、復水ポンプ6のトリップ時に蒸気発生器1への給水流量の低下量を小さくし、蒸気発生器1の水位低下量を抑制するとともに、運転継続する復水ポンプ6のランアウト運転の継続を防止することができる。   According to the above-described first embodiment of the feed water pump control device of the present invention, when the condensate pump 6 is tripped, the amount of decrease in the feed water flow rate to the steam generator 1 is reduced, and the water level drop amount of the steam generator 1 is reduced. And the continuation of the run-out operation of the condensate pump 6 that continues to be operated can be prevented.

また、上述した本発明の給水ポンプ制御装置の第1の実施の形態によれば、可変周波数電源装置9駆動の給水ポンプ10の回転速度制御を行う給水ポンプ制御装置15が、低圧復水ポンプ6の複数台の内の1台のトリップを検知したときに、給水ポンプ10への回転速度制御指令に対する最大流量制限値を仕様点流量からランアウト流量に変更させるトリップ時制御を実行し、低圧復水ポンプ6の予備機起動を検知したときに、前記最大流量制限値をランアウト流量から仕様点流量に復帰させる復帰時制御を実行しているので、低圧復水ポンプ6の複数台の内の1台がトリップしてから、低圧復水ポンプ6の予備機が起動して通常の給水流量に復帰させる復帰時制御に係る時間を短縮することができる。   Further, according to the above-described first embodiment of the feed water pump control device of the present invention, the feed water pump control device 15 that controls the rotational speed of the feed water pump 10 driven by the variable frequency power supply device 9 is provided with the low pressure condensate pump 6. When the trip of one of the multiple units is detected, the control at the time of trip is executed to change the maximum flow rate limit value for the rotational speed control command to the feed water pump 10 from the specification point flow rate to the runout flow rate, and the low pressure condensate Since the control at the time of returning the maximum flow rate limit value from the runout flow rate to the specification point flow rate is executed when the start of the spare machine of the pump 6 is detected, one of the low pressure condensate pumps 6 is set. After the trip, the spare machine of the low-pressure condensate pump 6 is activated and the time required for the return-time control for returning to the normal water supply flow rate can be shortened.

なお、本実施の形態においては、最大流量制限を通常運転時の設定変更に復帰させるための信号として、低圧復水ポンプ6の予備機起動信号を遮断器の接点信号から使用したが、これに限るものではない。例えば、低圧復水ポンプ6に回転速度検出手段を設け、この回転速度検出手段で検出した信号を給水ポンプ制御装置15のポンプ運転状態判定回路14に出力してもよいし、低圧復水ポンプ6の吐出側にポンプ吐出圧力を検出する圧力検出手段を設け、この圧力検出手段で検出した信号を同様にポンプ運転状態判定回路14に出力しもよい。そして、ポンプ起動特性から定まる設定値とこれらの検出値とを比較演算して予備機起動を判断してもよい。ポンプ起動特性から予備機起動を判断することにより、給水ポンプ10のトリップ時制御の実質制御時間が確保できるので、低圧復水ポンプ6のランアウト流量以上の運転発生の可能性が減少する。   In the present embodiment, as a signal for returning the maximum flow rate restriction to the setting change during normal operation, the spare machine start signal of the low pressure condensate pump 6 is used from the contact signal of the circuit breaker. It is not limited. For example, the low pressure condensate pump 6 may be provided with a rotation speed detection means, and a signal detected by the rotation speed detection means may be output to the pump operation state determination circuit 14 of the feed water pump control device 15. Alternatively, pressure detection means for detecting the pump discharge pressure may be provided on the discharge side, and a signal detected by the pressure detection means may be output to the pump operation state determination circuit 14 in the same manner. Then, the set value determined from the pump start characteristic and these detected values may be compared and calculated to determine the start of the spare machine. By determining the start of the spare machine from the pump start characteristics, the actual control time of the trip control of the feed water pump 10 can be secured, so the possibility of occurrence of operation exceeding the runout flow rate of the low pressure condensate pump 6 is reduced.

