JP5549597B2 - Electrode plate manufacturing method, electrode plate, battery, vehicle and battery-equipped device - Google Patents

Electrode plate manufacturing method, electrode plate, battery, vehicle and battery-equipped device Download PDF

Info

Publication number
JP5549597B2
JP5549597B2 JP2010541931A JP2010541931A JP5549597B2 JP 5549597 B2 JP5549597 B2 JP 5549597B2 JP 2010541931 A JP2010541931 A JP 2010541931A JP 2010541931 A JP2010541931 A JP 2010541931A JP 5549597 B2 JP5549597 B2 JP 5549597B2
Authority
JP
Japan
Prior art keywords
active material
solid electrolyte
material layer
particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010541931A
Other languages
Japanese (ja)
Other versions
JPWO2010067440A1 (en
Inventor
秀幸 永井
広和 川岡
慎司 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2010067440A1 publication Critical patent/JPWO2010067440A1/en
Application granted granted Critical
Publication of JP5549597B2 publication Critical patent/JP5549597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0414Methods of deposition of the material by screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電極基板とこの基板主面に形成された活物質層とを備える電極板の製造方法、この電極板、電池、車両、及び、電池搭載機器に関する。   The present invention relates to a method for manufacturing an electrode plate including an electrode substrate and an active material layer formed on the main surface of the substrate, the electrode plate, a battery, a vehicle, and a battery-mounted device.

基板上に成膜する手法として、静電スクリーン印刷法が知られている。静電スクリーン印刷法とは、複数の目を有する静電スクリーンと基板の被塗面との間に高電圧(例えば、500V以上)を印加して静電界を発生させると共に、帯電させた粒子を静電スクリーンの目から静電界中に投入して、クーロン力によって、粒子を被塗面に向けて飛ばし、この被塗面に堆積(塗布)させる手法である。
特許文献1では、電極構成体(電極基板)に、予め結着剤(バインダ樹脂)を塗布した後に、静電スクリーン印刷法を用いて、電極材料(活物質粒子、導電助剤等)を塗布して(堆積させて)電極材料層(活物質層)を形成する電極(電極板)の製造方法が挙げられている。
An electrostatic screen printing method is known as a method for forming a film on a substrate. In the electrostatic screen printing method, a high voltage (for example, 500 V or more) is applied between an electrostatic screen having a plurality of eyes and a coated surface of a substrate to generate an electrostatic field, and charged particles are This is a technique in which an electrostatic screen is charged into an electrostatic field from the eyes of the electrostatic screen, and particles are scattered toward the surface to be coated by Coulomb force and deposited (coated) on the surface to be coated.
In Patent Document 1, after applying a binder (binder resin) in advance to an electrode structure (electrode substrate), an electrode material (active material particles, conductive assistant, etc.) is applied using an electrostatic screen printing method. Thus, a method for producing an electrode (electrode plate) for forming (depositing) an electrode material layer (active material layer) is mentioned.

特開2004−281221号公報JP 2004-281221 A

しかしながら、特許文献1では、結着剤(バインダ樹脂)の上に、電極材料(活物質粒子等)を堆積させるので、例えば、活物質粒子同士の間にバインダ樹脂が適切に介在できない。このため、電極材料層(活物質層)における活物質粒子同士の結着力が弱くなってしまう虞がある。   However, in patent document 1, since electrode material (active material particle etc.) is deposited on binder (binder resin), binder resin cannot intervene between active material particles appropriately, for example. For this reason, there exists a possibility that the binding force of the active material particles in an electrode material layer (active material layer) may become weak.

本発明は、かかる問題に鑑みてなされたものであって、静電スクリーン印刷法を用いながらも、活物質層における活物質粒子同士の結着力を向上させた電極板の製造方法を提供することを目的とする。また、活物質粒子同士が良好に結着した活物質層を有する電極板、この電極板を用いてなる電池、この電池を搭載した車両、及び、電池搭載機器を提供することを目的とする。   The present invention has been made in view of such problems, and provides an electrode plate manufacturing method that improves the binding force between active material particles in an active material layer while using an electrostatic screen printing method. With the goal. Another object of the present invention is to provide an electrode plate having an active material layer in which active material particles are well bound, a battery using the electrode plate, a vehicle equipped with the battery, and a battery-equipped device.

そして、本発明の一態様におけるその解決手段は、導電性の電極基板と、上記電極基板の基板主面上に形成された、活物質粒子、活物質層用バインダ樹脂、及び固体電解質からなる活物質層用固体電解質粒子を有する活物質層と、を備える電極板の製造方法であって、上記活物質粒子、上記活物質層用バインダ樹脂からなる活物質層用樹脂粒子、及び上記活物質層用固体電解質粒子を、予め混合した混合粒子群を、スクリーンの目を通過させて帯電させ電界により飛ばして、上記電極基板の上記基板主面上に堆積させる静電スクリーン印刷法により、予め定めた形状に未圧縮活物質層を形成する層形成工程、前記層形成工程で形成した前記未圧縮活物質層を加熱しつつ圧縮して、前記活物質層用バインダ樹脂により前記活物質粒子及び前記活物質層用固体電解質粒子同士を結着させる熱圧プレス工程を備え、前記電極板は、前記活物質層上に固体電解質層用固体電解質粒子及び固体電解質層用バインダ樹脂からなる固体電解質層を有してなり、前記熱圧プレス工程の後に、上記固体電解質層用バインダ樹脂からなる固体電解質層用樹脂粒子及び上記固体電解質層用固体電解質粒子を、予め混合した混合粒子群を、スクリーンの目を通過させて帯電させ電界により飛ばして、前記活物質層上に堆積させる静電スクリーン印刷法により、予め定めた形状に未圧縮固体電解質層を形成する未圧縮固体電解質層形成工程を備える電極板の製造方法である。 According to an embodiment of the present invention, the solution includes an active electrode substrate, an active material particle formed on the main surface of the electrode substrate, an active material layer binder resin, and a solid electrolyte. An active material layer having a solid electrolyte particle for a material layer, and a method for producing an electrode plate, wherein the active material layer, the active material layer resin particle comprising the active material layer binder resin, and the active material layer the use solid electrolyte particles, the pre-mixed mixture particles, skipping by an electric field is charged by passing through the eyes of the screen, by the electrostatic screen printing Ru is deposited on the substrate main surface of the electrode substrate, predetermined Forming a non-compressed active material layer in a shape, compressing while heating the uncompressed active material layer formed in the layer forming step, and the active material particles and the active material layer by the binder resin for active material layer Life The electrode plate has a solid electrolyte layer comprising solid electrolyte particles for solid electrolyte layer and binder resin for solid electrolyte layer on the active material layer. After the hot-pressing step, a mixed particle group in which the solid electrolyte layer resin particles made of the solid electrolyte layer binder resin and the solid electrolyte particles for the solid electrolyte layer are mixed in advance is added to the screen. An electrode plate comprising an uncompressed solid electrolyte layer forming step of forming an uncompressed solid electrolyte layer in a predetermined shape by an electrostatic screen printing method in which the material is passed, charged, blown by an electric field, and deposited on the active material layer It is a manufacturing method.

本発明の電極板の製造方法では、活物質粒子と樹脂粒子とを予め混合した混合粒子群を、静電スクリーン印刷法で基板主面上に堆積させる。このため、樹脂粒子上に活物質粒子を静電スクリーン法で堆積させる場合に比して、未圧縮活物質層内において活物質粒子と樹脂粒子とを均一に分散させることができる。従って、この未圧縮活物質層を用いて形成した活物質層では、活物質粒子同士をバインダ樹脂により適切に結着させることができる。かくして、活物質粒子同士の結着力を向上させた電極板を製造できる。
加えて、本発明の電極板の製造方法では、層形成工程で形成した未圧縮活物質層を加熱しつつ圧縮する熱圧プレス工程を備える。このため、未圧縮活物質層内の樹脂粒子を軟化変形させて、厚み方向に見て、いずれの部位でも、活物質粒子とバインダ樹脂との比率が一定となる活物質層を形成できる。従って、活物質粒子同士をバインダ樹脂の熱融着により確実に結着させた電極板を製造できる。
In the electrode plate manufacturing method of the present invention, a mixed particle group in which active material particles and resin particles are mixed in advance is deposited on the main surface of the substrate by electrostatic screen printing. For this reason, compared with the case where active material particles are deposited on the resin particles by the electrostatic screen method, the active material particles and the resin particles can be uniformly dispersed in the uncompressed active material layer. Therefore, in the active material layer formed using this uncompressed active material layer, the active material particles can be appropriately bound together by the binder resin. Thus, an electrode plate with improved binding force between the active material particles can be produced.
In addition, the electrode plate manufacturing method of the present invention includes a hot-pressing step of compressing the uncompressed active material layer formed in the layer forming step while heating. For this reason, it is possible to soften and deform the resin particles in the uncompressed active material layer and to form an active material layer in which the ratio of the active material particles to the binder resin is constant at any part as viewed in the thickness direction. Therefore, it is possible to manufacture an electrode plate in which the active material particles are reliably bound to each other by heat-sealing the binder resin.

なお、混合粒子群には、活物質粒子及び樹脂粒子のほか、導電助剤等の粒子を含んでいても良い。また、電極基板として、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔などの金属箔や、金属板や、導電性を有する樹脂フィルム等を用いることができる。
また、バインダ樹脂としては、熱可塑性を有する樹脂を用いると良く、具体的には、熱圧プレス工程において活物質粒子同士を熱融着により結着可能な特性を有する樹脂、例えば、ポリフッ化ビニリデン(以下、PVDFとも言う)、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体等のフッ素系樹脂や、スチレンブタジエンゴム(SBR)等のゴム状樹脂が挙げられる。さらに、樹脂粒子としては、例えば、上述のバインダ樹脂を、静電スクリーン印刷法で使用可能なように、粒状にしたものが挙げられる。
In addition to the active material particles and the resin particles, the mixed particle group may contain particles such as a conductive additive. Moreover, as an electrode substrate, metal foil, such as aluminum foil, copper foil, nickel foil, stainless steel foil, a metal plate, the resin film which has electroconductivity, etc. can be used, for example.
Further, as the binder resin, it is preferable to use a resin having thermoplasticity. Specifically, a resin having a characteristic capable of binding active material particles to each other by thermal fusion in a hot press process, for example, polyvinylidene fluoride. (Hereinafter also referred to as PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoride Examples thereof include fluorine resins such as ethylene / perfluorovinyl ether copolymers and rubber resins such as styrene butadiene rubber (SBR). Furthermore, examples of the resin particles include those obtained by granulating the above-described binder resin so that they can be used in an electrostatic screen printing method.

らに、上述の電極板の製造方法であって、記固体電解質層用固体電解質粒子は、前記活物質層用固体電解質粒子と同材質であり、前記固体電解質層用樹脂粒子及び前記固体電解質層用バインダ樹脂は、前記活物質層用樹脂粒子及び前記活物質層用バインダ樹脂と同材質である電極板の製造方法とすると良い。
さらに、上述の電極板の製造方法であって、前記未圧縮固体電解質層形成工程で形成した前記未圧縮固体電解質層を加熱しつつ圧縮して、前記固体電解質層用バインダ樹脂により前記固体電解質層用固体電解質粒子同士を結着させて前記固体電解質層を形成する固体電解質層熱圧プレス工程を備える電極板の製造方法とすると良い。
さらに、上述の電極板の製造方法であって、前記電極板は、前記活物質粒子とは逆極性の逆極性活物質粒子、逆極性活物質層用バインダ樹脂、及び逆極性活物質層用固体電解質粒子からなる逆極性活物質層を前記固体電解質層上に有してなり、前記固体電解質層熱圧プレス工程の後に、上記逆極性活物質粒子、上記逆極性活物質層用バインダ樹脂からなる逆極性活物質層用樹脂粒子、及び上記逆極性活物質層用固体電解質粒子を、予め混合した混合粒子群を、スクリーンの目を通過させて帯電させ電界により飛ばして、前記固体電解質層上に堆積させる静電スクリーン印刷法により、予め定めた形状に未圧縮逆極性活物質層を形成する未圧縮逆極性活物質層形成工程を備える電極板の製造方法とすると良い。
さらに、上述の電極板の製造方法であって、前記逆極性活物質層用固体電解質粒子は、前記活物質層用固体電解質粒子及び前記固体電解質層用固体電解質粒子と同材質であり、前記逆極性活物質層用樹脂粒子及び前記逆極性活物質層用バインダ樹脂は、前記活物質層用樹脂粒子及び前記固体電解質層用樹脂粒子、並びに、前記活物質層用バインダ樹脂及び前記固体電解質層用バインダ樹脂と同材質である電極板の製造方法とすると良い。
さらに、上述の電極板の製造方法であって、前記未圧縮逆極性活物質層形成工程で形成した前記未圧縮逆極性活物質層を加熱しつつ圧縮して、前記逆極性活物質層用バインダ樹脂により前記逆極性活物質粒子、及び前記逆極性活物質層用固体電解質粒子同士を結着させて前記逆極性活物質層を形成する逆極性活物質層熱圧プレス工程を備える電極板の製造方法とすると良い。
Et al is a manufacturing method of the above-described electrode plate, serial solid electrolyte layer for a solid electrolyte particles, the a solid electrolyte particles of the same material for the active material layer, the solid electrolyte layer resin particles and the solid electrolyte The layer binder resin may be a method for producing an electrode plate made of the same material as the active material layer resin particles and the active material layer binder resin.
Furthermore, in the method for manufacturing the electrode plate described above, the uncompressed solid electrolyte layer formed in the uncompressed solid electrolyte layer forming step is compressed while being heated, and the solid electrolyte layer is formed by the binder resin for the solid electrolyte layer. The solid electrolyte layer may be bonded to each other to form the solid electrolyte layer, and a method for producing an electrode plate including a solid electrolyte layer hot-pressing step may be used.
Furthermore, in the method for manufacturing the electrode plate described above, the electrode plate includes a reverse polarity active material particle having a polarity opposite to that of the active material particle, a binder resin for the reverse polarity active material layer, and a solid for the reverse polarity active material layer. It has a reverse polarity active material layer made of electrolyte particles on the solid electrolyte layer, and comprises the reverse polarity active material particles and the binder resin for the reverse polarity active material layer after the solid electrolyte layer hot-pressing step. The mixed particle group in which the resin particles for the reverse polarity active material layer and the solid electrolyte particles for the reverse polarity active material layer are mixed in advance is charged by passing through the eyes of the screen and is blown by an electric field, and then on the solid electrolyte layer. by an electrostatic screen printing Ru is deposited, it may be set to be uncompressed opposite polarity active material layer forming step electrode plate manufacturing method of comprising forming the uncompressed opposite polarity active material layer in a predetermined shape.
Furthermore, in the method for producing an electrode plate described above, the solid electrolyte particles for the reverse polarity active material layer are the same material as the solid electrolyte particles for the active material layer and the solid electrolyte particles for the solid electrolyte layer, and the reverse The resin particles for the polar active material layer and the binder resin for the reverse polarity active material layer are the resin particles for the active material layer and the resin particles for the solid electrolyte layer, and the binder resin for the active material layer and the solid electrolyte layer. A method of manufacturing an electrode plate made of the same material as the binder resin is preferable.
Furthermore, in the above-described electrode plate manufacturing method, the uncompressed reverse polarity active material layer formed in the uncompressed reverse polarity active material layer forming step is compressed while being heated, and the binder for the reverse polarity active material layer is formed. Production of an electrode plate comprising a reverse-polarity active material layer hot-pressing step in which the reverse-polarity active material layer and the solid electrolyte particles for the reverse-polarity active material layer are bound together by a resin to form the reverse-polarity active material layer It would be better to do it.

さらに、上述のいずれかの電極板の製造方法であって、前記電極基板は金属からなる電極板の製造方法とすると良い。   Furthermore, in any of the above-described electrode plate manufacturing methods, the electrode substrate may be a metal electrode plate manufacturing method.

ところで、電極板の製造方法として、活物質粒子や結着材を分散媒に分散させてペーストとし、これを電極基板である金属箔上に塗布し、その後その分散媒を蒸発させて活物質層を形成する方法が知られている。
しかしながら、上述の方法では、塗布したペーストによって金属箔が腐食されてしまう場合がある。具体的には、例えば、分散媒として水を、活物質粒子としてLi化合物をそれぞれ用いたペーストを用意し、これをアルミニウムからなる電極基板に塗布すると、その分散媒である水が電離して強アルカリ性を示すため、アルミニウムが腐食される。しかも、これと共に水素ガスが発生して、乾燥後の活物質層内に気孔が残存してしまうため、不均一な活物質層となり、この電極板を用いた電池の、電池性能が低下してしまう虞がある。
By the way, as an electrode plate manufacturing method, active material particles and a binder are dispersed in a dispersion medium to form a paste, which is applied onto a metal foil as an electrode substrate, and then the dispersion medium is evaporated to form an active material layer. A method of forming is known.
However, in the method described above, the metal foil may be corroded by the applied paste. Specifically, for example, when a paste using water as a dispersion medium and a Li compound as active material particles is prepared and applied to an electrode substrate made of aluminum, the water as the dispersion medium is ionized and strong. Aluminum is corroded to show alkalinity. In addition, hydrogen gas is generated and pores remain in the active material layer after drying, resulting in a non-uniform active material layer, and the battery performance of the battery using this electrode plate is reduced. There is a risk of it.

これに対し、本発明の製造方法では、電極基板が金属からなるので、良好な導電性が得られる。その上、静電スクリーン印刷法を用いており、分散媒を用いないので、これによる金属製の電極基板に腐食が発生するのを防止して、電極基板に活物質層を適切に形成できる。   On the other hand, in the manufacturing method of this invention, since an electrode substrate consists of metals, favorable electroconductivity is obtained. In addition, since the electrostatic screen printing method is used and no dispersion medium is used, it is possible to prevent the occurrence of corrosion on the metal electrode substrate, thereby appropriately forming the active material layer on the electrode substrate.

さらに、他の態様における解決手段は、導電性の電極基板と、上記電極基板の基板主面上に形成された、活物質粒子、活物質層用バインダ樹脂、及び固体電解質からなる活物質層用固体電解質粒子を有する活物質層と、を備える電極板であって、上記活物質層は、静電スクリーン印刷法を用いて、予め定めた形状に形成され、上記活物質粒子と上記活物質層用バインダ樹脂と上記活物質層用固体電解質粒子との比率が、その厚み方向に一定にされてなり、上記活物質粒子及び上記活物質層用固体電解質粒子同士が、熱融着した上記活物質層用バインダ樹脂により、互いに結着してなり、前記活物質層上に、固体電解質層用バインダ樹脂及び固体電解質層用固体電解質粒子からなる固体電解質層を有してなり、上記固体電解質層は、静電スクリーン印刷法を用いて、予め定めた形状に形成され、上記固体電解質層用バインダ樹脂と上記固体電解質層用固体電解質粒子との比率が、その厚み方向に一定にされてなり、上記固体電解質層用固体電解質粒子同士が、熱融着した上記固体電解質層用バインダ樹脂により、互いに結着してなる電極板である。 Further, the solution in another aspect is for an active material layer comprising a conductive electrode substrate and active material particles, a binder resin for the active material layer, and a solid electrolyte formed on the substrate main surface of the electrode substrate. An active material layer having solid electrolyte particles, wherein the active material layer is formed into a predetermined shape using an electrostatic screen printing method, and the active material particles and the active material layer The ratio of the binder resin for the active material layer to the solid electrolyte particles for the active material layer is made constant in the thickness direction, and the active material particles and the solid electrolyte particles for the active material layer are thermally fused to each other. a layer for the binder resin, Ri Na and bound to each other, on the active material layer, and a solid electrolyte layer made of a binder resin and solid electrolyte particles for a solid electrolyte layer for a solid electrolyte layer, the solid electrolyte layer The electrostatic screen The solid electrolyte layer is formed in a predetermined shape, and the ratio of the solid electrolyte layer binder resin and the solid electrolyte layer solid electrolyte particles is made constant in the thickness direction, and the solid electrolyte layer This is an electrode plate in which the solid electrolyte particles are bound to each other by the heat-fused binder resin for a solid electrolyte layer .

本発明の電極板では、活物質層において、活物質粒子とバインダ樹脂との比率がその厚み方向に一定にされてなり、活物質粒子同士が熱融着したバインダ樹脂により互いに結着してなる。このため、活物質粒子同士の結着力を向上させた電極板とすることができる。
らに、上述の電極板であって、前記固体電解質層用固体電解質粒子は、前記活物質層用固体電解質粒子と同材質であり、前記固体電解質層用バインダ樹脂は、前記活物質層用バインダ樹脂と同材質である電極板とすると良い。
さらに、上述の電極板であって、前記固体電解質層上に、前記活物質粒子とは逆極性の逆極性活物質粒子、逆極性活物質層用バインダ樹脂及び逆極性活物質層用固体電解質粒子を有する逆極性活物質層を有してなり、上記逆極性活物質層は、静電スクリーン印刷法を用いて、予め定めた形状に形成され、上記逆極性活物質粒子と上記逆極性活物質層用バインダ樹脂と上記逆極性活物質層用固体電解質粒子との比率が、その厚み方向に一定にされてなり、上記逆極性活物質粒子及び上記逆極性活物質層用固体電解質粒子同士が、熱融着した上記逆極性活物質層用バインダ樹脂により、互いに結着してなる電極板とすると良い。
さらに、上述の電極板であって、前記逆極性活物質層用固体電解質粒子は、前記活物質層用固体電解質粒子及び前記固体電解質層用固体電解質粒子と同材質であり、前記逆極性活物質層用バインダ樹脂は、前記活物質層用バインダ樹脂及び前記固体電解質層用バインダ樹脂と同材質である電極板とすると良い。
In the electrode plate of the present invention, in the active material layer, the ratio of the active material particles to the binder resin is made constant in the thickness direction, and the active material particles are bonded to each other by the binder resin thermally fused. . For this reason, it can be set as the electrode plate which improved the binding force of active material particles.
Et al is directed to a above electrode plates, the solid electrolyte layer for a solid electrolyte particles, the a solid electrolyte particles of the same material for the active material layer, the binder resin for the solid electrolyte layer, for the active material layer An electrode plate made of the same material as the binder resin is preferable.
Furthermore, in the electrode plate described above, on the solid electrolyte layer, a reverse polarity active material particle having a reverse polarity to the active material particles, a binder resin for the reverse polarity active material layer, and a solid electrolyte particle for the reverse polarity active material layer The reverse polarity active material layer is formed in a predetermined shape using an electrostatic screen printing method, and the reverse polarity active material particles and the reverse polarity active material The ratio of the binder resin for the layer and the solid electrolyte particle for the reverse polarity active material layer is made constant in the thickness direction, and the reverse polarity active material particle and the solid electrolyte particle for the reverse polarity active material layer are The electrode plates are preferably bonded to each other by the heat-fused binder resin for the reverse polarity active material layer.
Furthermore, in the above electrode plate, the solid electrolyte particles for the reverse polarity active material layer are the same material as the solid electrolyte particles for the active material layer and the solid electrolyte particles for the solid electrolyte layer, and the reverse polarity active material The layer binder resin is preferably an electrode plate made of the same material as the active material layer binder resin and the solid electrolyte layer binder resin.

さらに、他の態様における解決手段は、前述したいずれかの電極板を用いてなる電池である。   Furthermore, the solution in another aspect is a battery using any of the electrode plates described above.

本発明の電池では、前述した電極板を用いるので、正極活物質層或いは負極活物質層において、活物質粒子同士の結着力が高く、例えば、充放電による膨張・圧縮や使用中の振動等による、活物質粒子の脱落や剥がれといった不具合を抑制した電池とすることができる。   In the battery of the present invention, since the electrode plate described above is used, the binding force between the active material particles is high in the positive electrode active material layer or the negative electrode active material layer. For example, due to expansion / compression due to charge / discharge or vibration during use. Thus, it is possible to provide a battery that suppresses problems such as dropping and peeling of the active material particles.

なお、電池としては、例えば、正極用の電極基板上に正極活物質層を形成してなる正電極板と、負極用の電極基板上に負極活物質層を形成してなる負電極板とを用いてなる電池や、電極基板の一方の基板主面上に正極活物質層を、他方の基板主面上に負極活物質層をそれぞれ形成してなる電極板を用いてなるバイポーラ電池等が挙げられる。   As the battery, for example, a positive electrode plate in which a positive electrode active material layer is formed on a positive electrode substrate and a negative electrode plate in which a negative electrode active material layer is formed on a negative electrode substrate are used. Examples thereof include a battery used, and a bipolar battery using an electrode plate in which a positive electrode active material layer is formed on one substrate main surface of an electrode substrate and a negative electrode active material layer is formed on the other substrate main surface. It is done.

さらに、他の態様における解決手段は、前述した電池を搭載した車両である。   Furthermore, the solution in another aspect is a vehicle equipped with the battery described above.

本発明の車両では、前述の電池を搭載するので、活物質層での結着力に起因する不具合を抑制しつつ、安定して使用できる車両とすることができる。   In the vehicle of the present invention, since the above-described battery is mounted, it is possible to provide a vehicle that can be used stably while suppressing problems caused by the binding force in the active material layer.

なお、車両としては、その動力源の全部あるいは一部に電池による電気エネルギを使用している車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery for all or part of its power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric Wheelchairs, electric assist bicycles, and electric scooters.

さらに、他の態様における解決手段は、前述した電池を搭載した電池搭載機器である。   Furthermore, the solution in another aspect is a battery-mounted device on which the above-described battery is mounted.

本発明の電池搭載機器では、前述の電池を搭載するので、活物質層での結着力に起因する不具合を抑制しつつ、安定して使用できる電池搭載機器とすることができる。   In the battery-mounted device of the present invention, since the above-described battery is mounted, it is possible to provide a battery-mounted device that can be used stably while suppressing problems caused by the binding force in the active material layer.

なお、電池搭載機器としては、電池を搭載しこれをエネルギー源の少なくとも1つとして利用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。   The battery-equipped device may be any device equipped with a battery and using it as at least one of the energy sources. For example, a battery such as a personal computer, a mobile phone, a battery-driven electric tool, an uninterruptible power supply, etc. Various household appliances, office equipment, and industrial equipment driven by

参考形態1,参考形態2,実施形態1にかかる電池の斜視図である。1 is a perspective view of a battery according to Reference Embodiment 1, Reference Embodiment 2, and Embodiment 1. FIG. 参考形態1,実施形態1にかかる電池の部分断面図である。2 is a partial cross-sectional view of a battery according to Reference Embodiment 1 and Embodiment 1. FIG. 参考形態1,実施形態1の発電要素の斜視図である。It is a perspective view of the electric power generation element of the reference form 1 and Embodiment 1. FIG. 参考形態1の発電要素の部分拡大断面図(図3のA−A断面図)である。It is a partial expanded sectional view (AA sectional drawing of FIG. 3) of the electric power generation element of the reference form 1. FIG. 参考形態1,参考形態2にかかる層形成工程及び熱圧プレス工程の説明図である。It is explanatory drawing of the layer formation process concerning the reference form 1 and the reference form 2, and a hot press process. 参考形態1にかかる層形成工程の説明図である。It is explanatory drawing of the layer formation process concerning the reference form. 実施形態1の発電要素の部分拡大断面図(図3のA−A断面図)である。It is a partial expanded sectional view (AA sectional drawing of FIG. 3) of the electric power generation element of Embodiment 1. FIG. 参考形態2にかかる電池の部分断面図である。It is a fragmentary sectional view of the battery concerning the reference form 2. 参考形態2の発電要素の斜視図である。It is a perspective view of the electric power generation element of the reference form 2. 参考形態2の発電要素の部分拡大断面図(図9のB−B断面図)である。It is the elements on larger scale of the electric power generation element of the reference form 2 (BB sectional drawing of FIG. 9). 実施形態2にかかる車両の説明図である。It is explanatory drawing of the vehicle concerning Embodiment 2. FIG. 実施形態3にかかるハンマードリルの説明図である。It is explanatory drawing of the hammer drill concerning Embodiment 3. FIG.

(参考形態1)
次に、本発明の参考形態1について、図面を参照しつつ説明する。
本参考形態1にかかる電池1の斜視図を図1に、この電池1の部分断面図を図2にそれぞれ示す。
この電池1は、電池ケース80、及び、この電池ケース80内に収容された発電要素10を有するリチウムイオン二次電池である(図1,2参照)。
(Reference form 1)
Next, Reference Embodiment 1 of the present invention will be described with reference to the drawings.
A perspective view of a battery 1 according to the first embodiment is shown in FIG. 1, and a partial cross-sectional view of the battery 1 is shown in FIG.
The battery 1 is a lithium ion secondary battery having a battery case 80 and a power generation element 10 accommodated in the battery case 80 (see FIGS. 1 and 2).

このうち、電池ケース80は、金属製で上部が開口した有底矩形箱形の電池ケース本体81と、金属からなる板状で、その電池ケース本体81の開口を閉塞する封口蓋82とを含む(図1参照)。
このうち、封口蓋82からは、発電要素10の正電極板20と電気的に接続した、アルミニウムからなる正極集電部材71の先端部71Aが、また、発電要素10の負電極板30と電気的に接続した、銅からなる負極集電部材72の先端部72Aが、それぞれ突出している(図1,2参照)。なお、封口蓋82と、正極集電部材71、又は、負極集電部材72との間には、絶縁樹脂からなる絶縁部材75がそれぞれ介在しており、封口蓋82と、正極集電部材71又は負極集電部材72とを絶縁している。
Among them, the battery case 80 includes a bottomed rectangular box-shaped battery case body 81 made of metal and having an open top, and a sealing lid 82 that is made of metal and closes the opening of the battery case body 81. (See FIG. 1).
Among these, from the sealing lid 82, the front end portion 71 </ b> A of the positive electrode current collecting member 71 made of aluminum and electrically connected to the positive electrode plate 20 of the power generation element 10 is also connected to the negative electrode plate 30 of the power generation element 10. 72A of the negative electrode current collection member 72 which consists of copper and which connected in general protrudes (refer FIG. 1, 2). An insulating member 75 made of an insulating resin is interposed between the sealing lid 82 and the positive electrode current collecting member 71 or the negative electrode current collecting member 72, respectively. Alternatively, the negative electrode current collecting member 72 is insulated.

また、発電要素10は、アルミニウム箔からなる正極基板26、及び、正極基板26上に形成された正極活物質層21を有する正電極板20と、銅箔からなる負極基板36、及び、この負極基板36上に形成された負極活物質層31を有する負電極板30と、セパレータ40とを有する(図3参照)。この発電要素10は、正電極板20と負電極板30とを、これらの間にセパレータ40を介して、積層方向DLに複数積層してなる(図3,4参照)。また、この発電要素10は、図示しない電解液を含む。   The power generation element 10 includes a positive electrode substrate 26 made of aluminum foil, a positive electrode plate 20 having a positive electrode active material layer 21 formed on the positive electrode substrate 26, a negative electrode substrate 36 made of copper foil, and the negative electrode It has the negative electrode plate 30 which has the negative electrode active material layer 31 formed on the board | substrate 36, and the separator 40 (refer FIG. 3). This power generation element 10 is formed by laminating a plurality of positive electrode plates 20 and negative electrode plates 30 in the laminating direction DL via a separator 40 therebetween (see FIGS. 3 and 4). Moreover, this electric power generation element 10 contains the electrolyte solution which is not shown in figure.

このうち正電極板20は、具体的には、正極基板26の両面をなす第1正極基板主面27及び第2正極基板主面28上に、コバルト酸リチウム(LiCoO2)からなる正極活物質粒子22、及び、PVDFからなる結着材23を含む正極活物質層21を備える(図4参照)。さらに、この正極活物質層21には、正極活物質粒子22及び結着材23のほか、アセチレンブラックからなる導電助剤粒子25を含む。
なお、本参考形態1では、この正極活物質層21内における、これらの重量比を、正極活物質粒子22:結着材23:導電助剤粒子25=85:5:10とした。
Among these, the positive electrode plate 20 is specifically a positive electrode active material made of lithium cobalt oxide (LiCoO 2 ) on the first positive electrode substrate main surface 27 and the second positive electrode substrate main surface 28 forming both surfaces of the positive electrode substrate 26. A positive electrode active material layer 21 including particles 22 and a binder 23 made of PVDF is provided (see FIG. 4). Further, the positive electrode active material layer 21 includes conductive auxiliary agent particles 25 made of acetylene black in addition to the positive electrode active material particles 22 and the binder 23.
In the first embodiment, the weight ratio of the positive electrode active material layer 21 was set to positive electrode active material particles 22: binder 23: conductive aid particles 25 = 85: 5: 10.

しかも、正極活物質層21では、正極活物質粒子22と結着材23との比率が、その厚み方向DT(前述の積層方向DLと同方向、図3,4参照)に一定(同じ)にされてなり、正極活物質粒子22同士が、熱融着した結着材23により互いに結着してなる。
かくして、正極活物質粒子22同士の結着力を向上させた正電極板20とすることができる。
Moreover, in the positive electrode active material layer 21, the ratio of the positive electrode active material particles 22 to the binder 23 is constant (same) in the thickness direction DT (the same direction as the above-described lamination direction DL, see FIGS. 3 and 4). Thus, the positive electrode active material particles 22 are bonded to each other by the heat-bonded binding material 23.
Thus, the positive electrode plate 20 with improved binding force between the positive electrode active material particles 22 can be obtained.

また、負電極板30は、具体的には、負極基板36の両面をなす第1負極基板主面37及び第2負極基板主面38上に、グラファイトからなる負極活物質粒子32、及び、PVDFからなる結着材33を含む負極活物質層31を形成している(図4参照)。
なお、この負極活物質層31内における、これらの重量比を、負極活物質粒子32:結着材33=95:5とした。
Further, the negative electrode plate 30 specifically includes negative electrode active material particles 32 made of graphite, and PVDF on the first negative electrode substrate main surface 37 and the second negative electrode substrate main surface 38 forming both surfaces of the negative electrode substrate 36. The negative electrode active material layer 31 including the binder 33 made of is formed (see FIG. 4).
The weight ratio of the negative electrode active material layer 31 was set to negative electrode active material particles 32: binder 33 = 95: 5.

しかも、負極活物質層31では、負極活物質粒子32と結着材33との比率が、その厚み方向DT(積層方向DL)に一定(同じ)にされてなり、負極活物質粒子32同士が、熱融着した結着材33により互いに結着してなる。
かくして、負極活物質粒子32同士の結着力を向上させた負電極板30とすることができる。
Moreover, in the negative electrode active material layer 31, the ratio of the negative electrode active material particles 32 and the binder 33 is made constant (same) in the thickness direction DT (stacking direction DL), and the negative electrode active material particles 32 are made of each other. They are bonded to each other by the heat-bonded binding material 33.
Thus, the negative electrode plate 30 with improved binding force between the negative electrode active material particles 32 can be obtained.

また、本参考形態1にかかる電池1では、上述の正電極板20及び負電極板30を用いるので、正極活物質層21において、正極活物質粒子22同士の結着力が高い。また、負極活物質層31においても同様に、負極活物質粒子32同士の結着力が高い。このため、例えば、充放電による活物質層21,31の膨張・圧縮や使用中の振動等による、活物質粒子22,32の脱落や剥がれといった不具合を抑制した電池1とすることができる。   Further, in the battery 1 according to the first embodiment, since the positive electrode plate 20 and the negative electrode plate 30 described above are used, the positive electrode active material layer 21 has a high binding force between the positive electrode active material particles 22. Similarly, the negative electrode active material layer 31 has a high binding force between the negative electrode active material particles 32. For this reason, it can be set as the battery 1 which suppressed the malfunctions, such as dropping and peeling of the active material particle 22 and 32 by the expansion / compression of the active material layer 21 and 31 by charging / discharging, the vibration in use, etc., for example.

次に、本参考形態1にかかる電池1の製造方法について、図面を参照しつつ説明する。
まず、正極基板26にプレス前の未圧縮正極活物質層21Bを形成する層形成工程について図5,6を参照しつつ説明する。
Next, a method for manufacturing the battery 1 according to the first embodiment will be described with reference to the drawings.
First, a layer forming process for forming the uncompressed positive electrode active material layer 21B before pressing on the positive electrode substrate 26 will be described with reference to FIGS.

層形成工程に用いる層形成装置100Xは、図5に示すように、矩形平板形状で、500メッシュのステンレス製のスクリーン110と、矩形平板状のステンレス製の受け台120と、ブラシ130と、電源装置140と、所定形状の貫通孔(図示しない)を有するマスク150と、混合粒子群MX1をスクリーン110上(図5中、上方)に供給する供給部160Xとを備える。このうち、供給部160Xは、自身の内部に混合粒子群MX1を収容しており、スクリーン110上に混合粒子群MX1を供給する。   As shown in FIG. 5, the layer forming apparatus 100X used in the layer forming process has a rectangular flat plate shape, a 500 mesh stainless steel screen 110, a rectangular flat plate stainless steel pedestal 120, a brush 130, and a power source. The apparatus 140 includes a mask 150 having through holes (not shown) having a predetermined shape, and a supply unit 160X that supplies the mixed particle group MX1 onto the screen 110 (upward in FIG. 5). Among these, the supply unit 160 </ b> X accommodates the mixed particle group MX <b> 1 inside itself and supplies the mixed particle group MX <b> 1 on the screen 110.

また、電源装置140は、スクリーン110と、このスクリーン110に対向した位置にある受け台120との間に電圧を印加する。具体的には、電源装置140の負極をスクリーン110に、正極を受け台120にそれぞれ接続し、3kVの電圧を印加する。これにより、スクリーン110と受け台120との間に、静電界を生じさせることができる。
また、ブラシ130は、スクリーン110上(図5中、上方)に配置されており、スクリーン110上を移動(具体的には、図5中、左右方向を往復移動)させ、スクリーン110上の帯電した混合粒子群MX1を、そのスクリーン110の目を通過させ、受け台120に向けて(図5中、下方へ)混合粒子群MX1を飛ばす。
また、アクリル製のマスク150は、スクリーン110と正極基板26との間に位置し、スクリーン110から飛び出した混合粒子群MX1のうち、マスク150に形成した所定形状の貫通孔(図示しない)を通過したものを正極基板26上に堆積させる。これにより、正極基板26の主面の所望の位置に、混合粒子群MX1を堆積させることができる。
Further, the power supply device 140 applies a voltage between the screen 110 and the cradle 120 at a position facing the screen 110. Specifically, the negative electrode of the power supply device 140 is connected to the screen 110 and the positive electrode to the cradle 120, respectively, and a voltage of 3 kV is applied. Thereby, an electrostatic field can be generated between the screen 110 and the cradle 120.
Further, the brush 130 is disposed on the screen 110 (upward in FIG. 5), and moves on the screen 110 (specifically, reciprocating in the left-right direction in FIG. 5) to charge the screen 110. The mixed particle group MX1 is passed through the eye of the screen 110, and the mixed particle group MX1 is blown toward the cradle 120 (downward in FIG. 5).
The acrylic mask 150 is positioned between the screen 110 and the positive electrode substrate 26 and passes through a through hole (not shown) having a predetermined shape formed in the mask 150 among the mixed particle group MX1 protruding from the screen 110. The deposited product is deposited on the positive electrode substrate 26. As a result, the mixed particle group MX1 can be deposited at a desired position on the main surface of the positive electrode substrate 26.

この層形成工程では、まず、巻出し部MDにセットした帯状の正極基板26を引き出して長手方向DAに移動させ、この正極基板26の第1正極基板主面27に、混合粒子群MX1を堆積させる(図6A参照)。
なお、この混合粒子群MX1は、正極活物質粒子22及び結着粒子23Gの他に、導電助剤粒子25を含み、これらを十分混合してなる。
供給部160Xからスクリーン110上(図6A中、上方)に供給した混合粒子群MX1を、スクリーン110上を図6A中、左右方向に移動するブラシ130とスクリーン110との間で、負に摩擦帯電させる。そして、ブラシ130により、負に帯電した混合粒子群MX1を、スクリーン110の目から押し出す。
In this layer forming step, first, the belt-like positive electrode substrate 26 set in the unwinding part MD is pulled out and moved in the longitudinal direction DA, and the mixed particle group MX1 is deposited on the first positive electrode substrate main surface 27 of the positive electrode substrate 26. (See FIG. 6A).
The mixed particle group MX1 includes conductive auxiliary agent particles 25 in addition to the positive electrode active material particles 22 and the binder particles 23G, and is sufficiently mixed.
The mixed particle group MX1 supplied from the supply unit 160X onto the screen 110 (upward in FIG. 6A) is frictionally charged negatively between the brush 130 and the screen 110 moving in the left-right direction on the screen 110 in FIG. 6A. Let Then, the negatively charged mixed particle group MX1 is pushed out from the eyes of the screen 110 by the brush 130.

ところで、電源装置140により、スクリーン110とそのスクリーン110の、図6A中、下方に配置された受け台120との間には、電圧の印加による静電界が生じているので、スクリーン110の目を通過移動した混合粒子群MX1は、この静電界により、受け台120に向けて加速される。加速された混合粒子群MX1のうち、マスク150の貫通孔(図示しない)を通過したものが、図6B中、受け台120の上方に位置する正極基板26に衝突する。
かくして、正極基板26の第1正極基板主面27上に混合粒子群MX1が堆積され、未圧縮の未圧縮正極活物質層21Bが、長手方向DAに間欠的に形成される(図6B参照)。
By the way, since the electrostatic field is generated by the application of voltage between the screen 110 and the cradle 120 arranged below the screen 110 in FIG. The mixed particle group MX1 that has passed and moved is accelerated toward the cradle 120 by the electrostatic field. Among the accelerated mixed particle group MX1, the particles that have passed through the through hole (not shown) of the mask 150 collide with the positive electrode substrate 26 located above the cradle 120 in FIG. 6B.
Thus, the mixed particle group MX1 is deposited on the first positive electrode main surface 27 of the positive electrode substrate 26, and the uncompressed uncompressed positive electrode active material layer 21B is intermittently formed in the longitudinal direction DA (see FIG. 6B). .

次いで、熱圧プレス工程では、PVDFが軟化する温度まで加熱された、2つの金属製のプレスローラ210,210を備えたプレス装置200Xを用いる(図5参照)。
上述の層形成工程の後に、正極基板26を長手方向DAに移動させて、未圧縮正極活物質層21Bを形成した正極基板26を、加熱した2つのプレスローラ210、210の間に通すと、未圧縮正極活物質層21Bは、正極基板26と共に、加熱されながら厚さ方向DTに圧縮される。これにより、未圧縮正極活物質層21Bの結着粒子23G(図6B参照)を軟化変形させて、正極活物質粒子22同士のほか、正極活物質粒子22と導電助剤粒子25との間などを結着材23の熱融着により互いに結着させる。
かくして、正極基板26の片側(第1正極基板主面27側)に、圧縮済みの正極活物質層21を形成する。
なお、熱圧プレス工程の後に、正極基板26を巻取り部MTで巻き取る(図5参照)。
Next, in the hot press process, a press apparatus 200X including two metal press rollers 210 and 210 heated to a temperature at which PVDF is softened is used (see FIG. 5).
After the above-described layer formation step, the positive electrode substrate 26 is moved in the longitudinal direction DA, and the positive electrode substrate 26 on which the uncompressed positive electrode active material layer 21B is formed is passed between the two heated press rollers 210 and 210. The uncompressed positive electrode active material layer 21 </ b> B is compressed in the thickness direction DT while being heated together with the positive electrode substrate 26. Thereby, the binder particles 23G (see FIG. 6B) of the uncompressed positive electrode active material layer 21B are softened and deformed, and in addition to the positive electrode active material particles 22, the positive electrode active material particles 22 and the conductive auxiliary agent particles 25, etc. Are bonded to each other by heat-sealing the binder 23.
Thus, the compressed positive electrode active material layer 21 is formed on one side of the positive electrode substrate 26 (the first positive electrode substrate main surface 27 side).
In addition, the positive electrode board | substrate 26 is wound up by the winding-up part MT after a hot press process (refer FIG. 5).

さらに、正極基板26の第2正極基板主面28側についても、上述の層形成装置100X及びプレス装置200Xを用いて(図5参照)、正極活物質層21を形成する。その後、正極活物質層21を形成した正極基板26を裁断する。   Further, the positive electrode active material layer 21 is also formed on the second positive electrode substrate main surface 28 side of the positive electrode substrate 26 using the layer forming apparatus 100X and the press apparatus 200X (see FIG. 5). Thereafter, the positive electrode substrate 26 on which the positive electrode active material layer 21 is formed is cut.

また、上記とは別に、負極基板36においても、前述の層形成装置100X及びプレス装置200Xと同様の、層形成装置100Y及びプレス装置200Y(図5参照)を用いて、層形成工程及び熱圧プレス工程を行い、負極活物質層31を形成する。
但し、層形成装置100Yの供給部160Yには、負極活物質粒子32、及び、結着材33をなすPVDFからなる粒状の結着粒子33Gを含み、これらを十分混合してなる混合粒子群MX2を収容している(図5参照)。また、層形成装置100Yを用いた層形成工程の後に、矩形平板状の負極基板36を載せて、プレス装置200Yにより熱圧プレス工程を行う。これらの点で、正極活物質層21を形成する前述の層形成工程及び熱圧プレス工程と異なるだけであるため、これらの説明を省略する。
なお、負極基板36についても、正極基板26と同様、第1負極基板主面37上及び第2負極基板主面38上に負極活物質層31を形成する。その後、負極活物質層31を形成した負極基板36を裁断する。
Separately from the above, also in the negative electrode substrate 36, the layer forming process and the thermal pressure are performed using the layer forming apparatus 100Y and the press apparatus 200Y (see FIG. 5) similar to the layer forming apparatus 100X and the press apparatus 200X described above. A negative electrode active material layer 31 is formed by performing a pressing process.
However, the supply unit 160Y of the layer forming apparatus 100Y includes the negative electrode active material particles 32 and the granular binder particles 33G made of PVDF forming the binder 33, and a mixed particle group MX2 obtained by sufficiently mixing them. (See FIG. 5). Further, after the layer forming process using the layer forming apparatus 100Y, the negative electrode substrate 36 having a rectangular flat plate shape is placed, and a hot press process is performed by the pressing apparatus 200Y. In these respects, only the layer forming process and the hot-pressing process described above for forming the positive electrode active material layer 21 are different, and the description thereof is omitted.
As for the negative electrode substrate 36, similarly to the positive electrode substrate 26, the negative electrode active material layer 31 is formed on the first negative electrode substrate main surface 37 and the second negative electrode substrate main surface 38. Thereafter, the negative electrode substrate 36 on which the negative electrode active material layer 31 is formed is cut.

裁断した矩形板状の正極基板26及び負極基板36を、矩形板状のセパレータ40を介して交互に積層して、前述の発電要素10ができあがる(図3,4参照)。
さらに、この発電要素10の正電極板20(正極基板26)に正極集電部材71を、負電極板30(負極基板36)に負極集電部材72をそれぞれ接合した後(図3参照)、この発電要素10を電気ケース本体81に収容し、図示しない電解液を電池ケース本体81に注液してセパレータ40に吸収させた後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池1ができあがる(図1参照)。
The above-described power generating element 10 is completed by alternately laminating the rectangular plate-like positive electrode substrate 26 and the negative electrode substrate 36 with the rectangular plate-like separator 40 interposed therebetween (see FIGS. 3 and 4).
Further, after the positive electrode current collector 71 and the negative electrode current collector 72 are joined to the positive electrode plate 20 (positive electrode substrate 26) and the negative electrode plate 30 (negative electrode substrate 36) of the power generation element 10, respectively (see FIG. 3). The power generation element 10 is accommodated in the electric case main body 81, an electrolyte solution (not shown) is injected into the battery case main body 81 and absorbed by the separator 40, and then the battery case main body 81 is sealed by the sealing lid 82 by welding. Thus, the battery 1 is completed (see FIG. 1).

本参考形態1の正電極板20の製造方法では、正極活物質粒子22と結着粒子23Gとを予め混合した混合粒子群MX1を、静電スクリーン印刷法で正極基板26の第1正極基板主面27(第2正極基板主面28)上に堆積させる。このため、結着粒子23G上に正極活物質粒子22を静電スクリーン印刷法で堆積させる場合に比して、未圧縮正極活物質層21B内において正極活物質粒子22と結着粒子23Gとを均一に分散させることができる。従って、この未圧縮正極活物質層21Bを用いて熱圧プレス工程で形成した正極活物質層21では、正極活物質粒子22同士を結着材23により適切に結着させることができる。かくして、正極活物質粒子22同士の結着力を向上させた正電極板20を製造できる。   In the manufacturing method of the positive electrode plate 20 of the present reference embodiment 1, the mixed particle group MX1 in which the positive electrode active material particles 22 and the binder particles 23G are mixed in advance is mixed with the first positive electrode substrate main of the positive electrode substrate 26 by electrostatic screen printing. It is deposited on the surface 27 (second positive electrode substrate main surface 28). For this reason, compared with the case where the positive electrode active material particles 22 are deposited on the binder particles 23G by the electrostatic screen printing method, the positive electrode active material particles 22 and the binder particles 23G are formed in the uncompressed positive electrode active material layer 21B. It can be uniformly dispersed. Therefore, in the positive electrode active material layer 21 formed by the hot-pressing process using the uncompressed positive electrode active material layer 21 </ b> B, the positive electrode active material particles 22 can be appropriately bound together by the binder 23. Thus, the positive electrode plate 20 with improved binding force between the positive electrode active material particles 22 can be manufactured.

同様に、負電極板30の製造方法では、負極活物質粒子32と結着粒子33Gとを予め混合した混合粒子群MX2を、静電スクリーン印刷法で負極基板36の第1負極基板主面37(第2負極基板主面38)上に堆積させる。このため、結着粒子33G上に負極活物質粒子32を静電スクリーン印刷法で堆積させる場合に比して、未圧縮負極活物質層31B内において負極活物質粒子32と結着粒子33Gとを均一に分散させることができる。従って、この未圧縮負極活物質層31Bを用いて熱圧プレス工程で形成した負極活物質層31では、負極活物質粒子32同士を結着材33により適切に結着させることができる。かくして、負極活物質粒子32同士の結着力を向上させた負電極板30を製造できる。   Similarly, in the method of manufacturing the negative electrode plate 30, the mixed particle group MX2 in which the negative electrode active material particles 32 and the binder particles 33G are mixed in advance is mixed with the first negative electrode substrate main surface 37 of the negative electrode substrate 36 by electrostatic screen printing. Deposited on (second negative electrode substrate main surface 38). Therefore, compared with the case where the negative electrode active material particles 32 are deposited on the binding particles 33G by the electrostatic screen printing method, the negative electrode active material particles 32 and the binding particles 33G are included in the uncompressed negative electrode active material layer 31B. It can be uniformly dispersed. Therefore, in the negative electrode active material layer 31 formed by the hot-pressing process using the uncompressed negative electrode active material layer 31 </ b> B, the negative electrode active material particles 32 can be appropriately bound together by the binder 33. Thus, the negative electrode plate 30 with improved binding force between the negative electrode active material particles 32 can be manufactured.

また、熱圧プレス工程により、未圧縮正極活物質層21B内の結着粒子23Gを軟化変形させて、厚み方向DTに見て、いずれの部位でも、正極活物質粒子22と結着材23との比率が一定となる正極活物質層21を形成できる。従って、正極活物質粒子22同士を結着材23の熱融着により確実に結着させた正電極板20を製造できる。   Further, the binder particles 23G in the uncompressed cathode active material layer 21B are softened and deformed by a hot-pressing process, and the cathode active material particles 22 and the binder 23 are formed in any part as viewed in the thickness direction DT. The positive electrode active material layer 21 with a constant ratio can be formed. Therefore, it is possible to manufacture the positive electrode plate 20 in which the positive electrode active material particles 22 are reliably bound by the heat fusion of the binder 23.

同様に、熱圧プレス工程により、未圧縮負極活物質層31B内の結着粒子33Gを軟化変形させて、厚み方向DTに見て、いずれの部位でも、負極活物質粒子32と結着材33との比率が一定となる負極活物質層31を形成できる。従って、負極活物質粒子32同士を結着材33の熱融着により確実に結着させた負電極板30を製造できる。   Similarly, the binder particles 33G in the uncompressed negative electrode active material layer 31B are softened and deformed by a hot-pressing process, and the negative electrode active material particles 32 and the binder 33 are observed at any part in the thickness direction DT. The negative electrode active material layer 31 with a constant ratio can be formed. Therefore, it is possible to manufacture the negative electrode plate 30 in which the negative electrode active material particles 32 are reliably bound to each other by the heat fusion of the binder 33.

また、正電極板20において、正極基板26をアルミニウムからなるものとしたので、良好な導電性が得られる。その上、静電スクリーン印刷法を用いて、分散媒を用いないので、これによる正極基板26の腐食の発生を防止して、正極基板26に正極活物質層21を適切に形成できる。   Moreover, since the positive electrode substrate 26 is made of aluminum in the positive electrode plate 20, good conductivity can be obtained. In addition, since the dispersion medium is not used by using the electrostatic screen printing method, the occurrence of corrosion of the positive electrode substrate 26 due to this can be prevented, and the positive electrode active material layer 21 can be appropriately formed on the positive electrode substrate 26.

(実施形態1)
次に、本発明の実施形態1にかかる電池501について、図1〜3,5,7を参照しつつ説明する。
本実施形態1は、セパレータ及び電解液の代わりに固体電解質を用いる点、即ち、その電池501の正電極板と負電極板との間に固体電解質層540を介在させている点、及び、それに伴い正電極板の正極活物質層内、及び、負電極板の負極活物質層内に固体電解質粒子を含む点で、前述の参考形態1と異なり、それ以外は同様である。
そこで、参考形態と異なる点を中心に説明し、同様の部分の説明は省略または簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Embodiment 1)
Next, the battery 501 according to the first embodiment of the present invention will be described with reference to FIGS.
In the first embodiment, a solid electrolyte is used instead of the separator and the electrolytic solution, that is, the solid electrolyte layer 540 is interposed between the positive electrode plate and the negative electrode plate of the battery 501, and Accordingly, the solid electrolyte particles are included in the positive electrode active material layer of the positive electrode plate and in the negative electrode active material layer of the negative electrode plate.
Therefore, the description will focus on the differences from the reference embodiment, and the description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

本実施形態1にかかる電池501は、電池ケース80、及び、この電池ケース80内に収容された発電要素510を有するリチウムイオン二次電池である(図1,2参照)。
発電要素510は、アルミニウム箔からなる正極基板26、及び、正極基板26上に形成された正極活物質層521を有する正電極板520と、銅箔からなる負極基板36、及び、この負極基板36上に形成された負極活物質層531を有する負電極板530とを、積層方向DLにいずれも交互に複数積層してなる(図3,7参照)。なお、正電極板520の正極活物質層521と、この正電極板520と隣りあう負電極板530の負極活物質層531との間には、固体電解質層540が介在している(図7参照)。
A battery 501 according to the first embodiment is a lithium ion secondary battery having a battery case 80 and a power generation element 510 accommodated in the battery case 80 (see FIGS. 1 and 2).
The power generation element 510 includes a positive electrode substrate 26 made of aluminum foil, a positive electrode plate 520 having a positive electrode active material layer 521 formed on the positive electrode substrate 26, a negative electrode substrate 36 made of copper foil, and the negative electrode substrate 36. A plurality of negative electrode plates 530 having a negative electrode active material layer 531 formed thereon are alternately stacked in the stacking direction DL (see FIGS. 3 and 7). A solid electrolyte layer 540 is interposed between the positive electrode active material layer 521 of the positive electrode plate 520 and the negative electrode active material layer 531 of the negative electrode plate 530 adjacent to the positive electrode plate 520 (FIG. 7). reference).

このうち正電極板520は、具体的には、正極基板26の両面をなす第1正極基板主面27及び第2正極基板主面28上に、コバルト酸リチウム(LiCoO2)からなる正極活
物質粒子22、及び、PVDFからなる結着材23を含む正極活物質層521を備える(図7参照)。さらに、この正極活物質層521には、正極活物質粒子22及び結着材23のほか硫化物系固体電解質(Li2S−P25ガラス)からなる固体電解質粒子24を含む。
なお、本実施形態1では、この正極活物質層521内における、これらの重量比を、正極活物質粒子22:結着材23:固体電解質粒子24=67:5:28とした。
Among these, the positive electrode plate 520 is specifically a positive electrode active material made of lithium cobalt oxide (LiCoO 2 ) on the first positive electrode substrate main surface 27 and the second positive electrode substrate main surface 28 forming both surfaces of the positive electrode substrate 26. A positive electrode active material layer 521 including particles 22 and a binder 23 made of PVDF is provided (see FIG. 7). Further, the positive electrode active material layer 521 includes solid electrolyte particles 24 made of sulfide solid electrolyte (Li 2 S—P 2 S 5 glass) in addition to the positive electrode active material particles 22 and the binder 23.
In the first embodiment, the weight ratio of the positive electrode active material layer 521 is set as positive electrode active material particles 22: binder 23: solid electrolyte particles 24 = 67: 5: 28.

しかも、正極活物質層521では、正極活物質粒子22と結着材23との比率が、その厚み方向DT(前述の積層方向DLと同方向、図3,7参照)に一定(同じ)にされてなり、正極活物質粒子22同士が、熱融着した結着材23により互いに結着してなる。
かくして、参考形態1と同様、正極活物質粒子22同士の結着力を向上させた正電極板520とすることができる。
In addition, in the positive electrode active material layer 521, the ratio between the positive electrode active material particles 22 and the binder 23 is constant (same) in the thickness direction DT (the same direction as the above-described stacking direction DL, see FIGS. 3 and 7). Thus, the positive electrode active material particles 22 are bonded to each other by the heat-bonded binding material 23.
Thus, as in the first embodiment, the positive electrode plate 520 with improved binding force between the positive electrode active material particles 22 can be obtained.

また、負電極板530は、具体的には、負極基板36の両面をなす第1負極基板主面37及び第2負極基板主面38上に、グラファイトからなる負極活物質粒子32、PVDFからなる結着材33、及び、硫化物系固体電解質(Li2S−P25ガラス)からなる固体電解質粒子34を含む負極活物質層531を形成している(図7参照)。
なお、この負極活物質層531内における、これらの重量比を、負極活物質粒子32:結着材33:固体電解質粒子34=47.5:5:47.5とした。
Specifically, the negative electrode plate 530 is composed of negative electrode active material particles 32 made of graphite and PVDF on the first negative electrode substrate main surface 37 and the second negative electrode substrate main surface 38 forming both surfaces of the negative electrode substrate 36. A negative electrode active material layer 531 including a binder 33 and solid electrolyte particles 34 made of a sulfide-based solid electrolyte (Li 2 S—P 2 S 5 glass) is formed (see FIG. 7).
The weight ratio in the negative electrode active material layer 531 was set to negative electrode active material particles 32: binder 33: solid electrolyte particles 34 = 47.5: 5: 47.5.

しかも、負極活物質層531では、負極活物質粒子32と結着材33との比率が、その厚み方向DT(積層方向DL)に一定(同じ)にされてなり、負極活物質粒子32同士が、熱融着した結着材33により互いに結着してなる。
かくして、参考形態1と同様、負極活物質粒子32同士の結着力を向上させた負電極板530とすることができる。
In addition, in the negative electrode active material layer 531, the ratio between the negative electrode active material particles 32 and the binder 33 is made constant (same) in the thickness direction DT (laminating direction DL), and the negative electrode active material particles 32 are made of each other. They are bonded to each other by the heat-bonded binding material 33.
Thus, as in Reference Mode 1, the negative electrode plate 530 with improved binding force between the negative electrode active material particles 32 can be obtained.

次に、本実施形態1にかかる電池501の製造方法について、図5を参照しつつ説明する。
まず、参考形態1と同様の層形成装置100Xを用いて層形成工程を行い、正極基板26にプレス前の未圧縮正極活物質層(図示しない)を形成する。但し、導電助剤粒子25を除く、正極活物質粒子22、結着粒子23G、及び、硫化物系固体電解質(Li2S−P25ガラス)からなる粒状の固体電解質粒子24を含み、これらを十分混合した混合粒子群MX3を、層形成装置100Xの供給部160Xから供給する点で、参考形態1と異なる(図5参照)。
Next, a method for manufacturing the battery 501 according to the first embodiment will be described with reference to FIG.
First, a layer forming process is performed using the same layer forming apparatus 100X as in Reference Embodiment 1, and an uncompressed positive electrode active material layer (not shown) before pressing is formed on the positive electrode substrate 26. However, including the positive electrode active material particles 22, the binder particles 23 </ b > G, and the granular solid electrolyte particles 24 made of a sulfide-based solid electrolyte (Li 2 S—P 2 S 5 glass) excluding the conductive auxiliary agent particles 25, This is different from the first embodiment in that the mixed particle group MX3 in which these are sufficiently mixed is supplied from the supply unit 160X of the layer forming apparatus 100X (see FIG. 5).

次いで、参考形態1と同様のプレス装置200X(図5参照)を用いて熱圧プレス工程を行い、正極基板26の片側(第1正極基板主面27側)に、圧縮済みの正極活物質層521を形成する。   Next, a hot press process is performed using a press apparatus 200X (see FIG. 5) similar to that in Reference Embodiment 1, and a compressed positive electrode active material layer is formed on one side of the positive electrode substrate 26 (first positive electrode substrate main surface 27 side). 521 is formed.

次に、上述の層形成装置100X及びプレス装置200Xと同様の、層形成装置100Z及びプレス装置200Zを用いて、層形成工程及び熱圧プレス工程を行い、正極基板26上に形成した正極活物質層521上に、さらに固体電解質層540を積層,形成する。
但し、層形成装置100Zの供給部160Zには、硫化物系固体電解質(Li2S−P25ガラス)からなる粒状の固体電解質粒子41、及び、結着材42をなすPVDFからなる粒状の結着粒子42Gを含み、これらを十分混合してなる混合粒子群MX4を収容している(図5参照)。なお、この点でのみ、正極活物質層521を形成する前述の層形成工程及び熱圧プレス工程と異なるだけであるので、これらの説明を省略する。
Next, a positive electrode active material formed on the positive electrode substrate 26 by performing a layer formation process and a hot-pressing process using the layer formation apparatus 100Z and the press apparatus 200Z similar to the layer formation apparatus 100X and the press apparatus 200X described above. A solid electrolyte layer 540 is further stacked and formed on the layer 521.
However, in the supply unit 160Z of the layer forming apparatus 100Z, granular solid electrolyte particles 41 made of sulfide-based solid electrolyte (Li 2 S—P 2 S 5 glass) and granular particles made of PVDF forming the binder 42 are used. The mixed particle group MX4 including the binding particles 42G and sufficiently mixed thereof is accommodated (see FIG. 5). Note that only this point is different from the above-described layer forming step and hot-pressing step for forming the positive electrode active material layer 521, and thus description thereof is omitted.

次いで、参考形態1と同様の、層形成装置100Y及びプレス装置200Yを用いて、層形成工程及び熱圧プレス工程を行い、固体電解質層540上に、さらに負極活物質層531を積層,形成する。
但し、負極活物質粒子32及び結着粒子33Gのほか、固体電解質粒子34を含み、これらを十分混合した混合粒子群MX5を、層形成装置100Yの供給部160Yから供給する点で、参考形態1と異なる(図5参照)。
Next, using the layer forming apparatus 100Y and the press apparatus 200Y, which are the same as in the reference embodiment 1, a layer forming process and a hot-pressing process are performed, and a negative electrode active material layer 531 is further stacked and formed on the solid electrolyte layer 540. .
However, Reference Embodiment 1 in that the mixed particle group MX5 including the solid electrolyte particles 34 in addition to the negative electrode active material particles 32 and the binder particles 33G and sufficiently mixed them is supplied from the supply unit 160Y of the layer forming apparatus 100Y. (See FIG. 5).

さらに、上述の層形成装置100X,100Y,100Z及びプレス装置200X,200Y,200Zを繰り返し用いて、正極活物質層521、負極活物質層531、或いは、固体電解質層540を形成する。その後、正極基板26を裁断して、前述の発電要素510、即ち、正極基板26上に形成された正極活物質層521を有する正電極板520と、負極基板36上に形成された負極活物質層531を有する負電極板530と、正極活物質層521と負極活物質層531との間に介在する固体電解質層540とを有する発電要素510ができる(図3,7参照)。
さらに、この発電要素510の正電極板520(正極基板26)に正極集電部材71を、負電極板530(負極基板36)に負極集電部材72をそれぞれ接合した後(図3参照)、この発電要素510を電気ケース本体81に収容し、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池501ができあがる(図1参照)。
Furthermore, the positive electrode active material layer 521, the negative electrode active material layer 531, or the solid electrolyte layer 540 is formed by repeatedly using the layer forming apparatuses 100X, 100Y, and 100Z and the press apparatuses 200X, 200Y, and 200Z. Thereafter, the positive electrode substrate 26 is cut, and the above-described power generation element 510, that is, the positive electrode plate 520 having the positive electrode active material layer 521 formed on the positive electrode substrate 26 and the negative electrode active material formed on the negative electrode substrate 36. A power generation element 510 having a negative electrode plate 530 having a layer 531 and a solid electrolyte layer 540 interposed between the positive electrode active material layer 521 and the negative electrode active material layer 531 can be formed (see FIGS. 3 and 7).
Furthermore, after joining the positive electrode current collector 71 to the positive electrode plate 520 (positive electrode substrate 26) and the negative electrode current collector 72 to the negative electrode plate 530 (negative electrode substrate 36) of the power generation element 510 (see FIG. 3), The power generation element 510 is accommodated in the electric case main body 81 and the battery case main body 81 is sealed by welding with the sealing lid 82. Thus, the battery 501 is completed (see FIG. 1).

(参考形態2)
次に、本発明の参考形態2にかかる電池701について、図1,5,8〜10を参照しつつ説明する。
本参考形態2は、その電池701がバイポーラ型の電池である点、及び、ゲル電解質を用いている点で、前述の参考形態1と異なる。
(Reference form 2)
Next, a battery 701 according to Reference Embodiment 2 of the present invention will be described with reference to FIGS.
The present reference embodiment 2 is different from the aforementioned reference embodiment 1 in that the battery 701 is a bipolar battery and uses a gel electrolyte.

この電池701は、電池ケース80、及び、この電池ケース80内に収容された発電要素710を有するバイポーラ型のリチウムイオン二次電池である(図1,8参照)。
このうち、発電要素710は、図9中、最上部に位置する総正極基板751と、最下部に位置する総負極基板756とを有する。また、これらの間に、いずれも複数の、正極活物質層21、負極活物質層31、ゲル電解質層740及び金属箔からなる電極基板766を、積層方向DLに積層されている(図9,10参照)。なお、各々の電極基板766は、図9中、左奥から右手前方向の寸法が総正極基板751(総負極基板756)より短い、矩形箔状である。
The battery 701 is a bipolar lithium ion secondary battery having a battery case 80 and a power generation element 710 accommodated in the battery case 80 (see FIGS. 1 and 8).
Among them, the power generation element 710 includes a total positive electrode substrate 751 located at the uppermost part and a total negative electrode substrate 756 located at the lowermost part in FIG. 9. Between these layers, a plurality of positive electrode active material layers 21, negative electrode active material layers 31, gel electrolyte layers 740, and electrode substrates 766 made of metal foil are laminated in the lamination direction DL (FIG. 9, 10). Note that each electrode substrate 766 has a rectangular foil shape in which the dimension from the left back to the right front direction in FIG. 9 is shorter than the total positive substrate 751 (total negative substrate 756).

この参考形態2における、正極活物質層21及び負極活物質層31はいずれも参考形態1における正極活物質層21及び負極活物質層31と同様である。即ち、正極活物質層21には、コバルト酸リチウム(LiCoO2)からなる正極活物質粒子22、PVDFからなる結着材23、及び、アセチレンブラックからなる導電助剤粒子25が含まれる。一方、負極活物質層31には、グラファイトからなる負極活物質粒子32、及び、PVDFからなる結着材33が含まれる。 The positive electrode active material layer 21 and the negative electrode active material layer 31 in Reference Embodiment 2 are both the same as the positive electrode active material layer 21 and the negative electrode active material layer 31 in Reference Embodiment 1. That is, the positive electrode active material layer 21 includes positive electrode active material particles 22 made of lithium cobalt oxide (LiCoO 2 ), a binder 23 made of PVDF, and conductive auxiliary agent particles 25 made of acetylene black. On the other hand, the negative electrode active material layer 31 includes negative electrode active material particles 32 made of graphite and a binder 33 made of PVDF.

また、ゲル電解質層740は、三次元的な網目構造を構成した、ポリエチレンオキシドからなるポリマー(図示しない)と電解液(図示しない)とを有する。このゲル電解質層740は、ポリマーの網目がなす空隙に電解液(図示しない)を保持させたゲル状の電解質である。
なお、ポリマーとしては、上記の他に、例えば、ポリプロピレンオキシド、ポリエステル系樹脂、アラミド系樹脂、ポリオレフィン系樹脂、ポリフッ化ビニリデン、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、これらの共重合体、これらのアロイ(異なるポリマーの複合体)が挙げられる。
The gel electrolyte layer 740 includes a polymer (not shown) made of polyethylene oxide and an electrolyte solution (not shown) that form a three-dimensional network structure. The gel electrolyte layer 740 is a gel electrolyte in which an electrolytic solution (not shown) is held in a gap formed by a polymer network.
As the polymer, in addition to the above, for example, polypropylene oxide, polyester resin, aramid resin, polyolefin resin, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, copolymers thereof, these Alloys (complexes of different polymers) can be mentioned.

発電要素710を、具体的に総正極基板751側から順に説明すると、この総正極基板751の一方の主面である総正極主面752上に正極活物質層21が形成されている(図10参照)。そして、その正極活物質層21の、図10中、下方には、ゲル電解質層740が、このゲル電解質層740の、図中、下方には、負極活物質層31がそれぞれ形成されており、さらにその負極活物質層31の、図中、下方には、電極基板766が、自身の第2基板主面768で接して配置されている。さらに、この電極基板766の第1基板主面767上(図10中、下方)には、正極活物質層21が形成されている。また、この正極活物質層21の、図10中、下方には、既に説明したのと同じく、ゲル電解質層740、負極活物質層31、及び、電極基板766が積層されており、これが繰り返されている。そして、図10中、最も下方に位置した負極活物質層31に接して、総負極基板756が配置されている。   The power generation element 710 will be specifically described in order from the total positive electrode substrate 751 side. The positive electrode active material layer 21 is formed on the total positive electrode main surface 752 which is one main surface of the total positive electrode substrate 751 (FIG. 10). reference). Then, a gel electrolyte layer 740 is formed below the positive electrode active material layer 21 in FIG. 10, and a negative electrode active material layer 31 is formed below the gel electrolyte layer 740 in the drawing. Further, below the negative electrode active material layer 31 in the figure, an electrode substrate 766 is disposed in contact with its second substrate main surface 768. Further, the positive electrode active material layer 21 is formed on the first substrate main surface 767 of this electrode substrate 766 (downward in FIG. 10). Also, in the lower part of the positive electrode active material layer 21 in FIG. 10, the gel electrolyte layer 740, the negative electrode active material layer 31, and the electrode substrate 766 are laminated as described above, and this is repeated. ing. In FIG. 10, the total negative electrode substrate 756 is disposed in contact with the negative electrode active material layer 31 positioned at the lowermost position.

なお、この発電要素710では、ゲル電解質層740を介した正極活物質層21と負極活物質層31との間で、1つの単位電池が構成される。従って、発電要素710は、複数の単位電池が積層方向DLに直列に積層された形態をなすので、第1電極板750の総正極基板751と、第2電極板755の総負極基板756との間には、第1電極板750、第2電極板755及び第3電極板760における各電位差の、総和の電位差が生じる。   In the power generation element 710, one unit cell is configured between the positive electrode active material layer 21 and the negative electrode active material layer 31 with the gel electrolyte layer 740 interposed therebetween. Therefore, since the power generation element 710 has a configuration in which a plurality of unit cells are stacked in series in the stacking direction DL, the total positive electrode substrate 751 of the first electrode plate 750 and the total negative electrode substrate 756 of the second electrode plate 755 are provided. A total potential difference among the potential differences in the first electrode plate 750, the second electrode plate 755, and the third electrode plate 760 is generated between them.

また、この発電要素710では、アルミニウムからなる矩形板状の総正極基板751と、この総正極基板751の総正極主面752上に形成された正極活物質層21とで、第1電極板750をなしていると見ることができる(図10参照)。また、銅からなる矩形板状の総負極基板756と、この総負極基板756の総負極主面757上に形成された負極活物質層31とで、第2電極板755をなしていると見ることができる。さらに、電極基板766と、この上下、即ち第1基板主面767上に形成された正極活物質層21と、第2基板主面768上に形成された負極活物質層31とで、第3電極板760をなしていると見ることができる。
すると、この発電要素710は、第1電極板750と第3電極板760との間、第3電極板760,760同士の間、及び、第3電極板760と第2電極板755との間に、それぞれゲル電解質層740が介在している形態をなしていると見ることができる。
ル電解質層740が介在している形態をなしていると見ることができる。
Further, in the power generation element 710, the first electrode plate 750 includes a rectangular plate-like total positive electrode substrate 751 made of aluminum and the positive electrode active material layer 21 formed on the total positive electrode main surface 752 of the total positive electrode substrate 751. (See FIG. 10). Further, it is considered that the second electrode plate 755 is formed by a rectangular plate-like total negative electrode substrate 756 made of copper and the negative electrode active material layer 31 formed on the total negative electrode main surface 757 of the total negative electrode substrate 756. be able to. Further, the electrode substrate 766, the upper and lower sides, that is, the positive electrode active material layer 21 formed on the first substrate main surface 767, and the negative electrode active material layer 31 formed on the second substrate main surface 768, It can be seen that the electrode plate 760 is formed.
Then, the power generation element 710 includes the first electrode plate 750 and the third electrode plate 760, the third electrode plates 760 and 760, and the third electrode plate 760 and the second electrode plate 755. In addition, it can be seen that the gel electrolyte layer 740 is interposed.
It can be seen that the electrolyte layer 740 is interposed.

なお、総正極基板751には正極タブ部771が、また、総負極基板756には負極タブ部772が、それぞれ図9中、左手前方向に延出している。この正極タブ部771の先端部771A、及び、負極タブ部772の先端部772Aが、電池ケース80の封口蓋82を貫通し、電池ケース80からその外部に突出して、電池701の外部端子をなしている(図1,8参照)。   Note that a positive electrode tab portion 771 extends on the total positive electrode substrate 751 and a negative electrode tab portion 772 extends on the total negative electrode substrate 756 in the left front direction in FIG. The leading end portion 771A of the positive electrode tab portion 771 and the leading end portion 772A of the negative electrode tab portion 772 penetrate the sealing lid 82 of the battery case 80 and project outside from the battery case 80 to form an external terminal of the battery 701. (See FIGS. 1 and 8).

本参考形態2の第1電極板750及び第3電極板760では、参考形態1,実施形態1と同様、これらに形成された正極活物質層21が、正極活物質粒子22と結着材23との比率が、その厚み方向DTに一定(同じ)にされてなり、正極活物質粒子22同士が、熱融着した結着材23により互いに結着してなる。
また、第2電極板755及び第3電極板760では、参考形態1,実施形態1と同様、これらに形成された負極活物質層31が、負極活物質粒子32と結着材33との比率が、その厚み方向DTに一定(同じ)にされてなり、負極活物質粒子32同士が、熱融着した結着材33により互いに結着してなる。
かくして、正極活物質粒子22同士、或いは、負極活物質粒子32同士の結着力を向上させた第1電極板750、第2電極板755及び第3電極板760とすることができる。
In the first electrode plate 750 and the third electrode plate 760 of Reference Embodiment 2, as in Reference Embodiment 1 and Embodiment 1, the positive electrode active material layer 21 formed thereon has the positive electrode active material particles 22 and the binder 23. And the positive electrode active material particles 22 are bonded to each other by the heat-bonded binding material 23.
Further, in the second electrode plate 755 and the third electrode plate 760, the negative electrode active material layer 31 formed thereon is the ratio between the negative electrode active material particles 32 and the binder 33, as in Reference Embodiment 1 and Embodiment 1. However, it is made constant (same) in the thickness direction DT, and the negative electrode active material particles 32 are bonded to each other by the heat-bonded binding material 33.
Thus, the first electrode plate 750, the second electrode plate 755, and the third electrode plate 760 can be obtained in which the binding force between the positive electrode active material particles 22 or the negative electrode active material particles 32 is improved.

なお、本参考形態2にかかる電池701の製造にあたっては、前述の参考形態1の層形成装置100X,100Y、及び、プレス装置200X,200Yを用いて(図5参照)、電極基板766(或いは、総正極基板751又は総負極基板756)上に正極活物質層21、或いは負極活物質層31を形成する。
具体的には、まず、実施形態1と同様の層形成装置100X及びプレス装置200X(図5参照)を用いて、層形成工程及び熱圧プレス工程を行い、電極基板766の第1基板主面767上に正極活物質層21を間欠的に形成する。次いで、電極基板766の第2基板主面768上に、実施形態1と同様の層形成装置100Y及びプレス装置200Y(図5参照)を用いて、層形成工程及び熱圧プレス工程を行い、電極基板766を挟んで正極活物質層21が配置された位置に負極活物質層31を形成する。なお、その後、長手方向DAに所定寸法になるように裁断して、矩形板状の電極基板766に形成する。
In the manufacture of the battery 701 according to the second embodiment, the layer forming apparatuses 100X and 100Y and the press apparatuses 200X and 200Y according to the first embodiment are used (see FIG. 5), and the electrode substrate 766 (or The positive electrode active material layer 21 or the negative electrode active material layer 31 is formed on the total positive electrode substrate 751 or the total negative electrode substrate 756).
Specifically, first, using the same layer forming apparatus 100X and press apparatus 200X (see FIG. 5) as in the first embodiment, the layer forming process and the hot-pressing process are performed, and the first substrate main surface of the electrode substrate 766 is obtained. A positive electrode active material layer 21 is intermittently formed on 767. Next, on the second substrate main surface 768 of the electrode substrate 766, a layer forming process and a hot-pressing process are performed using the same layer forming apparatus 100Y and press apparatus 200Y (see FIG. 5) as in the first embodiment. The negative electrode active material layer 31 is formed at a position where the positive electrode active material layer 21 is disposed with the substrate 766 interposed therebetween. After that, it is cut to have a predetermined dimension in the longitudinal direction DA and is formed on a rectangular plate-like electrode substrate 766.

また、総正極基板751について、上述の層形成装置100X及びプレス装置200X(図5参照)を用いて、その総正極主面752上に正極活物質層21を形成する。さらに、総負極基板756について、層形成装置100Y及びプレス装置200Y(図5参照)を用いて、その総負極主面757上に負極活物質層31を形成する。   Further, the positive electrode active material layer 21 is formed on the total positive electrode main surface 752 of the total positive electrode substrate 751 by using the layer forming apparatus 100X and the press apparatus 200X (see FIG. 5). Furthermore, the negative electrode active material layer 31 is formed on the total negative electrode main surface 757 of the total negative electrode substrate 756 using the layer forming apparatus 100Y and the press apparatus 200Y (see FIG. 5).

また、別途、ゲル電解質層740を、電解質高分子(モノマー)を含有する電解液を金属箔上に塗布し、電子線照射によるラジカル重合によりモノマーを重合させて膜を形成し、この膜を金属箔より剥がして矩形板状に裁断して作製しておく。   Separately, a gel electrolyte layer 740 is coated with an electrolytic solution containing an electrolyte polymer (monomer) on a metal foil, and a monomer is polymerized by radical polymerization by electron beam irradiation to form a film. It is peeled off from the foil and cut into a rectangular plate.

その後、ゲル電解質層740を、2つの電極基板766,766の間、及び、電極基板766と総正極基板751又は総負極基板756との間に介在させるようにして、積層方向DL(厚さ方向DT)にこれらを積層する。かくして、前述の発電要素710ができあがる(図9,10参照)。   Thereafter, the gel electrolyte layer 740 is interposed between the two electrode substrates 766 and 766 and between the electrode substrate 766 and the total positive electrode substrate 751 or the total negative electrode substrate 756, so that the stacking direction DL (thickness direction) These are laminated on DT). Thus, the above-described power generation element 710 is completed (see FIGS. 9 and 10).

さらに、この発電要素710の総正極基板751の正極タブ部771を、総負極基板756の負極タブ部772をそれぞれ封口蓋82に貫通させた後、この発電要素710を電気ケース本体81に収容し、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池701ができあがる(図1参照)。   Further, after passing the positive electrode tab portion 771 of the total positive electrode substrate 751 of the power generation element 710 and the negative electrode tab portion 772 of the total negative electrode substrate 756 through the sealing lid 82, the power generation element 710 is accommodated in the electric case body 81. The battery case body 81 is sealed by welding with the sealing lid 82. Thus, the battery 701 is completed (see FIG. 1).

(実施形態2)
本実施形態2にかかる車両800は、前述した電池1,501,701のいずれかを複数搭載したものである。具体的には、図11に示すように、車両800は、エンジン840、フロントモータ820およびリアモータ830を併用して駆動するハイブリッド自動車である。この車両800は、車体890、エンジン840、これに取り付けられたフロントモータ820、リアモータ830、ケーブル850、インバータ860、及び、複数の電池1,501,701を自身の内部に有する組電池810を有している。
(Embodiment 2)
A vehicle 800 according to the second embodiment includes a plurality of any of the batteries 1, 501 and 701 described above. Specifically, as shown in FIG. 11, vehicle 800 is a hybrid vehicle that is driven by using engine 840, front motor 820, and rear motor 830 in combination. The vehicle 800 includes a vehicle body 890, an engine 840, a front motor 820, a rear motor 830, a cable 850, an inverter 860, and a battery pack 810 having a plurality of batteries 1,501, 701 therein. doing.

本実施形態2にかかる車両800は、前述の電池1,501,701のいずれかを搭載しているので、活物質層21,31,521,531での結着力に起因する不具合を抑制しつつ、安定して使用できる車両800とすることができる。   Since the vehicle 800 according to the second embodiment has any one of the above-described batteries 1, 501, 701 mounted thereon, while suppressing problems caused by the binding force in the active material layers 21, 31, 521, 531. Thus, the vehicle 800 can be used stably.

(実施形態3)
また、本実施形態3のハンマードリル900は、前述した電池1,501,701のいずれかを含むバッテリパック910を搭載したものであり、図12に示すように、バッテリパック
910、本体920を有する電池搭載機器である。なお、バッテリパック910は、本体920のパック収容部921に脱着可能に収容されている。
(Embodiment 3)
Further, the hammer drill 900 according to the third embodiment is mounted with a battery pack 910 including any of the batteries 1, 501, 701 described above, and has a battery pack 910 and a main body 920 as shown in FIG. It is a battery-equipped device. The battery pack 910 is detachably accommodated in the pack accommodating portion 921 of the main body 920.

本実施形態3にかかるハンマードリル900は、前述の電池1,501,701のいずれかを搭載しているので、活物質層21,31,521,531での結着力に起因する不具合を抑制しつつ、安定して使用できるハンマードリル900とすることができる。   Since the hammer drill 900 according to the third embodiment is equipped with any one of the batteries 1, 501 and 701 described above, it suppresses problems caused by the binding force in the active material layers 21, 31, 521 and 531. However, the hammer drill 900 can be used stably.

以上において、本発明を実施形態1〜実施形態3に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、参考形態1では、電極基板26,36としてアルミニウム箔或いは銅箔を用いたが、例えば、材質をニッケルやステンレス等としても良い。また、金属箔の他に、例えば、金属板や、導電性を有する樹脂フィルムを用いても良い。
In the above, the present invention has been described with reference to the first to third embodiments. However, the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say.
For example, in the reference form 1, aluminum foil or copper foil is used as the electrode substrates 26 and 36. However, for example, the material may be nickel, stainless steel, or the like. In addition to the metal foil, for example, a metal plate or a conductive resin film may be used.

また、参考形態1,実施形態1では、セパレータ或いは固体電解質層を正電極板及び負電極板の間に介在させた積層型のリチウムイオン二次電池としたが、そのセパレータ,固体電解質層の代わりに、参考形態2で示したゲル電解質層を用いた形態としても良い。また、参考形態2では、ゲル電解質層を用いたバイポーラ型のリチウムイオン二次電池としたが、ゲル電解質層の代わりに、参考形態1,実施形態1で示したセパレータ或いは固体電解質層を用いたバイポーラ型の電池としても良い。   In Reference Embodiment 1 and Embodiment 1, the separator or the solid electrolyte layer is a stacked lithium ion secondary battery interposed between the positive electrode plate and the negative electrode plate, but instead of the separator and the solid electrolyte layer, It is good also as a form using the gel electrolyte layer shown in the reference form 2. Further, in Reference Embodiment 2, a bipolar lithium ion secondary battery using a gel electrolyte layer was used, but the separator or solid electrolyte layer shown in Reference Embodiment 1 and Embodiment 1 was used instead of the gel electrolyte layer. A bipolar battery may be used.

また、実施形態1では、正極活物質層521、固体電解質層540及び負極活物質層531を、この順に一層ずつ積層して、発電要素を形成した。
しかし、これら正極活物質層、固体電解質層及び負極活物質層を形成し積層する手順に、特に限定はなく、例えば、正極基板上に正極活物質層を、負極基板上に負極活物質層をそれぞれ別々に形成し、層形成装置を用いて、正極活物質層上、或いは、負極活物質層上に未圧縮固体電解質を形成する。その後、この未圧縮固体電解質層を介して負極活物質層と正極活物質層とを重ねて、三者を合わせて、プレス装置を用いて圧縮して、固体電解質層を形成して、それらを積層しても良い。
さらに、例えば、層形成装置を用いて、正極活物質層上、或いは、負極活物質層上に未圧縮固体電解質層を形成した後にプレスして、正極活物質層上に固体電解質層、或いは、負極活物質層上に固体電解質層を形成しておく。そして、正極活物質層上に形成した固体電解質層に未圧縮負極活物質層を、或いは、正極活物質層上に形成した固体電解質層に未圧縮正極活物質層を堆積させて、全体をプレスしても良い。
In Embodiment 1, the positive electrode active material layer 521, the solid electrolyte layer 540, and the negative electrode active material layer 531 are stacked one by one in this order to form a power generation element.
However, the procedure for forming and laminating the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is not particularly limited. For example, the positive electrode active material layer is formed on the positive electrode substrate, and the negative electrode active material layer is formed on the negative electrode substrate. Each is formed separately, and an uncompressed solid electrolyte is formed on the positive electrode active material layer or the negative electrode active material layer using a layer forming apparatus. Then, the negative electrode active material layer and the positive electrode active material layer are stacked through this uncompressed solid electrolyte layer, and the three are combined and compressed using a press device to form a solid electrolyte layer. You may laminate.
Further, for example, using a layer forming apparatus, an uncompressed solid electrolyte layer is formed on the positive electrode active material layer or the negative electrode active material layer, and then pressed, and the solid electrolyte layer on the positive electrode active material layer, or A solid electrolyte layer is formed on the negative electrode active material layer. Then, the uncompressed negative electrode active material layer is deposited on the solid electrolyte layer formed on the positive electrode active material layer, or the uncompressed positive electrode active material layer is deposited on the solid electrolyte layer formed on the positive electrode active material layer, and the whole is pressed. You may do it.

1,501,701 電池
10,510,710 発電要素
20,520 正電極板(電極板,金属箔)
21,521 正極活物質層(活物質層)
21B 未圧縮正極活物質層(未圧縮活物質層)
22 正極活物質粒子(活物質粒子)
23,33 結着材(バインダ樹脂)
23G,33G 結着粒子(樹脂粒子)
26 正極基板(電極基板)
27 第1正極基板主面(基板主面)
28 第2正極基板主面(基板主面)
30,530 負電極板(電極板)
31,531 負極活物質層(活物質層)
31B 未圧縮負極活物質層(未圧縮活物質層)
32 負極活物質粒子(活物質粒子)
36 負極基板(電極基板)
37 第1負極基板主面(基板主面)
38 第2負極基板主面(基板主面)
750 第1電極板(電極板)
751 総正極基板(電極基板)
752 総正極主面(基板主面)
755 第2電極板(電極板)
756 総負極基板(電極基板)
757 総負極主面(基板主面)
760 第3電極板(電極板)
766 電極基板
767 第1基板主面(基板主面)
768 第2基板主面(基板主面)
800 車両
810 組電池(電池)
900 ハンマードリル(電池搭載機器)
910 バッテリパック(電池)
DT 厚み方向
MX1,MX2,MX3,MX5 混合粒子群
1,501,701 Battery 10,510,710 Power generation element 20,520 Positive electrode plate (electrode plate, metal foil)
21,521 Positive electrode active material layer (active material layer)
21B Uncompressed positive electrode active material layer (uncompressed active material layer)
22 Positive electrode active material particles (active material particles)
23, 33 Binder (binder resin)
23G, 33G binder particles (resin particles)
26 Positive substrate (electrode substrate)
27 First positive substrate main surface (substrate main surface)
28 Second positive electrode substrate main surface (substrate main surface)
30,530 Negative electrode plate (electrode plate)
31, 531 Negative electrode active material layer (active material layer)
31B Uncompressed negative electrode active material layer (uncompressed active material layer)
32 Negative electrode active material particles (active material particles)
36 Negative substrate (electrode substrate)
37 First negative electrode substrate main surface (substrate main surface)
38 Main surface of second negative electrode substrate (main surface of substrate)
750 First electrode plate (electrode plate)
751 Total positive substrate (electrode substrate)
752 Total positive electrode main surface (substrate main surface)
755 Second electrode plate (electrode plate)
756 Total negative electrode substrate (electrode substrate)
757 Total negative electrode main surface (substrate main surface)
760 Third electrode plate (electrode plate)
766 Electrode substrate 767 First substrate main surface (substrate main surface)
768 Second substrate main surface (substrate main surface)
800 vehicle 810 assembled battery (battery)
900 Hammer drill (battery mounted equipment)
910 Battery pack (battery)
DT Thickness direction MX1, MX2, MX3, MX5 mixed particle group

Claims (14)

導電性の電極基板と、
上記電極基板の基板主面上に形成された、活物質粒子、活物質層用バインダ樹脂、及び固体電解質からなる活物質層用固体電解質粒子を有する活物質層と、を備える
電極板の製造方法であって、
上記活物質粒子、上記活物質層用バインダ樹脂からなる活物質層用樹脂粒子、及び上記活物質層用固体電解質粒子を、予め混合した混合粒子群を、スクリーンの目を通過させて帯電させ電界により飛ばして、上記電極基板の上記基板主面上に堆積させる静電スクリーン印刷法により、予め定めた形状に未圧縮活物質層を形成する層形成工程
前記層形成工程で形成した前記未圧縮活物質層を加熱しつつ圧縮して、前記活物質層用バインダ樹脂により前記活物質粒子及び前記活物質層用固体電解質粒子同士を結着させる熱圧プレス工程を備え、
前記電極板は、前記活物質層上に固体電解質層用固体電解質粒子及び固体電解質層用バインダ樹脂からなる固体電解質層を有してなり、
前記熱圧プレス工程の後に、
上記固体電解質層用バインダ樹脂からなる固体電解質層用樹脂粒子及び上記固体電解質層用固体電解質粒子を、予め混合した混合粒子群を、スクリーンの目を通過させて帯電させ電界により飛ばして、前記活物質層上に堆積させる静電スクリーン印刷法により、予め定めた形状に未圧縮固体電解質層を形成する未圧縮固体電解質層形成工程を備える
電極板の製造方法。
A conductive electrode substrate;
A method for producing an electrode plate, comprising: active material particles formed on a substrate main surface of the electrode substrate, an active material layer comprising active material particles, a binder resin for active material layers, and solid electrolyte particles for active material layers comprising a solid electrolyte. Because
A mixed particle group in which the active material particles, the active material layer resin particles including the active material layer binder resin, and the solid electrolyte particles for the active material layer are mixed in advance is charged by passing through the eyes of a screen. skip by, by an electrostatic screen printing Ru is deposited on the substrate main surface of the electrode substrate, a layer formation step of forming a uncompressed active material layer in a predetermined shape,
A hot-press press that compresses while heating the uncompressed active material layer formed in the layer forming step, and binds the active material particles and the solid electrolyte particles for the active material layer with the binder resin for the active material layer With a process,
The electrode plate has a solid electrolyte layer made of solid electrolyte particles for a solid electrolyte layer and a binder resin for a solid electrolyte layer on the active material layer,
After the hot press process,
The mixed particle group in which the solid electrolyte layer resin particles made of the solid electrolyte layer binder resin and the solid electrolyte layer solid electrolyte particles are mixed in advance is charged by passing through the eyes of a screen, and is blown by an electric field, so that the active An electrode plate manufacturing method comprising: an uncompressed solid electrolyte layer forming step of forming an uncompressed solid electrolyte layer in a predetermined shape by an electrostatic screen printing method deposited on a material layer .
請求項1に記載の電極板の製造方法であって、
前記固体電解質層用固体電解質粒子は、前記活物質層用固体電解質粒子と同材質であり、
前記固体電解質層用樹脂粒子及び前記固体電解質層用バインダ樹脂は、前記活物質層用樹脂粒子及び前記活物質層用バインダ樹脂と同材質である
電極板の製造方法。
It is a manufacturing method of the electrode plate according to claim 1 ,
The solid electrolyte particles for the solid electrolyte layer are the same material as the solid electrolyte particles for the active material layer,
The method for producing an electrode plate, wherein the solid electrolyte layer resin particles and the solid electrolyte layer binder resin are the same material as the active material layer resin particles and the active material layer binder resin.
請求項1または請求項2に記載の電極板の製造方法であって、
前記未圧縮固体電解質層形成工程で形成した前記未圧縮固体電解質層を加熱しつつ圧縮して、
前記固体電解質層用バインダ樹脂により前記固体電解質層用固体電解質粒子同士を結着させて前記固体電解質層を形成する固体電解質層熱圧プレス工程を備える
電極板の製造方法。
It is a manufacturing method of the electrode plate according to claim 1 or 2 ,
Compressing while heating the uncompressed solid electrolyte layer formed in the uncompressed solid electrolyte layer forming step,
The manufacturing method of an electrode plate provided with the solid electrolyte layer hot-pressing process of binding the solid electrolyte particles for solid electrolyte layers with the binder resin for solid electrolyte layers, and forming the said solid electrolyte layer.
請求項3に記載の電極板の製造方法であって、
前記電極板は、前記活物質粒子とは逆極性の逆極性活物質粒子、逆極性活物質層用バインダ樹脂、及び逆極性活物質層用固体電解質粒子からなる逆極性活物質層を前記固体電解質層上に有してなり、
前記固体電解質層熱圧プレス工程の後に、
上記逆極性活物質粒子、上記逆極性活物質層用バインダ樹脂からなる逆極性活物質層用樹脂粒子、及び上記逆極性活物質層用固体電解質粒子を、予め混合した混合粒子群を、スクリーンの目を通過させて帯電させ電界により飛ばして、前記固体電解質層上に堆積させる静電スクリーン印刷法により、予め定めた形状に未圧縮逆極性活物質層を形成する未圧縮逆極性活物質層形成工程を備える
電極板の製造方法。
It is a manufacturing method of the electrode plate according to claim 3 ,
The electrode plate has a reverse polarity active material layer composed of a reverse polarity active material particle having a polarity opposite to that of the active material particle, a binder resin for a reverse polarity active material layer, and a solid electrolyte particle for a reverse polarity active material layer. Having on the layer,
After the solid electrolyte layer hot press process,
A mixed particle group in which the reverse polarity active material particles, the reverse polarity active material layer resin particles made of the reverse polarity active material layer binder resin, and the reverse polarity active material layer solid electrolyte particles are mixed in advance is added to the screen. skipping the field is charged by passing through an eye, the solid electrolyte layer electrostatic screen printing method Ru deposited on, uncompressed opposite polarity active material layer to form the uncompressed opposite polarity active material layer in a predetermined shape A manufacturing method of an electrode plate provided with a formation process.
請求項4に記載の電極板の製造方法であって、
前記逆極性活物質層用固体電解質粒子は、前記活物質層用固体電解質粒子及び前記固体電解質層用固体電解質粒子と同材質であり、
前記逆極性活物質層用樹脂粒子及び前記逆極性活物質層用バインダ樹脂は、前記活物質層用樹脂粒子及び前記固体電解質層用樹脂粒子、並びに、前記活物質層用バインダ樹脂及び前記固体電解質層用バインダ樹脂と同材質である
電極板の製造方法。
It is a manufacturing method of the electrode plate according to claim 4 ,
The solid electrolyte particles for the reverse polarity active material layer are the same material as the solid electrolyte particles for the active material layer and the solid electrolyte particles for the solid electrolyte layer,
The reverse polarity active material layer resin particles and the reverse polarity active material layer binder resin are the active material layer resin particles and the solid electrolyte layer resin particles, and the active material layer binder resin and the solid electrolyte. The manufacturing method of the electrode plate which is the same material as binder resin for layers.
請求項4または請求項5に記載の電極板の製造方法であって、
前記未圧縮逆極性活物質層形成工程で形成した前記未圧縮逆極性活物質層を加熱しつつ圧縮して、
前記逆極性活物質層用バインダ樹脂により前記逆極性活物質粒子、及び前記逆極性活物質層用固体電解質粒子同士を結着させて前記逆極性活物質層を形成する逆極性活物質層熱圧プレス工程を備える
電極板の製造方法。
It is a manufacturing method of the electrode plate according to claim 4 or 5 ,
Compressing while heating the uncompressed reverse polarity active material layer formed in the uncompressed reverse polarity active material layer forming step,
Reverse polarity active material layer hot pressure for forming the reverse polarity active material layer by binding the reverse polarity active material particles and the solid electrolyte particles for the reverse polarity active material layer with the binder resin for the reverse polarity active material layer A method for producing an electrode plate comprising a pressing step.
請求項1〜6のいずれか1項に記載の電極板の製造方法であって、
前記電極基板は金属からなる電極板の製造方法。
It is a manufacturing method of the electrode plate according to any one of claims 1 to 6 ,
The electrode substrate is a method of manufacturing an electrode plate made of metal.
導電性の電極基板と、
上記電極基板の基板主面上に形成された、活物質粒子、活物質層用バインダ樹脂、及び固体電解質からなる活物質層用固体電解質粒子を有する活物質層と、を備える
電極板であって、
上記活物質層は、
静電スクリーン印刷法を用いて、予め定めた形状に形成され、
上記活物質粒子と上記活物質層用バインダ樹脂と上記活物質層用固体電解質粒子との比率が、その厚み方向に一定にされてなり、
上記活物質粒子及び上記活物質層用固体電解質粒子同士が、熱融着した上記活物質層用バインダ樹脂により、互いに結着してなり、
前記活物質層上に、固体電解質層用バインダ樹脂及び固体電解質層用固体電解質粒子からなる固体電解質層を有してなり、
上記固体電解質層は、
静電スクリーン印刷法を用いて、予め定めた形状に形成され、
上記固体電解質層用バインダ樹脂と上記固体電解質層用固体電解質粒子との比率が、その厚み方向に一定にされてなり、
上記固体電解質層用固体電解質粒子同士が、熱融着した上記固体電解質層用バインダ樹脂により、互いに結着してなる
電極板。
A conductive electrode substrate;
An active material layer comprising active material particles, a binder resin for active material layer, and a solid electrolyte particle for active material layer made of a solid electrolyte, formed on the main surface of the electrode substrate, and an electrode plate comprising: ,
The active material layer is
Using electrostatic screen printing method, it is formed into a predetermined shape,
The ratio of the active material particles, the binder material for the active material layer and the solid electrolyte particles for the active material layer is made constant in the thickness direction,
The active material particles and the active material layer for a solid electrolyte particles to each other by thermal fusion the above active material layer binder resin, Ri Na and bound to each other,
On the active material layer, comprising a solid electrolyte layer comprising a binder resin for a solid electrolyte layer and solid electrolyte particles for a solid electrolyte layer,
The solid electrolyte layer is
Using electrostatic screen printing method, it is formed into a predetermined shape,
The ratio of the binder resin for the solid electrolyte layer and the solid electrolyte particles for the solid electrolyte layer is made constant in the thickness direction,
The electrode plate, wherein the solid electrolyte particles for the solid electrolyte layer are bonded to each other by the heat-fused binder resin for the solid electrolyte layer .
請求項8に記載の電極板であって、
前記固体電解質層用固体電解質粒子は、前記活物質層用固体電解質粒子と同材質であり、
前記固体電解質層用バインダ樹脂は、前記活物質層用バインダ樹脂と同材質である
電極板。
The electrode plate according to claim 8 ,
The solid electrolyte particles for the solid electrolyte layer are the same material as the solid electrolyte particles for the active material layer,
The binder resin for a solid electrolyte layer is an electrode plate made of the same material as the binder resin for an active material layer.
請求項8または請求項9に記載の電極板であって、
前記固体電解質層上に、前記活物質粒子とは逆極性の逆極性活物質粒子、逆極性活物質層用バインダ樹脂及び逆極性活物質層用固体電解質粒子を有する逆極性活物質層を有してなり、
上記逆極性活物質層は、
静電スクリーン印刷法を用いて、予め定めた形状に形成され、
上記逆極性活物質粒子と上記逆極性活物質層用バインダ樹脂と上記逆極性活物質層用固体電解質粒子との比率が、その厚み方向に一定にされてなり、
上記逆極性活物質粒子及び上記逆極性活物質層用固体電解質粒子同士が、熱融着した上記逆極性活物質層用バインダ樹脂により、互いに結着してなる
電極板。
The electrode plate according to claim 8 or 9 , wherein
On the solid electrolyte layer, there is a reverse polarity active material layer having a reverse polarity active material particle having a polarity opposite to that of the active material particle, a binder resin for the reverse polarity active material layer, and a solid electrolyte particle for the reverse polarity active material layer. And
The reverse polarity active material layer is
Using electrostatic screen printing method, it is formed into a predetermined shape,
The ratio of the reverse polarity active material particles, the binder resin for the reverse polarity active material layer and the solid electrolyte particles for the reverse polarity active material layer is made constant in the thickness direction,
An electrode plate in which the reverse polarity active material particles and the solid electrolyte particles for the reverse polarity active material layer are bonded to each other by the heat-fused binder resin for the reverse polarity active material layer.
請求項10に記載の電極板であって、
前記逆極性活物質層用固体電解質粒子は、前記活物質層用固体電解質粒子及び前記固体電解質層用固体電解質粒子と同材質であり、
前記逆極性活物質層用バインダ樹脂は、前記活物質層用バインダ樹脂及び前記固体電解質層用バインダ樹脂と同材質である
電極板。
The electrode plate according to claim 10 ,
The solid electrolyte particles for the reverse polarity active material layer are the same material as the solid electrolyte particles for the active material layer and the solid electrolyte particles for the solid electrolyte layer,
The reverse polarity active material layer binder resin is an electrode plate made of the same material as the active material layer binder resin and the solid electrolyte layer binder resin.
請求項8〜11のいずれか1項に記載の電極板を用いてなる電池。 The battery which uses the electrode plate of any one of Claims 8-11 . 請求項12に記載の電池を搭載した車両。 A vehicle equipped with the battery according to claim 12 . 請求項12に記載の電池を搭載した電池搭載機器。 The battery mounting apparatus which mounts the battery of Claim 12 .
JP2010541931A 2008-12-11 2008-12-11 Electrode plate manufacturing method, electrode plate, battery, vehicle and battery-equipped device Expired - Fee Related JP5549597B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072535 WO2010067440A1 (en) 2008-12-11 2008-12-11 Method for producing electrode plate, electrode plate, battery, vehicle and battery-mounted apparatus

Publications (2)

Publication Number Publication Date
JPWO2010067440A1 JPWO2010067440A1 (en) 2012-05-17
JP5549597B2 true JP5549597B2 (en) 2014-07-16

Family

ID=42242451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010541931A Expired - Fee Related JP5549597B2 (en) 2008-12-11 2008-12-11 Electrode plate manufacturing method, electrode plate, battery, vehicle and battery-equipped device

Country Status (2)

Country Link
JP (1) JP5549597B2 (en)
WO (1) WO2010067440A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743429B2 (en) * 2010-05-18 2015-07-01 日立造船株式会社 Method for manufacturing solid lithium battery, method for manufacturing device including solid lithium battery, and method for manufacturing electrolyte layer including solid electrolyte
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2013084442A (en) * 2011-10-07 2013-05-09 Toyota Central R&D Labs Inc Mixture powder, method of manufacturing electrode, electrode, and lithium secondary battery
JP2015179673A (en) * 2015-04-28 2015-10-08 日立造船株式会社 Method for manufacturing a solid lithium battery, method for manufacturing device with solid lithium battery, and method for manufacturing electrolytic layer including solid electrolyte
JP7099378B2 (en) * 2019-03-13 2022-07-12 トヨタ自動車株式会社 Electrode sheet manufacturing method
JP7339133B2 (en) * 2019-11-14 2023-09-05 トヨタ自動車株式会社 Electrode plate manufacturing method
JP7226401B2 (en) * 2020-07-03 2023-02-21 トヨタ自動車株式会社 electrode structure
KR20230160518A (en) 2022-05-17 2023-11-24 주식회사 엘지에너지솔루션 System and method of inputting powder material
KR20230162167A (en) 2022-05-20 2023-11-28 주식회사 엘지에너지솔루션 Raw material mixing device for preparing slurry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042878A (en) * 2000-07-26 2002-02-08 Kyocera Corp Lithium secondary battery
JP2004281221A (en) * 2003-03-14 2004-10-07 Toyota Motor Corp Apparatus and method for manufacturing electrode
JP2005183287A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Method for manufacturing solid electrolyte battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013338B1 (en) * 1970-08-04 1975-05-19
JPS63162774A (en) * 1986-12-26 1988-07-06 Ikeda Touka Kogyo Kk Powdered edible ink for electrostatic screen printing
JP2003182024A (en) * 2001-12-13 2003-07-03 Nippon Paint Co Ltd Screen printing machine, screen process printing method, and screen process print

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042878A (en) * 2000-07-26 2002-02-08 Kyocera Corp Lithium secondary battery
JP2004281221A (en) * 2003-03-14 2004-10-07 Toyota Motor Corp Apparatus and method for manufacturing electrode
JP2005183287A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Method for manufacturing solid electrolyte battery

Also Published As

Publication number Publication date
JPWO2010067440A1 (en) 2012-05-17
WO2010067440A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5549597B2 (en) Electrode plate manufacturing method, electrode plate, battery, vehicle and battery-equipped device
WO2010064288A1 (en) Solid electrolyte battery, vehicle, battery-mounted apparatus, and method for production of solid electrolyte battery
KR101517062B1 (en) Process for Preparation of Secondary Battery
JP5818116B2 (en) Sealed lithium secondary battery and manufacturing method thereof
JP6598245B2 (en) Secondary battery manufacturing method and manufacturing apparatus thereof
JP6007315B2 (en) Nonaqueous electrolyte secondary battery
JP2010086754A (en) Method for manufacturing battery
JP2016018675A (en) Secondary battery
JP2011029075A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
KR20130128033A (en) Device for removing gas from battery cell
JP5989405B2 (en) Power supply
JP2010231946A (en) Secondary battery
JP5381588B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
US11658343B2 (en) Battery manufacturing method
CN111799440A (en) Nonaqueous electrolyte secondary battery
JP7069625B2 (en) Manufacturing method of power storage element
JP7212845B2 (en) secondary battery
KR20160056553A (en) Electrode Coated with Electrode Mixing Having Convexo-Concave Structure
KR101207640B1 (en) Separator
WO2019198495A1 (en) Battery production method
WO2019198454A1 (en) Battery manufacturing method
JP2012124007A (en) Secondary battery, and method of manufacturing the same
JP2011258435A (en) Electrode for battery, electrode for bipolar battery and bipolar battery
TWI429128B (en) Electrode assembly of novel structure and process for preparation of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R151 Written notification of patent or utility model registration

Ref document number: 5549597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees