JP7268573B2 - Power generation system and method of starting power generation system - Google Patents

Power generation system and method of starting power generation system Download PDF

Info

Publication number
JP7268573B2
JP7268573B2 JP2019190155A JP2019190155A JP7268573B2 JP 7268573 B2 JP7268573 B2 JP 7268573B2 JP 2019190155 A JP2019190155 A JP 2019190155A JP 2019190155 A JP2019190155 A JP 2019190155A JP 7268573 B2 JP7268573 B2 JP 7268573B2
Authority
JP
Japan
Prior art keywords
steam
load
temperature
turbine
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190155A
Other languages
Japanese (ja)
Other versions
JP2021063498A (en
Inventor
義信 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2019190155A priority Critical patent/JP7268573B2/en
Publication of JP2021063498A publication Critical patent/JP2021063498A/en
Application granted granted Critical
Publication of JP7268573B2 publication Critical patent/JP7268573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、発電システム及び発電システムの起動方法に関する。 TECHNICAL FIELD The present invention relates to a power generation system and a method for starting the power generation system.

従来、高圧側タービンから排出された蒸気を再加熱して中圧タービン、低圧タービン等の低圧側タービンに供給し、発電効率を高める発電システムが知られている。この種の発電システムでは、タービン起動初期におけるタービンロータの断面温度分布の不均一による熱応力やタービンロータとケーシングの温度差による伸び差等に起因する振動が発生することがある。この振動を抑制する方法として、例えば、特許文献1には、高圧タービン第1段後内壁メタル温度及び高圧タービン第1段後蒸気温度に基づいて決定した初負荷保持時間でタービンを起動する方法が記載されている。また、特許文献2には、再熱蒸気の温度の経時変化情報に基づいて決定した流量で水を噴霧し、蒸気を発生させるガスタービンの排ガス温度を調整する方法が記載されている。 Conventionally, a power generation system is known in which steam discharged from a high-pressure turbine is reheated and supplied to a low-pressure turbine such as an intermediate-pressure turbine or a low-pressure turbine to increase power generation efficiency. In this type of power generation system, thermal stress due to non-uniform cross-sectional temperature distribution of the turbine rotor at the initial stage of turbine start-up and vibration due to expansion difference due to temperature difference between the turbine rotor and the casing may occur. As a method of suppressing this vibration, for example, Patent Document 1 discloses a method of starting the turbine with an initial load holding time determined based on the high pressure turbine first stage rear inner wall metal temperature and the high pressure turbine first stage post steam temperature. Are listed. Further, Patent Literature 2 describes a method for adjusting the exhaust gas temperature of a gas turbine that generates steam by spraying water at a flow rate determined based on information on changes in the temperature of reheated steam over time.

特開平4-203304号公報JP-A-4-203304 特開2019-27399号公報JP 2019-27399 A

しかし、特許文献1の方法では、予め初負荷保持時間を設定しても、タービン起動後の運転状況によって振動が発生することがあり、初負荷保持時間を再調整する必要があった。また、特許文献2の方法では、タービンの振動が発生しないようにガスタービンの排ガスに水を噴霧して温度を調整しているものの、振動が発生しない十分な初負荷保持時間を把握することはできなかった。従来技術には、振動発生を確実に防止できる初負荷保持時間を正確に把握するという点で改善の余地があった。 However, in the method of Patent Document 1, even if the initial load holding time is set in advance, vibration may occur depending on the operating conditions after the turbine is started, and it is necessary to readjust the initial load holding time. In addition, in the method of Patent Document 2, water is sprayed on the exhaust gas of the gas turbine to adjust the temperature so as not to generate vibration of the turbine, but it is difficult to grasp the initial load holding time sufficient to prevent vibration. could not. The conventional technology has room for improvement in terms of accurately grasping the initial load holding time that can reliably prevent the occurrence of vibration.

本発明は、起動時のタービンの振動発生を確実に防止できる発電システム及び発電システムの起動方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a power generation system and a power generation system start-up method that can reliably prevent the occurrence of vibrations in a turbine during start-up.

本発明は、蒸気を発生させるボイラと、前記ボイラから発生した蒸気が流れる高圧側タービンと、前記高圧側タービンから排出され、前記ボイラにより再加熱された再熱蒸気が流れる低圧側タービンと、前記高圧側タービン及び前記低圧側タービンの回転によって発電する発電機と、前記低圧側タービンに流入する前記再熱蒸気の温度を検出する検出部と、前記蒸気の流量により前記発電機の負荷を制御する制御部と、を備え、前記制御部は、前記発電機の負荷を、無負荷状態から、電力供給時の設定負荷よりも小さい初負荷が付与される初負荷状態を前記検出部で検出する前記再熱蒸気の温度変化率が所定値よりも小さくなるまで維持した後、前記設定負荷での負荷運転に移行する発電システムに関する。 The present invention provides a boiler for generating steam, a high-pressure side turbine in which the steam generated from the boiler flows, a low-pressure side turbine in which reheated steam discharged from the high-pressure side turbine and reheated by the boiler flows, and A generator that generates power by rotation of the high-pressure side turbine and the low-pressure side turbine, a detector that detects the temperature of the reheated steam flowing into the low-pressure side turbine, and a load of the generator that controls the flow rate of the steam. and a control unit, wherein the load of the generator is changed from a no-load state to an initial load state in which an initial load smaller than a set load at the time of power supply is applied by the detection unit. The present invention relates to a power generation system that shifts to load operation at the set load after maintaining the temperature change rate of reheated steam until it becomes smaller than a predetermined value.

前記制御部は、予め設定される設定温度を超えた状態かつ前記温度変化率が所定値よりも小さくなるまで前記初負荷状態が維持されることが好ましい。 Preferably, the controller maintains the initial load state until the temperature exceeds a preset temperature and the temperature change rate becomes smaller than a predetermined value.

本発明は、高圧側タービン及び低圧側タービンの回転によって発電する発電機を備え、前記高圧側タービンから蒸気を排出し、ボイラにより再加熱された再熱蒸気を前記低圧側タービンに流す発電システムの起動方法であって、前記発電機の負荷を、無負荷状態から、電力供給時の設定負荷よりも小さい初負荷が付与される初負荷状態を前記再熱蒸気の温度変化率が所定値よりも小さくなるまで維持するステップと、前記初負荷状態を維持するステップの後、前記設定負荷での負荷運転に移行するステップと、を含む発電システムの起動方法に関する。 The present invention provides a power generation system comprising a generator that generates power by rotation of a high-pressure side turbine and a low-pressure side turbine, wherein steam is discharged from the high-pressure side turbine and reheated steam reheated by a boiler is supplied to the low-pressure side turbine. In the starting method, the load of the generator is changed from a no-load state to an initial load state in which an initial load smaller than the set load at the time of power supply is applied, and the temperature change rate of the reheat steam is higher than a predetermined value. The present invention relates to a method for starting a power generation system, including the steps of maintaining the initial load state until it becomes smaller, and shifting to load operation at the set load after the step of maintaining the initial load state.

前記発電システムの起動方法において、予め設定される設定温度を超えた状態かつ前記温度変化率が所定値よりも小さくなるまで前記初負荷状態が維持されることが好ましい。。 In the method for starting the power generation system, it is preferable that the initial load state is maintained until the temperature exceeds a preset set temperature and the temperature change rate becomes smaller than a predetermined value. .

本発明によれば、起動時のタービンの振動発生を確実に防止できる発電システム及び発電システムの起動方法を提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a power generation system and a method for starting a power generation system that can reliably prevent the occurrence of vibrations in a turbine during start-up.

本発明の一実施形態に係る発電システムを示す概略図である。1 is a schematic diagram showing a power generation system according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る発電システムの制御部に関する電気的な構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of a control section of the power generation system according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る発電システムの実施例において測定された各種データの挙動を示す図である。FIG. 4 is a diagram showing behavior of various data measured in an example of the power generation system according to one embodiment of the present invention; 本発明の一実施形態に係る発電システムの比較例において測定された各種データの挙動を示す図である。FIG. 5 is a diagram showing behavior of various data measured in a comparative example of the power generation system according to one embodiment of the present invention;

以下、本発明の実施形態について、図面を参照しながら説明する。ただし、本発明は以下の実施形態に限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.

本発明の実施形態に係る発電システム1について説明する。図1は本実施形態に係る発電システム1の要部を示す概略図である。発電システム1は、火力発電所において蒸気を利用して発電を行うシステムである。 A power generation system 1 according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing a main part of a power generation system 1 according to this embodiment. The power generation system 1 is a system that uses steam to generate power in a thermal power plant.

まず、発電システム1の全体構成について説明する。図1に示すように、発電システム1は、ボイラ10と、高圧側タービンである高圧タービン20と、低圧側タービンである中圧タービン30及び低圧タービン41,42と、発電機50と、復水器60と、給水加熱設備70と、温度検出部80と、を備える。また、発電システム1は、蒸気及び水等の流体を流通させる流路として、主に主蒸気管101と、低温再熱蒸気管103と、高温再熱蒸気管107と、クロスオーバー管111と、復水管113,114と、給水管119,120,121,126と、を備える。さらに、発電システム1は、発電システム1の起動制御を実行する制御部90を備える。 First, the overall configuration of the power generation system 1 will be described. As shown in FIG. 1, the power generation system 1 includes a boiler 10, a high pressure turbine 20 as a high pressure side turbine, an intermediate pressure turbine 30 and low pressure turbines 41 and 42 as low pressure side turbines, a generator 50, a condensate A vessel 60 , a feed water heating facility 70 , and a temperature detection section 80 are provided. In addition, the power generation system 1 mainly includes a main steam pipe 101, a low-temperature reheat steam pipe 103, a high-temperature reheat steam pipe 107, a crossover pipe 111, and Condensate pipes 113, 114 and water supply pipes 119, 120, 121, 126 are provided. Furthermore, the power generation system 1 includes a control unit 90 that executes start-up control of the power generation system 1 .

ボイラ10は、蒸気を発生させる装置であり、過熱器11と、再熱器12と、を含んで構成される。過熱器11は、ボイラ10で発生した蒸気を過熱して高温高圧の過熱蒸気を発生させる装置である。再熱器12は、高圧タービン20から排出された蒸気を再加熱する装置である。 The boiler 10 is a device that generates steam, and includes a superheater 11 and a reheater 12 . The superheater 11 is a device that superheats steam generated in the boiler 10 to generate high-temperature and high-pressure superheated steam. The reheater 12 is a device that reheats steam discharged from the high pressure turbine 20 .

高圧タービン20と、中圧タービン30と、低圧タービン41,42と、発電機50とは、それぞれの軸同士が連結され、同軸上に配置される。本明細書では、高圧タービン20と中圧タービン30の両端の軸受のうち、高圧タービン側を第1軸受21、中圧タービン側を第2軸受31とする。 The high-pressure turbine 20, the intermediate-pressure turbine 30, the low-pressure turbines 41 and 42, and the generator 50 are coaxially arranged with their shafts connected to each other. In this specification, of the bearings at both ends of the high pressure turbine 20 and the intermediate pressure turbine 30, the high pressure turbine side is referred to as the first bearing 21, and the intermediate pressure turbine side is referred to as the second bearing 31.

高圧タービン20は、主蒸気管101によりボイラ10の過熱器11と連結され、低温再熱蒸気管103によりボイラ10の再熱器12と連結される。主蒸気管101には、主熱蒸気止め弁102が配置される。低温再熱蒸気管103には、逆止め弁104が配置される。また、主蒸気管101と低温再熱蒸気管103とは、バイパスライン105により互いに連結される。バイパスライン105には、バイパス弁106が配置される。 The high pressure turbine 20 is connected to the superheater 11 of the boiler 10 by a main steam pipe 101 and is connected to the reheater 12 of the boiler 10 by a low temperature reheat steam pipe 103 . A main heat steam stop valve 102 is arranged in the main steam pipe 101 . A check valve 104 is arranged in the cold reheat steam pipe 103 . Also, the main steam pipe 101 and the low-temperature reheat steam pipe 103 are connected to each other by a bypass line 105 . A bypass valve 106 is arranged in the bypass line 105 .

中圧タービン30は、高温再熱蒸気管107によりボイラ10の再熱器12と連結される。高温再熱蒸気管107には、再熱蒸気の温度を検出する温度検出部80と、複合再熱弁108が配置される。高温再熱蒸気管107には、温度検出部80と複合再熱弁108との間の位置にバイパスライン109が連結される。バイパスライン109は、復水器60に連結される。バイパスライン109には、バイパス弁110が配置される。 The intermediate pressure turbine 30 is connected with the reheater 12 of the boiler 10 by a hot reheat steam pipe 107 . A temperature detection unit 80 for detecting the temperature of the reheat steam and a composite reheat valve 108 are arranged in the high-temperature reheat steam pipe 107 . A bypass line 109 is connected to the high-temperature reheat steam pipe 107 at a position between the temperature detector 80 and the composite reheat valve 108 . Bypass line 109 is connected to condenser 60 . A bypass valve 110 is arranged in the bypass line 109 .

低圧タービン41,42は、クロスオーバー管111により中圧タービン30と連結される。また、低圧タービン41,42の下流側には、復水器60が配置される。 The low-pressure turbines 41 and 42 are connected with the intermediate-pressure turbine 30 by a crossover pipe 111 . A condenser 60 is arranged downstream of the low-pressure turbines 41 and 42 .

発電機50は、高圧タービン20、中圧タービン30、及び低圧タービン41,42の回転により駆動され、発電する。 The generator 50 is driven by the rotation of the high-pressure turbine 20, the intermediate-pressure turbine 30, and the low-pressure turbines 41 and 42 to generate electricity.

復水器60は、低圧タービン41,42から排出された蒸気と、バイパスライン109から送られた蒸気を回収して水に戻す装置である。復水器60には、冷却水が流通する冷却管112と、冷却管112に冷却水を圧送する主冷却ポンプ61とが配置される。復水器60の下流側には、復水器60で凝縮した水を圧送する復水抽出ポンプ62とグランド蒸気をドレン化するグランド蒸気復水器63が配置される。 The condenser 60 is a device that recovers the steam discharged from the low-pressure turbines 41 and 42 and the steam sent from the bypass line 109 and returns it to water. The condenser 60 is provided with a cooling pipe 112 through which cooling water flows and a main cooling pump 61 that pumps the cooling water to the cooling pipe 112 . On the downstream side of the condenser 60, a condensate extraction pump 62 for pumping water condensed in the condenser 60 and a gland steam condenser 63 for draining the gland steam are arranged.

給水加熱設備70は、復水器60から排出された水を加熱して、給水としてボイラ10に供給する設備である。給水加熱設備70は、給水を加熱する低圧給水加熱器71~73及び高圧給水加熱器76~78と、給水を脱気する脱気器/給水処理装置74と、給水を圧送する給水ポンプユニット75と、を備える。 The feed water heating facility 70 is a facility that heats the water discharged from the condenser 60 and supplies it to the boiler 10 as feed water. The feedwater heating equipment 70 includes low-pressure feedwater heaters 71 to 73 and high-pressure feedwater heaters 76 to 78 that heat the feedwater, a deaerator/feedwater treatment device 74 that deaerates the feedwater, and a feedwater pump unit 75 that pumps the feedwater. And prepare.

次に、発電システム1の運転時における蒸気等の流体の流れについて説明する。 Next, the flow of fluid such as steam during operation of the power generation system 1 will be described.

ボイラ10で発生した蒸気を過熱器11で過熱した過熱蒸気は、主蒸気管101を通って高圧タービン20に送られ、高圧タービン20を回転させる。高圧タービン20の回転に用いられた蒸気は、低温再熱蒸気管103を介してボイラ10の再熱器12に送られる。 Superheated steam generated by the boiler 10 and superheated by the superheater 11 is sent to the high pressure turbine 20 through the main steam pipe 101 to rotate the high pressure turbine 20 . The steam used to rotate the high pressure turbine 20 is sent to the reheater 12 of the boiler 10 via the low temperature reheat steam pipe 103 .

再熱器12で再加熱された蒸気である再熱蒸気は、高温再熱蒸気管107を通って中圧タービン30に送られ、中圧タービン30を回転させる。中圧タービン30の回転に用いられた蒸気は、クロスオーバー管111を介して低圧タービン41,42に送られる。 The reheated steam, which is the steam reheated by the reheater 12 , is sent to the intermediate pressure turbine 30 through the high temperature reheat steam pipe 107 to rotate the intermediate pressure turbine 30 . Steam used to rotate the intermediate pressure turbine 30 is sent to the low pressure turbines 41 and 42 via the crossover pipe 111 .

低圧タービン41,42に送られた蒸気は、低圧タービン41,42を回転させる。低圧タービン41,42の回転に用いられた蒸気は、復水器60に送られる。 The steam sent to the low pressure turbines 41,42 rotates the low pressure turbines 41,42. Steam used to rotate the low pressure turbines 41 and 42 is sent to the condenser 60 .

復水器60に送られた蒸気は、冷却管112を流れる冷却水との熱交換により冷却され、水に戻される。復水器60により水に戻された復水は、復水抽出ポンプ62により圧送され、復水管113を流れ、グランド蒸気復水器64を介して給水加熱設備70に送られる。 The steam sent to the condenser 60 is cooled by heat exchange with cooling water flowing through the cooling pipe 112 and returned to water. The condensate returned to water by the condenser 60 is pumped by the condensate extraction pump 62 , flows through the condensate pipe 113 , and is sent to the feedwater heating facility 70 via the gland steam condenser 64 .

給水加熱設備70に送られた給水は、復水管114を流れ、低圧給水加熱器71~73で加熱され、給水管119を介して脱気器/給水処理装置74に送られる。また、バイパスライン115に配置されるバイパス弁116やバイパスライン117に配置されるバイパス弁118を開くことにより、低圧給水加熱器71~73を通過させずに給水を脱気器/給水処理装置74に送ることもできる。 Feedwater sent to the feedwater heating facility 70 flows through the condenser pipe 114 , is heated by the low-pressure feedwater heaters 71 to 73 , and is sent to the deaerator/feedwater treatment device 74 via the feedwater pipe 119 . Further, by opening the bypass valve 116 arranged in the bypass line 115 and the bypass valve 118 arranged in the bypass line 117, the feed water is supplied to the deaerator/feed water treatment device 74 without passing through the low-pressure feed water heaters 71 to 73. can also be sent to

脱気器/給水処理装置74では、給水に含まれる溶存酸素を除去する脱気が行われる。脱気された給水は、給水管120を介して給水ポンプユニット75に送られる。給水ポンプユニット75は、脱気処理された給水を給水管121に圧送する。 The deaerator/feed water treatment device 74 performs degassing to remove dissolved oxygen contained in the feed water. The degassed water supply is sent to the water supply pump unit 75 via the water supply pipe 120 . The water supply pump unit 75 pumps degassed water supply to the water supply pipe 121 .

給水管121に圧送された給水は、高圧給水加熱器76~78で加熱され、給水管126を介してボイラ10へ送られる。また、バイパスライン122に配置されるバイパス弁123やバイパスライン124に配置されるバイパス弁125を開くことにより、高圧給水加熱器76~78を通過させずに給水をボイラ10に送ることもできる。 The feed water pressure-fed to the feed water pipe 121 is heated by the high-pressure feed water heaters 76 to 78 and sent to the boiler 10 via the feed pipe 126 . By opening the bypass valve 123 arranged in the bypass line 122 and the bypass valve 125 arranged in the bypass line 124, the feed water can be sent to the boiler 10 without passing through the high pressure feed water heaters 76-78.

ボイラ10へ送られた給水は、ボイラ10と過熱器11で過熱蒸気となり、主蒸気管101を介して高圧タービン20へ供給される。 The feed water sent to the boiler 10 becomes superheated steam in the boiler 10 and the superheater 11 and is supplied to the high pressure turbine 20 via the main steam pipe 101 .

次に、制御部90について説明する。図2は、発電システム1の制御部90に関する電気的な構成を示すブロック図である。 Next, the controller 90 will be described. FIG. 2 is a block diagram showing an electrical configuration of the controller 90 of the power generation system 1. As shown in FIG.

図2に示すように、制御部90は、温度変化率算出部91と、出力判定部92とを含むコンピュータである。制御部90は、ボイラ10、温度検出部80等と電気的に接続される。制御部90は、温度検出部80からの情報に基づいて、発電機50の負荷を制御する。 As shown in FIG. 2, the controller 90 is a computer including a temperature change rate calculator 91 and an output determiner 92 . The control unit 90 is electrically connected to the boiler 10, the temperature detection unit 80, and the like. The controller 90 controls the load of the generator 50 based on information from the temperature detector 80 .

制御部90による発電機50の負荷の制御について説明する。発電システム1が起動すると、制御部90は、高圧タービン20に過熱蒸気を供給し、発電機50の回転速度を所定の回転速度まで上昇させる。本実施形態における所定の回転速度は例えば3600rpmである。このとき、発電機50は電気を出力していない無負荷状態である。 Control of the load of the generator 50 by the controller 90 will be described. When the power generation system 1 starts up, the control unit 90 supplies superheated steam to the high pressure turbine 20 and increases the rotation speed of the generator 50 to a predetermined rotation speed. The predetermined rotational speed in this embodiment is, for example, 3600 rpm. At this time, the generator 50 is in a no-load state in which it does not output electricity.

所定時間経過後、制御部90は、電力供給時の設定負荷(定格負荷)よりも小さい初負荷が付与される初負荷保持に切り替える。このとき、制御部90は、発電機50の回転速度を維持するために、ボイラ10から発生する蒸気量を増やす制御を行う。 After a predetermined time has elapsed, the control unit 90 switches to initial load holding in which an initial load smaller than the set load (rated load) at the time of power supply is applied. At this time, the control unit 90 performs control to increase the amount of steam generated from the boiler 10 in order to maintain the rotation speed of the generator 50 .

蒸気量が増えると、高圧タービン20から排出され、再熱器12で再加熱された再熱蒸気が、高圧高温の状態を維持しながら高温再熱蒸気管107を介して中圧タービン30及び低圧タービン41,42に流入する。再熱蒸気の温度は、高温再熱蒸気管107における再熱器12と複合再熱弁108の間に配置された温度検出部80により検出される。 When the amount of steam increases, the reheated steam discharged from the high pressure turbine 20 and reheated by the reheater 12 passes through the high temperature reheat steam pipe 107 to the intermediate pressure turbine 30 and the low pressure steam while maintaining a high pressure and high temperature state. It flows into turbines 41 , 42 . The temperature of the reheat steam is detected by a temperature detector 80 arranged between the reheater 12 and the composite reheat valve 108 in the high temperature reheat steam pipe 107 .

再熱蒸気の温度の検出結果は、制御部90の温度変化率算出部91により監視される。温度変化率算出部91は、連続的に受信した再熱蒸気の温度の検出結果から再熱蒸気の温度変化率を算出する。再熱蒸気の温度変化率は、再熱蒸気の温度を微分したものであってもよく、単位時間当たりの再熱蒸気の温度の上昇分であってもよい。 The detection result of the reheat steam temperature is monitored by the temperature change rate calculator 91 of the controller 90 . The temperature change rate calculation unit 91 calculates the temperature change rate of the reheat steam from the continuously received temperature detection results of the reheat steam. The temperature change rate of the reheat steam may be obtained by differentiating the temperature of the reheat steam, or may be an increase in the temperature of the reheat steam per unit time.

制御部90は、温度検出部80により検出された再熱蒸気の温度が予め設定される設定温度を超えた状態であり、かつ、温度変化率算出部91により算出される再熱蒸気の温度変化率が所定値よりも小さくなったと出力判定部92が判定した場合に、発電機50の出力の上昇を開始し、設定負荷での負荷運転に切り替える。所定値は、各設備や条件等により実証的に決定することができる。 The control unit 90 determines that the temperature of the reheat steam detected by the temperature detection unit 80 exceeds a preset set temperature, and the temperature change of the reheat steam calculated by the temperature change rate calculation unit 91 is detected. When the output determining unit 92 determines that the rate has become smaller than a predetermined value, the output of the generator 50 starts increasing and switches to load operation at the set load. The predetermined value can be empirically determined according to each facility and conditions.

本実施形態に係る発電システム1によれば、再熱蒸気の温度の上昇が安定したタイミングで、発電機50の出力を上昇させるための蒸気量を増やす。これにより、高圧タービン20だけでなく、中圧タービン30及び低圧タービン41,42が均質に温められた状態で、更なる熱を各タービンに加えることができる。よって、出力上昇時にタービンロータの断面温度分布の不均一とタービンロータとケーシングの過渡的な温度差が生じ難くなり、タービンの振動に起因する熱応力やタービンロータとケーシングの伸び差に起因する振動の発生を抑制できる。 According to the power generation system 1 according to the present embodiment, the amount of steam for increasing the output of the generator 50 is increased at the timing when the temperature rise of the reheat steam stabilizes. This allows additional heat to be applied to each turbine while the high pressure turbine 20 as well as the intermediate pressure turbine 30 and low pressure turbines 41 and 42 are homogeneously warmed. Therefore, when the output increases, the uneven cross-sectional temperature distribution of the turbine rotor and the transient temperature difference between the turbine rotor and the casing are less likely to occur, and the thermal stress caused by the vibration of the turbine and the vibration caused by the difference in elongation between the turbine rotor and the casing. can suppress the occurrence of

次に、本発明の実施例について説明する。ただし、本発明は以下の実施例に限定されるものではない。 Next, examples of the present invention will be described. However, the present invention is not limited to the following examples.

[実施例]
図3は本発明の実施例における発電システム1の起動初期における各種データの挙動を示す図である。図3の(A)は発電機50の出力及びタービンの伸びを示す図、図3の(B)は再熱蒸気の温度及び再熱蒸気の圧力を示す図、図3の(C)は第1軸受21の振動及び第2軸受31の振動を示す図である。図3の(A)の紙面左側の縦軸は発電機の出力であり、紙面右側の縦軸はタービンの伸びである。図3の(B)の紙面左側の縦軸は再熱蒸気の温度、紙面左側の縦軸は再熱蒸気の圧力である。図3の(C)の縦軸は第1軸受21及び第2軸受31の振動の大きさである。図3の(A)から(C)の横軸は経過時間を示す。本実施例では、上記実施形態の発電システム1により実施した。また、本実施例では、初負荷状態を維持する初負荷保持での発電機50による出力(発電機出力)を25MWに設定し、負荷運転での発電機出力を125MWに設定した。
[Example]
FIG. 3 is a diagram showing the behavior of various data at the initial stage of activation of the power generation system 1 in the embodiment of the present invention. (A) of FIG. 3 shows the output of the generator 50 and the elongation of the turbine, (B) of FIG. 3 shows the temperature and pressure of the reheat steam, and (C) of FIG. 4 is a diagram showing vibration of a first bearing 21 and vibration of a second bearing 31; FIG. The vertical axis on the left side of FIG. 3A is the generator output, and the vertical axis on the right side of the page is the turbine elongation. The vertical axis on the left side of the paper surface of FIG. 3B is the temperature of the reheat steam, and the vertical axis on the left side of the paper surface is the pressure of the reheat steam. The vertical axis in (C) of FIG. 3 is the magnitude of vibration of the first bearing 21 and the second bearing 31 . The horizontal axis of (A) to (C) in FIG. 3 indicates the elapsed time. In this example, the power generation system 1 of the above embodiment was used. Further, in this embodiment, the output (generator output) of the generator 50 in initial load holding for maintaining the initial load state is set to 25 MW, and the generator output in load operation is set to 125 MW.

図3の(A)に示すように、タービンの伸びは、初負荷保持開始時から一定の割合で上昇した。図3の(B)に示すように、再熱蒸気の温度は、初負荷保持開始時から急激に上昇したが、120分前後で温度が安定し、温度変化率が小さくなった。図3の(C)に示すように、第2軸受31の振動は、初負荷保持開始時から50分後(後述する比較例における初負荷保持完了時)に94μmであったが、緩やかに減少し、初負荷保持開始時から120分後に87μmであった。これは、高圧タービン20のサーマルアンバランスが減少したためであると考えられる。 As shown in FIG. 3A, the turbine elongation increased at a constant rate from the start of holding the initial load. As shown in FIG. 3B, the temperature of the reheated steam increased rapidly from the start of holding the initial load, but the temperature stabilized around 120 minutes and the rate of change in temperature decreased. As shown in FIG. 3C, the vibration of the second bearing 31 was 94 μm 50 minutes after the start of holding the initial load (when the holding of the initial load was completed in a comparative example to be described later), but gradually decreased. 120 minutes after the start of holding the initial load, it was 87 μm. It is believed that this is because the thermal imbalance of the high pressure turbine 20 has decreased.

本実施例では、初負荷保持開始から120分後に、出力判定部92が再熱蒸気の温度変化率が所定値よりも小さくなったと判定し、発電機50による出力の上昇を開始させる負荷運転に切り替えた。出力を上昇させるために再熱蒸気の温度が再び急上昇しているにもかかわらず、第2軸受31の振動は、安定した低い値で推移し、125MW到達時で60μmであった。これは、負荷運転開始時にタービン全体が均質に温められた状態であるので、さらに熱を加えても高圧タービン20のサーマルアンバランスが生じ難いためであると考えられる。 In this embodiment, 120 minutes after the start of holding the initial load, the output determination unit 92 determines that the temperature change rate of the reheat steam has become smaller than a predetermined value, and the load operation starts to start increasing the output of the generator 50. switched. Although the temperature of the reheat steam rose again to increase the power output, the vibration of the second bearing 31 remained at a stable low value of 60 μm when reaching 125 MW. This is presumably because the entire turbine is in a homogeneously warmed state at the start of load operation, so thermal imbalance in the high-pressure turbine 20 is less likely to occur even if additional heat is applied.

[比較例]
本発明の比較例は、制御部90を除き、上記実施例と同様の構成の発電システムにより実施した。また、比較例では、実施例と同様に初負荷保持での発電機50による出力を25MW、負荷運転での出力を125MWに設定した。一方、初負荷保持時間は、予め設定された50分間である。
[Comparative example]
A comparative example of the present invention was carried out using a power generation system having the same configuration as that of the above example except for the control unit 90 . In the comparative example, the output of the generator 50 was set to 25 MW while the initial load was maintained, and the output during load operation was set to 125 MW, as in the example. On the other hand, the initial load retention time is 50 minutes, which is set in advance.

図4は、本発明の比較例における発電システムの起動初期における各種データの挙動を示す図である。図4の(A)は発電機50の出力及び回転速度を示す図、図4の(B)は第2軸受31の振動と位相を示す図である。図4の(A)の紙面左側の縦軸は発電機の出力であり、紙面右側の縦軸は発電機の回転速度である。図4の(B)の紙面左側の縦軸は第2軸受31の振動であり、紙面右側の縦軸は第2軸受31の位相である。図4の(A)から(B)の横軸は経過時間を示す。 FIG. 4 is a diagram showing the behavior of various data at the initial stage of activation of the power generation system in the comparative example of the present invention. 4A is a diagram showing the output and rotational speed of the generator 50, and FIG. 4B is a diagram showing the vibration and phase of the second bearing 31. FIG. The vertical axis on the left side of FIG. 4A is the output of the generator, and the vertical axis on the right side of the paper is the rotation speed of the generator. The vertical axis on the left side of FIG. 4B is the vibration of the second bearing 31 , and the vertical axis on the right side of the page is the phase of the second bearing 31 . The horizontal axis of (A) to (B) in FIG. 4 indicates the elapsed time.

図4に示すように、第2軸受31の振動は、初負荷保持の開始(並列)とともに急上昇し、初負荷保持完了時まで高い値を維持した。負荷運転に切り替えた後、第2軸受31の振動が約100μmを越えたことが確認できる。これは、初負荷保持開始から50分の時点では、高圧タービン20が均質に温められておらず、その状態でさらに再熱蒸気の温度を上昇させたために、高圧タービン20のサーマルアンバランスが増大したためであると考えられる。実施例の図3に示すように、初負荷保持開始後50分の時点では、再熱蒸気の温度が上がり切っておらず、温度が安定していないことが確認できる。 As shown in FIG. 4, the vibration of the second bearing 31 sharply increased with the start of holding the initial load (parallel), and maintained a high value until the completion of holding the initial load. After switching to load operation, it can be confirmed that the vibration of the second bearing 31 exceeded about 100 μm. This is because the high-pressure turbine 20 was not uniformly warmed 50 minutes after the start of holding the initial load, and the temperature of the reheated steam was further increased in this state, so the thermal imbalance of the high-pressure turbine 20 increased. This is thought to be because As shown in FIG. 3 of the embodiment, 50 minutes after the start of holding the initial load, the temperature of the reheated steam has not risen completely, and it can be confirmed that the temperature is not stable.

以上説明した本実施形態に係る発電システム1及び発電システムの起動方法によれば、以下のような効果を奏する。 According to the power generation system 1 and the method for starting the power generation system according to the present embodiment described above, the following effects are obtained.

本実施形態に係る発電システム1は、蒸気を発生させるボイラ10と、ボイラ10から発生した蒸気が流れる高圧タービン20と、高圧タービン20から排出され、ボイラ10により再加熱された再熱蒸気が流れる中圧タービン30、低圧タービン41,42と、高圧タービン20及び中圧タービン30、低圧タービン41,42の回転によって発電する発電機50と、中圧タービン30、低圧タービン41,42に流入する再熱蒸気の温度を検出する温度検出部80と、蒸気の流量により発電機50の負荷を制御する制御部90と、を備え、制御部90は、発電機50の負荷を、無負荷状態から、電力供給時の設定負荷よりも小さい初負荷が付与される初負荷状態を温度検出部80で検出する再熱蒸気の温度変化率が所定値よりも小さくなるまで維持した後、設定負荷での負荷運転に移行する。 The power generation system 1 according to the present embodiment includes a boiler 10 that generates steam, a high pressure turbine 20 through which the steam generated from the boiler 10 flows, and reheated steam discharged from the high pressure turbine 20 and reheated by the boiler 10 flows. Intermediate pressure turbine 30, low pressure turbines 41, 42; generator 50 that generates power by rotation of high pressure turbine 20, intermediate pressure turbine 30, low pressure turbines 41, 42; A temperature detection unit 80 that detects the temperature of the hot steam and a control unit 90 that controls the load of the generator 50 based on the flow rate of the steam. After maintaining the initial load state in which an initial load smaller than the set load at the time of power supply is applied until the temperature change rate of the reheat steam detected by the temperature detection unit 80 becomes smaller than a predetermined value, the load at the set load Move on to driving.

これにより、中圧タービン30及び低圧タービン41,42に送られる再熱蒸気の温度が安定し、タービン全体がより均質に温められた状態で負荷運転に移行し、発電機50の出力を上げることができる。よって、タービンロータとケーシングの伸び差等に起因する振動を抑制でき、タービンの長寿命化を実現できる。また、再熱蒸気の温度変化率を確認しながら、発電機50の出力を調整できるので、高圧タービン20、中圧タービン30、及び低圧タービン41,42に加わる振動を確実に抑制できる。 As a result, the temperature of the reheated steam sent to the intermediate pressure turbine 30 and the low pressure turbines 41 and 42 is stabilized, and the entire turbine is warmed more homogeneously before shifting to load operation and increasing the output of the generator 50. can be done. Therefore, it is possible to suppress the vibration caused by the difference in elongation between the turbine rotor and the casing, and it is possible to extend the life of the turbine. Moreover, since the output of the generator 50 can be adjusted while checking the temperature change rate of the reheat steam, the vibrations applied to the high pressure turbine 20, the intermediate pressure turbine 30, and the low pressure turbines 41 and 42 can be reliably suppressed.

また、制御部90は、予め設定される設定温度を超えた状態かつ温度変化率が所定値よりも小さくなったときに初負荷状態から設定負荷での負荷運転に移行する。 Further, the control unit 90 shifts from the initial load state to the load operation at the set load when the preset temperature is exceeded and the temperature change rate is smaller than a predetermined value.

これにより、タービン全体の温度が十分に上がり切る前に初負荷状態から負荷運転に移行する事態の発生をより一層確実に防止できる。 As a result, it is possible to more reliably prevent the transition from the initial load state to the load operation before the temperature of the entire turbine has fully risen.

本実施形態に係る発電システムの起動方法は、高圧タービン20及び中圧タービン30、低圧タービン41,42の回転によって発電する発電機50を備え、高圧タービン20から蒸気を排出し、ボイラ10により再加熱された再熱蒸気を中圧タービン30、低圧タービン41,42に流す発電システムの起動方法であって、発電機50の負荷を、無負荷状態から、電力供給時の設定負荷よりも小さい初負荷が付与される初負荷状態を再熱蒸気の温度変化率が所定値よりも小さくなるまで維持するステップと、初負荷状態を維持するステップの後、設定負荷での負荷運転に移行するステップと、を含む。 The power generation system startup method according to the present embodiment includes a power generator 50 that generates power by rotation of the high pressure turbine 20, the intermediate pressure turbine 30, and the low pressure turbines 41 and 42. Steam is discharged from the high pressure turbine 20, and A power generation system start-up method for flowing heated reheated steam to an intermediate pressure turbine 30 and low pressure turbines 41 and 42, wherein the load of the generator 50 is reduced from a no-load state to an initial load lower than the set load during power supply. a step of maintaining the initial load state in which the load is applied until the temperature change rate of the reheat steam becomes smaller than a predetermined value; and a step of shifting to load operation at the set load after the step of maintaining the initial load state. ,including.

これにより、再熱蒸気の温度変化率が小さくなるまで初負荷状態を維持するので、タービン全体が均質に温められている状態で、負荷運転に移行することができる。よって、高圧タービン20のサーマルアンバランスに起因する起動時のタービンの振動発生を確実に防止できる。 As a result, the initial load state is maintained until the temperature change rate of the reheat steam becomes small, so that the load operation can be started while the entire turbine is uniformly warmed. Therefore, it is possible to reliably prevent the vibration of the high-pressure turbine 20 from occurring during start-up due to the thermal imbalance of the turbine.

また、本実施形態に係る発電システムの起動方法は、予め設定される設定温度を超えた状態かつ温度変化率が所定値よりも小さくなるまで初負荷状態が維持される。 Further, in the method for starting the power generation system according to the present embodiment, the initial load state is maintained until the preset temperature is exceeded and the temperature change rate becomes smaller than a predetermined value.

これにより、タービン全体の温度が十分に上がり切る前に初負荷状態から負荷運転に移行することをより確実に防止できる。 As a result, it is possible to more reliably prevent the transition from the initial load state to the load operation before the temperature of the entire turbine has fully risen.

以上、本発明の好ましい実施形態について説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。上記実施形態では、予め設定される設定温度を超えた状態かつ温度変化率が所定値よりも小さくなることが通常運転への移行条件であったが、移行条件は他の条件を適宜変更することができる。例えば、温度変化率が所定値よりも小さくなることだけを移行条件としてもよいし、他の条件を追加してもよい。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be modified as appropriate. In the above embodiment, the condition for transitioning to normal operation is that the temperature exceeds the preset set temperature and the rate of change in temperature is less than a predetermined value. can be done. For example, the only transition condition may be that the temperature change rate is smaller than a predetermined value, or other conditions may be added.

10 ボイラ
20 高圧タービン(高圧側タービン)
30 中圧タービン(低圧側タービン)
41,42 低圧タービン(低圧側タービン)
50 発電機
80 検出部(温度検出部)
90 制御部
10 boiler 20 high pressure turbine (high pressure side turbine)
30 intermediate pressure turbine (low pressure side turbine)
41, 42 low pressure turbine (low pressure side turbine)
50 generator 80 detector (temperature detector)
90 control unit

Claims (4)

蒸気を発生させるボイラと、
前記ボイラから発生した蒸気が流れる高圧側タービンと、
前記高圧側タービンから排出され、前記ボイラにより再加熱された再熱蒸気が流れる低圧側タービンと、
前記高圧側タービン及び前記低圧側タービンの回転によって発電する発電機と、
前記低圧側タービンに流入する前記再熱蒸気の温度を検出する検出部と、
前記蒸気の流量により前記発電機の負荷を制御する制御部と、
を備え、
前記制御部は、
前記発電機の負荷を、無負荷状態から、電力供給時の設定負荷よりも小さい初負荷が付与される初負荷状態を前記検出部で検出する前記再熱蒸気の温度変化率が所定値よりも小さくなるまで維持した後、前記設定負荷での負荷運転に移行する発電システム。
a boiler for generating steam;
a high-pressure side turbine through which steam generated from the boiler flows;
a low-pressure side turbine through which reheated steam discharged from the high-pressure side turbine and reheated by the boiler flows;
a generator that generates power by rotation of the high pressure side turbine and the low pressure side turbine;
a detection unit that detects the temperature of the reheat steam flowing into the low-pressure turbine;
a control unit that controls the load of the generator according to the flow rate of the steam;
with
The control unit
The load of the generator is changed from a no-load state to an initial load state in which an initial load smaller than a set load at the time of power supply is applied by the detection unit, and the temperature change rate of the reheat steam is detected by the detection unit is higher than a predetermined value. A power generation system that maintains the load until it becomes small, and then shifts to load operation at the set load.
前記制御部は、
予め設定される設定温度を超えた状態かつ前記温度変化率が所定値よりも小さくなるまで前記初負荷状態が維持される請求項1に記載の発電システム。
The control unit
2. The power generation system according to claim 1, wherein the initial load state is maintained until a preset temperature is exceeded and the temperature change rate becomes smaller than a predetermined value.
高圧側タービン及び低圧側タービンの回転によって発電する発電機を備え、前記高圧側タービンから蒸気を排出し、ボイラにより再加熱された再熱蒸気を前記低圧側タービンに流す発電システムの起動方法であって、
前記発電機の負荷を、無負荷状態から、電力供給時の設定負荷よりも小さい初負荷が付与される初負荷状態を前記再熱蒸気の温度変化率が所定値よりも小さくなるまで維持するステップと、
前記初負荷状態を維持するステップの後、前記設定負荷での負荷運転に移行するステップと、を含む発電システムの起動方法。
A method for starting a power generation system comprising a generator that generates power by rotation of a high-pressure side turbine and a low-pressure side turbine, discharging steam from the high-pressure side turbine, and supplying reheated steam reheated by a boiler to the low-pressure side turbine. hand,
A step of maintaining the load of the generator from a no-load state to an initial load state in which an initial load smaller than the set load at the time of power supply is applied until the temperature change rate of the reheat steam becomes smaller than a predetermined value. and,
and a step of shifting to load operation at the set load after the step of maintaining the initial load state.
予め設定される設定温度を超えた状態かつ前記温度変化率が所定値よりも小さくなるまで前記初負荷状態が維持される請求項3に記載の発電システムの起動方法。 4. The power generation system start-up method according to claim 3, wherein the initial load state is maintained until the temperature exceeds a preset temperature and the temperature change rate becomes smaller than a predetermined value.
JP2019190155A 2019-10-17 2019-10-17 Power generation system and method of starting power generation system Active JP7268573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190155A JP7268573B2 (en) 2019-10-17 2019-10-17 Power generation system and method of starting power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190155A JP7268573B2 (en) 2019-10-17 2019-10-17 Power generation system and method of starting power generation system

Publications (2)

Publication Number Publication Date
JP2021063498A JP2021063498A (en) 2021-04-22
JP7268573B2 true JP7268573B2 (en) 2023-05-08

Family

ID=75487891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190155A Active JP7268573B2 (en) 2019-10-17 2019-10-17 Power generation system and method of starting power generation system

Country Status (1)

Country Link
JP (1) JP7268573B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320625A (en) * 1980-04-30 1982-03-23 General Electric Company Method and apparatus for thermal stress controlled loading of steam turbines
JPH04298602A (en) * 1991-03-27 1992-10-22 Toshiba Corp Steam turbine starting equipment

Also Published As

Publication number Publication date
JP2021063498A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP5597597B2 (en) Power generator
JP5227352B2 (en) System and method for pre-warming a heat recovery steam generator and associated steam line
JP5981693B2 (en) Method and system for determining safe drum water level in combined cycle operation
JP2009511809A (en) Steam turbine warm-up method
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
US20100229523A1 (en) Continuous combined cycle operation power plant and method
EP2540995B1 (en) Power generation apparatus
JP2009085044A (en) Compressor and heat pump system
WO2015141458A1 (en) Combined cycle plant, method for controlling same, and device for controlling same
JP2012122626A (en) Control apparatus of water supply pump
JP5827480B2 (en) Power generator
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP5592305B2 (en) Power generator
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP7268573B2 (en) Power generation system and method of starting power generation system
JP5424711B2 (en) Steam turbine power generation system
RU2392452C2 (en) Steam turbine warming method
JP2004353517A (en) Power generating device
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP6022712B2 (en) Method for controlling a thermal power plant using a regulating valve
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JP2017166722A (en) Method for operating power-generating plant
JP6317652B2 (en) Plant control device and combined cycle power plant
JP2019027399A (en) Combined cycle power generation plant, and its operation method and modification method
JP5289068B2 (en) Steam turbine power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7268573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150