以下、本発明の給水ポンプ制御装置の第2の実施の形態を図面を用いて説明する。図4は本発明の給水ポンプ制御装置の第2の実施の形態における復水ポンプトリップ予備機不起動時の動作を説明する特性図である。図4において、図1乃至図3に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
第1の実施の形態においては、低圧復水ポンプ6の複数台の内の1台がトリップし、予備機が起動した場合の適用について説明したが、本実施の形態においては、低圧復水ポンプ6の複数台の内の1台がトリップし、予備機が起動しない場合についての動作について説明する。したがって、タービン設備、給水ポンプ制御装置15等の構成は第1の実施の形態と同じである。
Hereinafter, a second embodiment of the feed pump control device of the present invention will be described with reference to the drawings. FIG. 4 is a characteristic diagram for explaining the operation when the condensate pump trip preliminary machine is not started in the second embodiment of the feed pump control device of the present invention. In FIG. 4, the same reference numerals as those shown in FIGS. 1 to 3 are the same parts, and detailed description thereof is omitted.
In the first embodiment, the application in the case where one of the plurality of low-pressure condensate pumps 6 trips and the spare machine is activated has been described. In the present embodiment, the low-pressure condensate pump is used. An operation when one of the plurality of 6 trips and the spare machine does not start will be described. Therefore, the configurations of the turbine equipment, the feed water pump control device 15 and the like are the same as those in the first embodiment.

図4において、ポンプ運転状態判定回路14により、低圧復水ポンプ6の複数台の内の1台のトリップを判定した場合、給水ポンプ制御装置15は、可変周波数電源装置9駆動の給水ポンプ10の回転速度指令の最大値を制限する最大流量制限設定回路15Aに設定変更指令を出力する。これにより、最大流量制限設定回路15Aは、最大流量制限値を低圧復水ポンプ6の3台運転の仕様点流量である110%から、ポンプの過渡時の短時間運転可能な低圧復水ポンプ6の2台運転のランアウト流量である86.8%に変更する。この結果、給水ポンプ10の回転速度は減速制御され、給水流量が減少する。   In FIG. 4, when the pump operation state determination circuit 14 determines a trip of one of the plurality of low-pressure condensate pumps 6, the water supply pump control device 15 is configured to control the water supply pump 10 driven by the variable frequency power supply device 9. A setting change command is output to the maximum flow rate limit setting circuit 15A that limits the maximum value of the rotation speed command. As a result, the maximum flow rate restriction setting circuit 15A allows the low-pressure condensate pump 6 that can operate for a short time during the transition of the pump from the 110% which is the specification point flow rate of the three low-pressure condensate pumps 6 for the maximum flow rate limit value. This is changed to 86.8%, which is the run-out flow rate for the two units. As a result, the rotation speed of the feed water pump 10 is controlled to be reduced, and the feed water flow rate is reduced.

この後、低圧復水ポンプ6の予備機が起動しない状態が継続すると、2台の低圧復水ポンプ6はランアウト流量の運転が継続するため、運転許容時間を超えると、過負荷トリップしてしまうおそれが生じる。また、低圧復水ポンプ6が全台トリップすると、上流側の低圧復水ポンプ6と下流側の高圧復水ポンプ7及び可変周波数電源装置9駆動の給水ポンプ10との間の流量アンバランスが発生し、キャビテーション運転によるポンプ損傷のおそれが生じる。   After this, if the state where the spare machine of the low-pressure condensate pump 6 is not started continues, the two low-pressure condensate pumps 6 continue to run at the run-out flow rate. There is a fear. Further, when all the low-pressure condensate pumps 6 are tripped, a flow rate imbalance occurs between the low-pressure condensate pump 6 on the upstream side, the high-pressure condensate pump 7 on the downstream side, and the feed pump 10 driven by the variable frequency power supply device 9. However, there is a risk of pump damage due to cavitation operation.

そこで、例えば予備機起動指令から5秒経過しても予備機起動信号を受け付けない等の状態から、ポンプ運転状態判定回路14が低圧復水ポンプ6の予備機不起動を判定した場合、給水ポンプ制御装置15は、最大流量制限設定回路15Aに再度設定変更指令を出力する。これにより、最大流量制限設定回路15Aは、最大流量制限値を低圧復水ポンプ6の2台運転のランアウト流量である86.8%から、低圧復水ポンプ6の2台運転の仕様点流量である73.3%(33.3×2×1.1)に変更する。この結果、低圧復水ポンプ6の運転許容時間を越えることによる過負荷トリップや、可変周波数電源装置9駆動の給水ポンプ10の吸込圧力低下によるキャビテーション運転を防止することができる。   Therefore, for example, when the pump operation state determination circuit 14 determines that the low pressure condensate pump 6 has not been started from a state where a standby unit start signal is not received even after 5 seconds from the standby unit start command, the water supply pump The control device 15 outputs a setting change command again to the maximum flow rate restriction setting circuit 15A. Thus, the maximum flow rate restriction setting circuit 15A changes the maximum flow rate restriction value from the 86.8% which is the run-out flow rate of the two low-pressure condensate pumps 6 to the specification point flow rate of the two low-pressure condensate pumps 6 operation. Change to a certain 73.3% (33.3 × 2 × 1.1). As a result, it is possible to prevent an overload trip due to exceeding the operation permissible time of the low-pressure condensate pump 6 and a cavitation operation due to a decrease in the suction pressure of the feed water pump 10 driven by the variable frequency power supply device 9.

上述した本発明の給水ポンプ制御装置の第2の実施の形態によれば、上述した第1の実施の形態と同様な効果を得ることができるとともに、低圧復水ポンプ6の予備機が不起動となっても、運転継続している低圧復水ポンプ6の過負荷トリップや給水ポンプ10のキャビテーション運転を防止することができる。   According to the second embodiment of the feed water pump control device of the present invention described above, the same effect as that of the first embodiment described above can be obtained, and the spare machine of the low pressure condensate pump 6 is not activated. Even in this case, it is possible to prevent an overload trip of the low-pressure condensate pump 6 and a cavitation operation of the feed water pump 10 that are continuing operation.

以下、本発明の給水ポンプ制御装置の第3の実施の形態を図面を用いて説明する。図5は本発明の給水ポンプ制御装置の第3の実施の形態における復水ポンプトリップ予備機不起動時の動作を説明する特性図である。図5において、図1乃至図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
第2の実施の形態においては、低圧復水ポンプ6の複数台の内の1台がトリップし、予備機が起動しない場合の適用について説明したが、本実施の形態においては、同様に予備機が起動しない場合の動作の他の実施例について説明する。したがって、タービン設備、給水ポンプ制御装置15等の構成は第1の実施の形態と同じである。
Hereinafter, a third embodiment of the feed pump control device of the present invention will be described with reference to the drawings. FIG. 5 is a characteristic diagram for explaining the operation when the condensate pump trip preliminary machine is not started in the third embodiment of the feed pump control device of the present invention. In FIG. 5, the same reference numerals as those shown in FIGS. 1 to 4 are the same parts, and detailed description thereof is omitted.
In the second embodiment, the case where one of the plurality of low-pressure condensate pumps 6 trips and the spare machine does not start has been described. However, in the present embodiment, the spare machine is similarly used. Another embodiment of the operation when is not activated will be described. Therefore, the configurations of the turbine equipment, the feed water pump control device 15 and the like are the same as those in the first embodiment.

図5において、ポンプ運転状態判定回路14により、低圧復水ポンプ6の複数台の内の1台のトリップを判定した場合、給水ポンプ制御装置15と最大流量制限設定回路15Aの動作は、第2の実施の形態と同様であり、ポンプ運転状態判定回路14が予備機不起動を判定した後に、運転継続した低圧復水ポンプ6の2台分の仕様点流量に給水ポンプ10の最大流量制限を再変更している。   In FIG. 5, when the pump operation state determination circuit 14 determines that one of the plurality of low-pressure condensate pumps 6 has tripped, the operations of the feed water pump control device 15 and the maximum flow rate restriction setting circuit 15A are After the pump operation state determination circuit 14 determines that the spare machine has not been started, the maximum flow rate limit of the feed water pump 10 is set to the specified point flow rate for the two low-pressure condensate pumps 6 that have been operated. It has been changed again.

この結果、上述したように、運転継続している低圧復水ポンプ6の過負荷トリップや給水ポンプ10のキャビテーション運転を防止することはできるが、蒸気発生器1が必要とする必要給水流量と給水ポンプ10が蒸気発生器1に送水する給水流量とはアンバランスのままになり、蒸気発生器1の水位低下によるプラントトリップの可能性が生じるという問題がある。   As a result, as described above, although the overload trip of the low-pressure condensate pump 6 and the cavitation operation of the feed water pump 10 that can be continued can be prevented, the required feed water flow rate and feed water required by the steam generator 1 can be prevented. There is a problem that the flow rate of water supplied to the steam generator 1 by the pump 10 remains unbalanced, and the possibility of a plant trip due to a drop in the water level of the steam generator 1 occurs.

そこで、給水ポンプ制御装置15は、ポンプ運転状態判定回路14が予備機不起動を判定した後に、蒸気発生器出力変更要求回路15Bから蒸気発生器出力制御装置100へ出力変更指令を出力する。これにより、蒸気発生器出力制御装置100が、運転継続した低圧復水ポンプ6の台数分の仕様点流量以下の出力まで、蒸気発生器1の出力を低下させる。このことにより、蒸気発生器1の必要給水流量が低下するので、蒸気発生器1が必要とする必要給水流量と低圧復水ポンプ6、高圧復水ポンプ7、高圧ドレンポンプ13及び給水ポンプ10が蒸気発生器1に送水する給水流量とがバランスする。この結果、蒸気発生器1の水位低下によるプラントトリップの発生は防止できる。   Therefore, the feed water pump control device 15 outputs an output change command from the steam generator output change request circuit 15B to the steam generator output control device 100 after the pump operation state determination circuit 14 determines that the spare machine has not been started. Thereby, the steam generator output control apparatus 100 reduces the output of the steam generator 1 to the output below the specification point flow rate for the number of the low-pressure condensate pumps 6 that have been continuously operated. As a result, the required feed water flow rate of the steam generator 1 is reduced, so that the required feed water flow rate required by the steam generator 1 and the low pressure condensate pump 6, the high pressure condensate pump 7, the high pressure drain pump 13 and the feed water pump 10 are reduced. The flow rate of water supplied to the steam generator 1 is balanced. As a result, the occurrence of a plant trip due to a drop in the water level of the steam generator 1 can be prevented.

上述した本発明の給水ポンプ制御装置の第3の実施の形態によれば、上述した第2の実施の形態と同様な効果を得ることができるとともに、低圧復水ポンプ6の予備機が不起動となっても、蒸気発生器1の水位低下によるプラントトリップの発生を防止することができる。   According to the third embodiment of the feed water pump control device of the present invention described above, the same effect as the second embodiment described above can be obtained, and the spare machine of the low pressure condensate pump 6 is not activated. Even if it becomes, generation | occurrence | production of the plant trip by the water level fall of the steam generator 1 can be prevented.

以下、本発明の給水ポンプ制御装置の第4の実施の形態を図面を用いて説明する。図6は本発明の給水ポンプ制御装置の第4の実施の形態における復水ポンプトリップ予備機不起動時の動作を説明する特性図である。図6において、図1乃至図5に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
第3の実施の形態においては、低圧復水ポンプ6の複数台の内の1台がトリップし、予備機が起動しない場合の適用について説明したが、本実施の形態においては、同様に予備機が起動しない場合の動作の更に他の実施例について説明する。したがって、タービン設備、給水ポンプ制御装置15等の構成は第1の実施の形態と同じである。
Hereinafter, a fourth embodiment of the feed water pump control device of the present invention will be described with reference to the drawings. FIG. 6 is a characteristic diagram for explaining the operation when the condensate pump trip spare machine is not started in the fourth embodiment of the feed pump control device of the present invention. In FIG. 6, the same reference numerals as those shown in FIGS. 1 to 5 are the same parts, and detailed description thereof is omitted.
In the third embodiment, the application in the case where one of the plurality of low-pressure condensate pumps 6 trips and the spare machine does not start has been described. Still another embodiment of the operation when the computer does not start will be described. Therefore, the configurations of the turbine equipment, the feed water pump control device 15 and the like are the same as those in the first embodiment.

図6において、ポンプ運転状態判定回路14により、低圧復水ポンプ6の複数台の内の1台のトリップを判定した場合、給水ポンプ制御装置15と最大流量制限設定回路15Aと蒸気発生器出力変更要求回路15Bの動作は、第3の実施の形態と同様であり、ポンプ運転状態判定回路14が予備機不起動を判定した後に、運転継続した低圧復水ポンプ6の2台分の仕様点流量に給水ポンプ10の最大流量制限を再変更するとともに、運転継続した低圧復水ポンプ6の台数分の仕様点流量以下の出力まで、蒸気発生器1の出力を低下させる。   In FIG. 6, when it is determined by the pump operation state determination circuit 14 that one of the low pressure condensate pumps 6 is tripped, the feed water pump control device 15, the maximum flow rate restriction setting circuit 15A, and the steam generator output change The operation of the request circuit 15B is the same as that of the third embodiment, and after the pump operation state determination circuit 14 determines that the spare machine has not been started, the specification point flow rate for two low pressure condensate pumps 6 that have continued to operate. At the same time, the maximum flow rate limit of the feed water pump 10 is changed again, and the output of the steam generator 1 is reduced to an output equal to or lower than the specified point flow rate for the number of low-pressure condensate pumps 6 that have been operated.

この結果、このプラント出力状態において、継続運転は可能となるが、給水装置を構成する各ポンプの1台当たりの運転容量が異なるという問題がある。つまり、低圧復水ポンプ6は2台で運転しているのに対し、高圧復水ポンプ7と給水ポンプ10はそれぞれ3台で運転している。過渡的な運用であれば問題とならないが、継続運転する場合には、3台で運転するこれらのポンプも2台運転に移行するべきである。   As a result, continuous operation is possible in this plant output state, but there is a problem that the operation capacity per pump of each pump constituting the water supply apparatus is different. That is, while the low-pressure condensate pump 6 is operated with two units, the high-pressure condensate pump 7 and the feed water pump 10 are operated with three units each. If it is a transient operation, it will not be a problem, but if it is continuously operated, these pumps that are operated with 3 units should also be shifted to 2 units.

そこで、給水ポンプ制御装置15は、ポンプ運転状態判定回路14が予備機不起動を判定した後に、蒸気発生器出力変更要求回路15Bから蒸気発生器出力制御装置100へ出力変更指令を出力するとともに、高圧復水ポンプ7及び給水ポンプ10をそれぞれ1台停止させる。このことにより、運転継続した低圧復水ポンプ6と高圧復水ポンプ7と給水ポンプ10の1台当たりの運転容量がバランスされるとともに、蒸気発生器1が必要とする必要給水流量と低圧復水ポンプ6、高圧復水ポンプ7、高圧ドレンポンプ13及び給水ポンプ10が蒸気発生器1に送水する給水流量とがバランスする。この結果、蒸気発生器1の水位低下によるプラントトリップの発生は防止できる。   Therefore, the feed water pump control device 15 outputs an output change command from the steam generator output change request circuit 15B to the steam generator output control device 100 after the pump operation state determination circuit 14 determines that the spare machine has not been started, One high-pressure condensate pump 7 and one water supply pump 10 are stopped. This balances the operating capacities of the low-pressure condensate pump 6, the high-pressure condensate pump 7, and the feed water pump 10 that have been continuously operated, and the required feed water flow rate and low-pressure condensate required by the steam generator 1. The pump 6, the high-pressure condensate pump 7, the high-pressure drain pump 13, and the feed water pump 10 are balanced with the feed water flow rate supplied to the steam generator 1. As a result, the occurrence of a plant trip due to a drop in the water level of the steam generator 1 can be prevented.

上述した本発明の給水ポンプ制御装置の第4の実施の形態によれば、上述した第1乃至第3の実施の形態と同様な効果を得ることができる。   According to the fourth embodiment of the feed water pump control device of the present invention described above, the same effects as those of the first to third embodiments described above can be obtained.

なお、本発明の実施の形態においては、低圧復水ポンンプ6の複数台の内の1台のトリップの場合を例に説明したが、高圧復水ポンプ7の複数台の内の1台のトリップにおける最大給水流量制限変更についても同様である。図7に低圧復水ポンプ6、高圧復水ポンプ7の各ポンプのトリップ、予備機起動又は不起動の場合の最大給水流量制限変更の例を示す。   In the embodiment of the present invention, the case of one trip among a plurality of low-pressure condensate pumps 6 has been described as an example, but one trip among a plurality of high-pressure condensate pumps 7 is described. The same applies to the maximum water supply flow rate restriction change in FIG. 7 shows an example of the maximum water supply flow rate restriction change in the case of tripping of each of the low-pressure condensate pump 6 and the high-pressure condensate pump 7, standby machine activation or non-activation.

また、本発明の実施の形態においては、2段構成の復水ポンプを備えた発電プラントに適用した場合を説明したが、これに限るものではない。例えば、1段構成の復水ポンプを備えた発電プラントにも適用できる。また、各ポンプを4台構成とした例で説明しているが、例えば3台や5台構成であっても適用できる。   In the embodiment of the present invention, the case where the present invention is applied to a power plant including a condensate pump having a two-stage configuration has been described. However, the present invention is not limited to this. For example, the present invention can be applied to a power plant including a single-stage condensate pump. Further, although an example in which each pump is configured with four units has been described, for example, a configuration with three units or five units can be applied.

さらに、本発明の実施の形態においては、ドレンポンプによるドレンアップを備えた発電プラントに適用した場合を説明したが、これに限るものではない。例えば、ドレンを下流の給水加熱器へドレンカスケードする発電プラントにも適用しても同一の効果を奏することができる。   Furthermore, in the embodiment of the present invention, the case where the present invention is applied to a power plant provided with a drain up by a drain pump has been described, but the present invention is not limited to this. For example, the same effect can be obtained even if the drain is applied to a power generation plant that drains cascade to a downstream feed water heater.

1 蒸気発生器
2 高圧タービン
3 湿分分離加熱器
4 低圧タービン
5 復水器
6 低圧復水ポンプ
7 高圧復水ポンプ
8 低圧給水加熱器
9 可変周波数電源装置
10 給水ポンプ
11 高圧ドレンタンク
12 高圧給水加熱器
13 高圧ドレンポンプ
14 ポンプ運転状態判定回路
15 給水ポンプ制御装置
15A 最大流量制限設定回路
15B 蒸気発生器出力変更要求回路
16 給水流量制御装置
DESCRIPTION OF SYMBOLS 1 Steam generator 2 High pressure turbine 3 Moisture separation heater 4 Low pressure turbine 5 Condenser 6 Low pressure condensate pump 7 High pressure condensate pump 8 Low pressure feed water heater 9 Variable frequency power supply device 10 Feed water pump 11 High pressure drain tank 12 High pressure feed water Heater 13 High-pressure drain pump 14 Pump operation state determination circuit 15 Water supply pump control device 15A Maximum flow rate restriction setting circuit 15B Steam generator output change request circuit 16 Water supply flow rate control device

Claims (3)

復水器からの復水を昇圧するために複数台を並列に設置した復水ポンプと,前記復水ポンプで昇圧された復水をさらに昇圧して蒸気発生器に供給するために複数台を並列に設置した給水ポンプと,前記給水ポンプの電動機を可変速駆動する可変周波数電源装置とを有する給水装置を備え、前記給水装置における前記可変周波数電源装置へ周波数制御指令を出力することで、前記給水ポンプの回転速度を制御する給水ポンプ制御装置であって、
前記給水ポンプ制御装置は、運転中の前記復水ポンプのトリップを検知すると、前記可変周波数電源装置への周波数制御指令に対する最大流量制限値を過渡時のみ短時間運転が認められるランアウト流量に変更するトリップ時制御手段と、前記復水ポンプの予備機起動を検知すると、前記最大流量制限値をランアウト流量から通常流量に変更する復帰時制御手段と、前記復水ポンプの予備機不起動を検知すると、前記最大流量制限値を前記ランアウト流量から復水ポンプの運転継続した台数の通常運転流量に変更する制御手段とを備えた
ことを特徴とする給水ポンプ制御装置。
A condensate pump installed in parallel to boost the condensate from the condenser, and a plurality of units to further boost the condensate boosted by the condensate pump and supply it to the steam generator. A water supply device having a water supply pump installed in parallel and a variable frequency power supply device that drives a motor of the water supply pump at a variable speed, and outputs a frequency control command to the variable frequency power supply device in the water supply device, A feed water pump control device for controlling the rotation speed of the feed water pump,
When the feed pump control device detects a trip of the condensate pump during operation, it changes the maximum flow rate limit value for the frequency control command to the variable frequency power supply device to a runout flow rate that allows a short-time operation only during a transient state. When detecting the trip time control means and the start-up of the condensate pump spare machine, detecting the return time control means for changing the maximum flow rate limit value from the run-out flow rate to the normal flow rate, and the condensate pump spare machine inactive And a control means for changing the maximum flow rate limit value from the runout flow rate to a normal operation flow rate of the number of condensate pumps that have been operated .
請求項記載の給水ポンプ制御装置において、
前記給水ポンプ制御装置は、前記復水ポンプの予備機不起動を検知すると、前記蒸気発生器の出力減少を要求する指令を前記蒸気発生器の出力制御装置に対して出力する制御手段を備えた
ことを特徴とする給水ポンプ制御装置。
In the feed water pump control device according to claim 1 ,
The feed water pump control device comprises control means for outputting a command for requesting a reduction in the output of the steam generator to the output control device of the steam generator when detecting that the spare machine of the condensate pump is not started. A feed water pump control device characterized by that.
請求項記載の給水ポンプ制御装置において、
前記給水ポンプ制御装置は、前記復水ポンプの予備機不起動を検知すると、運転継続した復水ポンプの運転台数と同数になるように、前記給水ポンプの運転台数を変更する制御手段を備えた
ことを特徴とする給水ポンプ制御装置。
In the feed water pump control device according to claim 2 ,
The water supply pump control device includes control means for changing the number of operating water pumps so that the number of operating condensate pumps is the same as the number of operating condensate pumps when the condensate pump is not activated. A feed water pump control device characterized by that.
JP2010271324A 2010-12-06 2010-12-06 Water supply pump controller Expired - Fee Related JP5550020B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010271324A JP5550020B2 (en) 2010-12-06 2010-12-06 Water supply pump controller
US13/310,403 US20120183413A1 (en) 2010-12-06 2011-12-02 Reactor Feedwater Pump Control System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271324A JP5550020B2 (en) 2010-12-06 2010-12-06 Water supply pump controller

Publications (2)

Publication Number Publication Date
JP2012122626A JP2012122626A (en) 2012-06-28
JP5550020B2 true JP5550020B2 (en) 2014-07-16

Family

ID=46490897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271324A Expired - Fee Related JP5550020B2 (en) 2010-12-06 2010-12-06 Water supply pump controller

Country Status (2)

Country Link
US (1) US20120183413A1 (en)
JP (1) JP5550020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774472A (en) * 2016-11-14 2017-05-31 上海明华电力技术工程有限公司 The frequency conversion energy-saving control method of pumping system is closed to pump for high pressure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878092B (en) * 2012-10-16 2015-04-08 章礼道 Novel energy-saving and speed-regulation electric water feeding pump system
CN103133319B (en) * 2013-02-20 2016-01-27 浙江省电力公司电力科学研究院 A kind of condensing generator set Condensate Pump Frequency Conversion controlling method and system
CN105811782B (en) * 2014-12-31 2018-05-18 中核陕西铀浓缩有限公司 The special integrated variable frequency power supply of uranium enrichment
CN105387099B (en) * 2015-12-22 2017-02-15 扬州大学 Brake device for high-flow inclined and horizontal water pump units, and application method
JP6771338B2 (en) * 2016-08-26 2020-10-21 三菱パワー株式会社 Pump system and its operation method and power plant
WO2018140905A1 (en) 2017-01-27 2018-08-02 Franklin Electric Co., Inc. Motor drive system and method
CN110456835A (en) * 2019-08-28 2019-11-15 西安陕鼓动力股份有限公司 Condenser hotwell tank level control system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302288A (en) * 1978-10-23 1981-11-24 General Electric Company Fluid level control system
JPS588905A (en) * 1981-07-08 1983-01-19 株式会社日立製作所 Method of controlling feedwater for steam generator
JPS60201008A (en) * 1984-03-26 1985-10-11 Hitachi Ltd Method and apparatus for controlling operation of plant
US4650633A (en) * 1984-07-02 1987-03-17 General Electric Company Method and apparatus for protection of pump systems
JPS61237903A (en) * 1985-04-15 1986-10-23 株式会社日立製作所 Controller for water level in drain tank for feedwater heater
JPH041499A (en) * 1990-04-13 1992-01-06 Toshiba Corp Discharge flow controller for pump
JP2803486B2 (en) * 1992-09-18 1998-09-24 株式会社日立製作所 Fluid plant
JPH08116629A (en) * 1994-10-18 1996-05-07 Toshiba Corp Power supply for circulating pump for reactor
JP3800713B2 (en) * 1996-09-12 2006-07-26 株式会社明電舎 Water distribution facility control equipment
JP2009204255A (en) * 2008-02-28 2009-09-10 Hitachi-Ge Nuclear Energy Ltd Water supply device for steam generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774472A (en) * 2016-11-14 2017-05-31 上海明华电力技术工程有限公司 The frequency conversion energy-saving control method of pumping system is closed to pump for high pressure
CN106774472B (en) * 2016-11-14 2019-11-12 上海明华电力科技有限公司 The frequency conversion energy-saving control method of pumping system is closed to pump for high pressure

Also Published As

Publication number Publication date
US20120183413A1 (en) 2012-07-19
JP2012122626A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5550020B2 (en) Water supply pump controller
US8963350B1 (en) Method and apparatus for extended operation of steam turbines in islanding mode
JP6067535B2 (en) Steam turbine plant start-up method
JP2015528561A (en) Control of variable speed drives for chiller coast-through.
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP2009204255A (en) Water supply device for steam generator
JP2012163279A (en) Device for controlling flow rate of feed-water, and power plant using the same
JP2008101494A (en) Low-pressure steam turbine system and control method
JP5562806B2 (en) Reactor water level control system
US8467491B2 (en) Feedwater controller, nuclear power plant and method for controlling feedwater
JP5415171B2 (en) Water wheel governor
JP7268573B2 (en) Power generation system and method of starting power generation system
JP2933294B2 (en) Water supply equipment for nuclear power plants
JP4709809B2 (en) Water supply control device, nuclear power plant, and water supply control method
JP2008075580A (en) Low-pressure steam turbine system and method of controlling it
JP4560481B2 (en) Steam turbine plant
JPS62189385A (en) Control device for number of driving pumps
JP2010084697A (en) Pump cavitation-free control device and pump cavitation-free control method
JP2018091224A (en) Control system, steam turbine, power-generating plant and control method
JP2509631B2 (en) Pump controller
JP2020139659A (en) Water supply system, power generation plant, operation method of water supply system and recording medium in which control program for water supply system is recorded
JP6392131B2 (en) VPC power generation control device
JPH09145893A (en) Condensate and feed device
JPH08166106A (en) Water supply controller
JP2685948B2 (en) Water supply and condensate pump controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5550020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees